2

Automatic Discovery of Similar
Words

Pierre P. Senellart
Vincent D. Blondel

Overview

We deal with the issue of automatic discovery of similar words (synonyms and
near-synonyms) from different kinds of sources: from large corpora of documents,
from the Web, and from monolingual dictionaries. We present in detail three algo-
rithms that extract similar words from a large corpus of documents and consider
the specific case of the World Wide Web. We then describe a recent method of
automatic synonym extraction in a monolingual dictionary. The method is based
on an algorithm that computes similarity measures between vertices in graphs. We
use the 1913 Webster’s Dictionary and apply the method on four synonym queries.
The results obtained are analyzed and compared with those obtained by two other
methods.

2.1 Introduction

The purpose of this chapter is to review some methods used for automatic extraction
of similar words from different kinds of sources: large corpora of documents, the
Web, and monolingual dictionaries. The underlying goal of these methods is the
automatic discovery of synonyms. This goal is, in general, too difficult to achieve
since it is often difficult to distinguish in an automatic way synonyms, antonyms,
and, more generally, words that are semantically close to each other. Most methods
provide words that are “similar” to each other. We mainly describe two kinds of
methods: techniques that, upon input of a word, automatically compile a list of
good synonyms or near-synonyms, and techniques that generate a thesaurus (from
some source, they build a complete lexicon of related words). They differ because
in the latter case, a complete thesaurus is generated at the same time and there
may not be an entry in the thesaurus for each word in the source. Nevertheless, the

26 Senellart and Blondel

purposes of the techniques are very similar and we therefore do not distinguish
much between them.

There are many applications of such methods. For example, in natural language
processing and information retrieval they can be used to broaden and modify
natural language queries. They can also be used as a support for the compilation
of synonym dictionaries, which is a tremendous task. In this chapter we focus on
the search for synonyms rather than on applications of these techniques.

Many approaches for the automatic construction of thesauri from large corpora
have been proposed. Some of them are presented in Section 2.2. The value of such
domain-specific thesauri, as opposed to general handmade synonym dictionaries
is stressed. We also look at the particular case of the Web, whose large size and
other specific features do not allow their being handled in the same way as more
classical corpora. In Section 2.3, we propose an original approach, which is based
on monolingual dictionaries and uses an algorithm that generalizes an algorithm
initially proposed by Kleinberg for searching the Web. Two other methods working
from monolingual dictionaries are also presented.

2.2 Discovery of Similar Words from a Large Corpus

Much research has been carried out on the search for similar words in corpora,
mostly for applications in information retrieval tasks. A large number of these
approaches are based on the simple assumption that similar words are used in
the same contexts. The methods differ in the way the contexts are defined (the
document, a textual window, or more or less elaborate syntactical contexts) and
the way the similarity is computed.

Depending on the type of corpus, we may obtain different emphasis in the
resulting lists of synonyms. The thesaurus built from a corpus is domain-specific
to this corpus and is thus more adapted to a particular application in this domain
than a general hand-written dictionary. There are several other advantages to the
use of computer-written thesauri. In particular, they may be rebuilt easily to mirror
a change in the collection of documents (and thus in the corresponding field), and
they are not biased by the lexicon writer (but are, of course, biased by the corpus
in use). Obviously, however, hand-written synonym dictionaries are bound to be
more liable, with fewer gross mistakes.

We describe below three methods that may be used to discover similar words. Of
course, we do not pretend to be exhaustive, but rather have chosen to present some
of the main approaches. In Section 2.2.1, we present a straightforward method,
involving a document vector space model and the cosine similarity measure. This
method is used by Chen and Lynch to extract information from a corpus on East-
bloc computing [CL92] and we briefly report their results. We then look at an
approach proposed by Crouch [Cro90] for the automatic construction of a the-
saurus. The method is based on a term vector space model and term discrimination
values [SYY75], and is specifically adapted for words that are not too frequent. In

2. Automatic Discovery of Similar Words 27

Section 2.2.3, we focus on Grefenstette’s SEXTANT system [Gre94], which uses
a partial syntactical analysis. Finally, in the last section, we consider the particular
case of the Web as a corpus, and discuss the problem of finding synonyms in a
very large collection of documents.

2.2.1 A Document Vector Space Model

The first obvious definition of the context, given a collection of documents, is to
say that terms are similar if they tend to occur in the same documents. This can be
represented in a multidimensional space, where each document is a dimension and
each term is a vector in document space with Boolean entries indicating whether the
term appears in the corresponding document. It is common in information retrieval
to use this type of vector space model. In the dual model, terms are coordinates and
documents are vectors in term space; we show an application of this dual model
in the next section.

Thus two terms are similar if their corresponding vectors are close to each other.
The similarity between the vector i and the vector j is computed using a similarity
measure, such as the cosine:

i-j
wherei-j is the inner product of i and j. With this definition, we have 0 < cos(i, j) <
1; 0 with cos8 = cos(i, j) is the angle between i and j. Similar terms will tend
to occur in the same documents and the angle between them will be small. Thus
the cosine similarity measure will be close to one. In contrast, terms with little in
common will not occur in the same documents, the angle between them will be
close to /2, and the cosine similarity measure will be close to zero.

The cosine is a commonly used similarity measure. One must, however, not
forget that the justification of its use is based on the assumption that the axes are
orthogonal, which is seldom the case in practice since documents in the collection
are bound to have something in common and not be completely independent.

In [CL92] Chen and Lynch compare the cosine measure with another measure,
referred to as the Cluster measure. The Cluster measure is asymmetrical, thus
giving asymmetrical similarity relationships between terms. It is defined by

cluster(i, j) = u ,
il
where ||i]|; is the sum of the magnitudes of i’s coordinates (i.e., the /; norm of i).

For both these similarity measures the algorithm is then straightforward: once
a similarity measure has been selected, its value is computed between every pair
of terms, and the best similar terms are kept for each term.

The corpus Chen and Lynch worked on was a 200 MB collection of various
text documents on computing in the former East-bloc countries. They did not
run the algorithms on the raw text. The whole database was manually annotated
so that every document was assigned a list of appropriate keywords, countries,

cos(i, j) =

28 Senellart and Blondel

organization names, journal names, person names, and folders. Around 60,000
terms were obtained in this way and the similarity measures were computed on
them.

For instance, the best similar keywords (with the cosine measure) for the key-
word technology transfer were: export controls, trade, covert, export, import,
micro-electronics, software, microcomputer, and microprocessor. These are
indeed related (in the context of the corpus) and words such as trade, import, and
export are likely to be some of the best near-synonyms in this context.

The two similarity measures were compared on randomly chosen terms with
lists of words given by human experts in the field. Chen and Lynch report that the
Cluster algorithm presents a better Concept Recall ratio (i.e., is, the proportion of
relevant terms that were selected) than cosine and human experts. Both similarity
measures exhibits similar Concept Precision ratios (i.e., the proportion of selected
terms that were relevant), and they are inferior to that of human experts. The
asymmetry of Cluster seems to be a real advantage.

2.2.2 A Thesaurus of Infrequent Words

In [Cro90] Crouch presents a method for the automatic construction of thesaurus
classes regrouping words that appear seldom in the corpus. Her purpose is to use
this thesaurus to modify queries asked of an information retrieval system. She
uses a term vector space model, which is the dual of the space used in the previous
section: words are dimensions and documents are vectors. The projection of a
vector along an axis is the weight of the corresponding word in the document.
Different weighting schemes might be used; one that seems effective is the “Term
Frequency Inverse Document Frequency” (TF-IDF), that is, the number of times
the word appears in the document multiplied by a (monotone) function of the
inverse of the number of documents in which the word appears. Terms that appear
often in a document and do not appear in many documents therefore have an
important weight.

As we saw earlier, we can use a similarity measure such as the cosine to char-
acterize the similarity between two vectors (i.e., two documents). The algorithm
proposed by Crouch, presented in more detail below, is to cluster the set of doc-
uments according to this similarity and then to select indifferent discriminators
from the resulting clusters to build thesaurus classes.

Salton, Yang, and Yu introduce in [SYY75] the notion of term discrimination
value. It is a measure of the effect of the addition of a term (as a dimension) to the
vector space on the similarities between documents. A good discriminator is a term
that tends to raise the distances between documents; a poor discriminator tends to
lower the distances between documents; finally, an indifferent discriminator does
not change the distances between documents much. The exact or approximate
computation of all term discrimination values is an expensive task. To avoid this
problem, the authors propose using the term document frequency (i.e., the number
of documents the term appears in) instead of the discrimination value, since exper-
iments show they are strongly related. Terms appearing in less than about 1% of

2. Automatic Discovery of Similar Words 29

the documents are mostly indifferent discriminators; terms appearing in more than
1% and less than 10% of the documents are good discriminators; very frequent
terms are poor discriminators.

Crouch therefore suggests using low-frequency terms to form thesaurus classes,
which should be made of indifferent discriminators. The first idea to build the
thesaurus would be to cluster these low-frequency terms with an adequate clus-
tering algorithm. This is not very interesting, however, since, by definition, one
does not have much information about low-frequency terms. But the documents
themselves may be clustered in a meaningful way. The complete link clustering
algorithm, which produces small and tight clusters, is adapted to the problem.
Each document is first considered as a cluster by itself, and iteratively, the two
closest clusters (the similarity between clusters is defined to be the minimum of
all similarities (computed by the cosine measure) between a pair of documents in
the two clusters) are merged, until the distance between clusters becomes higher
than a user-supplied threshold.

When this clustering step is performed, low-frequency words are extracted from
each cluster. They build corresponding thesaurus classes. Crouch does not de-
scribe these classes but has used them directly for broadening information retrieval
queries, and has observed substantial improvements in both recall and precision
on two classical test corpora. It is therefore legitimate to assume that words in
the thesaurus classes are related to each other. This method only works on low-
frequency words, but the other methods presented here have problems in dealing
with such words for which we have little information.

2.2.3 The SEXTANT System

Grefenstette presents in [Gre93, Gre94] an algorithm for the discovery of similar
words that uses a partial syntactical analysis. The different steps of the algorithm
SEXTANT (Semantic EXtraction from Text via Analyzed Networks of Terms) are
detailed below.

Lexical Analysis

Words in the corpus are separated using a simple lexical analysis. A proper name
analyzer is also applied. Then each word is looked up in a lexicon and is assigned
a part of speech. If a word has several possible parts of speech, a disambiguator is
used to choose the most probable one.

Noun and Verb Phrase Bracketing

Noun and verb phrases are then detected in the sentences of the corpus, using
starting, ending, and continuation rules: for instance, a determiner can start a noun
phrase, a noun can follow a determiner in a noun phrase, an adjective can not start,
end, or follow any kind of word in a verb phrase, and so on.

30 Senellart and Blondel

ADJ : an adjective modifies a noun (e.g., civil unrest)
NN : anoun modifies a noun (e.g., animal rights)
NNPREP : anoun thatis the object of a (e.g., measurements
preposition modifies a along the crest)
preceding noun
SUBJ : anounis the subject of a verb (e.g., the table shook)
DOBJ : anounis the direct (e.g., shook the table)
object of a verb
IOBJ : anounin a prepositional (e.g., the book was
phrase modifying a verb placed on the table)

Figure 2.1. Syntactical relations extracted by SEXTANT.

Parsing

Several syntactic relations (or contexts) are then extracted from the bracketed
sentences, requiring five successive passes over the text. Figure 2.1, taken from
[Gre94], shows the list of extracted relations.

The relations generated are thus not perfect (on a sample of 60 sentences Grefen-
stette found a correctness ratio of 75%) and could be better if a more elaborate
parser were used, but it would be more expensive too. Five passes over the text
are enough to extract these relations, and since the corpus dealt with may be
very large, backtracking, recursion, or other time-consuming techniques used by
elaborate parsers would be inappropriate.

Similarity

Grefenstette focuses on the similarity between nouns; other parts of speech are not
discussed. After the parsing step, a noun has a number of attributes: all the words
that modify it, along with the kind of syntactical relation (ADJ for an adjective,
NN or NNPREP for a noun, and SUBJ, DOBJ, or IOBJ for a verb). For instance,
the noun cause, which appears 83 times in a corpus of medical abstracts, has 67
unique attributes in this corpus. These attributes constitute the context of the noun,
on which similarity computations will be made. Each attribute is assigned a weight
by

Partilog(part i)
. log (total number of relations)

weight (att) =1+ Z
oun
where

number of times att appears with i

Patt.d = T tal number of attributes of i

The similarity measure used by Grefenstette is a weighted Jaccard similarity
measure defined as follows

2. Automatic Discovery of Similar Words 31

1. CRAN (Aeronautics abstract)
case: characteristic, analysis, field, distribution, flaw, number, layer,
problem

2. JFK (Articles on JFK assassination conspiracy theories)
case: film, evidence, investigation, photograph, picture, conspiracy,
murder

3. MED (Medical abstracts)
case: change, study, patient, result, treatment, child, defect, type,
disease, lesion

species
fish
bird
water

egg

Figure 2.2. SEXTANT similar words for case, from different corpora.

bird, fish, family, group, form, animal, insect, range,
snake

animal, species, bird, form, snake, insect, group,
water

species, fish, animal, snake, insect, form, mammal,
duck

sea, area, region, coast, forest, ocean, part, fish, form,
lake

nest, female, male, larva, insect, day, form, adult

Figure 2.3. SEXTANT similar words for words with most contexts in Grolier’s Encyclopedia
animal articles.

Results

Zatt attribute of both i and j weight (atr)
Zatt attribute of either i or j weight (att)

jac(,j) =

Grefenstette used SEXTANT on various corpora and many examples of the results
returned are available in [Gre94]. Figure 2.2 shows the most similar words of case
in three completely different corpora. It is interesting to note that the corpus has
a great impact on the meaning of the word according to which similar words are
selected. This is a good illustration of the value of working on a domain-specific

corpus.

Figure 2.3 shows other examples, in a corpus on animals. Most words are closely
related to the initial word and some of them are indeed very good (sea, ocean, lake
for water; family, group for species, ...). There remain completely unrelated words
though, such as day for egg.

32 Senellart and Blondel

2.2.4 How to Deal with the Web

The World Wide Web is a very particular corpus: its size can simply not be com-
pared with the largest corpora traditionally used for synonym extraction, its access
times are high, and itis also richer and more lively than any other corpus. Moreover,
a large part of it is conveniently indexed by search engines. One could imagine
that its hyperlinked structure could be of some use too. And of course it is not a
domain-specific thesaurus. Is it possible to use the Web for the discovery of similar
words? Obviously, because of the size of the Web, none of the above techniques
can apply.

Turney partially deals with the issue in [TurO1]. He does not try to obtain a
list of synonyms of a word i but, given a word i, he proposes a way to assign a
synonymy score to any word j. His method was checked on synonym recognition
questions extracted from two English tests: the Test Of English as a Foreign Lan-
guage (TOEFL) and the English as a Second Language test (ESL). Four different
synonymy scores are compared. They use the advanced search functions of the
Altavista search engine (http://www.altavista.com).

hits(i AND j)

scoreq (j) = hitsG)
. hits(i NEAR j)
scorey(j) = W
‘ - hits(i NEAR j) AND NOT ((i OR j) NEAR “not"))
score3 () = hits(j AND NOT (j NEAR “not"))
. hits(i NEAR j) AND context AND NOT ((i OR j) NEAR “not"))
scoreq(j) =

hits(j AND context AND NOT (j NEAR “not"))

In these expressions, hits represents the number of pages returned by Altavista
for the corresponding query; AND, OR, and NOT are the classical Boolean
operators; N EAR imposes that the two words not be separated by more than 10
words; and context is a context word (a context was given along with the question
in ESL; the context word may be automatically derived from it). The difference
between score; and scores was introduced in order not to assign good scores to
antonyms.

The four scores are presented in increasing order of the quality of the corre-
sponding results. scores gives a good synonym for 73.75% of the questions from
TOEFL (score4 was not applicable since no context was given) and scores gives
a good synonym in 74% of the questions from ESL. These results are arguably
good, since, as reported by Turney, the average score of TOEFL by a large sample
of students is 64.5%.

This algorithm cannot be used to obtain a list of synonyms, since it is too
expensive to run for each candidate word in a dictionary because of network access
times, but it may be used, for instance, to refine a list of synonyms given by another
method.

2. Automatic Discovery of Similar Words 33

2.3 Discovery of Similar Words in a Dictionary

2.3.1 Introduction

We now propose a method for automatic synonym extraction in a monolingual
dictionary [SenO1, BSO1]. Our method uses a graph constructed from the dictionary
and is based on the assumption that synonyms have many words in common in their
definitions and are used in the definition of many common words. Our method is
based on an algorithm that generalizes an algorithm initially proposed by Kleinberg
for searching the Web [K1e99].

Starting from a dictionary, we first construct the associated dictionary graph G;
each word of the dictionary is a vertex of the graph and there is an edge from u to v
if v appears in the definition of u. Then, associated with a given query word w, we
construct a neighborhood graph G, which is the subgraph of G whose vertices
are those pointed to by w or pointing to w. Finally, we look in the graph G, for
vertices that are similar to the vertex 2 in the structure graph

1—2—3

and choose these as synonyms. For this last step we use a similarity measure
between vertices in graphs that was introduced in [BV02, HeyO1].

The problem of searching synonyms is similar to that of searching similar pages
on the Web; a problem that is dealt with in [K1e99] and [DH99]. In these references,
similar pages are found by searching authoritative pages in a subgraph focused
on the original page. Authoritative pages are pages that are similar to the vertex
“authority” in the structure graph

hub — authority.

‘We ran the same method on the dictionary graph and obtained lists of good hubs and
good authorities of the neighborhood graph. There were duplicates in these lists
but not all good synonyms were duplicated. Neither authorities nor hubs appear to
be the right concepts for discovering synonyms.

In the next section, we describe our method in some detail. In Section 2.3.3, we
briefly survey two other methods that are used for comparison. We then describe
in Section 2.3.4 how we have constructed a dictionary graph from Webster’s dic-
tionary. In the last section we compare all methods on the following words chosen
for their variety: disappear, parallelogram, sugar, and science.

2.3.2 A Generalization of Kleinberg’s Method

In [K1e99], Jon Kleinberg proposes a method for identifying Web pages that are
good hubs or good authorities for a given query. For example, for the query “au-
tomobile makers”, the home pages of Ford, Toyota, and other car makers are good
authorities, whereas Web pages that list these homepages are good hubs. In order
to identify hubs and authorities, Kleinberg’s method exploits the natural graph
structure of the Web in which each Web page is a vertex and there is an edge from

34 Senellart and Blondel

vertex a to vertex b if page a points to page b. Associated with any given query
word w, the method first constructs a “focused subgraph” G,, analogous to our
neighborhood graph and then computes hub and authority scores for all vertices of
G . These scores are obtained as the result of a converging iterative process. Initial
hub and authority weights are all set to one, x! = 1 and x> = 1. These initial
weights are then updated simultaneously according to a mutually reinforcing rule:
the hub scores of the vertex i, xil , is set equal to the sum of the authority scores of
all vertices pointed to by i and, similarly, the authority scores of the vertex j, sz.,
is set equal to the sum of the hub scores of all vertices pointing to j. Let My, be
the adjacency matrix associated with G,. The updating equations can be written

as
1 1
X 0 Mw><x >
2 = T 2 t=0,1,...,
<x >t+1 (Mw 0 X ;

It can be shown that under weak conditions the normalized vector x ' (respectively,
x2) converges to the normalized principal eigenvector of M, M,I (respectively,
MIM,).

The authority score of a vertex v in a graph G can be seen as a similarity measure
between v in G and vertex 2 in the graph

1 — 2.

Similarly, the hub score of v can be seen as a measure of similarity between v
in G and vertex 1 in the same structure graph. As presented in [BV02, HeyO1],
this measure of similarity can be generalized to graphs that are different from the
authority-hub structure graph. We describe below an extension of the method to a
structure graph with three vertices and illustrate an application of this extension
to synonym extraction.

Let G be a dictionary graph. The neighborhood graph of a word w is constructed
with the words that appear in the definition of w and those that use w in their
definition. Because of this, the word w in G, is similar to the vertex 2 in the
structure graph (denoted P3)

] —2— 3.

For instance, Figure 2.4 shows a part of the neighborhood graph of likely. The
words probable and likely in the neighborhood graph are similar to the vertex 2 in
P3. The words truthy and belief are similar to, respectively, vertices 1 and 3. We
say that a vertex is similar to vertex 2 of the preceding graph if it points to vertices
that are similar to vertex 3 and if it is pointed to by vertices that are similar to vertex
1. This mutually reinforcing definition is analogous to Kleinberg’s definitions of
hubs and authorities.

The similarity between vertices in graphs can be computed as follows. With
every vertex i of G, we associate three scores (as many scores as there are vertices
in the structure graph) xl.l, xiz, and xi?’ and initially set them equal to one. We then
iteratively update the scores according to the following mutually reinforcing rule.

The scores xi1 are set equal to the sum of the scores sz. of all vertices j pointed to by

2. Automatic Discovery of Similar Words 35

adapted
invidious ——— = llkely
giving
truthy
probable belief
verisimilar
probably

Figure 2.4. Subgraph of the neighborhood graph of likely.

2

i; the scores x;~ are set equal to the sum of the scores x]3. of vertices pointed to by i

3

and the scores x]1 of vertices pointing to i; finally, the scores x; are set equal to the

sum of the scores sz. of vertices pointing to i. At each step, the scores are updated

simultaneously and are subsequently normalized; x* <« x*/||x*|| (k = 1,2, 3).
It can be shown that when this process converges, the normalized vector score x>
converges to the normalized principal eigenvector of the matrix M, M +MI M,,.
Thus our list of synonyms can be obtained by ranking in decreasing order the entries
of the principal eigenvalue of My, M + MI M,,.

2.3.3 Other Methods

In this section, we briefly describe two synonym extraction methods that are
compared to our method on a selection of four words.

The Distance Method

One possible way of defining a synonym distance is to declare that two words are
close to being synonyms if they appear in the definition of many common words
and have many common words in their definition. A way of formalizing this is to
define a distance between two words by counting the number of words that appear
in one of the definitions but not in both, and add to this the number of words that
use one of the words but not both in their definition. Let A be the adjacency matrix
of the dictionary graph, and i and j be the vertices associated with two words. The
distance between i and j can be expressed as

dGi, j) = I(Ai. — A)l + 1A — A DT

where || - ||1 is the /1 vector norm. For a given word i we may compute d (i, j) for
all j and sort the words according to increasing distance.

Unlike the other methods presented in this chapter, we can apply this algo-
rithm directly to the entire dictionary graph rather than to the neighborhood graph.
This does, however, give very bad results: the first two synonyms of sugar in
the dictionary graph constructed from Webster’s Dictionary are pigwidgeon and
ivoride. We show in Section 2.3.5 that much better results are achieved if we use
the neighborhood graph.

36 Senellart and Blondel

ArcRank

ArcRank is a method introduced by Jan Jannink and Gio Wiederhold for building a
thesaurus [JW99]; their intent was not to find synonyms but related words. An on-
line version of their algorithm can be run fromhttp: //skeptic.stanford.
edu/data/ (this online version also uses the 1913 Webster’s Dictionary and the
comparison with our results is therefore meaningful).

The method is based on the PageRank algorithm, used by the Web search engine
Google and described in [BP98]. PageRank assigns a ranking to each vertex of
the dictionary graph in the following way. All vertices start with identical initial
ranking and then iteratively distribute it to the vertices they point to, while receiving
the sum of the ranks from vertices that are pointed to them. Under conditions that
are often satisfied in practice, the normalized ranking converges to a stationary
distribution corresponding to the principal eigenvector of the adjacency matrix of
the graph. This algorithm is actually slightly modified so that sources (nodes with
no incoming edges, i.e., words not used in any definition) and sinks (nodes with
no outgoing edges, i.e., words not defined) are not assigned extreme rankings.

ArcRank assigns a ranking to each edge according to the ranking of its vertices.
If |ay| is the number of outgoing edges from vertex s and p; is the page rank of
vertex t, then the edge relevance of (s,) is defined by

Pt

st =

Edge relevances are then converted into rankings. Those rankings are com-
puted only once. When looking for words related to some word w, first select the
edges starting from or arriving at w which have the best rankings and extract the
corresponding incident vertices.

2.3.4 Dictionary Graph

Before proceeding to the description of our experiments, we describe how we con-
structed the dictionary graph. We used the Online Plain Text English Dictionary
[OPTO00] which is based on the “Project Gutenberg Etext of Webster’s Unabridged
Dictionary” which is in turn based on the 1913 US Webster’s Unabridged Dic-
tionary. The dictionary consists of 27 HTML files (one for each letter of the
alphabet, and one for several additions). These files are available from the web
site http://www.gutenberg.net/.In order to obtain the dictionary graph
several choices had to be made.

e Some words defined in Webster’s Dictionary are multiwords (e.g., All
Saints, Surinam toad). We did not include these words in the graph since
there is no simple way to decide, when the words are found side by side,
whether they should be interpreted as single words or as a multiword (for
instance, at one is defined but the two words at and one appear several times
side by side in the dictionary in their usual meanings).

2. Automatic Discovery of Similar Words 37

* Some head words of definitions were prefixes or suffixes (e.g., un-, -ous);
these were excluded from the graph.

* Many words have several meanings and are head words of multiple defini-
tions. Because, once more, it is not possible to determine which meaning
of a word is employed in a definition, we gathered the definitions of a word
into a single one.

* The recognition of derived forms of a word in a definition is also a problem.
We dealt with the cases of regular and semiregular plurals (e.g., daisies,
albatrosses) and regular verbs, assuming that irregular forms of nouns or
verbs (e.g., oxen, sought) had entries in the dictionary.

¢ All accentuated characters were replaced in the HTML file by a \ (e.g.,
proven\al, cr\che). We included these words, keeping the \.

* There are many misspelled words in the dictionary, since it has been built
by scanning the paper edition and processing it with an OCR software. We
did not take these mistakes into account.

Because of the above remarks, the graph is far from being a precise graph of se-
mantic relationships. For example, 13,396 lexical units are used in the definitions
but are not defined. These include numbers (e.g., 14159265, 14th) and mathemat-
ical and chemical symbols (e.g., x3, fe304). When this kind of lexemes, which are
not real words, is excluded, 12,461 words remain: proper names (e.g., Califor-
nia, Aaron), misspelled words (e.g., aligator, abudance), existing but undefined
words (e.g., snakelike, unwound), or abbreviations (e.g., adj, etc).

The resulting graph has 112,169 vertices and 1,398,424 edges. It can be down-
loaded fromhttp://www.eleves.ens.fr:8080/home/senellar/st
age maitrise/graphe. We analyzed several features of the graph: con-
nectivity and strong connectivity, number of connected components, distribution
of connected components, degree distributions, graph diameter, and so on. Our
findings are reported in [SenO1].

We also decided to exclude too-frequent words in the construction of neighbor-
hood graphs, that is, words that appear in more than L definitions (best results were
obtained for L ~ 1,000). (The most commonly occurring words and their number
of occurrences are: of: 68,187, a: 47,500, the: 43,760, or: 41,496, to: 31,957,
in: 23,999, as: 22,529, and: 16,781, an: 14,027, by: 12,468, one: 12,216, with:
10,944, which: 10,446, is: 8,488, for: 8,188, see: 8,067, from: 7,964, being:
6,683, who: 6,163, that: 6,090).

2.3.5 Results

In order to be able to compare the different methods and to evaluate their relevance,
we examine the first 10 results given by each of them for four words, chosen for
their variety:

1. disappear: a word with various synonyms such as vanish;

38 Senellart and Blondel

2. parallelogram: a very specific word with no true synonyms but with some
similar words: quadrilateral, square, rectangle, rhomb, ...;

3. sugar: a common word with different meanings (in chemistry, cooking,
dietetics, ...). One can expect glucose as a candidate; and

4. science: a common and vague word. It is hard to say what to expect as a
synonym. Perhaps knowledge is the best option.

Words in the English language belong to different parts of speech: nouns, verbs,
adjectives, adverbs, prepositions, and so on. It is natural, when looking for a syn-
onym of a word, to get only words of the same type. Websters’s Dictionary provides
the part of speech for each word. But this presentation has not been standardized
and we counted not less than 305 different categories. We have chosen to select 5
types: nouns, adjectives, adverbs, verbs, others (including articles, conjunctions,
and interjections) and have transformed the 305 categories into combinations of
these types. A word may, of course, belong to different types. Thus, when looking
for synonyms, we have excluded from the list all words that do not have a common
part of speech with our word. This technique may be applied with all synonym
extraction methods but since we did not implement ArcRank, we did not use it
for ArcRank. In fact, the gain is not huge, because many words in English have
several grammatical natures. For instance, adagio or tete-a-tete are at the same
time nouns, adjectives, and adverbs.

We have also included lists of synonyms coming from WordNet [Wor98], which
is handmade. The order of appearance of the words for this last source is arbitrary,
whereas it is well defined for the distance method and for our method. The results
given by the Web interface implementing ArcRank are two rankings, one for words
pointed to by and one for words pointed to. We have interleaved them into one
ranking. We have not kept the query word in the list of synonyms, in as much
as this is only useful for our method, where it is interesting to note that in every
example with which we have experimented, the original word appeared as the first
word of the list (a point that tends to give credit to the method).

In order to have an objective evaluation of the different methods, we asked a
sample of 21 persons to give a mark (from O to 10, 10 being the best one) to the
lists of synonyms, according to their relevance to synonymy. The lists were, of
course, presented in random order for each word. Figures 2.5 through 2.8 give the
results.

Concerning disappear, the distance method and our method do pretty well:
vanish, cease, fade, die, pass, dissipate, faint are very relevant (one must not for-
get that verbs necessarily appear without their postposition); dissipate or faint are
relevant too. However, some words such as light or port are completely irrelevant,
but they appear only in the sixth, seventh, or eigth position. If we compare these
two methods, we observe that our method is better: an important synonym such as
pass has a good ranking, whereas port or appear fall from the top 10 words. It
is hard to explain this phenomenon, but we can say that the mutually reinforcing
aspect of our method is apparently a positive point. On the contrary, ArcRank

2. Automatic Discovery of Similar Words 39
Distance | Our method ArcRank Wordnet
1 vanish vanish epidemic vanish
2 wear pass disappearing g0 away
3 die die port end
4 sail wear dissipate finish
5 faint faint cease terminate
6 light fade eat cease
7 port sail gradually
8 absorb light instrumental
9 appear dissipate darkness
10 cease cease efface
Mark 3.6 6.3 1.2 7.5
Std dev. 1.8 1.7 1.2 1.4
Figure 2.5. Proposed synonyms for disappear.
Distance Our method ArcRank Wordnet
1 square square quadrilateral quadrilateral
2 parallel rhomb gnomon quadrangle
3 rhomb parallel right-lined tetragon
4 prism figure rectangle
5 figure prism consequently
6 equal equal parallelepiped
7 quadrilateral opposite parallel
8 opposite angles cylinder
9 altitude quadrilateral popular
10 parallelepiped rectangle prism
Mark 4.6 4.8 33 6.3
Std dev. 2.7 2.5 2.2 2.5

Figure 2.6. Proposed synonyms for parallelogram.

gives rather poor results with words such as eat, instrumental, or epidemic that
are imprecise.

Because the neighborhood graph of parallelogram is rather small (30 vertices),
the first two algorithms give similar results, which are not absurd: square, rhomb,
quadrilateral, rectangle, figure are rather interesting. Other words are less rele-
vant but still are in the semantic domain of parallelogram. ArcRank, which also
works on the same subgraph, does not give as interesting words, although gnomon
makes its appearance, since consequently or popular are irrelevant. It is interest-
ing to note that Wordnet is less rich here because it focuses on a particular aspect
(quadrilateral).

Once more, the results given by ArcRank for sugar are mainly irrelevant
(property, grocer). Our method is again better than the distance method: starch,
sucrose, sweet, dextrose, glucose, and lactose are highly relevant words, even if
the first given near-synonym (cane) is not as good. Its given mark is even better
than for Wordnet.

40 Senellart and Blondel
Distance Our method ArcRank ‘Wordnet
1 juice cane granulation sweetening
2 starch starch shrub sweetener
2 cane sucrose sucrose carbohydrate
4 milk milk preserve saccharide
5 molasses sweet honeyed organic compound
6 sucrose dextrose property saccarify
7 wax molasses sorghum sweeten
8 root juice grocer dulcify
9 crystalline glucose acetate edulcorate
10 confection lactose saccharine dulcorate
Mark 3.9 6.3 4.3 6.2
Std dev. 2.0 2.4 2.3 2.9
Figure 2.7. Proposed synonyms for sugar.
Distance Our method ArcRank Wordnet
1 art art formulate knowledge domain
2 branch branch arithmetic knowledge base
3 nature law systematize discipline
4 law study scientific subject
5 knowledge practice knowledge subject area
6 principle natural geometry subject field
7 life knowledge | philosophical field
8 natural learning learning field of study
9 electricity theory expertness ability
10 biology principle mathematics power
Mark 3.6 44 32 7.1
Std dev. 2.0 2.5 2.9 2.6

Figure 2.8. Proposed synonyms for science.

The results for science are perhaps the most difficult to analyze. The distance
method and ours are comparable. ArcRank gives perhaps better results than for
other words but is still poorer than the two other methods.

To conclude, the first two algorithms give interesting and relevant words,
whereas it is clear that ArcRank is not adapted to the search for synonyms. The
variation of Kleinberg’s algorithm and its mutually reinforcing relationship demon-
strate its superiority on the basic distance method, even if the difference is not
obvious for all words. The quality of the results obtained with these different
methods is still quite different from that of handmade dictionaries such as Word-
net. Still, these automatic techniques show their interest, since they present more
complete aspects of a word than handmade dictionaries. They can profitably be
used to broaden a topic (see the example of parallelogram) and to help with the
compilation of synonym dictionaries.

2. Automatic Discovery of Similar Words 41

2.3.6 Future Perspectives

A first immediate improvement of our method would be to work on a larger
subgraph than the neighborhood subgraph. The neighborhood graph we have
introduced may be rather small, and may therefore not include important near-
synonyms. A good example is 0x of which cow seems to be a good synonym.
Unfortunately, ox does not appear in the definition of cow, neither does the latter
appear in the definition of the former. Thus the methods described above cannot
find this word. Larger neighborhood graphs could be obtained either as Kleinberg
does in [Kle99] for searching similar pages on the Web, or as Dean and Hen-
ziger do in [DH99] for the same purpose. However, such subgraphs are no longer
focused on the original word. That implies that our variation of Kleinberg’s algo-
rithm “forgets” the original word and may produce irrelevant results. When we
use the vicinity graph of Dean and Henziger, we obtain a few interesting results
with specific words: for example, trapezoid appears as a near-synonym of paral-
lelogram or cow as a near-synonym of ox. Yet there are also many degradations
of performance for more general words. Perhaps a choice of neighborhood graph
that depends on the word itself would be appropriate. For instance, the extended
vicinity graph may be used for words whose neighborhood graph has less than
a fixed number of vertices, or for words whose incoming degree is small, or for
words that do not belong to the largest connected component of the dictionary
graph.

One may wonder whether the results obtained are specific to Webster’s Dic-
tionary or whether the same methods could work on other dictionaries (using
domain-specific dictionaries could, for instance, generate domain-specific thesauri,
the value of which was mentioned in Section 2.2), in English or in other languages.
Although the latter is most likely since our techniques were not designed for the
particular graph we worked on, there will undoubtedly be differences with other
languages. For example, in French, postpositions do not exist and thus verbs have
fewer different meanings than in English. Besides, it is much rarer in French to
have the same word for a noun and a verb than it is in English. Furthermore, the
way words are defined varies from language to language. This seems to be an
interesting research direction.

2.4 Conclusion

A number of different methods exist for the automatic discovery of similar words.
Most of these methods are based on various text corpora and three of these are
described in this chapter. Each of them may be more or less adapted to a specific
problem (for instance, Crouch’s techniques are more adapted to infrequent words
than SEXTANT). We have also described the use of a more structured source
- a monolingual dictionary - for the discovery of similar words. None of these
methods is perfect and in fact none of them favorably competes with handmade
dictionaries in terms of liability. Computer-written thesauri have, however, other

42 Senellart and Blondel

advantages such as their ease of being built and rebuilt. The integration of different
methods, with their own pros and cons, should be an interesting research direction
to look at for designing successful methods. For it is most unlikely that a single
straightforward technique may solve the issue of the discovery of similar words.

Another problem of the methods presented is the vagueness of the notion of
“similar word” they use. Depending on the context, this notion may or may not
include the notion of synonyms, near-synonyms, antonyms, hyponyms, and so
on. The distinction between these very different notions by automatic means is a
challenging problem that should be addressed to make it possible to build thesauri
in a completely automatic way.

References

[BP98] S. Brin and L. Page.The anatomy of a large-scale hypertextual Web search
engine.Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.

[BSO1] V.D. Blondel and P.P. Senellart. Automatic extraction of synonyms in a dictio-
nary.Technical Report 89, Université catholique de Louvain, Louvain-la-neuve,
Belgium, 2001.Presented at the Text Mining Workshop 2002 in Arlington, VA.

[BV02] V.D. Blondel and P. Van Dooren.A measure of graph similarity between graph
vertices.Technical Report, Université catholique de Louvain, Louvain-la-neuve,
Belgium, 2002.

[CL92] H. Chen and K.J. Lynch.Automatic construction of networks of concepts
characterizing document databases./EEE Transactions on Systems, Man and
Cybernetics, 22(5):885-902, 1992.

[Cro90] C.J. Crouch.An approach to the automatic construction of global thesauri./nfor-
mation Processing and Management, 26:629-640, 1990.

[DH99] J.Deanand M.R. Henzinger.Finding related pages in the World Wide Web. WWW§
/ Computer Networks, 31(11-16):1467-1479, 1999.

[Gre93] G. Grefenstette. Automatic thesaurus generation from raw text using know-
ledge-poor techniques.In Making Sense of Words. Ninth Annual Conference of
the UW Centre for the New OED and Text Research. 9, 1993.

[Gre94] G. Grefenstette.Explorations in Automatic Thesaurus Discovery.Kluwer Aca-
demic, Boston, 1994.

[HeyO1] M. Heymans.Extraction d’information dans les graphes, et application aux mo-
teurs de recherche sur internet, Jun 2001.Université Catholique de Louvain,
Faculté des Sciences Appliquées, Département d’Ingénierie Mathématique.

[JW99] J. Jannink and G. Wiederhold.Thesaurus entry extraction from an on-line
dictionary.In Proceedings of Fusion *99, Sunnyvale, CA, Jul 1999.

[KIe99] J.M. Kleinberg.Authoritative sources in a hyperlinked environment.Journal of
the ACM, 46(5):604-632, 1999.

[OPTO00] The online plain text english dictionary, 2000.http://msowww.anu.edu.
au/“ralph/OPTED/.

2. Automatic Discovery of Similar Words 43

[Sen01] P. P. Senellart.Extraction of information in large graphs. Automatic search for
synonyms.Technical Report 90, Université catholique de Louvain, Louvain-la-
neuve, Belgium, 2001.

[SYY75] G. Salton, C.S. Yang, and C.T. Yu.A theory of term importance in automatic text
analysis.Journal of the American Society for Information Science, 26(1):33-44,
1975.

[TurO1] P. D. Turney.Mining the Web for synonyms: PMI-IR versus LSA on TOEFL.In
Proceedings of the European Conference on Machine Learning, pages 491-502,
2001.

[Wor98] Wordnet 1.6, 1998.http://www.cogsci.princeton.edu/ " wn/.

2 Springer
http://www.springer.com/978-0-387-95563-6

Survey of Text Mining

Clustering, Classification, and Retrieval
Berry, M.W. (Ed.)

2004, XV, 244 p. 46 illus., Hardcover
ISBEMN: @78-0-387-95563-6

