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The Powerful Power Series for e:
Polynomial vanishing and the transcendence of e

2.1 Fourier’s proof of Euler’s slick result

Here we will investigate several features of one of the most famous and important
numbers in mathematics, namely, Leonhard Euler’s “e.” Our journey through this
chapter sets the stage for much of what follows in our future explorations. To fore-
shadow the fundamental strategies to come, we open with Joseph Fourier’s 1815
clever proof of Euler’s result that e is irrational.

THEOREM 2.1 The number e is irrational.

The intuitive idea behind Fourier ’s approach
Fourier’s strategy was to assume that e is rational, say e = r

s , and then use the
alleged denominator s to construct another rational number t/u that is amazingly
close to r/s. Thus the difference

∣∣ r
s − t

u

∣∣ is a positive rational number. Fourier
then showed that this positive number is incredibly small; in fact, if d is the
least common multiple of s and u, then

∣∣ r
s − t

u

∣∣ < 1
d . Thus clearing denomina-

tors by multiplying through by d, we discover that the awkward-looking integer∣∣d r
s − d t

u

∣∣ satisfies

0 <

∣∣∣∣d r

s
− d

t

u

∣∣∣∣ < 1,

which contradicts the Fundamental Principle of Number Theory. Hence e is
irrational.

Proof. As we suggested at the end of the previous chapter, the most important prop-
erty the number e possesses that allows us to classify it as “special” is its representation
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as an extremely simple infinite series,

e =
∞∑

n=0

1

n! .

Let us now assume that e is rational, say e = r
s , where s ≥ 1. Using s, we construct an

excellent rational approximation to r/s. In particular, we consider the rational number
formed by truncating the infinite series for e at n = s:

s∑
n=0

1

n! .

It immediately follows that r
s −∑s

n=0
1
n! is positive. We can clear denominators and

thus produce a positive integer by multiplying both sides by s!. In doing so, we
see that

s!
(

r

s
−

s∑
n=0

1

n!

)
= s!

(
e −

s∑
n=0

1

n!

)
= s!

( ∞∑
n=0

1

n! −
s∑

n=0

1

n!

)

= s!
(

1

(s + 1)! + 1

(s + 2)! + 1

(s + 3)! + · · ·
)

= 1

s + 1
+ 1

(s + 2)(s + 1)
+ 1

(s + 3)(s + 2)(s + 1)
+ · · ·

(2.1)

is a positive integer. However, since s ≥ 1, we can bound the positive integer in (2.1)
from above by a geometric series:

1

s + 1
+ 1

(s + 2)(s + 1)
+ 1

(s + 3)(s + 2)(s + 1)
+ · · · <

1

2
+ 1

22 + 1

23 + · · · = 1.

Thus we have constructed an integer between 0 and 1, which is a direct viola-
tion of the Fundamental Principle of Number Theory. Thus we conclude that e is
irrational. �

The key step in the previous argument was the construction of the integer in
(2.1) by finding a spectacular rational approximation to the assumed-rational num-
ber e and then clearing all denominators by multiplying through by s!. In fact,
this basic theme can be developed into a proof of the transcendence of e. In
order to appreciate the subtleties involved in extending Fourier’s basic idea, we
first consider a proof of the irrationality of ea/b for any nonzero rational num-
ber a/b. While the fundamental strategy used in demonstrating that e is irrational
will remain intact in the more general argument, producing a spectacular ratio-
nal approximation will require a considerable amount of ingenuity. Once we have
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developed the ideas central to the proof of the irrationality of ea/b, we will be well
prepared to establish the transcendence of e.

THEOREM 2.2 For any nonzero rational number a/b, the number ea/b is irrational.

2.2 A first attempt at a proof

We begin by observing that establishing Theorem 2.2 is equivalent to proving that ea

is irrational for positive integers a.

Challenge 2.1 Prove that if em is irrational for all integers m ≥ 1, then for any
nonzero rational number a/b, ea/b is irrational.

Thus by the challenge, we need to prove that ea is irrational only for positive integers a.
The strategy of our argument is straightforward: We adopt the basic plan of attack
used in the proof of the irrationality of e. Unfortunately, as we will quickly discover,
the most obvious extension of those ideas fails to actually lead to a proof. However,
pursuing that obvious, albeit ill-fated, attempt will illustrate the need for a more
elaborate adaptation of the argument and also provide some insight into the subtle
refinements to come.

We embark on our star-crossed attempt by viewing ea as a value of the function
ez expressed as the well-known power series

ez =
∞∑

n=0

zn

n! .

Let us suppose that ea equals the rational number r/s. For any index N , we can
approximate r/s by

∑N−1
n=0

an

n! and thus see that their difference

r

s
−

N−1∑
n=0

an

n! =
∞∑

n=0

an

n! −
N−1∑
n=0

an

n! =
∞∑

n=N

an

n!

is a positive rational number. We now wish to estimate this difference.

Challenge 2.2 Make a change in variables in the indices of the series above to verify
the identity

r

s
−

N−1∑
n=0

an

n! = aN

N !
∞∑

n=0

N !an

(N + n)! . (2.2)

The reason for the inclusion of the seemingly superfluous factor N ! in both the numera-
tor and denominator of the series in (2.2) is that it allows us to produce a simple and
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clean upper bound. In particular, since (N+n)!
N !n! is the binomial coefficient

(N+n
n

)
, it is

a positive integer. Therefore, 1 ≤ (N+n)!
N !n! , and hence we have

N !
(N + n)! ≤ 1

n! . (2.3)

In view of this inequality, identity (2.2), and the power series expansion for ea, we
conclude that

0 <
r

s
−

N−1∑
n=0

an

n! ≤ aN

N ! ea.

Multiplying the previous inequality by s(N − 1)! clears all the denominators of
r
s −∑N−1

n=0
an

n! and yields

0 < s(N − 1)!
(

r

s
−

N−1∑
n=0

an

n!

)
≤ sea

(
aN

N

)
, (2.4)

where the awkward-appearing quantity s(N − 1)!
(

r
s −∑N−1

n=0
an

n!
)

is an integer. We

recall that the index N is a free parameter. In the special case a = 1, we see that
for all sufficiently large N , the upper bound in (2.4) is less than 1, and thus we
contradict the Fundamental Principle of Number Theory. Hence this argument allows
us to conclude—yet again—that e is irrational. In view of Theorem 2.1, however, this
conclusion is nothing new.

In the more interesting case a �= 1, if we could select an N such that the upper
bound in (2.4) is less than 1, then we would again arrive at a contradiction and would
have the irrationality of ea in the palms of our hands. Unfortunately, by applying
inequality (2.4), the irrationality slips through our fingers, since there is no value of
N for which the upper bound in (2.4) is less than 1 for a �= 1. Thus, as we cautioned
at the opening, this approach fails to yield the desired result.

We now look ahead and foreshadow an improved version of the crucial inequality
(2.4). Suppose that we could construct an integer I satisfying an inequality of the
basic shape

0 < I ≤ (some constant) ×
(

aN

(N − 1)!
)

(2.5)

(note the appearance of the factorial in the denominator!). Then as N approaches
infinity, the upper bound in (2.5) would approach 0, and hence for all sufficiently
large choices of N , this new upper bound would indeed be less than 1, and we would
have our much sought-after contradiction. This observation is a clue as to how to
modify our failed attempt. We desire a rational approximation that is so close to
the assumed-rational number ea that their difference, after clearing denominators,
gives rise to a positive integer less than 1. Basically, we require an improved rational
approximation to ea.
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The intuitive idea for the refinement of the argument
In our first attempt, we obtained a rational approximation to ea by truncating
the power series after N terms to obtain a polynomial, and then evaluating that
polynomial at a. That is, we wrote

ez =
N−1∑
n=0

zn

n! +
∞∑

n=N

zn

n!
and took the first sum to be the approximating polynomial. In particular, if we
let P (z) = ∑N−1

n=0
zn

n! , then the natural rational approximation we considered was
P (a).

Unfortunately, simply truncating the power series for ez does not lead to a
sufficiently good rational approximation. The fundamental problem with the trun-
cation strategy is that it leads to a polynomial P (z) that approximates the function
ez reasonably well for all z. In fact, we only require an approximation at the
particular value z = a; but that particular approximation should be an incredibly
good one.

Our new point of attack is to find a polynomial that is an amazingly good
approximation to ez at the point z = a, but that is not necessarily any better than
the previous truncation attempt for other values of z. The basic idea is to split the
polynomial P (z) into two terms and write

ez =

N−p∑

n=0

zn

n! +
N−1∑

n=N−p+1

zn

n!


 +

∞∑
n=N

zn

n! . (2.6)

If the second polynomial term,
∑N−1

n=N−p+1
zn

n! , in the previous expression were to

vanish at z = a, then the first polynomial
∑N−p

n=0
zn

n! would give rise to an amazing
rational approximation to ez at z = a, which, in turn, would allow us to deduce an
inequality of the form (2.5). Unfortunately, it is abundantly clear that the middle
term

∑N−1
n=N−p+1

zn

n! will never vanish at z = a.
Since N is a free variable, we can decompose ez into three terms as in (2.6)

for different values of N , say for example, N1, N2, . . . , NL . In this case we would
have L different “middle term” polynomials:

N1−1∑
n=N1−p+1

zn

n! ,
N2−1∑

n=N2−p+1

zn

n! , . . . ,
NL−1∑

n=NL−p+1

zn

n! .

Of course, none of those polynomials vanish at z = a. However, perhaps we could
string them all together as a linear combination so as to create a new polynomial
that would vanish at our desired point.

Continued
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To illustrate this possibility, let us consider the polynomials z3, z2, z, together
with the constant polynomial 1. Certainly none of these vanish at z = a. However,
if we consider the linear combination of these polynomials

f (z) = z3 − (1 + a)z2 + (1 + a)z − (a)1,

then we immediately see that

f (a) = a3 − a3 − a2 + a2 + a − a = 0,

and hence we have combined our original polynomials to construct a new
polynomial that does vanish at z = a.

Inspired by the previous illustration, we wonder whether it is possible to find
indices N1, N2, . . . , NL and integer coefficients kN1 , kN2 , . . . , kNL , not all zero, such
that if we were to decompose ez into three terms as in (2.6) for each N1, N2, . . . , NL

and consider the linear combination

L∑
�=1

(
kN�

ez) =
L∑

�=1


kN�

N�−p∑
n=0

zn

n!


+

L∑
�=1


kN�

N�−1∑
n=N�−p+1

zn

n!




+
L∑

�=1


kN�

∞∑
n=N�

zn

n!


, (2.7)

then the combined “middle term” polynomial
∑L

�=1

(
kN�

∑N�−1
n=N�−p+1

zn

n!
)

would

vanish at z = a. This strategy is precisely the approach that eventually leads to
success. Our challenge at hand is now clear: Discover how to construct that linear
combination.

2.3 The classic vanishing polynomial trick

We wish to find a polynomial of the form

L∑
�=1


kN�

N�−1∑
n=N�−p+1

zn

n!


 (2.8)

that vanishes at z = a. Such a polynomial will give rise to an amazing rational approx-
imation to κea, for some nonzero integer κ; which, in turn, will allow us to construct
an integer less than 1. However, the polynomial in (2.8) must possess some additional
structure in order to allow us to conclude that our integer is also positive and there-
fore contradicts the Fundamental Principle of Number Theory. How do we build a
polynomial having the shape of (2.8)? The answer is that we can start with just about
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any polynomial we wish. To illustrate this vague claim, let us consider the generic
polynomial

f (z) = c6z6 + c5z5 + c4z4 + c3z3 =
6∑

N=3

cN zN

and notice that if we sum its first three derivatives, f (1)(z) + f (2)(z) + f (3)(z), then
we have

f (1)(z) + f (2)(z) + f (3)(z) = 6c6z5 + 5c5z4 + 4c4z3 + 3c3z2

+ 30c6z4 + 20c5z3 + 12c4z2 + 6c3z

+ 120c6z3 + 60c5z2 + 24c4z + 6c3.

If we now factor out the factoral N ! from those terms possessing the coefficient cN ,
then we are faced with an expression that has an uncanny resemblance to (2.8):

3∑
n=1

f (n)(z) =
6∑

N=3

NcN zN−1 +
6∑

N=3

N(N − 1)cN zN−2

+
6∑

N=3

N(N − 1)(N − 2)cN zN−3

=
6∑

N=3

N !cN

(
zN−1

(N − 1)! + zN−2

(N − 2)! + zN−3

(N − 3)!
)

=
6∑

N=3

(
N !cN

N−1∑
n=N−3

zn

n!

)
.

Hence we discover that when we sum the appropriate derivatives of the polynomial
f (z), we magically arrive at an expression of the form (2.8). This observation can be
generalized as follows.

Challenge 2.3 For integers j and k satisfying 1 ≤ j ≤ k, let f (z) be the polynomial
defined by f (z) = ∑k

n=j cnzn. Show that

j∑
n=1

f (n)(z) =
k∑

N=j


N !cN

N−1∑
n=N−j

zn

n!


.

Thus conclude that for any polynomial f (z) having a factor of zj, for some j ≥ 1, the
sum of its first j derivatives can be expressed in the form (2.8).

The only way a polynomial with integer coefficients can vanish at z = a is for it
to have (z − a) as a factor. So one scheme to create a polynomial of the form (2.8)
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that also vanishes at z = a is to begin with an auxiliary polynomial f (z) that has both
a factor of zj and a factor of (z − a)m. The factor zj allows us to apply the result
from Challenge 2.3, and for a sufficiently large choice of m, the polynomials f (n)(z),
for n = 1, 2, . . . , j, will all vanish at z = a. Thus we require that the exponent m be
greater than the exponent j. These remarks lead us to conclude that a natural choice
for f (z) is a polynomial of the form zj(z − a) j+1, for some integer j ≥ 1.

Challenge 2.4 Let f (z) = zj(z − a) j+1, for some integer j ≥ 1, and write it as f (z) =∑2j+1
n=j cnzn. Show

j∑
n=1

f (n)(a) = 0.

After studying Challenges 2.3 and 2.4 together with identity (2.6), we find that we
should take j = p − 1 and select our indices appearing in (2.7) to be N1 = p − 1,
N2 = p, N3 = p + 1, . . . , NL = 2p − 1. Thus we are led to consider the polynomial

f (z) = z p−1(z − a)p.

2.4 The first part of the proof ofTheorem 2.2—The elusive estimate

As we remarked earlier, it is enough to prove that ea is irrational for positive integers
a. We now assume that ea is a rational number, say ea = r

s . Thus we have that

r

s
= ea =

∞∑
n=0

an

n! =
N−p∑
n=0

an

n! +
N−1∑

n=N−p+1

an

n! +
∞∑

n=N

an

n! ,

for any integers N and p. Next we write the polynomial f (z) = zp−1(z − a)p as
f (z) = ∑2p−1

n=p−1 cnzn ∈ Z[z]. Thus, given Challenge 2.3, if we consider the linear
combination

2p−1∑
N=p−1

N !cN
r

s
=

2p−1∑
N=p−1

N !cN ea =
2p−1∑

N=p−1


N !cN

N−p∑
n=0

an

n!




+
2p−1∑

N=p−1


N !cN

N−1∑
n=N−p+1

an

n!


+

2p−1∑
N=p−1

(
N !cN

∞∑
n=N

an

n!

)
,

then we conclude that the middle term appearing on the right-hand side is a sum of
derivatives of f (z) evaluated at a. Specifically, in view of Challenges 2.3 and 2.4,

that middle term
∑2p−1

N=p−1

(
N !cN

∑N−1
n=N−p+1

an

n!
)

equals 0, and hence the previous

identity can be expressed simply as

r

s

2p−1∑
N=p−1

N !cN =
2p−1∑

N=p−1


N !cN

N−p∑
n=0

an

n!


+

2p−1∑
N=p−1

(
N !cN

∞∑
n=N

an

n!

)
. (2.9)
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We now define the polynomial approximation Pp(z) and the tail of the series Tp(z) by

Pp(z) =
2p−1∑

N=p−1


N !cN

N−p∑
n=0

zn

n!


 and Tp(z) =

2p−1∑
N=p−1

(
N !cN

∞∑
n=N

zn

n!

)
,

where we remark that for N = p − 1, the inner sum in Pp(z) is empty and thus
equals 0. Hence we observe that each coefficient of Pp(z) is divisible by p. We can
now rewrite (2.9) as

r

s

2p−1∑
N=p−1

N !cN = Pp(a) + Tp(a),

which immediately implies∣∣∣∣∣∣
r

s

2p−1∑
N=p−1

N !cN − Pp(a)

∣∣∣∣∣∣ = ∣∣Tp(a)
∣∣.

In order to produce an upper bound for the quantity |Tp(a)|, we note that after the
change of variables m = n − N , we have

Tp(a) =
2p−1∑

N=p−1

(
cN

∞∑
m=0

N !
(m + N)!am+N

)
.

By inequality (2.3), we recall that N !
(m+N)! ≤ 1

m! , which together with the trian-
gle inequality, the power series expansion for ea, and the assumption that a ≥ 1
reveals that

∣∣Tp(a)
∣∣ ≤

2p−1∑
N=p−1

|cN |aN
∞∑

m=0

am

m!

≤
2p−1∑

N=p−1

|cN |a2p−1
∞∑

m=0

am

m!

= eaa2p−1
2p−1∑

N=p−1

|cN |. (2.10)

Challenge 2.5 Recall that f (z) = zp−1(z − a)p = ∑2p−1
N=p−1 cN zN , where a is a

positive integer. Apply the Binomial Theorem to show that

f (z) =
p∑

�=0

(
p

�

)
(−a)p−�z�+p−1,
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and then take z = −1 to conclude that

2p−1∑
N=p−1

|cN | = (1 + a)p.

In view of the bound in (2.10) and Challenge 2.5 we see that

∣∣Tp(a)
∣∣ ≤ eaa2p−1(1 + a)p.

Thus if we define the constants K1 = 1
a ea and K2 = a2(1 + a), then we obtain the

now-not-so elusive estimate we desire:∣∣∣∣∣∣
r

s

2p−1∑
N=p−1

N !cN − Pp(a)

∣∣∣∣∣∣ = ∣∣Tp(a)
∣∣ ≤ K1(K2)

p. (2.11)

2.5 The dramatic conclusion of the proofTheorem 2.2—Arithmetic
conquers all

We are finally in position to construct the infamous integer that will contradict the
Fundamental Principle of Number Theory. That integer is inspired by the quantity
bounded by inequality (2.11). If we multiply inequality (2.11) by s, we then see that

∣∣∣∣∣∣r
2p−1∑

N=p−1

N !cN − sPp(a)

∣∣∣∣∣∣ ≤ sK1(K2)
p. (2.12)

Challenge 2.6 Prove that r
∑2p−1

N=p−1 N !cN − sPp(a) is an integer.

In fact, we can actually deduce some divisibility properties for the integer in
Challenge 2.6 that will allow us to divide both sides of (2.12) by an appropriate
integer in order to obtain an integer whose absolute value is less than 1. We will then
show that this integer is nonzero.

Challenge 2.7 Prove that ( p − 1)! is a factor of both the integer r
∑2p−1

N=p−1 N !cN

and the integer sPp(a), and therefore is a factor of their difference.

Thus if we divide inequality (2.12) by ( p − 1)!, then we have

∣∣∣∣∣∣
r

( p − 1)!
2p−1∑

N=p−1

N !cN − s

( p − 1)!Pp(a)

∣∣∣∣∣∣ ≤ sK1
Kp

2

( p − 1)! , (2.13)
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where the unwieldy quantity

r

( p − 1)!
2p−1∑

N=p−1

N !cN − s

( p − 1)!Pp(a)

is an integer. It is certainly worth taking a moment to catch our breath and appreciate
how far we have journeyed. In particular, notice how closely the previous inequality
resembles the upper bound of (2.5), which up until this moment has been only a
fantasy.

Our mission now is clear: We need to show that the unwieldy integer in (2.13)
is, in fact, nonzero. Fortunately, we have a degree of freedom at our disposal that
will assist us in our mission—the parameter p. We now will select p to be any prime
number satisfying p > max{a, r}, so we are certain that p will not divide either a or r.

Challenge 2.8 Prove that for our choice of p given above,

r

( p − 1)!
2p−1∑

N=p−1

N !cN �≡ 0 mod p,

while
s

( p − 1)!Pp(a) ≡ 0 mod p.

(Hint: We remark that cp−1 �= 0, since in view of the definition of f (z), |cp−1| =
|ap| �= 0.)

From Challenge 2.8, we conclude that the integer

r

( p − 1)!
2p−1∑

N=p−1

N !cN − s

( p − 1)!Pp(a)

is not congruent to 0 modulo p, and thus must be a nonzero integer. Putting this
observation together with inequality (2.13), we discover that our unwieldy integer
satisfies

0 <

∣∣∣∣∣∣
r

( p − 1)!
2p−1∑

N=p−1

N !cN − s

( p − 1)!Pp(a)

∣∣∣∣∣∣ ≤ sK1
Kp

2

( p − 1)! .

If we now let the prime number p approach infinity, we see that our upper bound
will eventually be less than 1, and thus our unwieldy integer clashes head-on with
the Fundamental Principle of Number Theory. This contradiction implies that our
assumption that ea is rational is false. Thus we have established the irrationality of ea

and hence by Challenge 2.1, the irrationality of ea/b for nonzero rational numbers a/b.
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2.6 The transcendence of e

The previous argument was certainly elaborate and delicate. Some exhausted readers
may exclaim, “All that effort just to show the irrationality of ea/b!” Happily, those
readers will now become reinvigorated as we discover that the circle of ideas we
have just developed in the previous argument can be quickly adapted and applied to
establish the transcendence of e.

THEOREM 2.3 The number e is transcendental.

Proof. We begin by assuming that e is algebraic. Thus there exist integers
r0, r1, . . . , rd , with rd �= 0, such that

r0 + r1e + r2e2 + · · · + rded = 0 (2.14)

In our demonstration of the irrationality of ea, we assumed that r − sea = 0 and
then found a polynomial Pp(z) such that Pp(a) is an amazing approximation to ea.
Thus if we wish to follow the same line of attack in the present context, we must
construct a polynomial Pp(z) such that Pp(1), Pp(2), . . . , Pp(d) provide amazing
rational approximations to e, e2, . . . , ed , respectively. Inspired by our previous work,
we immediately consider

f (z) = zp−1(z − 1)p(z − 2)p · · · (z − d)p,

which we write as f (z) = ∑(d+1)p−1
n=p−1 cnzn. Applying Challenge 2.3, we find that

p−1∑
n=1

f (n)(z) =
(d+1)p−1∑

N=p−1


N !cN

N−1∑
n=N−p+1

zn

n!


.

Challenge 2.9 Given f (z) as defined above, show that

p−1∑
n=1

f (n)(t) = 0,

for t = 1, 2, . . . , d.

Just as in our earlier argument, here we now use the coefficients of the polynomial
f (z) to produce the following particularly advantageous linear combination

(d+1)p−1∑
N=p−1

N !cN ez =
(d+1)p−1∑

N=p−1


N !cN

N−p∑
n=0

zn

n!




+
(d+1)p−1∑

N=p−1


N !cN

N−1∑
n=N−p+1

zn

n!


+

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

zn

n!

)
.
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By Challenge 2.9, we see that for t = 1, 2, . . . , d, the middle sum vanishes, and so
we have

et
(d+1)p−1∑

N=p−1

N !cN =
(d+1)p−1∑

N=p−1


N !cN

N−p∑
n=0

tn

n!


+

(d+1)p−1∑
N=p−1

(
N !cN

∞∑
n=N

tn

n!

)
,

which, as before, we write as a polynomial term plus a tail term:

et
(d+1)p−1∑

N=p−1

N !cN = Pp(t) + Tp(t). (2.15)

Arguing as we did in (2.10), we conclude that for t = 1, 2, . . . , d,

|Tp(t)| ≤ ett(d+1)p−1
(d+1)p−1∑

N=p−1

|cN |. (2.16)

Our (or, more accurately, your) next challenge is to provide an upper bound for the
sum in (2.16).

Challenge 2.10 Given that (z − t)p = ∑p
n=0

(p
n

)
(−t)p−nzn, show that

max
n=0,1,...,p

{∣∣∣∣
(

p

n

)
(−t)p−n

∣∣∣∣
}

≤ tp
p∑

n=0

(
p

n

)
= (2t)p.

Recalling that zp−1(z − 1)p(z − 2)p · · · (z − d)p = ∑(d+1)p−1
n=p−1 cnzn, use the previous

inequality to conclude that

|cn| ≤
d∏

t=1

(2t)p ≤ ((2d)d)p. (2.17)

Combining inequalities (2.16) and (2.17), together with the observation that the
number of coefficients cn is dp + 1, yields

|Tp(t)| ≤ ett(d+1)p−1(dp + 1)((2d)d)p ≤ ett(d+1)p−1dp((2d)d)p,

which, for 1 ≤ t ≤ d, implies

|Tp(t)| ≤ edd(d+2)p−1((2d)d)p = K1(K2)
p, (2.18)

where the constants K1 and K2 are defined by K1 = ed/d and K2 = d2(2d2)d . In view
of identities (2.14) and (2.15), together with the observation that Tp(0) = 0, we have
that

r0Pp(0) + r1Pp(1) + r2Pp(2) + · · · + rdPp(d)

= −r0Tp(0) − r1Tp(1) − · · · − rdTp(d)

= −r1Tp(1) − r2Tp(2) − · · · − rdTp(d).
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Dividing the previous equality by ( p − 1)! and then applying inequality (2.18) yields∣∣∣∣∣ r0

( p − 1)!Pp(0) +
d∑

t=1

rt

( p − 1)!Pp(t)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
t=1

rt

( p − 1)!Tp(t)

∣∣∣∣∣
≤ K1

(
d∑

t=1

|rt |
)

(K2)
p

( p − 1)! . (2.19)

Challenge 2.11 Adopting the ideas used in Challenge 2.8, prove that for all
sufficiently large prime numbers p,

r0

( p − 1)!Pp(0) +
d∑

t=1

rt

( p − 1)!Pp(t)

is a nonzero integer.

So for all sufficiently large prime numbers p, inequality (2.19) violates the Funda-
mental Principle of NumberTheory, and thus we have arrived at a contradiction. Hence
e is not algebraic and therefore is, in fact, transcendental. �

2.7 Foreshadowing algebraic exponents—The irrationality of e
√

n and π

In order to inspire the themes we will develop in the next chapter, where we establish
the transcendence of eα for nonzero algebraic numbers α, we close our discussion here
by considering numbers of the form e

√
a/b, where a/b is a nonzero rational number,

and discovering how to modify the arguments of this chapter in order to demonstrate
the irrationality of e

√
a/b.

THEOREM 2.4 Let a/b be a nonzero rational number. Then e
√

a/b is irrational.

Before considering the proof of this theorem, we pause momentarily to acknowledge
and appreciate an immediate, but enormous, consequence.

COROLLARY 2.5 The number π is irrational.

Proof. Suppose that π is a rational number, say π = c
d . Then by Theorem 2.4 we

see that e
√

−c2/d2
is irrational. However, in view of one of the most famous identities

in mathematics, we have

e
√

−c2/d2 = e(
√−1 )(c/d) = eiπ = −1.

Thus we are forced to conclude that −1 is an irrational number, which happens to be
utterly false. Hence π is indeed irrational. �
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Proof of Theorem 2.4. Let a/b be a nonzero rational number and let α = √
a/b. We

wish to prove that eα is irrational, so we assume that eα is rational, say eα = r
s . Thus

we have that

r − seα = 0. (2.20)

As in our previous arguments, we wish to replace eα by a polynomial approximation
P (α), where P (z) ∈ Z[z], and use it to construct an integer violating the Fundamental
Principle of Number Theory. The immediate difficulty with this approach is that if
P (z) is a polynomial with integral coefficients, then P (α) is an algebraic number,
but not necessarily an integer or even a rational number.

To make this crucial point concrete, let us consider the polynomial P (z) = z3 −
4z2 + 5z + 3 and notice that P (

√
2 ) = −5 + 7

√
2, which is certainly not a rational

number and thus would not lead us, in any immediate manner, to an integer that would
contradict the Fundamental Principle of Number Theory. However, let us notice that
if we evaluate that same polynomial at the conjugate of

√
2, namely −√

2, then we
have P (−√

2 ) = −5 − 7
√

2. While that value is also irrational, we see an interesting
phenomenon:

P (
√

2 ) + P (−√
2 ) = −10,

that is, the sum of these values yields an integer. This simple observation inspires us
to bring the conjugate of α into the approximation picture in the hope of producing
our impossible integer. Indeed, the specific result we require is given by the following
challenge.

Challenge 2.12 Suppose that P (z) ∈ Z[z] has degree d. Then show that
P (

√
a/b ) + P (−√

a/b ) is a rational number and can be written having a
denominator equal to bd.

The symmetry introduced by considering both α and its conjugate is the critical
new step that allows us to move forward. Thus, rather than considering the now
unbalanced-looking quantity in (2.20), we consider the more symmetrically appealing
identity (r − seα)(r − se−α) = 0, which gives rise to

(s2 + r2) − rs(eα + e−α) = 0. (2.21)

Next we construct a polynomial, Pp(z) ∈ Z[z], that simultaneously provides a
good approximation to both eα and e−α . Toward this end, we proceed precisely as in
our previous arguments by defining f (z) to be

f (z) = b pzp−1(z − α)p(z + α)p = zp−1(bz2 − a)p ∈ Z[z], (2.22)

which, as before, we write as f (z) = ∑3p−1
n=p−1 cnzn.

We now proceed exactly as we did in the proof of the transcendence of e. Specif-
ically, we apply the polynomial approximation formed by the appropriate linear
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combinations to the identity in (2.21) to conclude that∣∣∣∣ s2 + r2

( p − 1)!Pp(0) − rs

( p − 1)! (Pp(α) + Pp(−α))

∣∣∣∣ =
∣∣∣∣ rs

( p − 1)! (Tp(α) + Tp(−α))

∣∣∣∣,
(2.23)

where the polynomial Pp(z) and the tail Tp(z) are as they were defined in the proof
of the transcendence of e.

We are now ready to utilize the quantity

s2 + r2

( p − 1)!Pp(0) − rs

( p − 1)! (Pp(α) + Pp(−α))

to construct our nonzero integer. As we have seen in our previous argument, the
first term is an integer, but now the second term involves the irrational number α.
However, here is where we exploit the symmetry we introduced through the use of
the conjugate of α. Specifically, we first notice that by definition of Pp(z), 1

(p−1)!Pp(z)
has integer coefficients. Thus, in view of Challenge 2.12, we could clear denominators
and conclude that

b3p−1(s2 + r2)

( p − 1)! Pp(0) − b3p−1rs

( p − 1)! (Pp(α) + Pp(−α))

is an integer. The fact that this integer is nonzero follows from the identical argument
given in the proof of the transcendence of e. Thus identity (2.23) can be rewritten as∣∣∣∣b3p−1(s2 + r2)

( p − 1)! Pp(0) − b3p−1rs

( p − 1)! (Pp(α) + Pp(−α))

∣∣∣∣
=
∣∣∣∣ b3p−1rs

( p − 1)! (Tp(α) + Tp(−α))

∣∣∣∣. (2.24)

Challenge 2.13 Using (2.10) as a guide, find the analogue to the upper bound
of (2.11) in this context. Then apply (2.24) to produce an inequality similar to (2.13).
Finally, apply this new inequality to show that the integer in (2.24) can be made less
than 1 for all sufficiently large primes p.

Thus we have constructed a positive integer less than 1. This contradiction leads us
to the conclusion that e

√
a/b is irrational and brings us to the end of our proof. �

The important new idea introduced in the proof of Theorem 2.4 was the balanced
application of both zeros of the polynomial bz2 − a in the construction of the function
f (z) defined in (2.22). The symmetry occurring in f (z) led to the critical fact that
f (z) ∈ Z[z]. The deep idea of considering all the conjugates of an algebraic number
α in the construction of the auxiliary polynomial allows us to extend the themes we
have developed in this chapter to prove the spectacular result that for any nonzero
algebraic number α, the number eα is transcendental. We carry out this program
and explore some of the result’s far-reaching and beautiful consequences in the next
chapter.
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