
3 Client GUI Design

3.1 Introduction

The user interface of a remote laboratory should be as realistic as possible to give

users an impression that they are actually operating on the physically existing in-

struments. Also, a user-friendly interface will enable the user to conduct the experi-

ments conveniently and efficiently. The design and creation of vivid control and

parameter adjustment components such as buttons, knobs, and cables are thus essen-

tial in any Web-based laboratory.

Typically, these movable components are positioned on top of an instrument

panel or an appropriate laboratory setup or background. On the panel, buttons can be

pressed or released, knobs can be turned, and plugs and cables can be plugged in or

dragged to connect or disconnect relevant input or output terminals in the laboratory

experiment. As examples, some instrument panels for the frequency modulation and

oscilloscope experiments are illustrated in Figures 3.1 and 3.2, respectively.

The client graphical user interface (GUI), which includes the instrument panel

and other information such as experimental procedures and real-time experimental

data, may be implemented using Java, JavaScript, and HTML technologies, most of

which are supported by popular Web browsers such as Microsoft Internet Explorer

and Netscape Navigator.

Java applets embedded in HTML pages can be used to construct the main inter-

face of the experiment. Java is a natural choice on the client side because of its

flexibility in GUI design, convenient network programming capability, and platform

independence. Platform independence, the last feature, is most significant since it

allows the same applet program to run on client machines with different platforms.

To use Java, the codes must be compiled into applets and embedded into the HTML

file.

40 Creating Web-Based Laboratories

Figure 3.1. Instrument panels for the frequency modulation experiment.

Figure 3.2. Instrument panel for the oscilloscope experiment.

3. Client GUI Design 41

Unlike Java, JavaScript is a scripting language, which is a subset of program-

ming languages. JavaScript code can be included directly in HTML documents and

can be easily modified. Typically, scripting languages are software extensions or

operating system extensions, unlike true programming languages that can create

compiled self-contained applications. PERL, VBScript, and JavaScript are examples

of scripting languages, while Java, C, C++, and Pascal are examples of true pro-

gramming languages. Scripting languages are in general less powerful but also eas-

ier to learn. A higher-level language such as Java, for instance, has a very steep

learning curve and requires substantial involvement to master. JavaScript is actually

descended from Java, but it was developed by Netscape as a means of bringing the

simplicity of scripting language to a wider audience.

To create and realize a realistic instrument panel, it is necessary to mix codes in

Java, JavaScript, and HTML together. Although the processes or functions written

in JavaScript can always be rewritten in Java, the former may be preferred in some

places for the sake of simplicity and efficiency in development.

In the following sections and the next two chapters, we will describe in detail,

step-by-step, how a user-friendly and vivid panel can be created from scratch. In our

discussion, we will use the GUIs of the frequency modulation and oscilloscope ex-

periments as examples.

3.2 Frequency Modulation Experiment

Before we proceed, we will present some background knowledge on the instruments

in the frequency modulation experiment that will be relevant to the design of the

GUI and the instrument panels on the client. Essentially, the experiment makes use

of a spectrum analyzer and some other instruments so that the user can investigate

the spectrum of a frequency-modulated signal generated from a circuit board.

3.2.1 Circuit Board

Figure 3.3 shows the circuit diagram of the circuit board used for generating the

frequency-modulated signal in the experiment. The circuit to the left of the dashed

line is the frequency modulator, while that to the right corresponds to a second-order

low-pass filter.

On the client GUI under the Internet Explorer browser, the circuit board is real-

ized as shown in Figure 3.4. Note that a picture of the actual circuit board in the

laboratory is used. The important terminals or components, including the input and

output terminals, a test point, and a variable resistor, are marked by dashed circles in

the figure.

The input terminal and socket in circle 1 corresponds to the input or point 1 in

Figure 3.3. The knob in circle 2 is the variable resistor Rv in Figure 3.3. The terminal

in circle 3 is a test point and corresponds to point 3 of Figure 3.3. The terminal in

circle 4 is the ground terminal. By measuring the voltage difference between termi-

nals 3 and 4, the voltage at pin 5 of the voltage-controlled oscillator LM566 can be

42 Creating Web-Based Laboratories

found. The sockets under both circles 5 and 6 correspond to point 5 of Figure 3.3.

Through socket 5, the output signal can be fed to a frequency counter to be meas-

ured. Through socket 6, the same signal can be sent directly to a spectrum analyzer

to be analyzed.

+12V

8

1

3

6

5

7

4

LM566

741

+

-k

R
v

5

k

R

56

1

F

C

001.0

1

k10
k10

k10

k10 k10

k10

k6.5

pF220

pF220

2

3

1

4

5

Figure 3.3. Circuit diagram for the frequency modulation experiment.

Figure 3.4. Instrument panel for the circuit board.

1

3

4

5

6

2

3. Client GUI Design 43

3.2.2 Spectrum Analyzer

Figure 3.5 shows the HP 8590L spectrum analyzer [28] used in the frequency modu-

lation experiment. It is a full-featured analyzer that can operate from 9 kHz to 1.8

GHz with an amplitude range of –115 dB to +30 dB. Regardless of whether it is

manually or remotely operated, the analyzer has more than 200 functions, including

marker types such as marker delta, marker peak search, and up to four on-screen

markers. With the option of a GPIB interface, the instrument can be controlled by a

computer.

On the Internet Explorer GUI, the spectrum analyzer is realized as shown in

Figure 3.6. Since the actual instrument has many features but only a few important

ones are relevant for the experiment, a simplified front panel is provided in the GUI.

Another reason for having such a design is that the users or students will not be

overwhelmed by the complexity of the instrument and yet will be able to get a good,

realistic feeling of using a real, expensive spectrum analyzer. In terms of feasibility,

it is in fact quite straightforward for the Web-based instrument to have exactly the

same function as the real equipment if necessary. The controls and components on

the instrument panel of the spectrum analyzer are described below [28].

Figure 3.5. HP 8590L spectrum analyzer.

Figure 3.6. Instrument panel for the spectrum analyzer.

44 Creating Web-Based Laboratories

Buttons

There are five groups of buttons on the panel:

o Frequency Buttons

Activate the center-frequency function to set the fre-

quency at the center of the display.

Set the start frequency or that corresponding to the left-

most position of the display.

Set the stop frequency or that corresponding to the right-

most position of the display.

o Amplitude Button

Set the reference level, which corresponds to the power in

dBm at the top topmost position of the display.

o Attenuation Buttons

Couple the attenuation to the reference level. The spec-

trum analyzer will attenuate the input signal power ac-

cordingly.

Set the input attenuation in 10 dB increments.

o Marker Buttons

Turn the marker on or off.

Position the marker at the peak of the spectrum.

Specify the frequency of the active marker.

Get the spectrum value at the marker position.

o Data Buttons

to Number keys.

Decimal point.

Backspace or negative sign.

to Unit keys.

3. Client GUI Design 45

The data buttons allow the entry of exact values, which may include a

decimal point, for many of the spectrum analyzer functions. All numerical

entries must be terminated with a unit key, which will activate the instru-

ment to accept the values and make corresponding changes in the operation

of the instrument.

Knob

The knob allows changes to be made to parameters such as the center fre-

quency, reference level, and marker position in an incremental continuous or

discrete manner. Clockwise rotation of this control corresponds to an increase

in value. To change values in a continuous manner, the extent of the change or

resolution is determined by the range of the function selected. The speed at

which the knob is turned, however, does not affect the rate at which values are

changed. Through the GUI on the client side, the turning of the knob is

achieved by dragging the mouse pointer when it is positioned next to the red dot

of the control.

3.2.3 Frequency Counter

Figures 3.7 and 3.8 show the frequency counter used in the experiment and the cor-

responding GUI version under the Internet Explorer browser, respectively. The in-

strument counter is capable of measuring frequencies up to 225 MHz [29]. Fre-

quency and time-interval resolutions are 10 digits in one second and 500 pico-

seconds, respectively. Programmable control is performed via GPIB, and this pro-

vides the user with a speed of 200 measurements per second.

In the experiment, this instrument is used to measure the frequency of the car-

rier signal for the purpose of calibrating the voltage-controlled oscillator (VCO)

before the latter is used for frequency modulating an input message signal.

Figure 3.7. HP 53131A universal counter.

46 Creating Web-Based Laboratories

Figure 3.8. Instrument panel for the frequency counter.

3.2.4 Signal Generator

The signal generator for producing the input message signal and its corresponding

Internet Explorer GUI version are shown in Figures 3.9 and 3.10, respectively. The

instrument is a versatile arbitrary waveform generator, can operate over the fre-

quency range from 1 mHz to 10 MHz, and is capable of giving a 1 mV to 10 V

peak-to-peak output into a 50 load [30]. In the experiment, the instrument is re-

motely operated via the IEEE 488.2 bus and is SCPI-compatible.

Figure 3.9. OR-X Model 620 arbitrary waveform generator.

Figure 3.10. Instrument panel for the signal generator.

3. Client GUI Design 47

3.2.5 Voltmeter

The last instrument used in the experiment is a standard remote-controlled voltmeter

for measuring the voltage of the VCO on the circuit board. The instrument is con-

trolled and its reading is captured through the IEEE 488.2 bus. In the GUI under

Internet Explorer, it is simply realized as shown in Figure 3.11. Basically, once the

power button is on, the voltage applied to its input will be continuously measured

and displayed.

Figure 3.11. Instrument panel for the voltmeter.

3.3 Java and OOP

3.3.1 Java Applet

The instrument panels described above are created using Java applets. In general,

Java can be used to create either a stand-alone application or an applet [31]. The

former does not need to be embedded in an HTML document and can be run with-

out using any browser.

In our Web-based laboratories, most of the Java programs are for the creation of

applets. Put simply, an applet is a part of a Web page, just like an image or a line of

text in a document. Thus, similar to how a browser looks after the display of an im-

age in an HTML document, a Java-enabled browser is needed to locate and run an

applet. When a Java-capable Web browser loads an HTML document, the Java app-

let is also loaded and executed. Using applets, one can perform tasks such as having

animated graphics, games, or utilities executed from a Web page downloaded from

the Internet.

The development of Web-based laboratories will involve many languages, such

as Java, JavaScript, VBScript, Perl, MATLAB, and LabVIEW. However, Java is per-

haps the most important in dealing with situations, especially the user interface, on

the Internet.

To create a Java program, a text editor can be used to create a Java language

source code file. After saving the source code with a .java file extension, the

saved file can then be compiled into its byte-code format, creating another file with

48 Creating Web-Based Laboratories

a .class extension. It is the .class file that the interpreter loads and executes.

Because the byte-code files are fully portable between operating systems, they can

be executed on any system that has a Java interpreter.

3.3.2 Class

The creation of classes in the context of OOP (object-oriented programming) is cru-

cial in the development of Web-based laboratories. However, before we describe in

detail how this can be done for the client GUI in the next two chapters, we will first

present here some basic concepts and principles on classes.

Under OOP, a class is essentially a template for an object. An example is the

common data type integer, or int, which is predefined in Java and practically all

other programming languages. When the need arises for a new class to be created,

however, the characteristics of the class must be specified. Specifically, a class as-

sociated with the display of a button can be defined by using the class keyword

along with an appropriate class name, as follows:

class imgButton

 {

 }

Despite having an empty body, these few lines actually create a complete class.

If they are saved in a file called imgButton.java, compilation to a .class file

can be carried out and execution will be possible, even though nothing useful will

result.

Nevertheless, one can still create an object powerButtt from the defined ex-

ample class. To do this, we can use either

ImgButton powerButtt = new imgButton();

or

ImgButton powerButtt;

The ImgButton is empty and useless. Both data fields and methods will have

to be specified for the class if it is to serve any purpose. The declaration of four in-

teger fields for storing the size of any button created from the class imgButton

can be achieved as shown in the following example:

class imgButton

 {

 int left, top, width, height;

 }

As specified, the data fields are by default accessible only by methods in the

same class. However, these can be changed by using the public, protected,

and private keywords. A public data field can be accessed by any part of the

3. Client GUI Design 49

program, inside or outside of the class in which the field is defined. A protected data

field can only be accessed from within the class or from within a derived class or

subclass. A private data field is not accessible even for a derived class.

In addition to adding relevant data fields, appropriate methods or functions

must also be provided to operate on the fields if the defined class is to serve any

specific purpose. Of all the methods, the most special one is the constructor. This is

a method with the same name as the class and enables an object to initialize itself as

it is created.

Figure 3.11 shows the constructor of the imgButton class. The constructor

assigns input values to the data fields left and top and initiates the button image,

including its pushed-down and released-up status. As shown, the constructor starts

with the public keyword. This is necessary and important so that an object be-

longing to this class can be created anywhere in the program. When an object is

created, its constructor is actually called. After the public keyword and the name

of the constructor or class, the constructor’s arguments are specified in parentheses.

When an imgButton object is created, these arguments must be supplied. For

example, a new button may be created by using

 nButt = new imgButton(ButtUpName,ButtDownName,140,290);

which will pass all four arguments to the constructor for processing.

The creation of other methods is similar to that for the constructor. Also, as for

data fields, an appropriate type of access must be provided. Specifically, methods

callable from outside the class should be defined as public, methods callable only

from the class and its derived classes should be defined as protected, and meth-

ods callable only from within the class should be declared as private.

ImgButton: Constructor

public imgButton(String s_upImg, String s_downImg, int x, int y)

 {

 left = x;

 top = y;

 try{

 InitImage(new URL(s_upImg), new URL(s_downImg));

 }

 catch(MalformedURLException e)

 {

 System.out.println("imgButton.class: MalformedURL");

 }

 }

Figure 3.11. Constructor of the imgButton class.

50 Creating Web-Based Laboratories

3.3.3 Class Creation

Like other OOP languages, one can create a new class from an existing class in Java

through the principle of inheritance. As an example, using the extends keyword,

we can create a new imgButton subclass from the Component superclass by

using the following:

public class imgButton extends Component

The Component class is one that has been created in Java for the convenience of

programmers. There are numerous basic classes such as this in Java, a common fea-

ture of which is that they contain all the basic functionality one may need for vari-

ous purposes.

The creation of a new subclass enables one to inherit all the data fields and

methods that have been created for the superclass without the need to develop new

codes. In addition, one can also specify new data fields and methods for the new

class that will be special or new or not supplied by the superclass. Also, it is possi-

ble to override or specify a new version of a method that forms part of the super-

class.

http://www.springer.com/978-1-85233-837-4

