CHARGED PARTICLE MOTION
IN CONSTANT AND UNIFORM
ELECTROMAGNETIC FIELDS

1. INTRODUCTION

In this and in the following two chapters we investigate the motion of
charged particles in the presence of electric and magnetic fields known as
functions of position and time. Thus, the electric and magnetic fields are
assumed to be prescribed and are not affected by the charged particles.
This chapter, in particular, considers the fields to be constant in time and
spatially uniform. This subject is considered in some detail, since many
of the more complex situations, considered in Chapters 3 and 4, can be
treated as perturbations to this problem.

The study of the motion of charged particles in specified fields is
important, since it provides a good physical insight for understanding
some of the dynamical processes in plasmas. It also permits to obtain in-
formation on some macroscopic phenomena which are due to the collective
behavior of a large number of particles. Not all of the components of the
detailed microscopic particle motion contribute to macroscopic effects, but
it is possible to isolate the components of the individual motion that con-
tribute to the collective plasma behavior. Nevertheless, the macroscopic
parameters can be obtained much more easily and conveniently from the
macroscopic transport equations presented in Chapters 8 and 9.

The equation of motion for a particle of charge ¢, under the action of
the Lorentz force F due to electric (E) and magnetic induction (B) fields,
can be written as
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d
d—rt’:F:q(EJrva) (1.1)
where p represents the momentum of the particle and v its velocity.

This equation is relativistically correct if we take
p ="ymv (1.2)

where m is the rest mass of the particle and ~ is the so-called Lorentz
factor defined by
v =(1—0v%/c)~1/2 (1.3)

where c is the speed of light in vacuum. In the relativistic case, (1.1) can
also be written in the form
’ym(ji—‘tf +q<cl2>(V-E) =q¢(E+v xB) (1.4)
noting that the time rate of change of the total relativistic energy
(U = ymc?) is given by dU/dt = q(v-E) and that dp/dt = d(Uv/c?)/dt.
In many situations of pratical interest, however, the term v?/c? is
neglibible compared to unity. For v?/c?> < 1 we have v ~ 1 and m can
be considered constant (independent of v), so that (1.4) reduces to the
following nonrelativistic expression

dv

™

If the velocity obtained from (1.5) does not satisfy the condition v? < ¢?,

then the corresponding result is not valid and the relativistic expression

(1.4) must be used instead of (1.5). Relativistic effects become important

only for highly energetic particles (a 1 MeV proton, for instance, has a

velocity of 1.4 x 10"m/s, with v?/c? ~ 0.002). For the situations to be

considered here it is assumed that the restriction v? < ¢?, implicit in
(1.5), is not violated. Also, all radiation effects are neglected.

= ¢(E+v xB) (1.5)

2. ENERGY CONSERVATION

In the absence of an electric field (E = 0), the equation of motion

(1.5) reduces to

mccll—: =q(v x B) (2.1)

Since the magnetic force is perpendicular to v, it does no work on the
particle. Taking the dot product of (2.1) with v and noting that for any



2. CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS 35

vector v, we have (v x B) - v =0, we obtain

dv d
My V= E(%mqﬂ) =0 (2.2)
which shows that the particle kinetic energy (mwv?/2) and the magnitude of
its velocity (speed v) are both constants . Therefore, a static magnetic field
does not change the particle kinetic energy. This result is valid whatever
the spatial dependence of the magnetic flux density B. However, if B varies
with time then, according to Maxwell equations, an electric field such that
V xE = —0B/0t is also present which does work on the particle changing
its kinetic energy.
When both magnetostatic and electrostatic fields are present, we
obtain from (1.5)
d 4

o (3mv?) = q(E - v) (2.3)

Since V x E = 0, we can express the electrostatic field in terms of the
electrostatic potential according to E = —V ¢, so that

d dr do
7 (Gm*) = =4(Vo) - v =—q(V9) - — = —a— (2.4)
This result can be rearranged in the following conservation form
d
— (3mv? +¢¢) =0 (2.5)

dt

which shows that the sum of the particle kinetic and electric potential
energies remains constant in the presence of static electromagnetic fields.
Note that the electric potential ¢ can be considered as the potential energy
per unit charge.

When the fields are time-dependent we have V x E # 0 and E is not
the gradient of a scalar function. But, since V - B = 0, we can define a
magnetic vector potential A by B =V x A and write (1.5.2) as

0B 0 0A
VxE+ 5 =VxE+ 5 (VxA)=Vx (E+§) =0 (26)
Hence, we can express the electric field in the form
0A
E=-V¢— — 2.
vo- = 27)

In this case the system is not conservative in the usual sense and there is
no energy integral, but the analysis may be performed using a Lagrangian
function L for a charged particle in electromagnetic fields, defined by
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L=1%im?-U (2.8)

where U is a velocity-dependent potential energy given by
U=q(¢—v-A) (2.9)

The energy considerations presented in this section assume that the
particle energy changes only as a result of the work done by the fields.
This assumption is not strictly correct since every charged particle when
accelerated irradiates energy in the form of electromagnetic waves. For
the situations to be considered here this effect is usually small and can be
neglected.

3. UNIFORM ELECTROSTATIC FIELD

According to (1.1) the motion of a charged particle in an electric field
obeys the following differential equation

dp

=qE 3.1
i’ (3.1)
For a constant E field, (3.1) can be integrated directly giving

p(t) = ¢Et + po (3.2)

where p, = p(0) denotes the initial particle momentum. Using the non-
relativistic expression

dr
= =m— 3.3
p=mv=m_ (3.3)
and performing a second integration in (3.2), we obtain the following

expression for the particle position as a function of time

E
r(t) = %(%)tQ + Vot + 1, (3.4)

where r, denotes the particle initial position and v, its initial velocity.
Therefore, the particle moves with a constant acceleration, gE/m, in the
direction of E if ¢ > 0, and in the opposite direction if ¢ < 0. In a direction
perpendicular to the electric field there is no acceleration and the particle
state of motion remains unchanged.
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4. UNIFORM MAGNETOSTATIC FIELD

4.1 Formal Solution of the Equation of Motion

For a particle of charge ¢ and mass m, moving with velocity v in a
region of space where there is only a magnetic induction B (no electric
field E), the equation of motion is

mcjl—;’ = q(v x B) (4.1)

It is convenient to separate v in components parallel (v,) and perpendic-
ular (v ) to the magnetic field,

VvV = VH + V| (42)

as indicated in Fig. 1. Substituting (4.2) into (4.1) and noting that
(vy x B =0) we obtain

R 4.
dt dt m<vl x B) (4.3)

Since the term (v, x B) is perpendicular to B, the parallel component
equation can be written as

dv,
— =0 4.4
p” (4.4)
and the perpendicular component equation as
dv, q
—_— == B 4.5
o = (VL xB) (4.5)

Eq. (4.4) shows that the particle velocity along B does not change
and is equal to the particle initial velocity. For motion in the plane per-
pendicular to B, we can write (4.5) in the form

dVJ_
—— =qQ, 4.6
dt *VL (4.6)
where €2, is a vector defined by
B B~ ~
0--B_ldBs _ga, (4.7)
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Fig. 1 Decomposition of the velocity vector into components
parallel (v) and perpendicular (v ) to the magnetic field.

Thus, ﬁc points in the direction of B for a negatively charged particle
(¢ < 0) and in the opposite direction for a positively charged particle
(¢ > 0). Its magntitude Q. is always positive (2. = |¢| B/m). The unit
vector €2, points along €2..

Since €2 is constant and, from conservation of kinetic energy, v, (the
magnitude of v ) is also constant, (4.6) shows that the particle acceler-
ation is constant in magnitude and its direction is perpendicular to both
v and B. Thus, this acceleration corresponds to a rotation of the veloc-
ity vector v in the plane perpendicular to B with the constant angular
velocity .. We can integrate (4.6) directly, noting that €. is constant
and taking v = dr./dt, to obtain

v, =Q.xr, (4.8)

where the vector r. is interpreted as the particle position vector with re-
spect to a point G (the center of gyration) in the plane perpendicular to
B which contains the particle. Since the particle speed v, is constant,
the magnitude r. of the position vector is also constant. Therefore, (4.8)
shows that the velocity v corresponds to a rotation of the position vector
r. about the point G in the plane perpendicular to B with constant angu-
lar velocity €2.. The component of the motion in the plane perpendicular
to B is therefore a circle of radius r.. The instantaneous center of gyration
of the particle (the point G at the distance r. from the particle) is called the
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Fig. 2 Circular motion of a charged particle about the guiding
center in a uniform magnetostatic field.

guiding center. This circular motion about the guiding center is illustrated
in Fig. 2. R

Note that according to the definition of €., given in (4.7), €.
always points in the same direction as the particle angular momentum
vector (r. X p), irrespective of its charge.

The resulting trajectory of the particle is given by the superposition
of a uniform motion along B (with the constant velocity v,) and a circular
motion in the plane normal to B (with the constant speed v, ). Hence,
the particle describes a heliz (see Fig. 3). The angle between B and the
direction of motion of the particle is called the pitch angle and is given by

o =sin"! (U—L) = tan~* (U—L> (4.9)

v Yy

where v is the total speed of the particle (v? = v} +v}). When v, = 0
but v, # 0, we have o = 7/2 and the particle trajectory is a circle in the
plane normal to B. On the other hand, when v; = 0 but v, # 0, we have
o = 0 and the particle moves along B with the velocity v .

The magnitude of the angular velocity,

B
o, =18 (4.10)

m
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is known as the angular frequency of gyration, and is also called the gyro-
frequency, or cyclotron frequency or Larmor frequency. For an electron
lq| = 1.602 x 1071 coulomb and m = 9.109 x 1073! kg, so that

Q.(electron) = 1.76 x 10" B (rad/s) (4.11)

with B in tesla (or, equivalently, weber/m?). Similarly, for a proton
m = 1.673 x 10727 kg, so that

Qc(proton) = 9.58 x 10'B  (rad/s) (4.12)

The radius of the circular orbit, given by

(A muv
Te = — —

Qe B |q, B

(4.13)

is called the radius of gyration, or gyroradius, or cyclotron radius, or
Larmor radius. It is important to note that €. is directly proportional
to B. Consequently, as B increases, the gyrofrequency increases and the
radius decreases. Also, the smaller the particle mass the larger will be
its gyrofrequency and the smaller its gyroradius. Multiplying (4.13) by B
gives
mvy  pi
]

which shows that the magnitude of B times the particle gyroradius is equal
to the particle momentum per unit charge. This quantity is often called
the magnetic rigidity.

Br, = (4.14)

4.2 Solution in Cartesian Coordinates

The treatment presented so far in this section was not related to any
particular frame of reference. Consider now a Cartesian coordinate system
(x,y, z) such that B = Bz. In this case, the cross product between v and
B can be written as

~ ~ o~

Xy z
vxB=det| v, vy, v.|=DBv,X—1.y) (4.15)
0 0 B

and the equation of motion (4.1) becomes

dv  qB

— = (X~ 1:§) = £ (0,X — v.7) (4.16)
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Fig. 3 Helicoidal trajectory of a positively charged particle in
a uniform magnetostatic field.

The (+) sign in front of Q. applies to a positively charged particle (¢ > 0)
and the (—) sign to a negatively charged particle (¢ < 0), since . is
always positive, according to its definition given in (4.10). In what follows
we shall consider a positively charged particle. The results for a negative
charge can be obtained by changing the sign of €2, in the results for the
positive charge.

The Cartesian components of (4.16) are (for ¢ > 0)

dv,
E = Qc'Uy (417)
dv,
Wy _ ., 4.18
o v (4.18)
dv,
= 4.19

The last of these equations gives v,(t) = v,(0) = v, which is the initial
value of the velocity component parallel to B. To obtain the solution of
(4.17) and (4.18), we take the derivative of (4.17) with respect to time and
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substitute this result into (4.18), getting

d?v,
dt?

+Q%v, =0 (4.20)

This is the homogeneous differential equation for a harmonic oscillator of
frequency 2., whose solution is

v (t) = vy sin(Qet +6,) (4.21)

where v, is the constant speed of the particle in the (x,y) plane (normal
to B) and 6, is a constant of integration which depends on the relation
between the initial velocities v, (0) and v,(0), according to

tan(6,) = v;(0)/vy(0) (4.22)

To determine v,(t) we substitute (4.21) in the left-hand side of (4.17),
obtaining
vy (t) = v cos(Qet + 6,) (4.23)

Note that v} + v7 = v}. The equations for the components of v can be
further integrated with respect to time, yielding

V1

x(t) = o cos(Q:t +6,) + X, (4.24)

vl o
y(t) = O sin(Qct +0,) + Y, (4.25)
z2(t) = vt + 2 (4.26)

where we have defined
X, =z, + g—l cos(6,) (4.27)
vl .

Y, =y, — O sin(6,) (4.28)

C

The vector r = 2,X + 1,y + 2,z gives the initial particle position. From
(4.24) and (4.25) we see that

(= Xo)? + (y = Yo)* = (v1/Q)* =17 (4.29)
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Fig. 4 Circular trajectory of a charged particle in a uniform and
constant B field (directed out of the paper), and the direction of
the associated electric current.

The particle trajectory in the plane normal to B is therefore a circle with
center at (X,,Y,) and radius equal to (v, /€2.). The motion of the point
[Xo, Yo, 2(t)], at the instantaneous center of gyration, corresponds to the
trajectory of the guiding center. Thus, the guiding center moves with
constant velocity v, along B.

In the (z,y) plane, the argument ¢(t), defined by

1 (YY) ) _

¢(t) = tan (v = X,) (Qt+6,) ;5 o 0, (4.30)
decreases with time for a positively charged particle. For a magnetic field
pointing towards the observer, a positive charge describes a circle in the
clockwise direction. For a negatively charged particle £2. must be replaced
by —. in the results of this sub-section. Hence, (4.30) shows that for a
negative charge ¢(t) increases with time and the particle moves in a circle
in the counterclockwise direction, as shown in Fig. 4. The resulting parti-
cle motion is a cylindrical heliz of constant pitch angle. Fig. 5 shows the
parameters of the helix with reference to a Cartesian coordinate system.
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Fig. 5 Parameters of the helicoidal trajectory of a positively
charged particle with reference to a Cartesian coordinate system.

4.3 Magnetic Moment

To the circular motion of a charged particle in a magnetic field there
is associated a circulating electric current I. This current flows in the
clockwise direction for a B field pointing towards the observer (Fig. 4).
From Ampere’s law, the direction of the magnetic field associated with
this circulating current is given by the right-hand rule i.e. with the right
thumb pointing in the direction of the current I, the right fingers curl in the
direction of the associated magnetic field. Therefore, the B field produced
by the circular motion of a charged particle is opposite to the externally
applied B field inside the particle orbit, but in the same direction outside
the orbit. The magnetic field generated by the ring current I, at distances
much larger than r., is similar to that of a dipole (Fig. 6).
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Fig. 6 The magnetic field generated by a small ring current is
that of a magnetic dipole.

Since a plasma is a collection of charged particles, it possesses therefore
diamagnetic properties.

The magnetic moment m associated with the circulating current is
normal to the area A bounded by the particle orbit and points in the
direction opposite to the externally applied B field, as shown in Fig. 7.
Its magnitude is given by

lm| = (current) - (orbital area) =I1A (4.31)

This circulating current corresponds to a flow of charge and is given
by

Q.
;o
T. 2
where T, = 27 /(). is the period of the particle orbit, known as the cy-
clotron period or Larmor period. The magnitude of m is therefore

_ 1l Q2
m = 1]
T
Using the relations Q. = |¢| B/m and r. = v, /., (4.33) becomes
1,9
5muvy Wi
=f—=— 4.34
m|= 277 T (4.3)

(4.32)

7'('7“3 = %|q| chf (4.33)
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Fig. 7 Magnetic moment m associated with a circulating
current due to the circular motion of a charged particle in an
external B field.

where W, denotes the part of the particle kinetic energy associated with
the transverse velocity v, . Thus, in vector form,

m=--—=B (4.35)

4.4 Magnetization Current

Consider now a collection of charged particles, positive and negative
in equal numbers (in order to have no internal macroscopic electrostatic
fields), instead of just one single particle. For instance, consider the case
of a low-density plasma in which the particle collisions can be neglected
(collisionless plasma). The condition for this is that the average time
between collisions be much greater than the cyclotron period. This con-
dition is fulfilled for many space plasmas, for example. For a collisionless
plasma in an external magnetic field, the magnetic moments due to the
orbital motion of the charged particles act together, giving rise to a re-
sultant magnetic field which may be strong enough to appreciably change
the externally applied B field. The magnetic field produced by the orbital
motion of the charged particles can be determined from the net electric
current density associated with their motion.
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vOLUME = A . dl

(a) (b)

Fig. 8 (a) Electric current orbits crossing the surface element
S bounded by the curve C, in a macroscopic volume containing
a large number of particles. (b) Positive direction of the vector
area A.

To calculate the resultant electric current density, let us consider a
macroscopic volume containing a large number of particles. Let S be
an element of area in this volume, bounded by the curve C, as shown
in Fig. 8 (a). Orbits such as (1), which encircle the bounded sur-
face only once, contribute to the resultant current, whereas orbits such
as (2), which cross the surface twice, do not contribute to the net cur-
rent. If dl is an element of arc along the curve C, the number of orbits
encircling dl is given by nA - dl, where n is the number of orbits of cur-
rent I, per unit volume, and A is the vector area bounded by each or-
bit. The direction of A is that of the normal to the orbital area A, the
positive sense being related to the sense of circulation in the way the
linear motion of a right-hand screw is related to its rotary motion. Thus,
A points in the direction of the observer when I flows counterclockwise,
as shown in Fig. 8 (b). The net resultant current crossing S is therefore
given by the current encircling dl integrated along the curve C,

I, = ]{ InA -dl (4.36)

Since m = TA, the magnetic moment, per unit volume, M, (also called
the magnetization vector) is given by

M =nm =nlA (4.37)
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Hence, (4.36) can be written as

In:jéM-dl:/S(VxM)-dS (4.38)

where we have applied Stokes’ theorem. We may define an average mag-
netization current density, Jys, crossing the surface S, by

I, = / Iy - dS (4.39)
S

Consequently, from (4.38) and (4.39) we obtain the magnetization current
density as
Jy=VxM (4.40)

where, from (4.37) and (4.35),

nW 1
M:nm:—< = )B (4.41)
and nW denotes the kinetic energy, per unit volume, associated with the
transverse particle velocity.

The charge density pas associated with the magnetization current
density Jp; can be deduced from the equation of continuity,

0
M 4Ty =0 (4.42)
ot
Since Jj; = V x M and since for any vector a, we have V - (V x a) = 0,
it follows that the charge density pps is constant.
In the following Maxwell equation

aE) (4.43)

\V4 XB:MO(J—FEOE
we can separate the total current density J into two parts: a magnetization
current density Jjs and a current density J’ due to other sources,

J=Jy+J (4.44)

Expressing Jjs in terms of M, through (4.40), and substituting in (4.43),
we obtain

E
VXB:,LLO<VXM+J’—I—6068—t> (4.45)
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which can be rearranged as

V x (MLB—M) :J’+eo%—? (4.46)

Defining an effective magnetic field H by the relation

B = ji,(H + M) (4.47)
we can write (4.46) as
OE
VXH:JI—FGOE (448)

Thus, the effective magnetic field H is related to the current due to other
sources J', in the way B is related to the total current J. Eqgs. (4.40) and
(4.47) constitute the basic relations for the classical treatment of magnetic
materials.
A simple linear relation between B and H exists when M is propor-
tional to B or H,
M = x,,H (4.49)

where the constant ., is called the magnetic susceptibility of the medium.
However, for a plasma we have seen that M o 1/B [see (4.41)], so that
the relation between H and B (or M) is not linear. Within this context
it is generally not convenient to treat a plasma as a magnetic medium.

5. UNIFORM ELECTROSTATIC AND MAGNETOSTATIC FIELDS
5.1 Formal Solution of the Equation of Motion

We consider now the motion of a charged particle in the presence of
both electric and magnetic fields which are constant in time and spatially
uniform. The nonrelativistic equation of motion is

d

me = ¢(E+v x B) (5.1)
dt

Taking components parallel and perpendicular to B,

v=v,+VvL (5.2)
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we can resolve (5.1) into two component equations

dv
md_tH = qE, (5.4)
dVJ_

Eq. (5.4) is similar to (3.1) and represents a motion with constant
acceleration ¢E, /m along the B field. Hence, according to (3.2) and (3.4),

(0= (Tt 4,0 (5.6)

qE
ry(0) = 3(1) 4 v (0 +1,(0) (5.7
To solve (5.5) it is convenient to separate v, into two components
vi(t)=v () +VvE (5.8)

where v is a constant velocity in the plane normal to B. Hence, v/, re-
presents the particle velocity as seen by an observer in a frame of reference
moving with the constant velocity vg. Substituting (5.8) into (5.5), and
writing the component of the electric field perpendicular to B in the form
(see Fig. 9)

EJ_ x B
EL:—(T) « B (5.9)
we obtain I - B
\% X
m dtL :q<vi+vE—LBT> x B (5.10)

This equation shows that in a coordinate system moving with the constant
velocity

E 1 X B
= — %3
the particle motion in the plane normal to B is governed entirely by the
magnetic field, according to

VE (5.11)

d /
m ;’; = (v, x B) (5.12)

Thus, in this frame of reference, the electric field component E | is trans-
formed away, whereas the magnetic field is left unchanged. Eq. (5.12) is
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Fig. 9 Vector products appearing in Eq. (5.9) (]§ = B/B).

identical to (4.5) and implies that in the reference system moving with
the constant velocity vy, given by (5.11), the particle describes a circular
motion at the cyclotron frequency 2. with radius r.,

v =Q. xr, (5.13)

The results obtained so far indicate that the resulting particle motion
is described by a superposition of a circular motion in the plane normal to
B, with a uniform motion with the constant velocity vg perpendicular to
both B and E | , plus a uniform acceleration ¢E, /m along B. The particle
velocity can be expressed in vector form, independently of a coordinate
system, as
E 1 X B

B2
The first term in the right-hand side of (5.14) represents the cyclotron
circular motion, and the following ones represent, respectively, the drift
velocity of the guiding center (perpendicular to both E; and B), the
constant acceleration of the guiding center along B, and the initial velocity
parallel to B.

Note that the velocity vg is independent of the mass and of the
sign of the charge and therefore is the same for both positive and negative

E
v(t) = Q, X 1o + + qm” t 4+ v, (0) (5.14)
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particles. It is usually called the plasma drift velocity or the electromag-
netic plasma drift. Since E; x B =0, (5.11) can also be written as

ExB
Vg = B2

(5.15)

The resulting motion of the particle in the plane normal to B is, in
general, a cycloid, as shown in Fig. 10. The physical explanation for
this cycloidal motion is a follows. The electric force ¢E | , acting simulta-
neously with the magnetic force, accelerates the particle so as to increase
or decrease its velocity, depending on the relative direction of the particle
motion with respect to the direction of E; and on the charge sign. Ac-
cording to (4.13) the radius of gyration increases with velocity and hence
the radius of curvature of the particle path varies under the action of E .
This results in a cycloidal trajectory with a net drift in the direction per-
pendicular to both E and B. Different trajectories are obtained, depending
on the initial conditions and on the magnitude of the applied electric and
magnetic fields.

The ions are much more massive than the electrons and therefore
the Larmor radius for ions is correspondingly greater and the Larmor
frequency correspondingly smaller than for electrons. Consequently, the
arcs of cycloid for ions are greater than for electrons, but there is a larger
number of arcs of cycloid per second for electrons, such that the drift
velocity is the same for both species.

In a collisionless plasma the drift velocity does not imply an electric
current, since both positive and negative particles move together. When
collisions between charged and neutral particles are important, this drift
gives rise to an electric current, since the ion-neutral collision frequency is
greater than the electron-neutral collision frequency, causing the ions to
move slower than the electrons. This current is normal to both E and B,
and is in the direction opposite to vg. It is known as the Hall current.

5.2 Solution in Cartesian Coordinates

Let us choose a Cartesian coordinate system with the z axis pointing
in the direction of B, so that

B = Bz (5.16)

E=EXx+E)y+E.z (5.17)
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Fig. 10 Cycloidal trajectories described by ions and electrons in
crossed electric and magnetic fields. The electric field E acting
together with the magnetic flux density B gives rise to a drift
velocity in the direction given by E x B.

Using (4.15), the equation of motion (5.1) can be written as

dv

dt
As before, we consider, in what follows, a positive charge. The results for
a negative charge can be obtained by changing the sign of €2, in the results
for the positive charge.

The z component of (5.18) can be integrated directly and gives the
same results expressed in (5.6) and (5.7). For the x and y components,
we first take the derivative of dv, /dt with respect to time and substitute
the expression for dv, /dt, which gives

d?v, 2 By
72 E 402, = Q2 c g (5.19)
This is the inhomogeneous differential equation for a harmonic oscillator
of frequency €2.. Its solution is given by the sum of the homogeneous
equation solution, given in (4.21), with a particular solution (which is
clearly given by E,/B). Thus,

= (B, +v,B)% + (B, — v, B)y + E.Z] (5.18)

E
v (t) =0 sin(Qet +6,) + §y (5.20)
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where v/, and 6, are integration constants. The solution for v,(t) can be
obtained by substituting (5.20) directly into (5.18). Hence,

1 dv, E, E,
vy (t) = Q_c% -5 = v cos(Qet +60,) — 5 (5.21)

Therefore, the velocity components v, (t) and v, (t), in the plane perpen-
dicular to B, oscillate at the cyclotron frequency €2. and with amplitude
v’, . This motion is superposed to a constant drift velocity vg given by

VE=—=X— —=Yy (5.22)

This expression corresponds to (5.11) when B = Bz.
One more integration of (5.20) and (5.21) gives the particle trajectory
in the (z,y) plane

/
E
2(t) = — =L cos(Qet + 0,) + 2t + X, (5.23)
Q. B
/
E,
y(t) = g—i sin(Qet +6,) — 1t +Y, (5.24)

where X, and Y, are defined according to (4.27) and (4.28), but with v
replaced by v/, .

In summary, the motion of a charged particle in uniform electrostatic
and magnetostatic fields consists of three components:

(a) A constant acceleration ¢E;/m along the B field. If E; = 0, the
particle moves along B with its initial velocity.

(b) A rotation in the plane normal to B at the cyclotron frequency
Q. = |g| B/m and radius r. = v, /€.

(c) An electromagnetic drift velocity vy = (ExB)/B?, perpendicular
to both B and E.

6. DRIFT DUE TO AN EXTERNAL FORCE

If some additional force F (gravitational force or inertial force, if the
motion is considered in a noninertial system, for example) is present, the
equation of motion (1.5) must be modified to include this force,

dv

mE:q(E—i—va)jLF (6.1)
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Fig.11 Drift of a gyrating particle in crossed gravitational and
magnetic fields.

The effect of this force is, in a formal sense, analogous to the effect of

the electric field. We assume here that F is uniform and constant. In

analogy with the electromagnetic drift velocity vg, given in (5.15), the

drift produced by the force F having a component normal to B is given
by

FxB

Vp = 7(] B2

In the case of a uniform gravitational field, for example, we have F = mg,
where g is the acceleration due to gravity, and the drift velocity is given
by

(6.2)

mgxB
vy = . B
This drift velocity depends on the ratio m/q and therefore it is in opposite
directions for particles of opposite charge (Fig. 11). We have seen that
in a coordinate system moving with the velocity vg, the electric field
component E is transformed away leaving the magnetic field unchanged.
The gravitational field however cannot, in this context, be transformed
away.
In a collisionless plasma, associated with the gravitational drift ve-
locity there is an electric current density, J,, in the direction of g x B,
which can be expressed as

(6.3)

1
Jg = W Z qiVgi (64)
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where the summation is over all charged particles contained in a suitably
chosen small volume element V. Using (6.3) we obtain

e (SR s

i

where p,, denotes the total mass density of the charged particles.

A comment on the validity of (6.2) is appropriate here. Since we have
used the nonrelativistic equation of motion, there is a limitation on the
magnitude of the force F in order that (6.2) be applicable. The magnitude
of the transverse drift velocity is given by

Fy

=5 (6.6)

UD

Hence, for the nonrelativistic equation of motion to be applicable we must
have

F
_— 6.7
Mz <L c (6.7)

or, if F is due to an electrostatic field E,

E
f <c (6.8)

For a magnetic field of 1 tesla, for example, (6.2) may be used as long as
E, is much less than 108 volts/m. If these conditions are not satisfied,
the problem must be treated using the relativistic equation of motion.
Although the relativistic equation of motion can be integrated exactly for
constant B, E and F, we shall not analyze this problem here. It is left as
an exercise for the reader.

PROBLEMS

2.1 Calculate the cyclotron frequency and the cyclotron radius for:
(a) An electron in the Earth’s ionosphere at 300 km altitude, where the
magnetic flux density B ~ 0.5 x 10~ tesla, considering that the electron
moves at the thermal velocity (k7'/m), with T'= 1000 K, where & is Boltz-
mann’s constant.

(b) A 50 MeV proton in the Earth’s inner Van Allen radiation belt at
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about 1.5 Rg (where Rgp = 6370 km is the Earth’s radius) from the cen-
ter of the Earth in the equatorial plane, considering B ~ 1077 tesla.

(¢) A 1 MeV electron in the Earth’s outer Van Allen radiation belt at
about 4 Rg from the center of the Earth in the equatorial plane, where
B~ 1077 tesla.

(d) A proton in the solar wind with a streaming velocity of 100 km/s, in
a magnetic flux density B ~ 1079 tesla.

(e) A 1 MeV proton in a sunspot region of the solar photosphere, consi-
dering B ~ 0.1 tesla.

2.2 For an electron and an oxygen ion O in the Earth’s ionosphere,
at 300 km altitude in the equatorial plane, where B ~ 0.5 x 10~* tesla,
calculate:

(a) The gravitational drift velocity v.

(b) the gravitational current density J,, considering n, = n; = 10*? m~3.
Assume that g is perpendicular to B.

2.3 Consider a particle of mass m and charge ¢ moving in the presence
of constant and uniform electromagnetic fields given by E = E,y and
B = B,z. Assuming that initially (¢ = 0) the particle is at rest at the
origin of a Cartesian coordinate system, show that it moves on the cycloid

o(t) = % t— Qi sin(Qct)]
(t) = 52 -1~ cos(@t)

Plot the trajectory of the particle in the z = 0 plane for ¢ > 0 and for
qg < 0, and consider the cases when v, > vg, v, = vg and v| < vg,
where v, denotes the particle cyclotron motion velocity and vg is the
electromagnetic drift velocity.

2.4 In general the trajectory of a charged particle in crossed electric
and magnetic fields is a cycloid. Show that, if v = v,X, B = B,z and
E = E,y, then for v, = E,/B, the path is a straight line. Explain how
this situation can be exploited to design a mass spectrometer.

2.5 Derive the relativistic equation of motion in the form (1.4), starting
from (1.1) and the relation (1.2).
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2.6 Write down, in vector form, the relativistic equation of motion for a
charged particle in the presence of a uniform magnetostatic field B = B,z,
and show that its Cartesian components are given by

%(W}x) = (quO)Uy

%(77@) = —(qB")vx

m
d
%(f)/vz) =0
where
B 1
-

and where § = v/c. Show that the velocity and trajectory of the charged
particle are given by the same formulas as in the nonrelativistic case, but
with €. replaced by |q| B,/(m7).

2.7 Analyze the motion of a relativistic charged particle in the presence
of crossed electric (E) and magnetic (B) fields which are constant in time
and uniform in space. What coordinate transformation must be made in
order to transform away the transversal electric field? Derive equations
for the velocity and trajectory of the charged particle.
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