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Evaluation of Molecular Similarity and Molecular
Diversity Methods Using Biological Activity Data

Peter Willett

Abstract

This chapter reviews the techniques available for quantifying the effectiveness of methods for
molecular similarity and molecular diversity, focusing in particular on similarity searching and
on compound selection procedures. The evaluation criteria considered are based on biological
activity data, both qualitative and quantitative, with rather different criteria needing to be used
depending on the type of data available.
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1. Introduction

The concepts of molecular similarity (I-3) and molecular diversity (4,5) play
important roles in modern approaches to computer-aided molecular design.
Molecular similarity provides the simplest, and most widely used, method for
virtual screening and underlies the use of clustering methods on chemical data-
bases. Molecular diversity analysis provides a range of tools for exploring the
extent to which a set of molecules spans structural space, and underlies many
approaches to compound selection and to the design of combinatorial libraries.
Many different similarity and diversity methods have been described in the
literature, and new methods continue to appear. This raises the question of how
one can compare different methods, so as to identify the most appropriate
method(s) for some particular application: this chapter provides an overview of
the ways in which this can be carried out, illustrating such comparisons by,
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principally, our experience of similarity and diversity studies that have been car-
ried out in the Chemoinformatics Research Group at the University of Sheffield.
There are two bases for the comparison of similarity and diversity methods.
It is possible to compare the efficiency of methods, i.e., the resources, typically
computer time and computer memory, necessary for the completion of pro-
cessing. Considerations of efficiency, in particular, theoretical analyses of com-
putational complexity, are important in that they can serve to identify methods
that are unlikely to be applicable given the rapidly increasing sizes of current
and planned chemical datasets. Here, however, we restrict ourselves to com-
paring the effectiveness of similarity and diversity methods, i.e., the extent to
which a method is able to satisfy the user’s requirements in terms of identify-
ing similar or diverse sets of compounds. More specifically, we focus on eval-
uation criteria based on the availability of bioactivity data for the molecules
that are being processed, where the data can either be gualitative, i.e., a cate-
gorical (usually binary) variable, or guantitative, i.e., a real-valued variable.
The discussion here considers only the criteria that can be used for comparative
studies: the reader is referred elsewhere for the results of such studies.

2. Methods
2.1. Molecular Similarity Methods

2.1.1. Introduction

The basic concept of molecular similarity has many applications (1,2), but
we focus here on its use for similarity-based virtual screening, which is often
referred to as similarity searching (3). Here, a user specifies a target structure
that is characterized by one or more structural descriptors, and this set is com-
pared with the corresponding sets of descriptors for each of the molecules in
the database. These comparisons enable the calculation of a measure of simi-
larity, i.e., the degree of structural relatedness, between the target structure and
each of the database structures, and the latter are then sorted into order of
decreasing similarity with the target. The output from the search is a ranked list
in which the structures that are calculated to be most similar to the target struc-
ture, the nearest neighbors, are located at the top of the list. These neighbors
form the initial output of the search and will be those that have the greatest
probability of being of interest to the user, given an appropriate measure of
intermolecular structural similarity.

Many different types of similarity measure have been discussed in the litera-
ture, but they generally involve three principal components: the representation
that is used to characterize the molecules that are being compared; the weight-
ing scheme that is used to assign differing degrees of importance to the various
components of these representations; and the similarity coefficient that is used to
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provide a quantitative measure of the degree of structural relatedness between a
pair of structural representations. These three components are closely related
and, hence, it is most important that a comparative study should seek to ensure
that only one of these components is varied at any one time. For example, only
a limited amount of information might be gained from a comparison of the
effectiveness of similarity searching using binary fingerprints (e.g., those pro-
duced by the UNITY or Daylight software) and the Tanimoto coefficient, with
the effectiveness of similarity searching using a set of computed physicochem-
ical parameters (e.g., those produced by the MOLCONN-Z or DiverseSolutions
software), some particular standardization method and the Euclidean distance.
Given an appropriate evaluation criterion (as discussed below), one might be
able to decide that one of these approaches gave better results than the other, but
one would not be able to identify the relative contributions of the various com-
ponents of the overall similarity measures that were being studied.

The basis for all of the evaluation techniques to be discussed here is what is
commonly referred to as the similar-property principle, which was first stated
explicitly by Johnson and Maggiora in their seminal 1990 book (1). The prin-
ciple states that structurally similar molecules are expected to exhibit similar
properties. It is clear that there are many exceptions to the principle as stated
(6,7), because even a small change in the structure of a molecule can bring
about a radical change in some property; for example, replacement of a small
alkyl group by a larger one, e.g., methyl replaced by #-butyl, can mean that a
molecule is now too large to fit a binding site. The principle does, however,
provide a general rule of thumb that is very widely applicable; indeed, if this
were not the case, then it would prove difficult indeed to develop meaningful
structure-activity relationships of any sort. If the principle does hold for a
particular dataset, then the top-ranked molecules in a similarity search are
expected to have properties that are related to those of the target structure. We
can hence evaluate the effectiveness of a structurally based similarity proce-
dure by the extent to which the similarities resulting from its use mirror simi-
larities in some external property, which in the context of this chapter we take
to be biological activity (but could be any type of chemical, biological, or phys-
ical property). The next two sections detail the ways in which the principle is
applied to the analysis of qualitative and quantitative datasets.

2.1.2. Use of Qualitative Data

In what follows, we shall adopt ideas and terminology from that part of com-
puter science that is normally referred to as information retrieval (8-10). The
measurement of search effectiveness has played a large part in the development
of information retrieval (or IR) systems, whose principal aim is to identify as
many documents as possible that are relevant to a user’s query while simulta-
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Table 1

Contingency Table Describing the Output of a Search
in Terms of Active Molecules and Molecules Retrieved
in a Similarity Search Retrieving n Molecules

Active
Yes No
Retrieved Yes a n—a n
No A-a N-n-A+a N—n
A N-A N

neously minimizing the number of non-relevant documents that are retrieved. It
is possible to apply many of these measures to the evaluation of chemical
retrieval systems, where one wishes to identify as many molecules as possible
that have the same activity as the target structure while simultaneously mini-
mizing the number of inactive molecules that are retrieved.

The relationship between IR and chemical similarity searching is discussed
in detail by Edgar et al. (11) who summarize the various effectiveness measures
in terms of the 2 X 2 contingency table shown in Table 1. In this table, it is
assumed that a search has been carried out resulting in the retrieval of the n
nearest neighbors at the top of the ranked output. Assume that these n nearest
neighbors include a of the A active molecules in the complete database, which
contains a total of NV molecules. Then the recall, R, is defined to be the fraction
of the active molecules that are retrieved, i.e.,

a
R=—,
A
and the precision, P, is defined to be the fraction of the retrieved molecules that
are active, i.e.,

p=2
n
A retrieval mechanism should seek to maximize both the recall and the preci-
sion of a search so that, in the ideal case, a user would be presented with all of
the actives in the database without any additional inactives: needless to say,
this ideal is very rarely achieved in practice.
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It is inconvenient to have to specify two measures, i.e., recall and precision,
to quantify the effectiveness of a search. The Merck group have made extensive
use of the enrichment factor, i.e., the number of actives retrieved relative to
the number that would have been retrieved if compounds had been picked from
the database at random (12). Thus, using the notation of Table 1, the enrich-
ment factor at some point, n, in the ranking resulting from a similarity search
is given by

aln

A/N’

Note that because A/N is a constant, the enrichment is monotonic with precision.
Rather than specifying the enrichment at some specific point in the ranking, e.g.,
the top-1000 positions, it can alternatively be specified at that point where some
specific fraction, e.g., 50%, of the actives have been retrieved. Examples of the
use of enrichment factors are provided by Sheridan and colleagues (12) and
Gillet et al. (13).

Alternatively, Giiner and Henry (14) have introduced the G-H score, which
is a weighted average of recall and precision. The score was originally devel-
oped for evaluating the effectiveness of three-dimensional (3D) database
searches but can be applied to the evaluation of any sort of search for which
qualitative bioactivity data are available. Using the previous notation, the
G-H score is defined to be

aP + R
2

where o and [ are weights describing the relative importance of recall and pre-
cision. The lower bound for the G-H score is zero; if both weights are set to
unity, then the score is simply the arithmetic mean of recall and precision, i.e.,

P+R
5
Examples of the use of the G-H score are provided by Giiner and Henry (15)
and by Raymond and Willett (16), while Edgar et al. discuss other combined
measures that can be used for chemical similarity searching (11).

At least three alternative approaches have been used widely. First, the
Sheffield group has generally quoted the mean numbers of active compounds
identified in some fixed number of the top-ranked nearest neighbors, when aver-
aged over a set of searches for bioactive target structures. An early example of
the use of this approach is a comparison of 3D similarity measures based on

b
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Table 2

Contingency Table Describing the Output of a Search

in Terms of Correctly and Incorrectly Predicted Molecules
in a Classification Experiment Classifying n Molecules

Classification
Active Inactive
Truth Active i j i+j
Inactive k l k+l
i+k J+ n

interatomic distances (17), with Briem and Lessel providing a more recent appli-
cation in their extended comparison of virtual screening methods (18). The use
of a fixed cut-off means that this measure is basically a reformulation of preci-
sion, which is entirely acceptable in the early stages of a discovery program,
when the immediate need is to identify additional active molecules; however, the
measure takes no account of recall, which may be an important factor in a
detailed comparative study of the behavior of different similarity measures. A
second, and alternative, “leave-one-out” classification approach assumes that the
activity of one of the molecules in the database, X, is unknown. A similarity
search is carried out using X as the target structure and the top-x (where x is odd)
nearest neighbors identified. The activity or inactivity of X is then predicted on
the basis of a majority vote (hence the requirement for an odd number) of the
known activities of the selected nearest neighbors. This process is repeated for
each of the N molecules in turn (or just the A active molecules in many cases),
yielding a contingency table of the sort shown in Table 2. Various statistics can
be produced from the elements of this table: perhaps the most common is
Cohen’s kappa statistic (19). This is defined to be

O-E
1-E’

where O and E are the observed and expected accuracies of classification.
These accuracies can be defined in terms of the elements of Table 2 as follows:

0= and
n

_ G+k)i+ )N+ +DEk+I)
n2 .

E
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There are many variants on this basic idea, such as the weighted kappa
described by Cohen himself (20) and the Rand statistic (21), which is perhaps
the most widely used of the measures available for comparing different clus-
terings of the same set of objects.

Finally, it may be of interest to study the performance of a measure across
the entire ranking resulting from a similarity search, rather than the perfor-
mance for some fixed number of nearest neighbors. In this case, the most pop-
ular approach is the use of a cumulative recall graph, which plots the recall
against the number of compounds retrieved (i.e., a/A against n using the nota-
tion of Table 1). The best-possible such graph would hence be one in which the
A relevant documents are at the top of the ranking, i.e., at rank-positions 1, 2,
3,..., A (or at rank-positions, N-A + I, N-A+2, N-A +3,..., Nin the
case of the worst-possible ranking). The use of such diagrams is exemplified by
studies of similarity searching using physicochemical descriptors (12) and of a
range of virtual screening methods for searching agrochemical datasets (22). The
cumulative recall plot is closely related to the receiver operating characteristic
(ROC) curves that are widely used in signal detection and classification problems
(23). An ROC curve plots the true positives against the false positives for differ-
ent classifications of the same set of objects; this corresponds to plotting
a against n — a using the notation of Table 1, and thus the shape of an ROC
curve tends to the shape of a cumulative recall plot when n >> a. An example of
the use of ROC plots in chemoinformatics is provided by the work of Cuissart et
al. on similarity-based methods for the prediction of biodegradability (24).

2.1.3. Use of Quantitative Data

The similar property principle can also be applied to the analysis of datasets
for which quantitative bioactivity data are available, most commonly using a
simple modification of the “leave-one-out” classification approach described
above. Here, the predicted property value for the target structure X, P(X), is
taken to be the arithmetic mean of the observed property values of the selected
nearest neighbors. This procedure results in the calculation of a P(X) value for
each of the N structures in a dataset, and an overall figure of merit is then
obtained by calculating the product moment correlation coefficient between the
sets of N observed and N predicted values. This approach can equally well be
applied to the evaluation of clustering methods, with the predicted values here
being the mean of the other compounds in the cluster containing the chosen
molecule, X.

This application of the similar property principle was pioneered by Adamson
and Bush (25,26) and has since been very extensively applied. For example,
Willett and Winterman used it in one of the first detailed comparisons of mea-
sures for similarity searching (27), and it also formed the basis for Brown and
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Martin’s much-cited comparison of clustering methods and structural descrip-
tors for compound selection (28).

2.2. Molecular Diversity Methods
2.2.1. Introduction

The principal aim of molecular diversity analysis is to identify structurally
diverse (synonyms are dissimilar, disparate, and heterogeneous) sets of com-
pounds that can then be tested for bioactivity, the assumption being that a struc-
turally diverse set will generate more structure-activity information than will a
set of compounds identified at random. The sets of compounds can be selected
from an existing corporate or public database, or can be the result of a sys-
tematic combinatorial library design process (4,5).

Many of the comments that were made in Subheading 2.1.1. regarding sim-
ilarity measures are equally applicable to diversity methods, in that the latter
involve knowledge of the degree of dissimilarity or distance between pairs, or
larger groups, of molecules. Here, however, there is also the need to specify a
selection algorithm, which uses the computed dissimilarities to identify the
final structurally diverse set of compounds, and there may also be a diversity
index, which quantifies the degree of diversity in this set. It is thus important,
as with similarity measures, to isolate the effect of the various components of
the diversity methods that are being analyzed in a comparative study. There
have been many such comparisons, e.g., refs. 26—-33. Here, we focus on diver-
sity indices because it is these that measure the overall effectiveness of a
method. (In fact, while an index is computed once a selection algorithm has
completed its task, there are some types of algorithm that seek explicitly to
optimize the chosen index, so that the current value of the index drives the
operation of the selection algorithm.)

Many of the early evaluations of the effectiveness of diversity methods used
structure-based diversity indices, such as functions of intermolecular dissimi-
larities in the context of distance-based selection methods or of the numbers of
occupied cells in partition-based selection methods (4). A wide range of such
indices has been reported, as discussed in the excellent review by Waldman et al.
(34). They do, however, have the limitation that they quantify diversity in chem-
ical space, whereas the principal rationale for molecular diversity methods is to
maximize diversity in biological space (35), and we hence focus here on indices
that take account of biological activity.

2.2.2. General Screening Programs

We have noted the importance of the similar property principle, which would
imply that a set of compounds exhibiting some degree of structural redundancy,
i.e., containing molecules that are near neighbors of each other, will also exhibit
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some degree of biological redundancy; a structurally diverse subset, conversely,
should maximize the number of types of activity exhibited by its constituent
molecules. It should thus be possible to compare the effectiveness of different
structure-based selection methods by the extent to which they result in subsets
that exhibit as many as possible of the types of activity present in the parent
dataset. Maximizing biological diversity in this way is the principal aim of gen-
eral screening programs, which aim to select molecules from a database (or
design combinatorial libraries for synthesis) that exhibit the widest possible
range of different types of activity. An obvious measure of the diversity of the
resulting compounds is hence the number of types of activity exhibited by
them. This can be easily tested using one of the public databases that contain
both chemical structures and pharmacological activities, such as the MACCS
Drug Data Report (MDDR, at URL http://www.mdli.com/products/mddr.html)
or the World Drugs Index (WDI, at URL http://www.derwent.com/worlddrug-
index/index.html) databases. Thus, in one of the earliest studies of methods for
comparing diverse database subsets, Snarey et al. compared a range of maxi-
mum dissimilarity and sphere exclusion methods for dissimilarity-based com-
pound selection by means of the number of different types of activity present
in subsets chosen from molecules in the WDI database (31); this approach has
been adopted in several subsequent studies.

2.2.3. Focused Screening Programs

In a focused screening program, the aim is to select molecules from a data-
base (or design combinatorial libraries for synthesis) that provide the maxi-
mum amount of information about the relationships that exist between
structural features and some specific type of biological activity. If these data are
qualitative in nature, then a simple count of the active molecules present will
suffice to quantify the degree of biological diversity. However, at least some
account must additionally be taken of the chemical diversity that is present, to
avoid a high level of diversity being ascribed to a cluster of highly similar mol-
ecules (such as “me too” or “fast follower” compounds in a drug database).
An example of this approach is a comparison of binning schemes for cell-based
compound selection by Bayley and Willett (36) that selected one molecule from
each cell in a grid (thus ensuring that the selected molecules were structurally
diverse) and then noted how many of these selected molecules were bioactive
(thus quantifying the biological diversity).

Once interest has been focused on some small volume of structural space,
large numbers of molecules are synthesized and tested (and often re-tested in
the case of HTS data), and the results of these experiments used to develop a
quantitative structure-activity relationship (QSAR). It has for long been claimed
that the use of diverse sets of compounds will enable more robust QSARS to be
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developed than can be developed using randomly chosen training sets. That
this is in fact the case has been demonstrated recently by Golbraikh and
Tropsha (37), and one can hence quantify the effectiveness of a compound
selection method by the predictive power of the QSARs that can be derived
from the compounds selected by that method. Quantitative bioactivity data also
lie at the heart of the neighborhood behavior approach of Patterson et al. (33),
which is analogous to the similar property principle but emphasizes the
absolute differences in descriptor values and in bioactivity values, rather than
the values themselves. Specifically the authors state that a meaningful descrip-
tor for diversity analysis is one for which “small differences in structure do
not (often) produce large differences in biology,” and then use this idea to com-
pare a wide range of descriptor types by means of a ? analysis; an improved
version of this analysis is described by Dixon and Merz (38).

3. Notes

1. The group in Sheffield has over two decades experience of carrying out compar-
ative studies of similarity (and, more recently, diversity) methods. Perhaps the
most important single piece of advice we can give to those wishing to carry out
comparable studies is the need to use a range of types of data, ideally including
both homogeneous and heterogeneous datasets. Only by so doing can one ensure
the robustness and general applicability of the methods that are being compared.
In particular, one would not wish to encourage the situation that pertained for
some time in the QSAR literature, where a new method was normally developed
and tested on just a single dataset, most commonly the set of steroids (39) first
popularized by Cramer et al. (40).

2. In like vein, we would recommend the use of more than just one evaluation mea-
sure. That said, it is our experience that different measures usually agree as to
the relative merits of different approaches (unless there are only very minor dif-
ferences in effectiveness): even so, it is always worth carrying out additional
analyses to ensure that one’s results are, indeed, independent of the evaluation
criterion that has been adopted.

3. Having criticized the exclusive use of the steroid dataset, it does have the great
advantage that it provides a simple basis for comparison with previous work, and it
would be highly desirable if comparable test-sets were available for similarity and
diversity analyses. To some extent, this is already happening with increasing use
being made of the qualitative bioactivity data in the MDDR and WDI datasets men-
tioned previously; two other datasets that can be used for this purpose, and which
have the advantage that they are available for public download, are the cancer and
AIDS files produced by the National Cancer Institute (at URL http://dtp.nci.nih.gov/).
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