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A Tutorial Introduction to the Cross-Entropy
Method

2.1 Introduction

The aim of this chapter is to provide a gentle and self-contained introduction
to the cross-entropy (CE) method. We refer to Section 1.1 for additional
background information on the CE method, including many references.

We wish to show that

1. the CE method presents a simple, efficient, and general method for solving
a great variety of estimation and optimization problems, especially NP-
hard combinatorial deterministic and stochastic (noisy) problems,

2. the CE method is a valuable tool for Monte-Carlo simulation, in particular
when very small probabilities need to be accurately estimated (so-called
rare-event simulation).

The CE method has its origins in an adaptive algorithm for rare-event simula-
tion, based on variance minimization [144]. This procedure was soon modified
[145] to a randomized optimization technique, where the original variance min-
imization program was replaced by an associated cross-entropy minimization
problem; see Section 1.1.

In the field of rare-event simulation, the CE method is used in conjunction
with importance sampling (IS), a well-known variance reduction technique in
which the system is simulated under a different set of parameters, called the
reference parameters — or, more generally, a different probability distribution
— so as to make the occurrence of the rare event more likely. A major draw-
back of the conventional IS technique is that the optimal reference parameters
to be used in IS are usually very difficult to obtain. Traditional techniques
for estimating the optimal reference parameters [148] typically involve time-
consuming variance minimization (VM) programs. The advantage of the CE
method is that it provides a simple and fast adaptive procedure for estimating
the optimal reference parameters in the IS. Moreover, the CE method also en-
joys asymptotic convergence properties. For example, it is shown in [85] that
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for static models — cf. Remark 2.3 — under mild regularity conditions the
CE method terminates with probability 1 in a finite number of iterations,
and delivers a consistent and asymptotically normal estimator for the optimal
reference parameters. Recently the CE method has been successfully applied
to the estimation of rare-event probabilities in dynamic models, in particular
queueing models involving both light- and heavy-tail input distributions; see
[46, 15] and Chapter 3.

In the field of optimization problems — combinatorial or otherwise — the
CE method can be readily applied by first translating the underlying opti-
mization problem into an associated estimation problem, the so-called associ-
ated stochastic problem (ASP), which typically involves rare-event estimation.
Estimating the rare-event probability and the associated optimal reference
parameter for the ASP via the CE method translates effectively back into
solving the original optimization problem. Many combinatorial optimization
problems (COPs) can be formulated as optimization problems concerning a
weighted graph. Depending on the particular problem, the ASP introduces
randomness in either

(a) the nodes of the graph, in which case we speak of a stochastic node network
(SNN), or

(b) the edges of the graph, in which case we speak of a stochastic edge network
(SEN).

Examples of SNN problems are the maximal cut (max-cut) problem, the buffer
allocation problem and clustering problems. Examples of SEN problems are
the travelling salesman problem (TSP), the quadratic assignment problem,
the clique problem, and optimal policy search in Markovian decision problems
(MDPs). We should emphasize that the CE method may be applied to both
deterministic and stochastic COPs. In the latter the objective function itself
is random or needs to be estimated via simulation. Stochastic COPs typically
occur in stochastic scheduling, flow control, and routing of data networks [24]
and in various simulation-based optimization models [148], such as optimal
buffer allocation [9]. Chapter 6 deals with noisy optimization problems, for
which the CE method is ideally suited.

Recently it was found that the CE method has a strong connection with
the fields of neural computation and reinforcement learning. Here CE has been
successfully applied to clustering and vector quantization and several MDPs
under uncertainty. Indeed, the CE algorithm can be viewed as a stochastic
learning algorithm involving the following two iterative phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) accord-
ing to a specified random mechanism.

2. Updating the parameters of the random mechanism, typically parameters
of pdfs, on the basis of the data, to produce a “better” sample in the next
iteration.
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The significance of the cross-entropy concept is that it defines a precise math-
ematical framework for deriving fast and “good” updating/learning rules.

The rest of the chapter is organized as follows. In Section 2.2 we present two
toy examples that illustrate the basic methodology behind the CE method.
The general theory and algorithms are detailed in Section 2.3, for rare-event
simulation, and Section 2.4, for Combinatorial Optimization. Finally, in Sec-
tion 2.5 we discuss the application of the CE method to the max-cut and the
TSP, and provide numerical examples of the performance of the algorithm.

Our intention is not to compare the CE method with other heuristics, but
demonstrate its beauty and simplicity and promote CE for further applications
to optimization and rare-event simulation. This chapter is based partly on [44].

2.2 Methodology: Two Examples

In this section we illustrate the methodology of the CE method via two toy
examples, one dealing with rare-event simulation, and the other with combi-
natorial optimization.

2.2.1 A Rare-Event Simulation Example

Consider the weighted graph of Figure 2.1, with random weights X1, . . . , X5.
Suppose the weights are independent and exponentially distributed random
variables with means u1, . . . , u5, respectively. Denote the probability density
function (pdf) of X by f(·;u); thus,

f(x;u) = exp

−
5∑

j=1

xj

uj

 5∏
j=1

1
uj

. (2.1)

Let S(X) be the total length of the shortest path from node A to node B.
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Fig. 2.1. Shortest path from A to B.
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We wish to estimate from simulation

� = P(S(X) � γ) = EI{S(X)�γ} , (2.2)

that is, the probability that the length of the shortest path S(X) will exceed
some fixed γ. A straightforward way to estimate � in (2.2) is to use crude Monte
Carlo (CMC) simulation. That is, we draw a random sample X1, . . . ,XN from
the distribution of X and use

1
N

N∑
i=1

I{S(Xi)�γ} (2.3)

as the unbiased estimator of �. However, for large γ the probability � will be
very small and CMC requires a very large simulation effort. Namely, N needs
to be very large in order to estimate � accurately — that is, to obtain a small
relative error of 0.01, say. A better way to perform the simulation is to use
importance sampling (IS). That is, let g be another probability density such
that g(x) = 0 ⇒ I{S(x)�γ}f(x) = 0. Using the density g we can represent �
as

� =
∫
I{S(x)�γ}

f(x)
g(x)

g(x) dx = EgI{S(X)�γ}
f(X)
g(X)

, (2.4)

where the subscript g means that the expectation is taken with respect to g,
which is called the importance sampling (IS) density. An unbiased estimator
of � is

�̂ =
1
N

N∑
i=1

I{S(Xi)�γ}W (Xi) , (2.5)

where �̂ is called the importance sampling (IS) or the likelihood ratio (LR)
estimator,

W (x) = f(x)/g(x) (2.6)

is called the likelihood ratio (LR), and X1, . . . ,XN is a random sample from g,
that is, X1, . . . ,Xn are i.i.d. random vectors with density g. In the particular
case where there is no “change of measure,” that is, g = f , we have W = 1,
and the LR estimator in (2.6) reduces to the CMC estimator (2.3).

Let us restrict ourselves to g such that X1, . . . , X5 are independent and
exponentially distributed with means v1, . . . , v5. Then

W (x;u,v) =
f(x;u)
f(x;v)

= exp

−
5∑

j=1

xj

(
1
uj

− 1
vj

) 5∏
j=1

vj

uj
. (2.7)

In this case the “change of measure” is determined by the parameter vector
v = (v1, . . . , v5). The main problem now is how to select a v which gives
the most accurate estimate of � for a given simulation effort. As we shall see
soon one of the strengths of the CE method for rare-event simulation is that
it provides a fast way to determine/estimate the optimal parameters. To this
end, without going into the details, a quite general CE algorithm for rare-event
estimation is outlined next.
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Algorithm

1. Define v̂0 = u. Set t = 1 (iteration counter).
2. Generate a random sample X1, . . . ,XN according to the pdf f(·; v̂t−1).

Calculate the performances S(Xi) for all i, and order them from smallest
to biggest, S(1) � . . . � S(N). Let γ̂t be the sample (1 − �)-quantile of
performances: γ̂t = S(�(1−
)N�), provided this is less than γ. Otherwise,
put γ̂t = γ.

3. Use the same sample to calculate, for j = 1, . . . , n(= 5),

v̂t,j =
∑N

i=1 I{S(Xi)�γ̂t}W (Xi;u, v̂t−1)Xij∑N
i=1 I{S(Xi)�γ̂t}W (Xi;u, v̂t−1)

. (2.8)

4. If γ̂t = γ then proceed to Step 5; otherwise set t = t + 1 and reiterate
from Step 2.

5. Let T be the final iteration. Generate a sample X1, . . . ,XN1 according to
the pdf f(·; v̂T ) and estimate � via the IS estimator

�̂ =
1
N1

N1∑
i=1

I{S(Xi)�γ}W (Xi;u, v̂T ) . (2.9)

Note that in Steps 2–4 the optimal IS parameter is estimated. In the final
step (Step 5) this parameter is used to estimate the probability of interest.
Note also that the algorithm assumes availability of the parameters � (typi-
cally between 0.01 and 0.1), N and N1 in advance.

As an example, consider the case where the nominal parameter vector u is
given by (0.25, 0.4, 0.1, 0.3, 0.2). Suppose we wish to estimate the probability
that the minimum path is greater than γ = 2. Crude Monte Carlo with 107

samples gave an estimate 1.65·10−5 with an estimated relative error, RE, (that

is,
√

Var(�̂)/�) of 0.165. With 108 samples we got the estimate 1.30 ·10−5 with
RE 0.03.

Table 2.1 displays the results of the CE method, using N = 1000 and
� = 0.1. This table was computed in less than half a second.

Table 2.1. Evolution of the sequence {(γ̂t, v̂t)}.

t γ̂t v̂t

0 0.250 0.400 0.100 0.300 0.200
1 0.575 0.513 0.718 0.122 0.474 0.335
2 1.032 0.873 1.057 0.120 0.550 0.436
3 1.502 1.221 1.419 0.121 0.707 0.533
4 1.917 1.681 1.803 0.132 0.638 0.523
5 2.000 1.692 1.901 0.129 0.712 0.564
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Using the estimated optimal parameter vector of v̂5 = (1.692, 1.901, 0.129,
0.712, 0.564), the final step with N1 = 105 now gave an estimate of 1.34 ·10−5

with an estimated RE of 0.03. The simulation time was only 3 seconds, using a
Matlab implementation on a Pentium III 500 MHz processor. In contrast, the
CPU time required for the CMC method with 107 samples is approximately
630 seconds, and with 108 samples approximately 6350. We see that with a
minimal amount of work we have reduced our simulation effort (CPU time)
by roughly a factor of 625.

2.2.2 A Combinatorial Optimization Example

Consider a binary vector y = (y1, . . . , yn). Suppose that we do not know
which components of y are 0 and which are 1. However, we have an “oracle”
which for each binary input vector x = (x1, . . . , xn) returns the performance
or response,

S(x) = n−
n∑

j=1

|xj − yj | ,

representing the number of matches between the elements of x and y. Our
goal is to present a random search algorithm which reconstructs∗ (decodes)
the unknown vector y by maximizing the function S(x) on the space of n-
dimensional binary vectors.

�
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Fig. 2.2. A “device” for reconstructing vector y.

A naive way is to repeatedly generate binary vectors X = (X1, . . . , Xn)
such that X1, . . . , Xn are independent Bernoulli random variables with suc-
cess probabilities p1, . . . , pn. We write X ∼ Ber(p), where p = (p1, . . . , pn).
Note that if p = y, which corresponds to the degenerate case of the Bernoulli
distribution, we have S(X) = n, X = y, and the naive search algorithm yields
the optimal solution with probability 1. The CE method for combinatorial op-
timization consists of creating a sequence of parameter vectors p̂0, p̂1, . . . and
∗ Of course, in this toy example the vector y can be easily reconstructed from the

input vectors (0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) only.
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levels γ̂1, γ̂2, . . . , such that γ̂1, γ̂2, . . . , converges to the optimal performance
(n here) and p̂0, p̂1, . . . converges to the optimal degenerated parameter vec-
tor that coincides with y. Again, the CE procedure — which is similar to
the rare-event procedure described in the CE algorithm in Section 2.2.1 — is
outlined below, without detail.

Algorithm

1. Start with some p̂0. Let t = 1.
2. Draw a sample X1, . . . ,XN of Bernoulli vectors with success probability

vector p̂t−1. Calculate the performances S(Xi) for all i, and order them
from smallest to biggest, S(1) � . . . � S(N). Let γ̂t be sample (1 − �)-
quantile of the performances: γ̂t = S(�(1−
)N�).

3. Use the same sample to calculate p̂t = (p̂t,1, . . . , p̂t,n) via

p̂t,j =
∑N

i=1 I{S(Xi)�γ̂t} I{Xij=1}∑N
i=1 I{S(Xi)�γ̂t}

, (2.10)

j = 1, . . . , n, where Xi = (Xi1, . . . , Xin).
4. If the stopping criterion is met, then stop; otherwise set t = t + 1 and

reiterate from Step 2.

A possible stopping criterion is to stop when γ̂t does not change for a
number of subsequent iterations. Another possible stopping criterion is to
stop when the vector p̂t has converged to a degenerate — that is, binary
— vector. Note that the interpretation of (2.10) is very simple: to update
the j-th success probability we count how many vectors of the last sample
X1, . . . ,XN have a performance greater than or equal to γ̂t and have the j-th
coordinate equal to 1, and we divide this by the number of vectors that have
a performance greater than or equal to γ̂t.

As an example, consider the case where y = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0). Using
the initial parameter vector p̂0 = (1/2, 1/2, . . . , 1/2), and taking N = 50 and
� = 0.1, the algorithm above yields the results given in Table 2.2. We see that
the p̂t and γ̂t converge very quickly to the optimal parameter vector p∗ = y
and optimal performance γ∗ = n, respectively.

Table 2.2. Evolution of the sequence {(γ̂t, p̂t)}.

t γ̂t p̂t

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1 7 0.60 0.40 0.80 0.40 1.00 0.00 0.20 0.40 0.00 0.00
2 9 0.80 0.80 1.00 0.80 1.00 0.00 0.00 0.40 0.00 0.00
3 10 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
4 10 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
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Remark 2.1 (Likelihood ratio term). Note that the randomized optimization
algorithm above is almost the same as the rare-event simulation algorithm in
the previous Section 2.2.1. The most important difference is the absence of
the likelihood ratio term W in Step 3. The reason is that for the optimization
algorithm the choice of the initial parameter u is quite arbitrary, so using W
would be meaningless, while in rare-event simulation it is an essential part of
the estimation problem. For more details see Remark 2.5.

2.3 The CE Method for Rare-Event Simulation

In this section we discuss the main ideas behind the CE algorithm for rare-
event simulation. When reading this section, the reader is encouraged to refer
back to the toy example presented in Section 2.2.1.

Let X = (X1, . . . , Xn) be a random vector taking values in some space X .
Let {f(·; v)} be a family of probability density functions (pdfs) on X , with
respect to some base measure µ, where v is a real-valued parameter (vector).
Thus,

EH(X) =
∫

X
H(x) f(x;v)µ(dx) ,

for any (measurable) function H. In most (or all) applications µ is either a
counting measure or the Lebesgue measure. For simplicity, for the rest of this
section we take µ(dx) = dx.

Let S be some real function on X . Suppose we are interested in the prob-
ability that S(X) is greater than or equal to some real number γ — which we
will refer to as level — under f(·;u). This probability can be expressed as

� = Pu(S(X) � γ) = Eu I{S(X)�γ} .

If this probability is very small, say smaller than 10−5, we call {S(X) � γ} a
rare event.

A straightforward way to estimate � is to use crude Monte-Carlo simula-
tion: Draw a random sample X1, . . . ,XN from f(· ;u); then

1
N

N∑
i=1

I{S(Xi)�γ}

is an unbiased estimator of �. However this poses serious problems when
{S(X) � γ} is a rare event since a large simulation effort is required to esti-
mate � accurately, that is, with a small relative error or a narrow confidence
interval.

An alternative is based on importance sampling: take a random sample
X1, . . . ,XN from an importance sampling (different) density g on X , and
estimate � using the LR estimator (see (2.5))
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�̂ =
1
N

N∑
i=1

I{S(Xi)�γ}
f(Xi;u)
g(Xi)

. (2.11)

The best way to estimate � is to use the change of measure with density

g∗(x) =
I{S(x)�γ}f(x;u)

�
. (2.12)

Namely, by using this change of measure we have in (2.11)

I{S(Xi)�γ}
f(Xi;u)
g∗(Xi)

= � ,

for all i; see[148]. Since � is a constant, the estimator (2.11) has zero variance,
and we need to produce only N = 1 sample.

The obvious difficulty is of course that this g∗ depends on the unknown
parameter �. Moreover, it is often convenient to choose a g in the family of
densities {f(·;v)}. The idea now is to choose the reference parameter (some-
times called tilting parameter) v such that the distance between the density g∗

above and f(·;v) is minimal. A particularly convenient measure of “distance”
between two densities g and h is the Kullback-Leibler distance, which is also
termed the cross-entropy between g and h. The Kullback-Leibler distance is
defined as:

D(g, h) = Eg ln
g(X)
h(X)

=
∫
g(x) ln g(x) dx −

∫
g(x) lnh(x) dx . (2.13)

We note that D is not a “distance” in the formal sense; for example, it is not
symmetric.

Minimizing the Kullback-Leibler distance between g∗ in (2.12) and f(·;v)
is equivalent to choosing v such that −

∫
g∗(x) ln f(x;v) dx is minimized,

which is equivalent to solving the maximization problem

max
v

∫
g∗(x) ln f(x;v) dx . (2.14)

Substituting g∗ from (2.12) into (2.14) we obtain the maximization program

max
v

∫
I{S(x)�γ}f(x;u)

�
ln f(x;v) dx , (2.15)

which is equivalent to the program

max
v

D(v) = max
v

Eu I{S(X)�γ} ln f(X;v) , (2.16)

where D is implicitly defined above. Again using importance sampling, with
a change of measure f(·;w) we can rewrite (2.16) as
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max
v

D(v) = max
v

Ew I{S(X)�γ}W (X;u,w) ln f(X;v) , (2.17)

for any reference parameter w, where

W (x;u,w) =
f(x;u)
f(x;w)

is the likelihood ratio, at x, between f(·;u) and f(·;w). The optimal solution
of (2.17) can be written as

v∗ = argmax
v

Ew I{S(X)�γ}W (X;u,w) ln f(X;v) . (2.18)

We may estimate v∗ by solving the following stochastic program (also called
stochastic counterpart of (2.17))

max
v

D̂(v) = max
v

1
N

N∑
i=1

I{S(Xi)�γ}W (Xi;u,w) ln f(Xi;v) , (2.19)

where X1, . . . ,XN is a random sample from f(·;w). In typical applications
the function D̂ in (3.28) is convex and differentiable with respect to v [149],
in which case the solution of (3.28) may be readily obtained by solving (with
respect to v) the following system of equations:

1
N

N∑
i=1

I{S(Xi)�γ}W (Xi;u,w) ∇ ln f(Xi;v) = 0 , (2.20)

The advantage of this approach is that the solution of (2.20) can often be
calculated analytically. In particular, this happens if the distributions of the
random variables belong to a natural exponential family (NEF).

It is important to note that the CE program (2.19) is useful only if the
probability of the “target event” {S(X) � γ} is not too small under w,
say greater than 10−5. For rare-event probabilities, however, the program
(2.19) is difficult to carry out. Namely, due to the rareness of the events
{S(Xi) � γ}, most of the indicator random variables I{S(Xi)�γ}, i = 1, . . . , N
will be zero, for moderate N . The same holds for the derivatives of D̂(v)
as given in the left-hand side of (2.20). A multilevel algorithm can be used
to overcome this difficulty. The idea is to construct a sequence of reference
parameters {vt, t � 0} and a sequence of levels {γt, t ≥ 1}, and iterate in
both γt and vt (see Algorithm 2.3.1 below).

We initialize by choosing a not very small �, say � = 10−2 and by defining
v0 = u. Next, we let γ1 (γ1 < γ) be such that, under the original density
f(x;u), the probability �1 = EuI{S(X)�γ1} is at least �. We then let v1 be
the optimal CE reference parameter for estimating �1, and repeat the last two
steps iteratively with the goal of estimating the pair {�,v∗}. In other words,
each iteration of the algorithm consists of two main phases. In the first phase
γt is updated, in the second vt is updated. Specifically, starting with v0 = u
we obtain the subsequent γt and vt as follows:
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1. Adaptive updating of γt. For a fixed vt−1, let γt be a (1 − �)-quantile
of S(X) under vt−1. That is, γt satisfies

Pvt−1(S(X) � γt) � � , (2.21)
Pvt−1(S(X) � γt) � 1 − � , (2.22)

where X ∼ f(·;vt−1).
A simple estimator γ̂t of γt can be obtained by drawing a random sample
X1, . . . ,XN from f(·;vt−1), calculating the performances S(Xi) for all i,
ordering them from smallest to biggest: S(1) � . . . � S(N) and finally,
evaluating the sample (1 − �)-quantile as

γ̂t = S(�(1−
)N�) . (2.23)

Note that S(j) is called the j-th order-statistic of the sequence S(X1),
. . . , S(XN ). Note also that γ̂t is chosen such that the event {S(X) � γ̂t}
is not too rare (it has a probability of around �), and therefore updating
the reference parameter via a procedure such as (2.23) is not void of
meaning.

2. Adaptive updating of vt. For fixed γt and vt−1, derive vt from the
solution of the following CE program

max
v

D(v) = max
v

Evt−1I{S(X)�γt}W (X;u,vt−1) ln f(X;v) . (2.24)

The stochastic counterpart of (2.24) is as follows: for fixed γ̂t and v̂t−1,
derive v̂t from the solution of following program

max
v

D̂(v) = max
v

1
N

N∑
i=1

I{S(Xi)�γ̂t}W (Xi;u, v̂t−1) ln f(Xi;v) . (2.25)

Thus, at the first iteration, starting with v̂0 = u, to get a good estimate
for v̂1, the target event is artificially made less rare by (temporarily) using a
level γ̂1 which is chosen smaller than γ. The value of v̂1 obtained in this way
will (hopefully) make the event {S(X) � γ} less rare in the next iteration, so
in the next iteration a value γ̂2 can be used which is closer to γ itself. The
algorithm terminates when at some iteration t a level is reached which is at
least γ and thus the original value of γ can be used without getting too few
samples.

As mentioned before, the optimal solutions of (2.24) and (2.25) can often
be obtained analytically, in particular when f(x;v) belongs to a NEF.

The above rationale results in the following algorithm.
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Algorithm 2.3.1 (Main CE Algorithm for Rare-Event Simulation)

1. Define v̂0 = u. Set t = 1 (iteration = level counter).
2. Generate a sample X1, . . . ,XN from the density f(·;vt−1) and compute

the sample (1 − �)-quantile γ̂t of the performances according to (2.23),
provided γ̂t is less than γ. Otherwise set γ̂t = γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program (2.25).
Denote the solution by v̂t.

4. If γ̂t < γ, set t = t + 1 and reiterate from Step 2. Else proceed with Step
5.

5. Estimate the rare-event probability � using the LR estimate

�̂ =
1
N

N∑
i=1

I{S(Xi)�γ}W (Xi;u, v̂T ) , (2.26)

where T denotes the final number of iterations (= number of levels used).

Example 2.2. We return to the example in Section 2.2.1. In this case, from
(2.1) we have

∂

∂vj
ln f(x;v) =

xj

v2
j

− 1
vj

,

so that the j-th equation of (2.20) becomes

N∑
i=1

I{S(Xi)�γ}W (Xi;u,w)

(
Xij

v2
j

− 1
vj

)
= 0 , j = 1, . . . , 5 ;

therefore

vj =
∑N

i=1 I{S(Xi)�γ}W (Xi;u,w)Xij∑N
i=1 I{S(Xi)�γ}W (Xi;u,w)

, (2.27)

which leads to the updating formula (2.8).
Actually, one can show that if the distributions belong to a NEF that is

parameterized by the mean, the updating formula always becomes (2.27).

Remark 2.3 (Static Simulation). The above method has been formulated for
finite-dimensional random vectors only; this is sometimes referred to as static
simulation. For infinite-dimensional random vectors or stochastic processes
we need a more subtle treatment. We will not go into details here, but rather
refer to [46, 15] and Chapter 3. The main point is that Algorithm 2.3.1 holds
true without much alteration.



2.4 The CE-Method for Combinatorial Optimization 41

2.4 The CE-Method for Combinatorial Optimization

In this section we discuss the main ideas behind the CE algorithm for combi-
natorial optimization. When reading this section, the reader is encouraged to
refer to the toy example in Section 2.2.2.

Consider the following general maximization problem: Let X be a finite
set of states, and let S be a real-valued performance function on X . We wish
to find the maximum of S over X and the corresponding state(s) at which
this maximum is attained. Let us denote the maximum by γ∗. Thus,

S(x∗) = γ∗ = max
x∈X

S(x) . (2.28)

The starting point in the methodology of the CE method is to associate
with the optimization problem (2.28) a meaningful estimation problem. To this
end we define a collection of indicator functions {I{S(x)�γ}} on X for various
levels γ ∈ R. Next, let {f(·;v),v ∈ V} be a family of (discrete) probability
densities on X , parameterized by a real-valued parameter (vector) v. For a
certain u ∈ V we associate with (2.28) the problem of estimating the number

�(γ) = Pu(S(X) � γ) =
∑
x

I{S(x)�γ}f(x;u) = EuI{S(X)�γ} , (2.29)

where Pu is the probability measure under which the random state X has pdf
f(·;u), and Eu denotes the corresponding expectation operator. We will call
the estimation problem (2.29) the associated stochastic problem (ASP). To
indicate how (2.29) is associated with (2.28), suppose for example that γ is
equal to γ∗ and that f(·;u) is the uniform density on X . Note that, typically,
�(γ∗) = f(x∗;u) = 1/|X | — where |X | denotes the number of elements in X
— is a very small number. Thus, for γ = γ∗ a natural way to estimate �(γ)
would be to use the LR estimator (2.26) with reference parameter v∗ given
by

v∗ = argmax
v

Eu I{S(X)�γ} ln f(X;v) . (2.30)

This parameter could be estimated by

v̂∗ = argmax
v

1
N

N∑
i=1

I{S(Xi)�γ} ln f(Xi;v) , (2.31)

where the Xi are generated from pdf f(·;u). It is plausible that, if γ is close
to γ∗, that f(·;v∗) assigns most of its probability mass close to x∗, and thus
can be used to generate an approximate solution to (2.28). However, it is
important to note that the estimator (2.31) is only of practical use when
I{S(X)�γ} = 1 for enough samples. This means for example that when γ is
close to γ∗, u needs to be such that Pu(S(X) � γ) is not too small. Thus,
the choice of u and γ in (2.28) are closely related. On the one hand we would
like to choose γ as close as possible to γ∗, and find (an estimate of) v∗ via
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the procedure above, which assigns almost all mass to state(s) close to the
optimal state. On the other hand, we would like to keep γ relative large in
order to obtain an accurate (low RE) estimator for v∗.

The situation is very similar to the rare-event simulation case of Sec-
tion 2.3. The idea, based essentially on Algorithm 2.3.1, is to adopt a two-
phase multilevel approach in which we simultaneously construct a sequence
of levels γ̂1, γ̂2, . . . , γ̂T and parameter (vectors) v̂0, v̂1, . . . , v̂T such that γ̂T is
close to the optimal γ∗ and v̂T is such that the corresponding density assigns
high probability mass to the collection of states that give a high performance.

This strategy is embodied in the following procedure; see for example [145]:

Algorithm 2.4.1 (Main CE Algorithm for Optimization)

1. Define v̂0 = u. Set t = 1 (level counter).
2. Generate a sample X1, . . . ,XN from the density f(·;vt−1) and compute

the sample (1 − �)-quantile γ̂t of the performances according to (2.23).
3. Use the same sample X1, . . . ,XN and solve the stochastic program (2.25)

with W = 1. Denote the solution by v̂t.
4. If for some t ≥ d, say d = 5,

γ̂t = γ̂t−1 = · · · = γ̂t−d , (2.32)

then stop (let T denote the final iteration); otherwise set t = t + 1 and
reiterate from Step 2.

Note that the initial vector v̂0, the sample size N , the stopping parameter d,
and the number � have to be specified in advance, but that the rest of the
algorithm is “self-tuning.”

Remark 2.4 (Smoothed Updating). Instead of updating the parameter vector
v̂t−1 to v̂t directly via (2.31) we use a smoothed updating procedure in which

v̂t = α ŵt + (1 − α) v̂t−1 , (2.33)

where ŵt is the vector derived via (2.25) with W = 1. This is especially
relevant for optimization problems involving discrete random variables. The
main reason why this heuristic smoothed updating procedure performs better
is that it prevents the occurrences of 0s and 1s in the parameter vectors; once
such an entry is 0 or 1, it often will remain so forever, which is undesirable. We
found empirically that a value of α between 0.3 ≤ α ≤ 0.9 gives good results.
Clearly for α = 1 we have the original updating rule in Algorithm 2.4.1.

In many applications we observed numerically that the sequence of pdfs
f(·; v̂0), f(·; v̂1), . . . converges to a degenerate measure (Dirac measure), as-
signing all probability mass to a single state xT , for which, by definition, the
function value is greater than or equal to γ̂T .
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Remark 2.5 (Similarities and differences). Despite the great similarity be-
tween Algorithm 2.3.1 and Algorithm 2.4.1, it is important to note that the
role of the initial reference parameter u is significantly different. In Algo-
rithm 2.3.1 u is the unique nominal parameter for estimating Pu(S(X) � γ).
However, in Algorithm 2.4.1 the choice for the initial parameter u is fairly
arbitrary; it is only used to define the ASP. In contrast to Algorithm 2.3.1
the ASP for Algorithm 2.4.1 is redefined after each iteration. In particular, in
Steps 2 and 3 of Algorithm 2.4.1 we determine the optimal reference parameter
associated with Pv̂t−1(S(X) � γ̂t), instead of Pu(S(X) � γ̂t). Consequently,
the likelihood ratio term W that plays a crucial role in Algorithm 2.3.1 does
not appear in Algorithm 2.4.1.

The above procedure can, in principle, be applied to any discrete and
continuous optimization problem. For each individual problem two essential
ingredients need to be supplied:

1. We need to specify how the samples are generated. In other words, we
need to specify the family of densities {f(·;v)}.

2. We need to calculate the updating rules for the parameters, based on
cross-entropy minimization.

In general there are many ways to generate samples from X , and it is not
always immediately clear which way of generating the sample will yield better
results or easier updating formulas.

Example 2.6. We return to the example from Section 2.2.2. In this case, the
random vector X = (X1, . . . , Xn) ∼ Ber(p), and the parameter vector v is p.
Consequently, the pdf is

f(X;p) =
n∏

i=1

pXi
i (1 − pi)1−Xi ,

and since each Xj can only be 0 or 1,

∂

∂pj
ln f(X;p) =

Xj

pj
− 1 −Xj

1 − pj
=

1
(1 − pj)pj

(Xj − pj) .

Now we can find the maximum in (2.25) (with W = 1) by setting the first
derivatives with respect to pj equal to zero, for j = 1, . . . , n:

∂

∂pj

N∑
i=1

I{S(Xi)�γ} ln f(Xi;p) =
1

(1 − pj) pj

N∑
i=1

I{S(Xi)�γ} (Xij − pj) = 0 .

Thus, we get

pj =
∑N

i=1 I{S(Xi)�γ}Xij∑N
i=1 I{S(Xi)�γ}

, (2.34)

which immediately implies (2.10).
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A number of remarks are now in order.

Remark 2.7 (Single-Phase Versus Two-Phase Approach). Algorithm 2.4.1 is a
two-phase algorithm. That is, at each iteration t both the reference parameter
vt and the level parameter γt are updated. It is not difficult, using the same
rationale as before, to formulate a single-phase CE algorithm. In particular,
consider maximization problem (2.28). Let ϕ be any increasing “reward”-
function of the performances. Let {f(·;v)} be a family of densities on X which
contains the Dirac measure at x∗. Then, solving problem (2.28) is equivalent
to solving

max
v

Evϕ(S(X)) ,

or solving
max

v
Euϕ(S(X)) ln f(X;v) ,

for any u. As before we construct a sequence of parameter vectors v̂0 =
u, v̂1, v̂2, . . ., such that

v̂t = argmax
v

N∑
i=1

ϕ(S(Xi)) ln f(Xi;v) ,

where X1, . . . ,XN is a random sample from f(·; v̂t−1). A reward function
without a level parameter γ would simplify Algorithm 2.4.1 substantially.
The disadvantage of using this approach is that, typically, it takes too long
for Algorithm 2.4.1 to converge, since the large number of “not important”
vectors slow down dramatically the convergence of {v̂t} to v∗ corresponding
to the Dirac measure at x∗. We found numerically that the single-phase CE
algorithm is much worse than its two-phase counterpart in Algorithm 2.4.1, in
the sense that it is less accurate and more time consuming. Hence it is crucial
for the CE method to use both phases, that is, follow Algorithm 2.4.1. This is
also one of the major differences between CE and ant-based methods, where a
single-phase procedure (updating of v̂t alone, no updating of γ̂t) is used [49].

Remark 2.8 (Maximum Likelihood Estimation). It is interesting to note the
connection between (2.25) and maximum likelihood estimation (MLE). In the
MLE problem we are given data x1, . . . ,xN which are thought to be the
outcomes of i.i.d. random variables X1, . . . ,XN (random sample) each having
a distribution f(·;v), where the parameter (vector) v is an element of some set
V. We wish to estimate v on the basis of the data x1, . . . ,xN . The maximum
likelihood estimate (MLE) is that parameter v̂ which maximizes the joint
density of X1, . . . ,XN for the given data x1, . . . ,xN . In other words,

v̂ = argmax
v

N∏
i=1

f(xi;v) .

The corresponding random variable, obtained by replacing xi with Xi is called
the maximum likelihood estimator (MLE as well), also denoted by v̂. Since
ln(·) is an increasing function, we have
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v̂ = argmax
v

N∑
i=1

ln f(Xi;v) . (2.35)

Solving (2.35) is similar to solving (2.25). The only differences are the indicator
function I{S(Xi)�γ} and the likelihood ratio W . For W = 1 we can write Step
3 in Algorithm 2.4.1 as

v̂t = argmax
v

∑
Xi:S(Xi)�γ̂t

ln f(Xi;v) .

In other words, v̂t is equal to the MLE of v̂t−1 based only on the vectors Xi

in the random sample for which the performance is greater than or equal to
γ̂t. For example, in Example 2.6 the MLE of pj based on a random sample
X1, . . . ,XN is

p̂j =
∑N

i=1Xij

N
.

Thus, if we base the MLE only on those vectors that have performance greater
than or equal to γ, we obtain (2.34) immediately.

Remark 2.9 (Parameters). The choice for the sample sizeN and the parameter
� depends on the size of the problem and the number of parameters in the
ASP. In particular, for a SNN-type problem it is suggested to take the sample
size as N = c n, where n is the number of nodes and c a constant (c > 1),
say 5 ≤ c ≤ 10. In contrast, for a SEN-type problem it is suggested to take
N = c n2, where n2 is the number of edges in the network. It is crucial to
realize that the sample sizes N = c n and N = c n2 (with c > 1) are associated
with the number of ASP parameters (n and n2) that one needs to estimate
for the SNN and SEN problems, respectively (see also the max-cut and the
TSP examples below). Clearly, in order to estimate k parameters reliably, one
needs to take at least a sample N = c k for some constant c > 1. Regarding
�, it is suggested to take � around 0.01, provided n is reasonably large, say
n ≥ 100; and it is suggested to take a larger �, say � ≈ ln(n)/n, for n < 100.

Alternatively, the choice of N and � can be determined adaptively. For ex-
ample, in [85] an adaptive algorithm is proposed that adjusts N automatically.
The FACE algorithm discussed in Chapter 5 is another option.

2.5 Two Applications

In this section we discuss the application of the CE method to two combina-
torial optimization problems, namely the max-cut problem, which is a typical
SNN-type problem; and the travelling salesman problem, which is a typical
SEN-type problem. We demonstrate the usefulness of the CE method and
its fast convergence in a number of numerical examples. We further illustrate
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the dynamics of the CE method and show how fast the reference parame-
ters converge. For a more in-depth study of the max-cut problem and the
related partition problem we refer to Sections 4.5 and 4.6. Similarly, the TSP
is discussed in more detail in Section 4.7.

2.5.1 The Max-Cut Problem

The max-cut problem in a graph can be formulated as follows. Given a
weighted graph G(V,E) with node set V = {1, . . . , n} and edge set E, par-
tition the nodes of the graph into two subsets V1 and V2 such that the sum
of the weights of the edges going from one subset to the other is maximized.
We assume the weights are nonnegative. We note that the max-cut problem is
an NP-hard problem. Without loss of generality, we assume that the graph is
complete. For simplicity we assume the graph is not directed. We can repre-
sent the possibly zero edge weights via a nonnegative, symmetric cost matrix
C = (cij) where cij denotes the weight of the edge from i to j.

Formally, a cut is a partition {V1, V2} of V . For example if V = {1, . . . , 6},
then {{1, 3, 4}, {2, 5, 6}} is a possible cut. The cost of a cut is sum of the
weights across the cut. As an example, consider the following 6×6 cost matrix

C =


0 c12 c13 0 0 0
c21 0 c23 c24 0 0
c31 c32 0 c34 c35 0
0 c42 c43 0 c45 c46
0 0 c53 c54 0 c56
0 0 0 c64 c65 0

 . (2.36)

For example the cost of the cut {{1, 3, 4}, {2, 5, 6}} is

c12 + c32 + c42 + c45 + c53 + c46 .

It will be convenient to represent a cut via a cut vector x = (x1, . . . , xn),
where xi = 1 if node i belongs to same partition as 1, and 0 otherwise. By
definition x1 = 1. For example, the cut {{1, 3, 4}, {2, 5, 6}} can be represented
via the cut vector (1, 0, 1, 1, 0, 0).

Let X be the set of all cut vectors x = (1, x2, . . . , xn) and let S(x) be the
corresponding cost of the cut. We wish to maximize S via the CE method.
Thus, (a) we need to specify how the random cut vectors are generated, and
(b) calculate the corresponding updating formulas. The most natural and
easiest way to generate the cut vectors is to let X2, . . . , Xn be independent
Bernoulli random variables with success probabilities p2, . . . , pn, exactly as in
the second toy example; see Section 2.2.2.
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It immediately follows (see Example 2.6) that the updating formula in
Algorithm 2.4.1 at the t-th iteration is given by

p̂t,i =
∑N

k=1 I{S(Xk)�γ̂t} I{Xki=1}∑N
k=1 I{S(Xk)�γ̂t}

, (2.37)

i = 2, . . . , n.

A Synthetic Max-Cut Problem

Since the max-cut problem is NP hard [57, 125], no efficient method for solv-
ing the max-cut problem exists. The naive total enumeration routine is only
feasible for small graphs, say for those with n ≤ 30 nodes. Although the
branch-and-bound heuristic can solve medium size problems exactly, it too
will run into problems when n becomes large.

In order to verify the accuracy of the CE method we construct an artificial
graph such that the solution is available in advance. In particular, for m ∈
{1, . . . , n} consider the following symmetric cost matrix:

C =
(
Z11 B12
B21 Z22

)
, (2.38)

where Z11 is an m × m symmetric matrix in which all the upper-diagonal
elements are generated from a U(a, b) distribution (and all lower-diagonal
elements follow by symmetry), Z22 is a (n−m) × (n−m) symmetric matrix
which is generated in a similar way as Z11, and all the other elements are c,
apart from the diagonal elements, which are of course 0.

It is not difficult to see that for c > b(n−m)/m the optimal cut is given,
by construction, by V ∗ = {V ∗

1 , V
∗
2 }, with

V ∗
1 = {1, . . . ,m} and V ∗

2 = {m+ 1, . . . , n} , (2.39)

and the optimal value of the cut is

γ∗ = cm (n−m) . (2.40)

Of course a similar optimal solution and optimal value can be found for the
general case where the elements in Z11 and Z22 are generated via an arbitrary
bounded support distribution with the maximal value of the support less than
c.

Table 2.3 lists a typical output of Algorithm 2.4.1 applied to the synthetic
max-cut problem, for a network with n = 400 nodes. The convergence of the
reference vectors {pt} to the optimal p∗ is further illustrated in Figures 2.3
and 2.4.
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In this table besides the (1 − �)-quantile of the performances γ̂t, we also
list the best of the performances in each iteration, denoted by St,(N), and the
Euclidean distance

||p̂t − p∗|| =
√

(p̂t,i − p∗
i )2 ,

as a measure of how close the reference vector is to the optimal reference
vector p∗ = (1, 1, . . . , 1, 0, 0, . . . , 0).

In this particular example, we took m = 200 and generated Z11 and Z22
from U(0, 1) distribution; and the elements in B12 (and B21) are constant
c = 1. The CE parameters were chosen as follows: rarity parameter � = 0.1;
smoothing parameter α = 1.0 (no smoothing); stopping constant d = 3; and
number of samples per iteration N = 1000.

The CPU time was only 100 seconds, using a Matlab implementation on
a Pentium III, 500 Mhz processor. We see that the CE algorithm converges
quickly, yielding the exact optimal solution 40000 in less than 23 iterations.

Table 2.3. A typical evolution of Algorithm 2.4.1 for the synthetic max-cut problem
with n = 400, d = 3, � = 0.1, α = 1.0, N = 1000.

t γ̂t St,(N) ||p̂t − p∗||
1 30085.3 30320.9 9.98
2 30091.3 30369.4 10.00
3 30113.7 30569.8 9.98
4 30159.2 30569.8 9.71
5 30350.8 30652.9 9.08
6 30693.6 31244.7 8.37
7 31145.1 31954.8 7.65
8 31711.8 32361.5 6.94
9 32366.4 33050.3 6.27
10 33057.8 33939.9 5.58
11 33898.6 34897.9 4.93
12 34718.9 35876.4 4.23
13 35597.1 36733.0 3.60
14 36368.9 37431.7 3.02
15 37210.5 38051.2 2.48
16 37996.7 38654.5 1.96
17 38658.8 39221.9 1.42
18 39217.1 39707.8 1.01
19 39618.3 40000.0 0.62
20 39904.5 40000.0 0.29
21 40000.0 40000.0 0.14
22 40000.0 40000.0 0.00
23 40000.0 40000.0 0.00
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Fig. 2.3. Sequence of reference vectors for the synthetic max-cut problem with 400
nodes. Iterations 0,1,. . . ,9.
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Fig. 2.4. Sequence of reference vectors for the synthetic max-cut problem with 400
nodes. Iterations 10,. . . ,19.
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2.5.2 The Travelling Salesman Problem

The travelling salesman problem (TSP) can be formulated as follows: Consider
a weighted graph G with n nodes, labeled 1, 2, . . . , n. The nodes represent
cities, and the edges represent the roads between the cities. Each edge from i
to j has weight or cost cij , representing the length of the road. The problem
is to find the shortest tour that visits all the cities exactly once† (except the
starting city, which is also the terminating city); see Figure 2.5.

Fig. 2.5. Find the shortest tour x visiting all nodes.

Without loss of generality, let us assume that the graph is complete, and
that some of the weights may be +∞. Let X be the set of all possible tours
and let S(x) the total length of tour x ∈ X . We can represent each tour via a
permutation of (1, . . . , n). For example for n = 4, the permutation (1, 3, 2, 4)
represents the tour 1 → 3 → 2 → 4 → 1. In fact, we may as well represent
a tour via a permutation x = (x1, . . . , xn) with x1 = 1. From now on we
identify a tour with its corresponding permutation, where x1 = 1. We may
now formulate the TSP as follows.

min
x∈X

S(x) = min
x∈X

{
n−1∑
i=1

cxi,xi+1 + cxn,1

}
. (2.41)

Note that the number of elements in X is typically very large:

|X | = (n− 1)! (2.42)

This is exactly the setting of Section 2.4, so we can use the CE method to
solve (2.41). Note however that we need to modify Algorithm 2.4.1 since we
have here a minimization problem.
† In some versions of the TSP, cities can be visited more than once.
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In order to apply the CE algorithm we need to specify (a) how to generate
the random tours, and (b) how to update the parameters at each iteration.

The easiest way to explain how the tours are generated and how the param-
eters are updated is to relate (2.41) to an equivalent minimization problem.
Let

X̃ = {(x1, . . . , xn) : x1 = 1, xi ∈ {1, . . . , n}, i = 2, . . . , n} ,

be the set of vectors that correspond to paths of length n that start in 1 and
can visit the same city more than once. Note that |X̃ | = nn−1, and X ⊂ X̃ .
When n = 4, we have for example x = (1, 3, 1, 3) ∈ X̃ , corresponding to the
path 1 → 3 → 1 → 3 → 1. Define the function S̃ on X̃ by S̃(x) = S(x), if
x ∈ X and S̃(x) = ∞, otherwise. Then, obviously (2.41) is equivalent to the
minimization problem

minimize S̃(x) over x ∈ X̃ . (2.43)

A simple method to generate a random path X = (X1, . . . , Xn) in X̃ is to use
a Markov chain on the graph G, starting at node 1, and stopping after n steps.
Let P = (pij) denote the one-step transition matrix of this Markov chain. We
assume that the diagonal elements of P are 0, and that all other elements of
P are strictly positive, but otherwise P is a general n× n stochastic matrix.

The pdf f(·;P ) of X is thus parameterized by the matrix P and its loga-
rithm is given by

ln f(x;P ) =
n∑

r=1

∑
i,j

I{x∈X̃ij(r)} ln pij ,

where X̃ij(r) is the set of all paths in X̃ for which the r-th transition is from
node i to j. The updating rules for this modified optimization problem follow
from (2.25) (W = 1), with {S(Xi) � γ} replaced with {S̃(Xi) � γ}, under
the condition that the rows of P sum up to 1. Using Lagrange multipliers
u1, . . . , un we obtain the maximization problem

max
P

min
u1,...,un

EP I{S̃(X)�γ} ln f(X;P ) +
n∑

i=1

ui

 n∑
j=1

pij − 1

 . (2.44)

Differentiating the expression within square brackets above with respect to
pij , yields, for all j = 1, . . . , n,

EP I{S̃(X)�γ}

n∑
r=1

I{X∈X̃ij(r)}

pij
+ ui = 0 . (2.45)

Summing over j = 1, . . . , n gives EP I{S̃(X)�γ}
∑n

r=1 I{X∈X̃i(r)} = −ui, where
X̃i(r) is the set of paths for which the r-th transition starts from node i. It
follows that the optimal pij is given by
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pij =

EP I{S̃(X)�γ}

n∑
r=1

I{X∈X̃ij(r)}

EP I{S̃(X)�γ}

n∑
r=1

I{X∈X̃i(r)}

. (2.46)

The corresponding estimator is

p̂ij =

N∑
k=1

I{S̃(Xk)�γ}

n∑
r=1

I{Xk∈X̃ij(r)}

N∑
k=1

I{S̃(Xk)�γ}

n∑
r=1

I{Xk∈X̃i(r)}

. (2.47)

This has a very simple interpretation. To update pij we simply take the frac-
tion of times that the transitions from i to j occurred, taking into account
only those paths that have a total length less than or equal to γ.

This is how we could, in principle, carry out the sample generation and
parameter updating for problem (2.43). We generate the path via a Markov
process with transition matrix P , and use updating formula (2.47). However,
in practice, we would never generate the paths in this way, since the majority
of these tours would be irrelevant since they would not constitute a tour,
and therefore their S̃ values would be ∞. In order to avoid the generation of
irrelevant tours, we proceed as follows.

Algorithm 2.5.1 ( Generation of permutations (tours) in the TSP)

1. Define P (1) = P and X1 = 1. Let k = 1.
2. Obtain P (k+1) from P (k) by first setting the Xk-th column of P (k) to 0

and then normalizing the rows to sum up to 1. Generate Xk+1 from the
distribution formed by the Xk-th row of P (k+1).

3. If k = n− 1 then stop; otherwise set k = k+1 and reiterate from Step 2.

It is important to realize that the updating formula remains the same; by
using Algorithm 2.5.1 we are merely speeding up our naive way of generating
the paths. Moreover, since we now only generate tours, the updated value for
pij can be estimated as

p̂ij =

N∑
k=1

I{S(Xk)�γ} I{Xk∈Xij}

N∑
k=1

I{S(Xk)�γ}

, (2.48)

where Xij is the set of tours in which the transition from i to j is made. This
has the same “natural” interpretation as discussed for (2.47).
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To complete the algorithm, we need to specify the initialization conditions
and the stopping criterion. For the initial matrix P̂0 we could simply take all
off-diagonal elements equal to 1/(n − 1) and for the stopping criterion use
formula (2.32).

Numerical Examples

To demonstrate the usefulness of the CE algorithm and its fast and accurate
convergence we provide a number of numerical examples. The first example
concerns the benchmark TSP ft53 taken from the URL

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/

Table 2.4 presents a typical evolution of the CE Algorithm for the problem
ft53, which defines an asymmetric fully connected graph of size 53, where the
cost of each edge cij is given. The CE parameters were: stopping parameter
d = 5, rarity parameter � = 0.01, sample size N = 10n2 = 28090, and
smoothing parameter α = 0.7. The relative experimental error of the solution
is

ε =
γ̂T − γ̂∗

γ̂∗ = 0.015 , (2.49)

where γ̂∗ = 6905 is the best known solution. The CPU time was approximately
6 minutes. In Table 2.4, St,(1) denotes the length of smallest tour in iteration
t. We also included the quantity Pmm

t , which is the minimum of the maximum
elements in each row of matrix P̂t.

Table 2.4. A typical evolution of Algorithm 2.4.1 for the TSP ft53 with n = 53
nodes, d = 5, � = 0.01, α = 0.7, N = 10n2 = 28090.

t γ̂t St,(1) Pmm
t

1 23234.00 21111.00 0.0354
2 20611.00 18586.00 0.0409
3 18686.00 16819.00 0.0514
4 17101.00 14890.00 0.0465
5 15509.00 13459.00 0.0698
6 14449.00 12756.00 0.0901
7 13491.00 11963.00 0.0895
8 12773.00 11326.00 0.1065
9 12120.00 10357.00 0.0965
10 11480.00 10216.00 0.1034
11 11347.00 9952.00 0.1310
12 10791.00 9525.00 0.1319
13 10293.00 9246.00 0.1623
14 10688.00 9176.00 0.1507
15 9727.00 8457.00 0.1346
16 9263.00 8424.00 0.1436

t γ̂t St,(1) Pmm
t

17 9422.00 8614.00 0.1582
18 9155.00 8528.00 0.1666
19 8661.00 7970.00 0.1352
20 8273.00 7619.00 0.1597
21 8096.00 7485.00 0.1573
22 7868.00 7216.00 0.1859
23 7677.00 7184.00 0.2301
24 7519.00 7108.00 0.2421
25 7420.00 7163.00 0.2861
26 7535.00 7064.00 0.3341
27 7506.00 7072.00 0.3286
28 7199.00 7008.00 0.3667
29 7189.00 7024.00 0.3487
30 7077.00 7008.00 0.4101
31 7068.00 7008.00 0.4680
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Similar performances were found for other TSPs in the benchmark library
above. Table 2.5 presents the performance of Algorithm 2.4.1 for a selection
of case studies from this library. In all numerical results we use the same CE
parameters as for the ft53 problem, that is � = 10−2, N = 10n2, α = 0.7
(smoothing parameter in (2.33)) and d = 5 (in (2.32)). To study the variability
in the solutions, each problem was repeated 10 times. In Table 2.5, n denotes
the number of nodes of the graph, T̄ denotes the average total number of
iterations needed before stopping, γ̄1 and γ̄T denote the average initial and
final estimates of the optimal solution, γ∗ denotes the best known solution,
ε̄ denotes the average relative experimental error based on 10 replications,
ε∗ and ε∗ denote the smallest and the largest relative error among the 10
generated shortest paths, and finally CPU denotes the average CPU time in
seconds. We found that decreasing the sample size N from N = 10n2 to
N = 5n2 all relative experimental errors ε in Table 2.5 increase at most by a
factor of 1.5.

Table 2.5. Case studies for the TSP.

file n T̄ γ̄1 γ̄T γ∗ ε̄ ε∗ ε∗ CPU

br17 17 23.8 68.2 39.0 39 0.000 0.000 0.000 9
ftv33 34 31.2 3294.0 1312.2 1286 0.020 0.000 0.062 73
ftv35 36 31.5 3714.0 1490.0 1473 0.012 0.004 0.018 77
ftv38 39 33.8 4010.8 1549.8 1530 0.013 0.004 0.032 132
p43 43 44.5 9235.5 5624.5 5620 0.010 0.000 0.001 378
ftv44 45 35.5 4808.2 1655.8 1613 0.027 0.013 0.033 219
ftv47 48 40.2 5317.8 1814.0 1776 0.021 0.006 0.041 317
ry48p 48 40.8 40192.0 14845.5 14422 0.029 0.019 0.050 345
ft53 53 39.5 20889.5 7103.2 6905 0.029 0.025 0.035 373
ftv55 56 40.0 5835.8 1640.0 1608 0.020 0.002 0.043 408
ftv64 65 43.2 6974.2 1850.0 1839 0.006 0.000 0.014 854
ftv70 71 47.0 7856.8 1974.8 1950 0.013 0.004 0.037 1068
ft70 70 42.8 64199.5 39114.8 38673 0.011 0.003 0.019 948

Dynamics

Finally, as an illustration of the dynamics of the CE algorithm, we display be-
low the sequence of matrices P̂0, P̂1, . . . for a TSP with n=10 cities, where the
optimal tour is (1, 2, 3, . . . , 10, 1). A graphical illustration of the convergence
is given in Figure 2.6, where we omitted P̂0 whose off-diagonal elements are
all equal to 1/9 and diagonal elements equal to 0.
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P̂1 =



0.00 0.31 0.04 0.08 0.04 0.19 0.08 0.08 0.12 0.08
0.04 0.00 0.33 0.08 0.17 0.08 0.08 0.04 0.04 0.12
0.08 0.08 0.00 0.23 0.04 0.04 0.12 0.19 0.08 0.15
0.12 0.19 0.08 0.00 0.12 0.08 0.08 0.08 0.19 0.08
0.08 0.08 0.19 0.08 0.00 0.23 0.08 0.04 0.15 0.08
0.04 0.04 0.08 0.04 0.12 0.00 0.50 0.08 0.08 0.04
0.23 0.08 0.08 0.04 0.08 0.04 0.00 0.27 0.08 0.12
0.08 0.15 0.04 0.04 0.19 0.08 0.08 0.00 0.27 0.08
0.08 0.08 0.04 0.12 0.08 0.15 0.08 0.04 0.00 0.35
0.21 0.08 0.17 0.08 0.04 0.12 0.08 0.12 0.08 0.00


.

P̂2 =



0.00 0.64 0.03 0.06 0.04 0.04 0.06 0.04 0.04 0.06
0.03 0.00 0.58 0.07 0.07 0.05 0.05 0.03 0.03 0.08
0.05 0.05 0.00 0.52 0.04 0.03 0.08 0.04 0.05 0.15
0.04 0.13 0.05 0.00 0.22 0.18 0.05 0.04 0.25 0.05
0.06 0.04 0.09 0.04 0.00 0.60 0.04 0.03 0.04 0.06
0.03 0.03 0.05 0.03 0.04 0.00 0.71 0.05 0.05 0.03
0.20 0.04 0.05 0.03 0.05 0.03 0.00 0.51 0.05 0.04
0.05 0.08 0.03 0.04 0.23 0.05 0.05 0.00 0.42 0.05
0.05 0.05 0.04 0.07 0.07 0.10 0.05 0.03 0.00 0.54
0.50 0.05 0.04 0.05 0.04 0.08 0.05 0.14 0.05 0.00


.

P̂3 =



0.00 0.76 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.04
0.02 0.00 0.73 0.05 0.05 0.04 0.04 0.02 0.02 0.05
0.03 0.03 0.00 0.70 0.02 0.02 0.05 0.02 0.03 0.09
0.02 0.07 0.03 0.00 0.59 0.10 0.03 0.02 0.13 0.03
0.04 0.03 0.06 0.03 0.00 0.73 0.03 0.02 0.03 0.04
0.02 0.02 0.04 0.02 0.03 0.00 0.79 0.04 0.04 0.02
0.12 0.02 0.03 0.02 0.03 0.02 0.00 0.69 0.03 0.02
0.03 0.05 0.02 0.02 0.14 0.03 0.03 0.00 0.66 0.03
0.03 0.03 0.02 0.05 0.05 0.06 0.03 0.02 0.00 0.71
0.69 0.03 0.02 0.03 0.02 0.05 0.03 0.09 0.03 0.00


.

P̂4 =



0.00 0.82 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.03
0.01 0.00 0.80 0.03 0.03 0.03 0.03 0.01 0.01 0.04
0.02 0.02 0.00 0.79 0.02 0.01 0.03 0.02 0.02 0.07
0.01 0.04 0.02 0.00 0.73 0.06 0.02 0.01 0.09 0.02
0.03 0.02 0.04 0.02 0.00 0.81 0.02 0.01 0.02 0.03
0.01 0.01 0.03 0.01 0.02 0.00 0.84 0.03 0.03 0.01
0.09 0.02 0.02 0.01 0.02 0.01 0.00 0.78 0.02 0.02
0.02 0.03 0.01 0.02 0.09 0.02 0.02 0.00 0.76 0.02
0.02 0.02 0.02 0.03 0.03 0.05 0.02 0.01 0.00 0.79
0.78 0.02 0.02 0.02 0.02 0.03 0.02 0.06 0.02 0.00


.

P̂5 =



0.00 0.86 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.01 0.00 0.85 0.03 0.03 0.02 0.02 0.01 0.01 0.03
0.02 0.02 0.00 0.84 0.01 0.01 0.03 0.01 0.02 0.05
0.01 0.03 0.01 0.00 0.80 0.05 0.01 0.01 0.06 0.01
0.02 0.02 0.03 0.02 0.00 0.85 0.02 0.01 0.02 0.02
0.01 0.01 0.02 0.01 0.02 0.00 0.88 0.02 0.02 0.01
0.06 0.01 0.02 0.01 0.02 0.01 0.00 0.84 0.02 0.01
0.02 0.02 0.01 0.01 0.07 0.02 0.02 0.00 0.82 0.02
0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.01 0.00 0.84
0.84 0.02 0.01 0.02 0.01 0.03 0.02 0.05 0.02 0.00


.
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Fig. 2.6. Convergence of the reference parameter (matrix) for a 10 node TSP.

2.6 Exercises

1. Implement and repeat the rare-event simulation toy example correspond-
ing to Table 2.1.

2. Implement and repeat the combinatorial optimization toy example corre-
sponding to Table 2.2.

3. Extend the program used in Exercise 2 to include smoothed updating, and
apply the program to a larger example, say n = 50. Observe if and how
the choice of parameters affects the accuracy and speed of the algorithm.
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4. Consider the one-phased analog of the two-phased CE program in Exer-
cise 3; see Remark 2.7. Use the reward function ϕ(s) = s.
a) Show that the updating formulas for the pj ’s become:

p̂t,j =
∑N

i=1 S(Xi) Xij∑N
i=1 S(Xi)

.

b) Compare numerically the performances of the one- and two-phased
algorithms.

5. Verify (2.40) and show that c > b(n−m)m is a sufficient condition for V ∗

in (2.39) to be the optimal cut.

6. In the famous n-queens problem, introduced by Gauss in 1850, the objec-
tive is to position n queens on an n × n chess board such that no one
queen can be taken by any other. Write a computer program that solves
the 8-queens problem using the CE method. We may assume that the
queens occupy different rows. The positions of the queens may thus be
represented as a vector x ∈ {1, . . . , 8}8, where xi indicates the column
that the queen of row i occupies. For example, the configuration of Fig-
ure 2.7 corresponds to x = (2, 3, 7, 4, 8, 5, 1, 6)). A straightforward way
to generate random vectors X is to draw each Xi independently from a
probability vector (pi1, . . . , pi8), i = 1, . . . , 8. The performance function S
could be chosen such that it represent that number of times the queens can
attack each other. That is, the sum of the number of queens minus one,
in each row, column and diagonal. In Figure 2.7, S(x) = 1. The updating
formulas for the pij are easy. Excluding symmetry, there are 12 different
solutions to the problem. Find them all, by running your algorithm several
times. Take N = 500, α = 0.7 and � = 0.1.
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Fig. 2.7. Position the 8 queens such that no queen can attack another.
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