
4. Importance Sampling

Applying simulation methodology is simply finding the right wrench to pound in
the correct screw. Anon.

4.1 The Basic Problem of Rare Event Simulation

Large and/or nonlinear stochastic systems, due to analytic intractability,
must often be simulated in order to obtain estimates of the key performance
parameters. Typical situations of interest could be a buffer overload in a
queueing network or an error event in a digital communication system. In
many system designs or analyses a low probability event is a key parameter
of the system’s efficacy.

Since the test statistic’s probability distribution is usually very difficult
or impossible to compute in closed form, one is faced with the problem of
computer simulation in order to find the probability of interest.

How does one go about simulating a rare event in order to find its prob-
ability? This is a more difficult problem than one may expect. Consider a
sequence {Xj} of i.i.d. Bernoulli random variables with

P
(
X1 = 1

)
= ρ = 1 − P

(
X1 = 0

)
.

Suppose that we wish to estimate from the observed sequence the parameter
ρ. We wish to have at most a 5% error on ρ with 95% confidence. This means
that we must have

P
(
|ρ − ρ̂| ≤ .05ρ

)
= .95,

where ρ̂ is the estimate of ρ. For example, the maximum likelihood estimate
would be

ρ̂ =
1
k

k∑
i=1

Xi.

The variance of the Bernoulli random variable X1 is ρ(1 − ρ). If ρ is very
small (i.e., {X1 = 1} is a rare event), the variance of X1 is approximately ρ.
Hence the variance of ρ̂ is
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ρ(1 − ρ)
k

≈ ρ

k
.

The mean value of ρ̂ is ρ which (by definition) means that the estimate is
unbiased. Hence using a Central Limit Theorem approximation, we have that

P
(
|ρ − ρ̂| ≤ .05ρ

)
= P

(
| 1√

k

k∑
i=1

Xi − ρ√
ρ

| ≤ .05
√

ρk
)

≈ P
(
|Z| ≤ .05

√
ρk

)
,

where Z is a Gaussian, mean zero, variance 1 (i.e., standard Gaussian) ran-
dom variable. Now for a standard Gaussian we have that P

(
|Z| ≤ z

)
= .95

implies (from tables) that z ≈ 2; that is, two standard deviations about the
mean captures 95% of the probability of a Gaussian distribution. Thus we
must have that .05

√
ρk = 2 which in turn implies that k = 1600/ρ. Therefore,

if ρ is somewhere on the order of 10−6, we would need something like 1.6×109

number of samples to estimate it to the desired level of precision. This is a
very large number of simulation runs and will impose severe demands on our
random number generator. Unfortunately (for the simulation designer) error
probabilities of this order are typical in digital communication systems and
many other systems of engineering and scientific interest.

4.2 Importance Sampling

The principal method that we use to attack the rare event simulation problem
is to utilize a variance reduction technique from simulation theory known as
importance sampling. Suppose that we wish to estimate

ρ = E[η(X)],

where X is a random variable (or vector) describing some observation on a
random system. If η is the indicator function of some set (a typical case),
then ρ would be the probability of that set. Suppose that the observation
random variable X is controlled by a probability density function p(·). The
direct simulation method would be to generate a sequence of i.i.d. random
numbers X(1), X(2), . . . , X(k) from the density p(·) and form the estimate

ρ̂p =
1
k

k∑
i=1

η(X(i)).

Alternatively, we could generate a sequence of i.i.d. random numbers
Y (1), Y (2), . . . , Y (k) distributed with density q(·). The density q(·) is called
the importance sampling biasing distribution. We then form the importance
sampling estimator or estimate as
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ρ̂q =
1
k

k∑
i=1

η(Y (i))
p(Y (i))
q(Y (i))

.

Immediately we see that we could have problems unless q(x) is never zero for
any value of x where p(x) is positive. Mathematically, this means that the
support of q(·) must include the support of p(·). However, we see that there
can only be a problem if η(x) is nonzero at x and the ratio of p(·) and q(·)
blows up. This is equivalent to saying that support of η(x)p(x) is included in
the support of η(x)q(x). Thus our requirement may be stated as

support(p · η) ⊂ support(q · η).

The expected value of ρ̂q under the density q(·) is just

Eq[ρ̂q] =
1
k

k∑
i=1

∫
η(y(i))

p(y(i))
q(y(i))

q(y(i))dy(i)

=
∫

η(y)p(y)dy

= Ep[η(X)]
= ρ.

Therefore, the estimate ρ̂q is unbiased and, as k → ∞, we expect it to be
converging by the law of large numbers to its mean value ρ.

Example 4.2.1. Suppose we are interested in

ρ = P
( 1
n

n∑
j=1

Zj > T
)
,

where {Zj} are i.i.d. R-valued random variables with mean value zero, density
function p∗(·), and T is a positive constant. We simulate with some other
random variables {Rj} with density function q∗(·) and form the importance
sampling estimator,

ρ̂q =
1
k

k∑
i=1

1{ 1
n

∑n
j=1 R

(i)
j >T}

∏n
j=1 p∗(R(i)

j )∏n
j=1 q∗(R(i)

j )
.

To fit in with the theoretical framework given in the introduction, note
that we have the correspondences
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(Z1, Z2, . . . , Zn) ⇒ X

1{ 1
n

∑n
i=1 Zi>T} ⇒ η(X)

(R1, R2, . . . , Rn) ⇒ Y
n∏

j=1

p∗(Z(i)
j ) ⇒ p(X(i))

n∏
j=1

q∗(R(i)
j ) ⇒ q(Y (i)).

In this example we can see some of the possible utility in using an importance
sampling estimator. Consider again the quantity ρ. It involves the sum of n
random variables. Even if we know p(·), the distribution of the sum would
involve the n-fold convolution of p(·). For large n, this could be a very difficult
task even numerically. After that, then one would be forced to try to integrate
over the tail of the resulting distribution, another task that could be very
difficult analytically or numerically. With importance sampling, we see that
knowledge of the one-dimensional densities is sufficient to come up with an
unbiased estimator of ρ.

One key question of importance sampling is: Are there better choices
for q(·) than just p(·) (the direct Monte Carlo choice)? Let us consider the
variance of ρ̂q. Since this estimator is the average of k i.i.d. terms, the variance
will be 1/k times the variance of one of the terms. Thus

kVar(ρ̂q) =
∫

[η(x)
p(x)
q(x)

− ρ]2q(x)dx

=
∫

[
η(x)2p(x)2

q(x)
− 2ρp(x)η(x) + ρ2q(x)]dx

=
∫

η(x)2p(x)2

q(x)
dx − ρ2

= Fq − ρ2. (4.1)

In the above expression, we have emphasized that kVar(ρ̂q) may be written
as a difference of a first term, Fq, and a second term ρ2.

We now try to choose q(·) to minimize this expression,
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Fq =
∫

η(x)2p(x)2

q(x)
dx

=
∫

η(y)2p(y)2

q(y)2
q(y)dy

= E[
η(Y )2p(Y )2

q(Y )2
]

= ≥
(

E[
|η(Y )|p(Y )

q(Y )
]
)2

=
∫ |η(y)|p(y)

q(y)
q(y)dy

=
∫

|η(y)|p(y)dy,

where we have used Jensen’s inequality or the fact that for any random
variable Z, E[Z2] ≥ (E[Z])2. Furthermore we have strict equality if and only
if Z is almost surely a constant. Thus Fq is minimized when |η(Y )|p(Y )/q(Y )
is almost surely a constant. However, this can hold only if |η(x)|p(x)/q(x)| is
a constant. Thus the optimal choice for q is

qopt(x) =
p(x)|η(x)|∫
|η(y)p(y)dy

. (4.2)

Let us investigate qopt(·). Suppose, for simplicity that η(·) is a non-
negative function. Then we note that Fqopt

= ρ
∫

η(x)p(x)dx = ρ2. Thus
kVar(ρ̂qopt

) = 0 for all k. Unfortunately, this is not as wonderful as it might
seem at first glance. In the first place, p(·) in many cases is not specified
in closed form. It could be (for example) the distribution of a large sum of
i.i.d. (as in the Example 4.2.1) or Markov distributed random variables. We
may generate samples from it easily enough but explicit expressions for it
are generally not available. Secondly, even if p(·) were known, the constant of
proportionality is exactly ρ−1, precisely the parameter that we are trying to
estimate! Hence in computing the weighting factor for the importance sam-
pling estimator of ρ, we first must know what ρ is. Clearly, we must search for
other methods or criteria by which to choose a good simulation distribution
q(·). This need to find good criteria for choosing the simulation distribution
has sparked the vast amount of research in this area for the past two decades.

Let us see if we can elucidate some guidelines for choosing good practical
simulation distributions. Consider the “optimal” choice in (4.2), for the case
that η(·) = 1{E}(·). We think of the set E as being some “rare event.” We can
gain some insight from the optimal choice on what properties a good prac-
tical simulation distribution should have. First note that qopt(·) puts all of
its probability mass on the set or event E (i.e., its support is contained in or
equal to E). Thus, intuitively, we want to choose the simulation distribution
so that more events of interest occur. The second observation is that qopt(·)
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has the same shape over the set E as the original distribution (in fact it is the
same distribution except just scaled by ρ−1). Thus if a region of E has more
probability mass than another region of E under the original distribution,
then the optimal choice will also have this property. We can summarize these
two principles as

P1) Choose the simulation distribution so that we “hit” the rare event E
of interest more often.

P2) Choose the simulation distribution so that the more likely or higher
probability regions of E are hit more often during the simulation than the
lower probability or less likely regions of E.

These properties have spawned a variety of ad hoc techniques for choos-
ing the simulation distribution. By far the two most popular methods are
variance scaling and mean translation.

The variance scaling method increases the “hit” probability by choosing
as the simulation random variables, the original random variables multiplied
by a constant. Typically the constant is greater than one and thus we are
merely increasing the variance of the original distribution. Thus for some
rare event E, typically this would put more probability mass on it, causing
us to “hit” it more often during the simulation, which would satisfy our first
property quite nicely. Whether the second property is satisfied depends on
the problem. Typically, we would try to choose the variance scaling parameter
to satisfy as much as possible, the second property.

Example 4.2.2. In Example 4.2.1, the variance scaling method would corre-
spond to

q∗(x) =
1
a
p∗(

x

a
),

where a is the variance scaling parameter (if the original density p∗(·) has
variance σ2, then q∗(·) has variance a2σ2).

The variance scaling method has been largely superseded by the mean
translation method. This method seeks to increase the “hit” probability by
adding a mean value to the input random variables.

Example 4.2.3. In Example 4.2.1, the mean translation method would corre-
spond to

q∗(x) = p∗(x − m)

where m is the mean shift parameter (if the original density p∗(·) has mean
mo, then q∗(·) has mean mo + m). In this method, almost always m is just
chosen to be T , which partially explains its popularity. The scaling parameter
in the variance scaling method has no such “default” choice available.
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Recall that for the importance sampling estimator, we require that the
support of η(·)q(·) include the support of η(·)p(·). We must always take this
into account when choosing simulation distributions.

Example 4.2.4. Suppose for example that η(x) = 1{E}(x); that is, η(·) has
support E. If the original density has support [0, s] (s > 0), and E = [s/2, s],
then the variance scaling simulation distribution has support [0, sa] (assuming
a > 0). Thus

support(p · η) = [0, s] ∩ E = E

⊂ support(q · η)
= [0, sa] ∩ E = E,

and thus satisfies our support requirement.
The mean shift method on the other hand has

support(q · η) = [m, s + m] ∩ E

= [m, s + m] ∩ [s/2, s]

which will violate the support requirement for any choice of m > s/2.

4.3 The Fundamental Theorem of System Simulation

Before we begin our study of how to choose good importance sampling biasing
distributions, we need to consider some fundamental properties of importance
sampling estimators. In this section, we consider a very general question in
the field of system simulation: that is, “Should we bias the random variables
at the input, at the output, or at some intermediate point of a system?.” To
be a bit more specific, consider the following example.

Example 4.3.1. Suppose we are interested in estimating

ρ = P
(
S + N > a

)
,

where S and N are two independent random variables with densities ps(·)
and pn(·), respectively. Denote the sum of these two random variables as
R with density denoted as pr(·). We use importance sampling to estimate
the value of ρ. We generate simulation random variables S(1)′, S(2)′, . . . , S(k)′

i.i.d. with marginal density ps′ , i.i.d N (1)′, N (2)′, . . . , N (k)′ i.i.d. with marginal
density pn′ . The sequences are also independent of each other. We also con-
sider R(1)′, R(2)′, . . . , R(k)′ i.i.d. with marginal density pr′ which are gener-
ated by the relation R(j)′ = S(j)′ + N (j)′.

We consider two types of estimators, an input estimator and an output
estimator. The “input” estimator is explicitly given as
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p̂i =
1
k

k∑
j=1

1{S(j)′+N(j)′>a}
ps(S(j)′)pn(N (j)′)
ps′(S(j)′)pn′(N (j)′)

and the “output” estimator as

p̂o =
1
k

k∑
j=1

1{R(j)′>a}
pr(R(j)′)
pr′(R(j)′)

.

these estimators are unbiased. Which has lower variance?

We should note that in many situations, an output formulation of the
bias distribution is impossible. If the system is very complicated, it may
very well be virtually impossible to calculate the biasing distributions at the
output of the system. However, it may very well be possible to calculate the
distributions at some intermediate point of the system. In this chapter we
take the first steps toward attempting to understand how much there is to
gain or lose by using an input over an output formulation. It is essential to
the theory of importance sampling in system simulation that we try to gain
some understanding of the role of the bias point in Monte Carlo simulation.

X2 XNX1 .........., , , ..........1 2Y Y YM, , , ..........21Z Z ZL, , ,g h

Fig. 4.1. A multi-input, multi-output system.

We are given two (Borel measurable) functions g : RN → RM and
h : RM → RL, which define our system as shown in Fig. 4.1. Let
(X1, X2, . . . , XN ) be an arbitrary random vector. We consider these to be
our “input random variables.” We denote their joint probability measure as
Px. Define (Y1, Y2, . . . , YM ) = g(X1, X2, . . . , XN ) which we consider to be
our “intermediate random variables” with joint probability measure Py and
lastly (Z1, Z2, . . . , ZL) = h(Y1, Y2, . . . , YM ) our “output random variables”
with joint measure Pz.

Let f be a (Borel measurable) function mapping RL to Rd. Suppose we
are interested in the quantity

ρ = E[f(Z1, . . . , ZL)],
= E[f

(
h(Y1, Y2, . . . , YM )

)
],

= E[f
(
h
(
g(X1, X2, . . . , XN )

))
].

ρ = (ρ1, ρ2, . . . , ρd) is of course a d-dimensional vector. The bias probability
measures are always denoted with the symbol Q with a subscript to indicate
which random variables are being biased, for example, Qx, Qy, Qz. We assume
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that the original probability measures are absolutely continuous with respect
to these measures. It is enough to assume that Px 
 Qx since this automati-
cally implies Py 
 Qy and Pz 
 Qz. This of course guarantees the existence
of the Radon–Nikodym derivatives dPx/dQx, dPy/dQy, dPz/dQz needed for
our importance sampling estimators. We assume that biasing measures have
the same relationship between them as do the actual measures. (We denote
the biased random variables as the original random variable written with a
tilde over it.) Thus, if X̃1, X̃2, . . . , X̃N are generated to have measure Qx,
then g(X̃1, X̃2, . . . , X̃n) will have measure Qy and h

(
g(X̃1, X̃2, . . . , X̃n)

)
will

have measure Qz.
Depending on at which point of the system we wish to bias, we can define

various estimators of ρ. The possibilities are

ρ̂i =
1
k

k∑
j=1

f
(
h
(
g(X̃(j)

1 , X̃
(j)
2 , . . . , X̃

(j)
N )

)) dPx

dQx
(X̃(j)

1 , . . . , X̃
(j)
N )

ρ̂m =
1
k

k∑
j=1

f
(
h(Ỹ (j)

1 , Ỹ
(j)
2 , . . . , Ỹ

(j)
M )

) dPy

dQy
(Ỹ (j)

1 , . . . , Ỹ
(j)
M )

and

ρ̂o =
1
k

k∑
j=1

f(Z̃(j)
1 , . . . , Z̃

(j)
L )

dPz

dQz
(Z̃(j)

1 , . . . , Z̃
(j)
L )

as the input, intermediate, and output estimators, respectively, and where
the superscript on a random variable indicates which one of k indepen-
dent simulation runs is under consideration. Each of these estimates are d-
dimensional vectors; ρ̂i = (ρ̂i,1, ρ̂i,2, . . . , ρ̂i,d), ρ̂m = (ρ̂m,1, ρ̂m,2, . . . , ρ̂m,d),
and ρ̂o = (ρ̂o,1, ρ̂o,2, . . . , ρ̂o,d).

We now state the following fundamental theorem of importance sampling
Monte Carlo system simulation:

Theorem 4.3.1.

Var(ρ̂i,r) ≥ Var(ρ̂m,r) ≥ Var(ρ̂o,r) r = 1, 2, . . . , d

with equality for the first inequality if and only if

dPx

dQx
(X̃(j)

1 , . . . , X̃
(j)
N ) = si(Ỹ

(j)
1 , . . . , Ỹ

(j)
M )

for some function si, and with equality for the second inequality if and only
if
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dPy

dQy
(Ỹ (j)

1 , . . . , Ỹ
(j)
M ) = so(Z̃

(j)
1 , . . . , Z̃

(j)
L )

for some function so.

We first give a simple lemma for the importance sampling weight functions.

Lemma 4.3.1.

dPy

dQy
(Ỹ ) = E[

dPx

dQx
(X̃)|Ỹ ].

Proof (Lemma 4.3.1). To characterize

E[
dPx

dQx
(X̃)|Ỹ ],

or more precisely,

EQy [
dPx

dQx
(X̃)|Ỹ ],

first of all note that, for every bounded (measurable) function h(y), we have

EQx [
dPx

dQx
(X̃)h(Ỹ )] = EQy [EQx [

dPx

dQx
(X̃)|Ỹ ]h(Ỹ )].

On the other hand, we also have

EQx [
dPx

dQx
(X̃)h(Ỹ )] = EQx [

dPx

dQx
(X̃)h(g(X̃))]

= EPx [h(g(X̃))]
= EPy [h(Ỹ )]

= EQy
[
dPy

dQy
(Ỹ )h(Ỹ )].

Thus,

EQy [EQx [
dPx

dQx
(X̃)|Ỹ ]h(Ỹ )] = EQy [

dPy

dQy
(Ỹ )h(Ỹ )]

for all functions h. The only way that this can occur is

EQx [
dPx

dQx
(X̃)|Ỹ ] =

dPy

dQy
(Ỹ ) Qy − a.s.

��
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Proof (Proof of Theorem 4.3.1). Without loss of generality, we can just con-
sider the relationship between the input and intermediate estimators. Also
without loss of generality, we just suppose that d = 1, otherwise we could
just work with the rth component of the estimators and have the same sup-
position.

Since the two estimators have the same mean, it suffices to compare the
second moments of typical terms. For simplicity we write

X̃ = (X̃(j)
1 , X̃

(j)
2 , . . . , X̃

(j)
N )

and

Ỹ = (Ỹ (j)
1 , Ỹ

(j)
2 , . . . , Ỹ

(j)
M ).

Thus, the typical term of the input estimator has second moment

E[f
(
h
(
g(X̃)

))2 dPx

dQx
(X̃)2] = E[f

(
h(Ỹ )

)2 dPx

dQx
(X̃)2] (4.3)

= E[f(h(Ỹ ))2E[
dPx

dQx
(X̃)2|Ỹ ]] (4.4)

while the typical term for the intermediate estimator has second moment

E[f(h(Ỹ ))2
dPy

dQy
(Ỹ )2] = E[f(h(Ỹ ))2E[

dPx

dQx
(X̃)|Ỹ ]2],

where we have used Lemma 4.3.1.
Now observe that by Jensen’s inequality,

E[
dPx

dQx
(X̃)|Ỹ ]2 ≤ E[

dPx

dQx
(X̃)2|Ỹ ].

Hence the general term for the input estimator has greater than equal second
moment (and hence greater than or equal variance) than that of the interme-
diate estimator. We note also that we have equality in the Jensen’s inequality
if and only if (dPx/dQx)(X̃) conditioned on Ỹ is almost surely a constant
(dependent possibly on Ỹ ). This is equivalent to (dPx/dQx)(X̃) = s(Ỹ ) for
some deterministic function s. This completes the proof of the theorem. ��

Remark 4.3.1. In writing (4.4), we appealed to two elementary proper-
ties of conditional expectation: Equations (34.6) and (34.4) of [8]. Equa-
tion (34.6) requires that the right-hand side of (4.3) be finite. However, if
(4.3) is infinite, the theorem is trivial. To use (34.4) further requires that
E[(dPx/dQx(X̃))2] < ∞. If this is not the case, put Ln(·) = min(dPx/dQx(·), n),
and write
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E[f
(
h(Ỹ )

)2 dPx

dQx
(X̃)2]

= lim
n→∞ E[f

(
h(Ỹ )

)2
Ln(X̃)2]

= lim
n→∞ E[f

(
h(Ỹ )

)2
E[Ln(X̃)2|Ỹ ]]

≥ lim
n→∞ E[f

(
h(Ỹ )

)2
E[Ln(X̃)|Ỹ ]2]

= E[f
(
h(Ỹ )

)2 lim
n→∞ E[Ln(X̃)|Ỹ ]2]

= E[f
(
h(Ỹ )

)2
E[

dPx

dQx
(X̃)|Ỹ ]2]

where we use the monotone convergence theorem along with a conditional
dominated convergence theorem [8, Theorem 34.2(v)]. Note also that the
quantity

dPx

dQx
(X̃)

is integrable since its expectation is one.

Remark 4.3.2. It is possible that the inequalities be met with equality. For
example, consider the case of h

(
g(x1, . . . , xN )

)
=

∑N
i=1 r(xi), for some ar-

bitrary function r : R → R. We can suppose that the output estimator
and the intermediate estimator are the same. Suppose dPx(x1, x2, . . . , xN ) =∏N

i=1 p(xi), where p(·) is the input probability density (or mass function if we
are dealing with discrete random variables). Suppose we choose the biasing
distributions to be exponential shifts:

dQx,θ(x1, . . . , xN ) =
N∏

i=1

qθ(xi) =
∏N

i=1 p(xi) exp
(
θr(xi)

)
M(θ)N

,

where M(θ) =
∫

p(x) exp
(
θr(x)

)
dx is the moment generating function of the

scalar random variable r(X). Now note that

dPx

dQx
(X̃1, . . . , X̃N ) =

∏N
i=1 p(X̃i)(∏N

i=1 p(X̃i) exp
(
θr(X̃i)

))
M(θ)−N

= exp
(
−θ

N∑
i=1

r(X̃i)
)
M(θ)N

= exp
(
−θỸ

)
M(θ)N

= si(Ỹ ).

Thus, in this sum of i.i.d. random variables setting with exponential shift
bias distributions, no performance loss is incurred by using the simpler input
formulation.



4.4 Conditional Importance Sampling 69

4.4 Conditional Importance Sampling

Suppose we are interested in

ρ = E[f(Z1, Z2)],

where Zi is an Rni-valued random variable for i = 1, 2 and f : Rn1 × Rn2 →
Rd. Denote the probability measure on Rn1×Rn2 associated with the random
variables (Z1, Z2) as P . We suppose that we wish to use importance sampling
to estimate ρ and thus we have a biasing probability measure on Rn1 × Rn2

which we denote as Q. The usual importance sampling estimator is given by

ρ̂IS =
1
k

k∑
j=1

f(Z̃(j)
1 , Z̃

(j)
2 )

dP

dQ
(Z̃(j)

1 , Z̃
(j)
2 ).

Now note that by the smoothing property of conditional expectation,

ρ = EP [f(Z1, Z2)] = E[EP [f(Z1, Z2)|Z2]] = E[g(Z2)],

where we denote EP [f(Z1, Z2)|Z2] which is only a function of Z2, as g(Z2). It
could very well be in certain situations that this conditional expectation g is
known or is easily computable. Of course ρ is the just the expectation of the g
function. Thus we can use importance sampling to estimate the expectation of
the g function. This leads us to the so-called conditional importance sampling
estimate (also known in certain situations as the g-method),

ρ̂g =
1
k

k∑
j=1

EP [f(Z(j)
1 , Z

(j)
2 )|Z(j)

2 ]
dP

dQ
(Z̃(j)

2 )

=
1
k

k∑
j=1

g(Z(j)
2 )

dP

dQ
(Z̃(j)

2 ),

where (dP/dQ)(z2) is just the Radon–Nikodym derivative of the marginal
distribution of Z2 under P with respect to the marginal distribution of Z2
under Q. For example, it is easy to verify that

EQ[
dP

dQ
(Z̃1, Z̃2)|Z̃2] =

dP

dQ
(Z̃2).

The main result here is

Theorem 4.4.1.

Var(ρ̂g,i) ≤ Var(ρ̂IS ,i) i = 1, 2, . . . , d.

Proof. For simplicity, we just take d = 1, otherwise without loss of generality,
we can just consider the ith component of the estimator in isolation. As
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always kVar(ρ̂g) = Fg − ρ2 and of course kVar(ρ̂IS ) = FIS − ρ2. We now
have

Fg =
∫

g(z2)2
(dP

dQ
(z2)

)2
dQ(z2)

=
∫

g(z2)2
dP

dQ
(z2)dP (z2).

Consider the first term in the integrand above,

g(z2)2 =
(∫

f(z1, z2)dP (z1|z2)
)2

=
(∫

f(z1, z2)
dP (z1|z2)
dQ(z1|z2)

dQ(z1|z2)
)2

now applying Schwarz’ inequality

≤
(∫

dQ(z1|z2)
) ∫

f2(z1, z2)(
dP (z1|z2)
dQ(z1|z2)

)2dQ(z1|z2)

=
∫

f2(z1, z2)
dP (z1|z2)
dQ(z1|z2)

dP (z1|z2).

Hence

Fg =
∫

g(z2)2
dP

dQ
(z2)dP (z2)

≤
∫ ∫

f2(z1, z2)
dP (z1|z2)
dQ(z1|z2)

dP (z1|z2)
dP

dQ
(z2)dP (z2)

=
∫ ∫

f2(z1, z2)
dP

dQ
(z1, z2)dP (z1, z2)

=
∫ ∫

f2(z1, z2)(
dP

dQ
(z1, z2))2dQ(z1, z2)

= FIS .

This completes the proof of the theorem. ��

4.5 Simulation Diagnostics

We typically want our importance sampling estimate ρ̂ of a probability ρ
to be within x percent accuracy with probability y. Usually this leads us to
consider some measure of the relative precision of the estimate. Let Z be
a standard Gaussian random variable. Denote the two-sided quantile of Z
by P

(
|Z| ≤ ty

)
= y. We control the relative accuracy of our importance

sampling estimates by controlling the number of simulation runs k̃. Recall
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that since the importance sampling estimate ρ̂ is unbiased, we can write
k̃Var(ρ̂) = F − ρ2. Thus,

y = P
(
|ρ̂ − ρ| ≤ x

100
ρ
)

≈ P
(
|Z

√
Var(ρ̂)| ≤ x

100
ρ
)

= P
(
|Z

√
F − ρ2

k̃
| ≤ x

100
ρ
)

= P
(
|Z| ≤ xρ

√
k̃

100
√

F − ρ2

)

ty =
xρ

√
k̃

100
√

F − ρ2

k̃ =
(

ty100
x

)2 (
F

ρ2 − 1
)

. (4.5)

We should always set a desired level of precision and confidence before we
begin a simulation. Equation (4.5) requires that we know F and ρ in order
to set the number of simulation runs k̃ beforehand. Obviously, we don’t have
this information and so we must do something else. In fact no procedure in
which the run length is fixed before the simulation begins can be relied upon
to produce a confidence interval that covers the true value with the desired
probability level. In the author’s opinion, the only practical solution to this
problem is to develop some sort of sequential procedure. In other words we
will, as the simulation progresses, use the simulation outputs themselves to
decide when we have collected enough data and can stop the simulation.

Suppose that ρ = P
(
f(Zp) ∈ E

)
where Zp is an S-(a complete separable

metric space1)valued random variable (with associated probability measure
P ) and f is a (measurable) function mapping from S into Rd.

To implement an importance sampling estimator, we generate an i.i.d.
sequence of S-valued random variables {Z

(1)
q , Z

(2)
q , . . . }, with associate prob-

ability measure Q. As the simulation progresses, we compute an estimate of
F (in addition to the importance sampling estimate of ρ). Thus

ρ̂(k) =
1
k

k∑
j=1

dP

dQ
(Z(j)

q ) 1{f(Z(j)
q )∈E}

F̂ (k) =
1
k

k∑
j=1

[
dP

dQ
(Z(j)

q )
]2

1{f(Z(j)
q,n)∈E}.

We can then compute
1 We have chosen to make the domain of f a complete separable metric space (also

called a Polish space). We could allow a more general topological space; all that
we really require is that f be a measurable mapping.
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k∗(k) =
(

ty100
x

)2
(

F̂ (k)
ρ̂(k)2

− 1

)
. (4.6)

Some common useful values for ty are: t.80 = 1.2816, t.90 = 1.6440,
t.95 = 1.96, t.99 = 2.5758. Common values for x would be 1, 5, 10, or 20.
Our criterion for stopping the simulation is as follows.

Sequential Stopping Criterion: Stop after k simulation runs if

k ≥ k∗(k).

Sometimes (usually out of laziness), we wish just to run a simulation for a
certain number of times k and look at the output. We can use (4.5) in another
way. We might want to know what level of precision we have attained. We
can then estimate an x percent level of precision with y percent confidence,
by computing

x = 100ty

√√√√1
k

(
F̂ (k)
ρ̂(k)2

− 1

)
.

Example 4.5.1. Suppose we have the following observation model for an ob-
served sequence of random variables in a signal detection problem

ri = s + Ni i = 1, . . . , n,

where s = −1 under hypothesis zero (H0), s = +1 under hypothesis one (H1),
and {Ni} is an i.i.d. sequence of standard normals under either hypothesis.
We process these data by computing

R =
1
n

n∑
i=1

ri =
1
n

n∑
i=1

s + Ni = s + N̄ .

If R > 0, we announce H1 is true; otherwise we announce H0 is true. The
probability of error for this receiver is

P
(
error

)
= P

( 1
n

n∑
i=1

Ni > 1
)

= P
(
N̄ > 1

)
.

Since the Ni are i.i.d. standard normals, N̄ is normal mean zero, variance 1/n.
Using tables of the error function, we can easily evaluate this probability for
a given n. For example, n = 24 gives P (error) ≈ 4.8 × 10−7.

The importance sampling method we choose to simulate this system is
mean shifting. Instead of directly simulating the standard normal noise sam-
ples {Ni}, we use the mean shifted {Ñi} (taken to be mean one, variance
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one) random variables in an input formulation. For an output formulation
we have pN̄ is normal mean zero, variance 1/n and q ¯̃N is normal mean one,
variance 1/n. Both formulations will give the same variance (the mean shift
is also an exponential shift in the Gaussian setting); we use the simpler (to
simulate) output formulation.

We want to investigate a bit our results for k∗ in the setting of this
very simple system (where we can calculate everything in closed form). We
compute ρ̂n and F̂n as the simulation progresses to determine the number
of simulation runs we need to achieve x percent accuracy with probability
y. For this example, we use y = .9 and x taking on the range of values
{2.5, 5, 10, 20, 40}. We find that as our desired accuracy x decreases, our em-
pirical probability ŷ of achieving accuracy x increases to its expected value
y = .9 using the k∗ stopping criterion. The following table shows the results
of this experiment for 1000 trials.

Accuracy (x) Achieved Probability (ŷ)

40 .840
20 .873
10 .887
5 .893

2.5 .909

Table 4.1. Simulation results

4.6 Notes and Comments

The importance sampling idea, that of focusing on the region(s) of impor-
tance so as to save computational resources, evidently springs from a 1956
paper due to A. Marshall [59]. Importance sampling is but one of a variety
of variance reduction techniques known to simulation practitioners. A very
readable introduction to the subject of variance reduction in simulation is
found in [67].

The notion of input versus output estimators and bias point selection
was first posed (at least in the engineering literature) by P. Hahn and M.
Jeruchim [37]. The basic theorem is from [14].

Conditional importance sampling estimators first appear (in the engineer-
ing literature) under the name of the g-method of R. Srinavasan [78]. The
basic theorem given in the text is a generalization of his result for i.i.d. sums.

A rigorous (asymptotic) analysis of the sequential stopping rule given in
the section on simulation diagnostics can be found in [62].
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