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Chapter 2 

The Most Outstanding Ontologies 

This chapter is devoted to presenting the most outstanding ontologies. In this survey, 
we have considered different types of ontologies: knowledge representation 
ontologies (Section 2.1), top-level ontologies (Section 2.2), linguistic ontologies 
(Section 2.3) and domain ontologies (Section 2.4). In this last section, we will deal 
with ontologies from the following domains: e-commerce, medicine, engineering, 
enterprise, chemistry, and knowledge management. 

At present, there is a huge number of ontologies; we have chosen those that are 
outstanding because of their use in important projects, their theoretical contributions, 
or their use as experimental bases to establish design criteria, to elaborate 
methodologies, etc. 

After reading this chapter, you will be able to decide whether the ontologies 
presented here can be reused in your application, and you will know which 
applications are already using them. 

2.1 Knowledge Representation Ontologies 

A knowledge representation (KR) ontology (van Heijst et al., 1997) gathers the 
modeling primitives used to formalize knowledge in a KR paradigm. Examples of 
such primitives are classes, relations, attributes, etc. 

The most representative KR ontology is the Frame Ontology (Gruber, 1993a), 
built for capturing KR conventions under a frame-based approach in Ontolingua. 
The Frame Ontology (FO) was modified in 1997 and some of its primitives were 
moved to the OKBC Ontology. The reason behind this change was the creation of 
OKBC (Chaudhri et al., 1998), a frame-based protocol for accessing knowledge 
bases stored in different languages: Ontolingua (Farquhar et al., 1997), LOOM 
(MacGregor, 1991), CycL (Lenat and Guha, 1990), etc.  
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Other ontology languages such as CycL (Lenat and Guha, 1990) and OCML 
(Motta, 1999) have also their own KR ontologies. In both cases, the foundations of 
such KR ontologies are similar to the Frame Ontology, since both languages are 
based on a combination of frames and first order logic. These and other languages 
will be described in depth in Chapter 4.  

More recently, ontology markup languages have been created in the context of 
the Semantic Web: RDF (Lassila and Swick, 1999) and RDF Schema (Brickley and 
Guha, 2003), OIL (Horrocks et al., 2000), DAML+OIL (Horrocks and van 
Harmelen, 2001) and OWL (Dean and Schreiber, 2003). All these languages have 
also their corresponding KR ontologies. In this section we present these KR 
ontologies with their current primitives, as in April 20031.

2.1.1 The Frame Ontology and the OKBC Ontology

The Frame Ontology (Gruber, 1993a) was developed in KIF (Genesereth and Fikes, 
1992) by the Knowledge Systems Laboratory at Stanford University. The Frame 
Ontology (FO) collects common knowledge-organization conventions used in 
frame-based representations. Its goal is to unify the semantics of the primitives most 
commonly used in the frame paradigm and to enable ontology developers to build 
ontologies with a frame-based approach.  

The first version of the FO contained an axiomatization of classes and instances, 
slots and slot constraints, class and relation specialization primitives, relation 
inverses, relation composition, and class partitions. The FO was described by a set 
of ontological commitments that restricted the semantics of the FO primitives. Some 
examples of these ontological commitments are: relations are sets of tuples, 
functions are a special case of relations, classes are unary relations, etc.

The FO was modified in 1997 and some of its primitives were shifted to the 
OKBC Ontology. The reason for this change was the creation of a frame-based 
protocol to access knowledge bases stored in different languages: Ontolingua 
(Gruber, 1993a), LOOM (MacGregor, 1991), CycL (Lenat and Guha, 1990), etc., 
and the result was that the OKBC Ontology (Chaudhri et al., 1998) replaced some of 
the fundamental definitions of the original FO. At present the FO includes the 
OKBC Ontology and only provides formal definitions of the primitives not included 
in the latter. Such inclusion reflects that ontologies built with the FO primitives are 
more expressive than those built with the OKBC primitives. For instance, concept 
taxonomies built using OKBC primitives are based only on the Subclass-Of relation. 
However, concept taxonomies built using the FO may contain knowledge with 
exhaustive and disjoint partitions. Besides, the OKBC primitives are mainly 
concerned with frames, classes, and slots, while the FO includes more complex 
primitives for representing functions, relations, and axioms. 

Both, the FO and the OKBC ontologies are available in the Ontolingua Server’s 
ontology library2. Figures 1.11 and 1.12 presented the vocabulary provided by both 

                                                          
1 Some ontology markup languages, such as RDF(S) and OWL, are not fully stable yet. Their 
specification together with their KR primitives may undergo small changes in the future. 
2 http://ontolingua.stanford.edu 
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KR ontologies. The FO contains 23 classes, 31 relations, and 13 functions; the 
OKBC Ontology contains eight classes, 36 relations, and three functions. We will 
not present all the primitives contained in these two ontologies, but only the most 
representative.

When building a concept taxonomy using the FO and the OKBC Ontology, the 
following primitives can be used: 

Classes, class partitions and instances 
In the frame-based KR paradigm, two types of frames can be represented: classes 
and instances. On the one hand, classes (aka concepts) represent collections or 
stereotypes of objects. On the other hand, instances represent individuals belonging 
to one or to several of those classes. The latter are called individuals in the OKBC 
Ontology. Two of the primitives, related to classes and instances, identified in the 
FO and the OKBC Ontology are: 
¶ Class (?Class). This primitive defines the class ?Class as a collection of 

individuals. It is the only primitive appearing in both ontologies. 
¶ Individual (?Individual). This primitive defines an individual or instance. 

Class taxonomies 
Taxonomies are used to organize classes and instances in the ontology. The most 
important relations here are Subclass-Of (which means that a class is a specialization 
of another class) and Instance-Of (which states that an individual is an element of a 
class). Both primitives and some more specific ones for creating taxonomies are 
described below.  
¶ Subclass-Of (?Child-Class ?Parent-Class), which states that the class 

?Child-Class is a subclass of the class ?Parent-Class.
¶ Superclass-Of (?Parent-Class ?Child-Class), which states that the class 

?Parent-Class is a superclass of the class ?Child-Class. This relation is the 
inverse relation of the Subclass-Of relation. 

¶ Disjoint-Decomposition (?Class ?Class-Set), which defines the set of disjoint 
classes ?Class-Set as subclasses of the class ?Class. This classification does not 
necessarily have to be complete, that is, there may be instances of ?Class that 
are not instances of any of the classes of ?Class-Set.

¶ Exhaustive-Decomposition (?Class ?Class-Set), which defines the set of classes 
?Class-Set as subclasses of the class ?Class. This classification is complete, that 
is, there are no instances of ?Class that are not instances of any of the classes of 
?Class-Set. However, the classes in the set ?Class-Set are not necessarily 
disjoint, as with the previous primitive. 

¶ Partition (?Class ?Class-Set), which defines the set of disjoint classes ?Class-
Set as subclasses of the class ?Class. This classification is complete, that is, the 
class ?Class is the union of all the classes that belong to ?Class-Set.

¶ Instance-Of (?Individual ?Class), where the instance ?Individual is an instance 
of the class ?Class.

Figure 2.1 shows examples where we use some of these primitives for creating class 
taxonomies. The class AmericanAirlinesFlight is a subclass of the class 
Flight. Hence, the class Flight is a superclass of the class 
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AmericanAirlinesFlight. The classes AA7462, AA2010 and AA0488 form 
a disjoint decomposition of the class AmericanAirlinesFlight (that is, there 
are no flights operated by American Airlines that have two flight numbers from the 
set AA7462, AA2010 and AA0488, but there are also other kinds of flights operated 
by American Airlines). The classes EuropeanLocation, AsianLocation,
AfricanLocation, AustralianLocation, AntarcticLocation,
NorthAmericanLocation, and SouthAmericanLocation form a partition 
of the class Location (any location belongs to one, and only one, of the seven 
continents). Finally, NewYorkCity is an instance of the class 
NorthAmericanLocation.

Figure 2.1: Examples of taxonomies with the FO and the OKBC Ontology primitives.  

Relations and their properties 
A relation represents the dependency between concepts in the domain. In 
Mathematics, relations are formally defined as sets of tuples of individuals. 
Relations in an ontology can be organized in relation taxonomies according to a 
specialization relationship, called Subrelation-Of. Several mathematical properties 
of a relation can also be determined: reflexive, irreflexive, symmetric, etc. Some of 
the primitives for defining relations identified in the FO are:
¶ Relation (?Rel), which defines a relation ?Rel in the domain. The classes to 

which the relation applies are defined as the domain and range of the relation 
respectively.

¶ Subrelation-Of (?Child-Rel ?Parent-Rel). A relation ?Child-Rel is a subrelation 
of the relation ?Parent-Rel if, viewed as sets, ?Child-Rel is a subset of 
?Parent-Rel. In other words, every tuple of ?Child-Rel is also a tuple of 
?Parent-Rel, that is, if ?Child-Rel holds for some arguments arg_1, arg_2,
...arg_n, then ?Parent-Rel holds for the same arguments. Thus a relation and its 
subrelation must have the same arity, which could be undefined. 

¶ Reflexive-Relation (?Rel). Relation ?Rel is reflexive if ?Rel(x,x) holds for all x
in the domain and range of ?Rel.
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¶ Irreflexive-Relation (?Rel). Relation ?Rel is irreflexive if ?Rel(x,x) never holds 
for all x in the domain and range of ?Rel.

¶ Symmetric-Relation (?Rel). Relation ?Rel is symmetric if ?Rel(x,y) implies 
?Rel(y,x) for all x and y in the domain and range of ?Rel.

¶ Antisymmetric-Relation (?Rel). Relation ?Rel is antisymmetric if ?Rel(x,y)
implies not ?Rel(y,x) when x¸y, for all x and y in the domain and range of ?Rel.

¶ Asymmetric-Relation (?Rel). Relation ?Rel is asymmetric if it is antisymmetric 
and irreflexive over its exact domain. The exact domain of ?Rel is the set 
elements of the ?Rel domain linked to some element of the ?Rel range through 
this relation; that is, the exact domain only keeps the domain elements that 
participate in the relation. 

¶ Transitive-Relation (?Rel). Relation ?Rel is transitive if ?Rel(x,y) and ?Rel(y,z)
implies ?Rel(x,z), for all x and z in the domain and range of ?Rel respectively, 
and for all y in the domain and range of ?Rel.

¶ Equivalence-Relation (?Rel). Relation ?Rel is an equivalence relation if it is 
reflexive, symmetric, and transitive. 

¶ Partial-Order-Relation (?Rel). Relation ?Rel is a partial-order relation if it is 
reflexive, antisymmetric, and transitive. 

¶ Total-Order-Relation (?Rel). Relation ?Rel is a total-order relation if it is a 
partial-order relation for which either ?Rel(x,y) or ?Rel(y,x) holds for every x or 
y in its exact domain. 

As shown in Figure 1.12, these primitives for defining relations have been 
represented in the FO as classes, and they are organized in a class taxonomy. For 
example, the class Asymmetric-Relation, which represents the collection of relations 
that are asymmetric, is a subclass of the classes Antisymmetric-Relation and 
Irreflexive-Relation. This specialization relationship can be extracted from the 
definition of what an asymmetric relation is, as described above. 

Slots
A slot (aka attribute) defines a characteristic of a class, which is also inherited by its 
subclasses. Attributes can be defined with the following two primitives of the 
OKBC Ontology:
¶ Template-Slot-Of (?Slot ?Class), which states that ?Slot is a slot of ?Class. The 

slot ?Slot can take different values in the different instances of ?Class.
¶ Slot-Of (?Slot ?Frame), which states that ?Slot is a slot of ?Frame. ?Frame can

be either a class or an individual.

Facets and types of facets 
A facet is a slot property. In the FO facets are defined as ternary relations that hold 
between a frame (which can be either a class or an individual), a slot, and the facet. 
Common facets in the frame-based KR paradigm are, for example, those that define 
the cardinality of a slot, the type of a slot, and default values. Some of the primitives 
related to facets that are identified in the OKBC Ontology are:
¶ Facet-Of (?Facet ?Slot ?Frame), where ?Facet is facet of the slot ?Slot in the 

frame ?Frame.
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¶ Minimum-Cardinality (?Slot ?Frame ?Number), which expresses that ?Number
is the minimum cardinality of the slot ?Slot in the frame ?Frame.

¶ Maximum-Cardinality (?Slot ?Frame ?Number), which expresses that ?Number
is the maximum cardinality of the slot ?Slot in the frame ?Frame.

Chapter 4 shows how to build ontologies with the FO and with the OKBC primitives 
in Ontolingua.

2.1.2 RDF and RDF Schema knowledge representation ontologies 

RDF (Lassila and Swick, 1999) stands for Resource Description Framework. It is a 
recommendation of the W3C (the World Wide Web Consortium), developed for 
describing Web resources with metadata. 

The RDF data model is equivalent to the semantic network KR paradigm, as 
explained by Staab and colleagues (2000), and by Conen and Klapsing (2001). A 
semantic network is a directed labeled graph composed of a set of nodes and a set of 
unidirectional edges, and each has a name. Nodes represent concepts, instances of 
concepts and property values. Edges represent properties of concepts or 
relationships between concepts. The semantics of the network depends on the node 
and edge names. The semantic network KR paradigm has less expressiveness than 
the frame-based KR paradigm, since it does not allow representing, for instance, 
default values and cardinality constraints on attributes. 

The RDF data model consists of three components:  
¶ Resources, which are any type of data described by RDF. Resources are 

described with RDF expressions and are referred to as URIs (Uniform Resource 
Identifiers) plus optional anchor identifiers. 

¶ Properties (aka predicates), which define attributes or relations used to describe 
a resource. 

¶ Statements, which assign a value to a property in a specific resource. Just as an 
English sentence usually comprises a subject, a verb and objects, RDF 
statements consist of subjects, properties and objects. For instance, in the 
sentence “John bought a ticket”, John is the subject, bought is the verb, and 
ticket is the object. If we represent this sentence in RDF, John and 
ticket are resources, denoted graphically by nodes, while bought is a 
property, denoted graphically by an edge.  

Not only can resources be the objects of a RDF statement, but RDF statements can 
also be objects themselves. For example, in the sentence “John said that Peter 
bought a ticket”, John is the subject, said is the property and Peter bought 
a ticket is the object, which can also be decomposed, as we did before. This is 
known as reification in RDF. 

It is important to note that the RDF data model does not make any assumption 
about the structure of a document containing RDF information. That is, the 
statements can appear in any order in a RDF ontology. 
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The RDF KR ontology3 is written in RDFS (which will be presented later in this 
section) and contains the following modeling primitives4 (seven classes, seven 
properties, and one instance): 
¶ Class rdf:Statement. As we have commented, it defines the class of triples 

containing a subject, a property and an object. 
¶ Class rdf:Property. It defines the class of properties. 
¶ Classes rdf:Bag, rdf:Seq and rdf:Alt. They define the classes of collections (aka 

containers), and these can be unordered, ordered and alternative respectively. 
While it is clear what we mean by unordered and ordered collections, 
alternative collections may not be so. An alternative collection contains a set of 
resources from which we must select one for the single value of a property. For 
example, an alternative collection could be used to represent the values 
“single”, “double” or “triple” for the attribute occupancy of a 
RoomReservation.

¶ Class rdf:List, properties rdf:first and rdf:rest, and instance rdf:nil. The class 
rdf:List defines the class of RDF lists. It is used with the properties rdf:first and 
rdf:rest, which represent the relationship between a list and its first item, and 
between the list and the rest of the list, respectively. The primitive rdf:nil is an 
instance of rdf:List that represents the empty list. 

¶ Class rdf:XMLLiteral. It is a datatype that defines the class of well-formed 
XML literal values.  

¶ Properties rdf:predicate, rdf:subject and rdf:object. They define the property, 
subject resource, and object resource of a statement respectively.  

¶ Property rdf:type. It defines the class to which a resource belongs. 
¶ Property rdf:value. It defines the value of a property, usually a string, when the 

value is a structured resource (another RDF statement). 

The RDF data model does not provide modeling primitives for defining the 
relationships between properties and resources. For instance, in RDF we cannot 
define that the relation arrivalPlace can only hold between instances of the 
classes Travel and Location. This limitation is solved by the RDF Vocabulary 
Description Language (Brickley and Guha, 2003), also known as RDF Schema or 
RDFS. RDFS is a working draft of the W3C that extends RDF with frame-based 
primitives. The combination of RDF and RDF Schema is usually known as RDF(S). 

The RDFS KR ontology5 is written in RDFS. It contains 16 new modeling 
primitives (six classes and nine properties) added to the RDF modeling primitives. 
Figure 2.2 shows the class taxonomy of the RDF(S) KR ontology. As we can see, 
there are 13 classes in this KR ontology. The top concept in the class taxonomy is 
                                                          
3 http://www.w3.org/1999/02/22-rdf-syntax-ns. At the time this description was written, the RDF KR 
ontology available at this URL was not yet compliant with the specification of RDF given by Lassila and 
Swick (1999) and extended by Brickley and Guha (2003). We have described this KR ontology based on 
the last document instead of the implemented KR ontology. 
4 In this section, we will use the prefix rdf to refer to RDF primitives and rdfs to refer to RDF Schema 
primitives. 
5 http://www.w3.org/2000/01/rdf-schema. As in the case of the RDF KR ontology, the ontology available 
at this URL is not yet compliant with the specification of RDF Schema given by Brickley and Guha 
(2003). We have described this KR ontology based on the document instead of the implemented KR 
ontology. 
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rdfs:Resource (which means that RDF statements, RDFS containers, RDFS classes, 
RDF properties, and RDFS literals are RDFS resources). The classes rdf:Bag,
rdf:Seq and rdf:Alt are subclasses of rdfs:Container. The class rdfs:Datatype is a 
subclass of rdfs:Class, and the class rdf:List is defined apart in the class taxonomy. 

Figure 2.2: Class taxonomy of the RDF(S) KR ontology.  

Table 2.1 summarizes the main features of the properties of the RDF(S) KR 
ontology. As we can see in this table, there are 16 properties defined in this KR 
ontology. In this table, we specify their domain and range, that is, the classes 
between which these properties can hold.  

Table 2.1: Property descriptions of the RDF(S) KR ontology. 

Property name domain range 
rdf:type rdfs:Resource rdfs:Class 
rdf:subject rdf:Statement rdfs:Resource 
rdf:predicate rdf:Statement rdf:Property 
rdf:object rdf:Statement rdfs:Resource 
rdf:value rdfs:Resource rdfs:Resource 
rdf:first rdf:List rdfs:Resource 
rdf:rest rdf:List rdf:List 
rdfs:subClassOf rdfs:Class rdfs:Class 
rdfs:subPropertyOf rdf:Property rdf:Property 
rdfs:comment rdfs:Resource rdfs:Literal 
rdfs:label rdfs:Resource rdfs:Literal 
rdfs:seeAlso rdfs:Resource rdfs:Resource 
rdfs:isDefinedBy rdfs:Resource rdfs:Resource 
rdfs:member rdfs:Resource rdfs:Resource 
rdfs:domain rdf:Property rdfs:Class 
rdfs:range rdf:Property rdfs:Class 

In addition to these classes and properties, RDF also uses the properties rdf:_1,
rdf:_2, rdf:_3, etc., each of which is both a subproperty of the property rdfs:member
and an instance of the class rdfs:ContainerMembershipProperty. These properties 
(rdf:_1, rdf:_2, rdf:_3, etc.) are used to specify the members of collections such as 
sequences, bags and alternatives, which were previously mentioned. A more simple 
syntax for these properties consists in using rdf:li instead, which is equivalent to 
them. All these properties are not included in the RDF nor in the RDFS KR 
ontologies. 

The RDFS primitives are grouped into core classes and properties, container 
classes and properties, collections, reification vocabulary, and utility properties. 
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¶ Core classes (rdfs:Resource, rdfs:Literal, rdf:XMLLiteral, rdfs:Class,
rdf:Property, and rdfs:Datatype). The class rdfs:Resource is the most general 
class and defines any Web resource that can be described by RDF. The classes 
rdfs:Literal and rdf:XMLLiteral represent the class of untyped literal values 
(such as strings and integers) and well-formed XML string values respectively. 
The class rdfs:Class defines the class of all classes. The class rdf:Property
defines the class of properties. The class rdfs:Datatype represents resources that 
are RDF datatypes.

¶ Core properties (rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, rdfs:label, and rdfs:comment). The property rdf:type states that a 
resource is an instance of a class. The properties rdfs:subClassOf and 
rdfs:subPropertyOf are used to define class taxonomies and property 
taxonomies respectively. The properties rdfs:domain and rdfs:range define the 
domain and range of the property they are applied to. Finally, the properties 
rdfs:label and rdfs:comment, which were previously classified as 
documentation primitives, are used for describing resources in natural language. 
The property rdfs:comment is mainly for long descriptions while rdfs:label is 
for defining alternative short labels of the resource to which it is applied. 

¶ Container classes and properties (rdfs:Container, rdf:Bag, rdf:Seq, rdf:Alt,
rdfs:ContainerMembershipProperty, and rdfs:member). The class 
rdfs:Container defines the class of resource collections, which can be a bag 
(rdf:Bag), a sequence (rdf:Seq), or an alternative (rdf:Alt). These containers 
were described above. The class rdfs:ContainerMembershipProperty defines 
the relationship between a resource and a container. The property rdfs:member
is used to specify the members of a container. As we explained above, the 
properties rdf:_1, rdf:_2, rdf:_3, etc., are subproperties of this property, and 
rdf:li can also be used to express them. 

¶ Collections (rdf:List, rdf:first, rdf:rest, and rdf:nil). The class rdf:List is used to 
describe lists. The properties rdf:first and rdf:rest are used to manage lists, and 
rdf:nil is an instance of rdf:List that represents the empty list. 

¶ Reification vocabulary (rdf:Statement, rdf:predicate, rdf:subject, and 
rdf:object). This class and these properties were described when we referred to 
the RDF KR ontology. As we said, the class rdf:Statement defines the class of 
triples that can be described in RDF(S), and the properties rdf:predicate,
rdf:subject, and rdf:object define the property, subject resource, and object 
resource of a statement, respectively. 

¶ Utility properties (rdfs:seeAlso, rdfs:isDefinedBy, and rdf:value). The property 
rdfs:seeAlso defines a resource that might give additional information about the 
resource being described. The property rdfs:isDefinedBy provides the 
namespace where the resource is defined and is a subproperty of rdfs:seeAlso.
The property rdf:value was described when we referred to the RDF KR 
ontology. It defines the value of a property when that value is a structured 
resource.

In Chapter 4 we will describe in detail how to use all these KR primitives to 
implement our ontologies in RDF(S), but now we want to show an example of how 
to use primitives of the RDF and RDFS KR ontologies. Below we present the 
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definitions of the class Flight and of the relation arrivalPlace. In these 
definitions, primitives of the RDFS KR ontology (such as rdfs:Class, rdfs:comment,
rdfs:subClassOf, rdfs:domain and rdfs:range) are combined with primitives of the 
RDF KR ontology (such as rdf:Property). The properties rdf:ID and rdf:resource
are also used. However, they should not be considered as KR primitives since they 
are only used to identify RDF resources. We will describe their differences in 
Chapter 4. Please note that rdf:resource, which is used to refer to a RDF resource, 
should not be mistaken for rdfs:Resource, which is the class of RDF resources. 

<rdfs:Class rdf:ID="Flight">
   <rdfs:comment>A journey by plane</rdfs:comment>
   <rdfs:subClassOf rdf:resource="#Travel"/>
</rdfs:Class>

<rdf:Property rdf:ID="arrivalPlace">
  <rdfs:domain rdf:resource="#Travel"/>
  <rdfs:range rdf:resource="#Location"/>
</rdf:Property>

2.1.3 OIL knowledge representation ontology  

OIL (Horrocks et al., 2000) stands for Ontology Inference Layer. This language has 
been built as an extension of RDF(S) by adding it more frame-based KR primitives 
and avoiding the RDF reification mechanism. OIL uses description logics to give 
clear semantics to its modeling primitives.  

OIL was developed using a layered approach, as shown in Figure 2.3. Each new 
layer is built on top of the existing ones and adds new functionality and complexity 
to the lower layer. Core OIL groups the OIL primitives that have a direct mapping to 
RDF(S) primitives, though it does not allow RDF(S) reification, as shown in the 
figure. Standard OIL adds frame-based primitives. Its relationship with Core OIL

Figure 2.3: Layers of OIL. 
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was explained in depth by Broekstra and colleagues (2001). Instance OIL permits 
defining instances of concepts and roles and includes a full-fledged database 
capability. Finally, Heavy OIL is reserved for future extensions (such as rules, 
metaclasses, etc.). Standard OIL and Instance OIL share the same KR ontology. We 
must add that the Heavy OIL KR ontology has not been developed yet at the time 
this section was written.  

Here we will only present the Standard OIL KR ontology6. This ontology 
consists of 37 classes and 19 properties. It is mostly written in RDF(S), except for 
two classes (oil:Top and oil:Bottom) written in OIL. 

Figure 2.4 shows the class hierarchy of the OIL KR ontology in which we can 
see how this KR ontology extends the RDF(S) KR ontology. There are six groups of 
primitives that are classes: 
¶ Classes for defining concrete type expressions (oil:Equal, oil:Min, oil:Max,

oil:GreaterThan, oil:LessThan, and oil:Range). These primitives are subclasses 
of the primitive oil:ConcreteTypeExpression, which in its turn is subclass of 
oil:Expression. They allow defining numeric expressions for the numbers that 
are equal, greater or equal than, less or equal than, greater than and less than a 
number, as well as numeric ranges, respectively.  

¶ Classes for defining class expressions. These primitives are defined as 
subclasses of the class oil:ClassExpression, which in its turn is subclass of 
oil:Expression. In OIL, classes can be primitive (oil:PrimitiveClass) or defined 
(oil:DefinedClass), and they specialize rdfs:Class. The difference between them 
was explained in Section 1.3.2, where we described how to model ontologies 
with description logic. Class expressions can also be formed with boolean 
expressions, property restrictions and enumerated expressions.  
¶ With regard to Boolean expressions (primitives that are subclasses of 

oil:BooleanExpression), we can use three primitives: oil:And, oil:Or, and 
oil:Not. They express conjunction, disjunction, and negation of classes 
respectively.

¶ In relation to property restrictions (primitives that are subclasses of 
oil:PropertyRestriction), we can express qualified number restrictions7 with 
the primitives that are subclasses of oil:CardinalityRestriction
(oil:MinCardinality, oil:Cardinality and oil:MaxCardinality). We can also 
express value restriction8 (oil:ValueType), existential restriction9

(oil:HasValue) and role fillers to deal with individuals (oil:HasFiller).

                                                          
6 http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standard  
7 A qualified number restriction defines a cardinality restriction for a role when it is applied to instances 
of a specific class. For example, we know that a person always has two parents, of which one is a man 
and the other is a woman. This is represented as a qualified number restriction of the role hasParent,
which has cardinality 1 when it is applied to Man and cardinality 1 when it is applied to Woman.
8 Value restrictions are used to express that a role may have any number of values, and that these values 
must always be instances of the class specified in the restriction. For instance, a person can be married or 
not to somebody, but must always be married to a person (not to an animal). 
9 Existential restrictions are used to express that a role must have at least one value that is an instance of 
the class specified in the restriction. For instance, we can define a friendly person as a person who must 
have at least one friend, which is another person. However, he/she can also have other friends that are not 
persons (such as an animal). 
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¶ Regarding enumerated expressions, we can use the class oil:OneOf. These 
primitives configure OIL as a SHIQ language10, according to the DL 
terminology explained in Section 1.3.2.  

¶ Classes for defining mathematical characteristics of properties
(oil:TransitiveProperty, oil:FunctionalProperty and oil:SymmetricProperty).
They express that the property is transitive, that it can only have one value for 
each instance in its domain and that it is symmetric respectively. All of them 
specialize rdf:Property.

¶ Classes for defining axioms (primitives that are subclasses of oil:Axiom).
These primitives are used to define disjoint and exhaustive knowledge in class 
taxonomies (oil:Disjoint and the subclasses of oil:Covering, which are 
oil:Cover and oil:DisjointCover, respectively), as well as equivalence between 
classes (oil:Equivalence). The primitive oil:Disjoint defines a set of classes that 
are disjoint, that is, that cannot have common instances. The primitive oil:Cover 
expresses that a class is the union of a set of classes, that is, that there are no 
instances of the class that are not instances of at least one of the classes in the 
set. The primitive oil:DisjointCover expresses that a class is the union of a 
disjoint set of classes. 

¶ Classes for defining datatypes (oil:String and oil:Integer). They specialize the 
primitive rdfs:Literal, and define the datatype of strings and the datatype of 
integers respectively. 

¶ Predefined classes (oil:Top and oil:Bottom). The class oil:Top is the most 
general class and subsumes every other class. The class oil:Bottom is the empty 
class and is subsumed by every other class. 

There are also several primitives in the Standard OIL KR ontology that are 
properties. Table 2.2 summarizes the main features of these 19 properties, specifying 
their domain and range, that is, the classes between which these properties can hold. 
We will first describe these properties and later present the table. 
¶ The properties oil:subClassOf, oil:domain and oil:range. They replace the 

corresponding primitives in RDF(S).  
¶ The property oil:hasOperand. It connects a Boolean expression with the 

operands. It is used with the primitives oil:And, oil:Or and oil:Not, described 
above.

¶ The property oil:individual. It connects an oil:OneOf expression with its 
individuals. 

¶ The properties oil:hasPropertyRestriction, oil:onProperty, oil:toClass and
oil:toConcreteType. They are used to express the property restrictions of a class. 
The primitive oil:toClass is used with properties whose range is another class, 
and the primitive oil:toConcreteType are used with properties that are concrete 
types. 

¶ The properties oil:stringValue and oil:integerValue. They connect a concrete 
type expression with a string value or an integer value respectively.  

                                                          
10 In Horrocks (2000) OIL appears as SHIQ(d), which means that it is a SHIQ language extended with 
concrete data types. 
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¶ The properties oil:individualFiller, oil:integerFiller and oil:stringFiller. They 
represent property values. 

¶ The property oil:number. Used to express the number of a cardinality 
restriction.

¶ The property oil:inverseRelationOf. Used to define the inverse of a property. 
¶ The properties oil:hasObject, oil:hasSubject and oil:isCoveredBy. They 

represent disjoint and exhaustive knowledge in class taxonomies.  

Table 2.2: Property descriptions of the Standard OIL KR ontology. 

Property name domain range 
oil:subClassOf rdfs:Class oil:ClassExpression 
oil:domain rdf:Property oil:ClassExpression
oil:range rdf:Property oil:ClassExpression
oil:hasOperand oil:BooleanExpression oil:Expression
oil:individual oil:OneOf rdfs:Resource 
oil:hasPropertyRestriction rdfs:Class oil:PropertyRestriction 
oil:onProperty oil:PropertyRestriction rdf:Property 
oil:toClass oil:PropertyRestriction oil:ClassExpression 
oil:toConcreteType oil:PropertyRestriction oil:ConcreteTypeExpression 
oil:stringValue oil:ConcreteTypeExpression oil:String 
oil:integerValue oil:ConcreteTypeExpression oil:Integer 
oil:individualFiller oil:HasFiller rdfs:Resource 
oil:stringFiller oil:HasFiller oil:String 
oil:integerFiller  oil:HasFiller oil:Integer 
oil:number oil:CardinalityRestriction oil:Integer
oil:inverseRelationOf rdf:Property rdf:Property 
oil:hasObject oil:Axiom oil:ClassExpression 
oil:hasSubject oil:Covering oil:ClassExpression 
oil:isCoveredBy oil:Covering oil:ClassExpression 

In Chapter 4 we will describe in detail how to use these primitives to implement 
ontologies in OIL and we will use OILs plain text syntax. We now show a small 
example of how to use primitives of the OIL KR ontology with the XML syntax to 
get its flavor. Below we present the definition of the defined class Flight, which 
was described in Section 1.3.2. This class is a subclass of the class Travel that has 
exactly one value for the attribute flightNumber, whose type is integer, and 
that has a filler for the attribute transportMeans with value “plane”. 

<oil:DefinedClass rdf:ID="Flight">
  <rdfs:comment>A journey by plane</rdfs:comment>
  <oil:subClassOf>

   <oil:And>
     <oil:hasOperand rdf:resource="#Travel"/>
     <oil:hasOperand>
      <oil:Cardinality oil:number="1">
        <oil:onProperty rdf:resource="#flightNumber"/>
        <oil:toClass rdf:resource="&oil;Integer"/>
      </oil:Cardinality>
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     </oil:hasOperand>
     <oil:hasOperand>
      <oil:HasFiller oil:stringFiller=”plane”>
        <oil:onProperty rdf:resource=”#transportMeans”/>
      </oil:HasFiller>
     </oil:hasOperand>
   </oil:And>
  </oil:subClassOf>
</oil:DefinedClass>

2.1.4 DAML+OIL knowledge representation ontology 

Like OIL, DAML+OIL (Horrocks and van Harmelen, 2001) was developed as an 
extension of RDF(S). However, this language is not divided into different layers: it 
provides DL extensions of RDF(S) directly. DAML+OIL is a SHIQ language 
extended with datatypes and nominals11.

The DAML+OIL KR ontology12 is written in DAML+OIL and contains 53 
modeling primitives (14 classes, 38 properties and one instance). Two of the classes 
(daml:Literal and daml:Property) and 10 of the properties (daml:subPropertyOf,
daml:type, daml:value, daml:subClassOf, daml:domain, daml:range, daml:label,
daml:comment, daml:seeAlso and daml:isDefinedBy) are equivalent to their 
corresponding classes and properties in RDF(S). 

Figure 2.5 shows the class taxonomy of the DAML+OIL KR ontology, and how 
this KR ontology extends the RDF(S) KR ontology. The following groups of 
primitives that are classes are defined in the DAML+OIL KR ontology:  
¶ Classes for defining classes, restrictions and datatypes (daml:Class,

daml:Restriction and daml:DataType). All these primitives specialize 
rdfs:Class. The primitive daml:Class is used to define classes. The primitive 
daml:Restriction is used to define property restrictions for classes (number 
restrictions, existential restrictions, qualified number restrictions, etc.). And the 
primitive daml:DataType is used to create datatypes. XML Schema datatypes 
(Biron and Malhotra, 2001) are permitted in DAML+OIL, and are considered 
subclasses of daml:DataType.

¶ Classes for defining properties (daml:UnambiguousProperty,
daml:TransitiveProperty, daml:ObjectProperty, and daml:DatatypeProperty).
They are used to define properties, so they specialize the class daml:Property
(which is equivalent to rdf:Property, as stated above). The primitive 
daml:ObjectProperty is used to define properties that connect a class with 
another class. It is specialized in the primitives daml:TransitiveProperty and 
daml:UnambiguousProperty, which refer to properties that are transitive and 
injective13 respectively. The primitive daml:DatatypeProperty is used to define 
properties that connect a class with a datatype. Finally, the primitive 

                                                          
11 Also known as SHOIQ(d). 
12 http://www.daml.org/2001/03/daml+oil. There is another version of this ontology available at 
http://www.w3.org/2001/10/daml+oil, but the DAML+OIL developers recommend using the first one. 
13 If the relation R is injective, and R(x,y) and R(z,y) hold, then x=z.
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daml:UniqueProperty can be used to define both kinds of relations (between 
classes and between a class and a datatype) provided that they are functional14.

¶ Classes for defining containers (daml:List). DAML+OIL lists are special 
types of RDF sequences; hence daml:List is a subclass of rdf:Seq. Although 
lists are now defined in the RDF(S) KR ontology, they were not when the 
DAML+OIL KR ontology was created. This is why this primitive is included 
here.

¶ Predefined classes (daml:Thing and daml:Nothing). They represent the most 
and the least general class respectively. 

¶ Classes for defining literal values (daml:Literal). This class represents 
untyped literal values (that is, strings and integers). It is equivalent to 
rdfs:Literal.

¶ Classes for describing ontologies (daml:Ontology). This primitive is used as 
the root element of a DAML+OIL ontology, containing all its definitions. 

DAML+OIL class expressions are built with KR primitives that are properties15.
These DAML+OIL primitives allow expressing: 
¶ Conjunction (daml:intersectionOf), disjunction (daml:unionOf), and negation 

(daml:complementOf).
¶ Collection of individuals (daml:oneOf).
¶ Property restrictions. They are created with the class daml:Restriction, as 

described above. These restrictions are defined with two elements: 

                                                          
14 This primitive is equivalent to the primitive oil:FunctionalProperty. If the relation R is functional, and 
R(x,y) and R(x,z) hold, then y=z.
15 Let us remember that OIL class expressions were built with KR primitives that are classes, such as 
oil:And, oil:Or, oil:MinCardinality, etc. 

Figure 2.5: Class taxonomy of the DAML+OIL KR ontology defined as an extension of 
RDF(S).  
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daml:onProperty (which refers to the property name) and another element that 
expresses:
¶ Value restriction (daml:toClass).
¶ Role fillers (daml:hasValue).
¶ Existential restriction (daml:hasClass) and number restriction 

(daml:cardinality, daml:maxCardinality, and daml:minCardinality).
¶ Qualified number restriction (with the primitive daml:hasClassQ plus one 

of the following primitives: daml:maxCardinalityQ, daml:minCardinalityQ
and daml:cardinalityQ).

Properties are not only used to create class expressions, but also to define other 
relationships between ontology components. The following properties are also 
defined in the DAML+OIL KR ontology: 
¶ The primitive daml:inverseOf. It defines the inverse of a role. 
¶ The primitives daml:equivalentTo, daml:sameClassAs, daml:samePropertyAs,

and daml:sameIndividualAs. They define equivalences between resources, 
classes, properties and instances, respectively.

¶ The primitive daml:differentIndividualFrom. It defines that two instances are 
different.

¶ The primitives daml:disjointWith and daml:disjointUnionOf. They express 
disjoint and exhaustive knowledge between classes in the class taxonomy 
respectively.

¶ The primitives daml:versionInfo and daml:imports. They give information 
about the ontology version and the ontologies imported by the current ontology. 
There are no restrictions on the contents of the daml:versionInfo primitive. 

¶ The primitives daml:first, daml:rest and daml:item. They are used for managing 
lists.

Finally, the primitive daml:nil is an instance of the class daml:List. It represents the 
empty list. 

Table 2.3 summarizes the main features of the DAML+OIL KR ontology properties 
that are not a redefinition of the RDF(S) KR ontology primitives. As we can see in 
the table, there are 28 properties defined in this KR ontology, apart from 10 
properties that are equivalent to the corresponding RDF(S) properties, as described 
at the beginning of this section. In this table we specify their domain and range, that 
is, the classes between which these properties can hold. If the value for the range is 
“not specified”, then the property can take any value which is not restricted to a 
specific class of the DAML+OIL KR ontology. The xsd prefix used in the range of 
the cardinality restriction properties (xsd:nonNegativeInteger) refers to the XML 
Schema datatype namespace16.

                                                          
16 http://www.w3.org/2000/10/XMLSchema. As we will see later, this namespace is not used any more to 
refer to XML Schema. However, DAML+OIL still uses it. 
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Table 2.3: Property descriptions of the DAML+OIL KR ontology. 

Property name domain range 
daml:intersectionOf daml:Class daml:List 
daml:unionOf daml:Class daml:List 
daml:complementOf daml:Class daml:Class 
daml:oneOf daml:Class daml:List 
daml:onProperty daml:Restriction rdf:Property 
daml:toClass daml:Restriction rdfs:Class 
daml:hasValue daml:Restriction not specified 
daml:hasClass daml:Restriction rdfs:Class 
daml:minCardinality daml:Restriction xsd:nonNegativeInteger 
daml:maxCardinality daml:Restriction xsd:nonNegativeInteger 
daml:cardinality daml:Restriction xsd:nonNegativeInteger 
daml:hasClassQ daml:Restriction rdfs:Class 
daml:minCardinalityQ daml:Restriction xsd:nonNegativeInteger 
daml:maxCardinalityQ daml:Restriction xsd:nonNegativeInteger 
daml:cardinalityQ daml:Restriction xsd:nonNegativeInteger 
daml:inverseOf daml:ObjectProperty daml:ObjectProperty 
daml:equivalentTo not specified not specified
daml:sameClassAs daml:Class daml:Class 
daml:samePropertyAs rdf:Property rdf:Property 
daml:sameIndividualAs daml:Thing daml:Thing 
daml:differentIndividualFrom daml:Thing daml:Thing 
daml:disjointWith daml:Class daml:Class 
daml:disjointUnionOf daml:Class daml:List 
daml:versionInfo not specified not specified
daml:imports not specified not specified
daml:first daml:List not specified 
daml:rest daml:List daml:List 
daml:item daml:List not specified

In Chapter 4 we will describe in detail how to use these primitives to implement 
ontologies in DAML+OIL. We will now show a small example of how to use them 
to define the class Flight exactly as the class Travel that has exactly one value 
for the attribute flightNumber, whose type is integer, and that has a filler for 
the attribute transportMeans with value “plane”. 

<daml:Class rdf:ID="Flight">
  <rdfs:comment>A journey by plane</rdfs:comment>
  <daml:intersectionOf rdf:parseType="daml:collection">
    <daml:Class rdf:about="#Travel"/>
    <daml:Restriction daml:cardinality="1">
      <daml:onProperty rdf:resource="#flightNumber"/>
      <daml:toClass rdf:resource="&xsd;integer"/>
    </daml:Restriction>
    <daml:Restriction>
      <daml:onProperty rdf:resource="#transportMeans"/>
      <daml:hasValue>
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         <xsd:string rdf:value="plane"/>
      </daml:hasValue>
    </daml:Restriction>
  </daml:intersectionOf>
</daml:Class>

2.1.5 OWL knowledge representation ontology  

The OWL language (Dean and Schreiber, 2003) has been created by the W3C Web 
Ontology (WebOnt) Working Group. It is derived from the DAML+OIL language, 
and it builds upon RDF(S). At the time of writing this section, the OWL 
specification is a W3C Working Draft, though both the language and its KR 
ontology17 (which is implemented in OWL) are already in a stable state.

Like OIL, OWL is divided in layers: OWL Lite, OWL DL, and OWL Full. 
OWL Lite extends RDF(S) and gathers the most common features of OWL, so it is 
intended for users that only need to create class taxonomies and simple constraints. 
OWL DL includes the complete OWL vocabulary, which is described in this 
section. Finally, OWL Full provides more flexibility to represent ontologies than 
OWL DL does. We refer to Dean and Schreiber (2003) for a detailed description of 
this layer. 

There are 40 primitives in the OWL DL KR ontology (16 classes and 24 
properties). Figure 2.6 shows the KR primitives used in OWL Lite and OWL DL. In 
the figure, we can see that some RDF(S) primitives can be used in all the versions of 
OWL (OWL Lite and OWL DL), and that OWL Lite primitives can be used in OWL 
DL. OWL Full KR primitives are the same as the OWL DL ones, as explained 
above.

In the figure we also present in parentheses the corresponding primitive in the 
DAML+OIL KR ontology, in case there is a correspondance with a DAML+OIL 
KR primitive. For instance, owl:allValuesFrom (daml:toClass) means that the 
primitive owl:allValuesFrom corresponds to the primitive daml:toClass from the 
DAML+OIL KR ontology. 

Figure 2.7 shows the class taxonomy of the primitives that are classes in the 
OWL KR ontology. All belong to OWL Lite. Hence, they also belong to OWL DL 
and OWL Full. These primitives can be grouped as follows: 
¶ Classes for defining classes and restrictions (owl:Class and owl:Restriction).

The primitive owl:Class specializes rdfs:Class and is used to define classes. 
The primitive owl:Restriction specializes owl:Class and is used to define 
property restrictions for classes (number restrictions, existential restrictions, 
universal restrictions, etc.).  

¶ Classes for defining properties (owl:ObjectProperty, owl:DatatypeProperty,
owl:TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty, and owl:AnnotationProperty). They are used to 
define properties, hence they specialize the  class  rdf:Property.   The   primitive 

                                                          
17 http://www.w3.org/2002/07/owl
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Figure 2.6: OWL Lite and OWL DL KR primitives.
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owl:ObjectProperty serves to define properties that connect a class with another 
class, and the primitive owl:DatatypeProperty is used to define properties that 
connect a class with a datatype. The primitives owl:TransitiveProperty and 
owl:SymmetricProperty serve to define logical characteristics of properties. The 
primitives owl:FunctionalProperty and owl:InverseFunctionalProperty are used 
to define global cardinality restrictions of properties. In OWL Lite and OWL 
DL, owl:InverseFunctionalProperty is defined as a subclass of 
owl:ObjectProperty. In OWL Full, owl:InverseFunctionalProperty can be also 
an owl:DatatypeProperty. Hence, this primitive is defined as a subclass of 
rdf:Property, as shown in Figure 2.7. The primitive owl:AnnotationProperty is 
used to define properties that have no logical consequences on an OWL 
ontology, but just give information about its classes, properties, individuals or 
the whole ontology. 

¶ Classes for stating inequality among individuals (owl:AllDifferent). This is to 
specify that several instances are different to each other. This is sometimes 
needed because OWL does not assume the unique names assumption in its 
ontologies. This means that two individual definitions with different identifiers 
could refer to the same individual. 

¶ Classes for describing enumerations of datatypes (owl:DataRange). This is 
to create enumerated datatypes, that is, datatypes with a set of predefined 
values. 

¶ Predefined classes (owl:Thing and owl:Nothing). They represent the most 
general and the least general class respectively. 

¶ Classes for describing ontologies (owl:Ontology). This primitive is used as the 
root element of an OWL ontology, containing all its definitions. 

¶ Classes for describing ontology versioning (owl:DeprecatedClass and 
owl:DeprecatedProperty). They specify, respectively, that a class or a property 
have been deprecated in the current version of the ontology. As occurs with 
owl:AnnotationProperty, these primitives have no logical consequences on an 
OWL ontology. They are only used for ontology versioning purposes. 

Like in DAML+OIL, OWL class expressions are built with KR primitives that are 
properties. These will be organized in two groups: the one with primitives defined 
for OWL Lite (which can be used in OWL Lite, OWL DL and OWL Full) and the 
one with primitives defined for OWL DL (which can be used in OWL DL and OWL 
Full).  
¶ Properties for defining class expressions in OWL Lite:

¶ Conjunction (owl:intersectionOf). The range of this property is restricted in 
OWL Lite to class identifiers and property restrictions. 

¶ Property restrictions. They are defined with the class owl:Restriction,
described above. Restrictions are defined with two elements: 
owl:onProperty (which refers to the property name) and another element 
that expresses: 
¶ Value restriction (owl:allValuesFrom).
¶ Existential restriction (owl:someValuesFrom).
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¶ Number restriction (owl:cardinality, owl:maxCardinality, and 
owl:minCardinality). The values of these properties are restricted to 0 
and 1. This permits the user to indicate “at least one”, “no more than 
one”, and “exactly one”. 

¶ Properties for defining class expressions in OWL DL:
¶ Conjunction (owl:intersectionOf), disjunction (owl:unionOf), and negation 

(owl:complementOf). Unlike in OWL Lite, there are no restrictions for the 
range of these properties. 

¶ Collection of individuals (owl:oneOf).
¶ Property restrictions. As in OWL Lite, they are defined with the class 

owl:Restriction, decomposed in owl:onProperty and another element that 
expresses:
¶ Role fillers (owl:hasValue).
¶ Number restriction (owl:cardinality, owl:maxCardinality, and 

owl:minCardinality). The values of these properties are not restricted 
as in OWL Lite provided that they are positive integer values, 
including 0.  

Other properties defined in OWL Lite and OWL DL are the following: 
¶ Other OWL Lite properties:

¶ The primitives owl:versionInfo, owl:priorVersion, owl:incompatibleWith,
owl:backwardCompatibleWith, and owl:imports. The primitive 
owl:versionInfo gives information on the current ontology version. The 
primitives owl:priorVersion, owl:incompatibleWith, and 
owl:backwardCompatibleWith point to another OWL ontology, defining 
that the current ontology has a previous version, or is incompatible or 
compatible with another ontology respectively. Finally, owl:imports refers 
to another OWL ontology, which the current ontology imports.  

¶ The primitive owl:inverseOf. It defines the inverse of a property. 
¶ The primitives owl:sameAs, owl:equivalentClass, owl:equivalentProperty,

and owl:sameIndividualAs. They define equivalences between resources, 
classes, properties, and instances respectively.

¶ The primitive owl:differentFrom. It defines that two individuals are 
different.

¶ The primitive owl:distinctMembers. It is used together with 
owl:AllDifferent, to define a list of instances that are different from each 
other. 

¶ Other OWL DL properties:
¶ The primitive owl:disjointWith. It expresses disjoint knowledge between 

classes in the class taxonomy.  

Table 2.4 summarizes the main features of the properties of the OWL KR ontology, 
specifying their domain and range. If the value for the range is “not specified”, we 
mean that the property can take any value which is not restricted to a specific class 
of the OWL KR ontology. As we can see in the table, there are 24 properties defined 
in this KR ontology. Besides, in OWL we can use the properties rdfs:subClassOf,
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rdfs:subPropertyOf, rdfs:domain, rdfs:range, rdfs:comment, rdfs:label,
rdfs:seeAlso, and rdfs:isDefinedBy from the RDF(S) KR ontology. 

As described in the table, the OWL KR ontology does not specify any domain 
or range for owl:versionInfo.

Table 2.4: Property descriptions of the OWL KR ontology. 

Property name domain range 
owl:intersectionOf owl:Class rdf:List 
owl:unionOf owl:Class rdf:List 
owl:complementOf owl:Class owl:Class 
owl:oneOf owl:Class rdf:List 
owl:onProperty owl:Restriction rdf:Property 
owl:allValuesFrom owl:Restriction rdfs:Class 
owl:hasValue owl:Restriction not specified 
owl:someValuesFrom owl:Restriction rdfs:Class 

owl:minCardinality owl:Restriction 
xsd:nonNegativeInteger

OWL Lite: {0,1} 
OWL DL/Full: {0,..,N} 

owl:maxCardinality owl:Restriction 
xsd:nonNegativeInteger

OWL Lite: {0,1} 
OWL DL/Full: {0,..,N} 

owl:cardinality owl:Restriction 
xsd:nonNegativeInteger

OWL Lite: {0,1} 
OWL DL/Full: {0,..,N} 

owl:inverseOf owl:ObjectProperty owl:ObjectProperty 
owl:sameAs owl:Thing owl:Thing 
owl:equivalentClass owl:Class owl:Class 
owl:equivalentProperty rdf:Property rdf:Property 
owl:sameIndividualAs owl:Thing owl:Thing 
owl:differentFrom owl:Thing owl:Thing 
owl:disjointWith owl:Class owl:Class 
owl:distinctMembers owl:AllDifferent rdf:List 
owl:versionInfo not specified not specified
owl:priorVersion owl:Ontology owl:Ontology
owl:incompatibleWith owl:Ontology owl:Ontology
owl:backwardCompatibleWith owl:Ontology owl:Ontology
owl:imports owl:Ontology owl:Ontology 

To sum up, we can say that there are not many differences between the OWL KR 
ontology and the DAML+OIL one. In fact, most of the changes imply changing the 
names of the original DAML+OIL KR primitives, since they were not always easy 
to understand by non-experts. Two other important changes are the removal of 
qualified number restrictions (OWL is a SHIN language, according to the DL 
terminology) and the inclusion of symmetry as a characteristic of properties. The 
primitives for managing lists that were defined in the DAML+OIL KR ontology 
have not been included in this ontology, since OWL allows the use of the recent 
RDF(S) primitives for managing lists. 

In Chapter 4 we will describe in detail how to use these primitives to implement 
ontologies in OWL. We now present a small example of how to use them to define 
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the class Flight as the class Travel that has exactly one value for the attribute 
flightNumber, whose type is integer, and that has a filler for the attribute 
transportMeans with value “plane”. 

<owl:Class rdf:ID="Flight">
  <rdfs:comment>A journey by plane</rdfs:comment>
  <owl:intersectionOf rdf:parseType="Collection">
    <owl:Class rdf:about="#Travel"/>
    <owl:Restriction owl:cardinality="1">
      <owl:onProperty rdf:resource="#flightNumber"/>
      <owl:allValuesFrom rdf:resource="&xsd;integer"/>
    </owl:Restriction>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#transportMeans"/>
      <owl:hasValue rdf:datatype="&xsd;string">
            plane 
      </owl:hasValue>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>

2.2 Top-level Ontologies 

Top-level ontologies (aka upper-level ontologies) describe very general concepts 
that are common across the domains and give general notions under which all the 
terms in existing ontologies should be linked to. Sometimes top-level ontologies are 
used to build domain ontologies, but often these are built first and then linked to 
upper-level ontologies. 

On the framework of the Cyc project, the following characteristics are identified 
as desirable in a top-level ontology18:
a) It should be “universal”: every concept imagined in a specific ontology can be 

correctly linked to the upper-level ontology in appropriate places, no matter 
how general or specific the concept is, and no matter what the background  of 
the ontology builder is (nationality, age, native language, epoch, childhood 
experiences, current goals, etc.). For example, a top-level ontology that just 
classifies entities in physical objects and mental objects is not universal, since 
processes and situations are not considered. 

b) It should be “articulate”: on the one hand, there is a justification for every 
concept of the top-level ontology. On the other hand, there are enough concepts 
to enable and support knowledge sharing, natural language disambiguation, 
database cleaning and integration, and other kinds of applications. For example, 
a top-level ontology that classifies entities in mortal entities and immortal
entities could be (in the best case) useful for theology, but not for other fields. 

                                                          
18 http://www.cyc.com/cyc-2-1/cover.html 
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In the next subsections, we will present the following top-level ontologies: the 
top-level ontologies of universals and particulars, built by Guarino and colleagues, 
Sowa’s top-level ontology, Cyc’s Upper Ontology, and one of the Standard Upper 
Ontology working group. The top-level ontologies of universals and particulars are 
available in WebODE, Cyc’s Upper Ontology is available in CycL and 
DAML+OIL, the Standard Upper Ontology is available in KIF and DAML+OIL. 
We do not know of any implementation of Sowa’s top-level ontology. 

2.2.1 Top-level ontologies of universals and particulars 

Guarino and colleagues have built two top-level ontologies, as shown in Figure 2.8: 
one of universals, and another of particulars. A universal is a concept19, like car or 
traveler, while a particular is an individual like my car or John Smith.
Therefore, the terms car and traveler in a domain ontology can be linked to the 
top-level of particulars through the relation Subclass-Of, and they can be linked to 
the top-level of universals through the relation Instance-Of. Both top-level 
ontologies are presented in this section. 

The top-level ontology of universals (Guarino and Welty, 2000) contains 
concepts whose instances are universals. This ontology has been obtained 

                                                          
19 This is a simplified definition, but it is enough for the purpose of this book. For a complete definition 
consult Guarino and Welty (2000). 

Figure 2.8: Relationship between particulars and universals. 
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considering the philosophical notions of rigidity, identity and dependency20. Let us 
examine these notions (Gangemi et al., 2001), which will be explained in the context 
of the Ontoclean method in Chapter 3: 
¶ Rigidity. This notion is defined according to the idea of essence. A property is 

essential to an instance if and only if it is necessary for this instance. Thus, a 
property is rigid (+R) if and only if it is necessarily essential to all its instances; 
a property is anti-rigid (~R) if and only if it is not essential for all its instances; 
and a property is non-rigid (-R) if and only if it is not essential for some of its 
instances. For example, the concept person is usually considered rigid, since 
every person is essentially such. The concept traveler is considered anti-
rigid, since every traveler can possibly be a non-traveler once the journey has 
finished. Finally, the concept red is non-rigid, since there are instances that are 
essentially red (e.g., drop of blood), and instances that are not essentially 
red (my pullover).

¶ Identity. A property carries an identity criterion (+I) if and only if all its 
instances can be (re)identified by means of a suitable “sameness” relation. A 
property supplies an identity criterion (+O) if and only if such criterion is not 
inherited by any subsuming property. For example, if we take the DNA as an 
identity criterion, we can say that person not only carries the identity 
criterion, but also supplies it. Besides, if traveler is a subclass of person,
then traveler only inherits the identity criterion of person, without 
supplying any further identity criteria. 

¶ Dependency. An individual x is constantly dependent on the individual y if and 
only if, at any time, x cannot be present unless y is fully present, and y is not 
part of x. For example, a hole in a wall is constantly dependent on the wall. The 
hole cannot be present if the wall is not present. A property P is constantly 
dependent (+D) if and only if, for all its instances, there exists something on 
which the instances are constantly dependent. Otherwise, the property P is not 
constantly dependent (-D). For instance, the concept hole is constantly 
dependent because every instance of hole is constantly dependent. Note that 
the constant dependence of a property is defined according to the constant 
dependence of individuals.  

Every concept of the top-level ontology of universals has four attributes: rigidity,
supplies identity, carries identity, and dependency. This ontology has been built 
considering several combinations of values of these attributes (Welty and Guarino, 
2001). For instance, the concept type is rigid, supplies identity, and carries identity 
(nothing is explicitly stated about its dependency). This means that the concepts that 
are instances of the concept type will be rigid and will supply and carry identity. 
Every concept of a specific domain will be an instance of at least one of the leaves 
of the top-level of universals. Figure 2.9 presents the class taxonomy of this 
ontology.  

                                                          
20 Another important notion is unity. However, it has not been used to classify the properties of this top-
level ontology of universals. Therefore, such a notion will not be presented until Chapter 3, where the 
OntoClean method is described. 
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Figure 2.9: Class taxonomy of the top-level ontology of universals. 

The top-level ontology of particulars (Gangemi et al., 2001) holds general 
concepts (for example, object) to which domain concepts can be linked with the 
relation Subclass-Of. Figure 2.10 shows part of the class taxonomy of this ontology. 
As we can see, the ontology contains three roots (abstract, concrete and 
relation). It is being developed following the principles established in the 
OntoClean method (Welty and Guarino, 2001) for cleaning ontologies, described in 
Section 3.8.3.  

Figure 2.10: Partial view of the class taxonomy of top-level ontology of particulars. 

Let us suppose that we want to link concepts of our travel domain to the top-
level ontologies of universals and particulars. In this case, the domain concepts (i.e., 
car, traveler, etc.) will be subclasses of concepts of the top-level ontology of 
particulars, and they will also be instances of concepts of the top-level ontology of 
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universals. Instances like my car or John Smith are instances of classes linked to 
the top-level of particulars. 

Both the top-level ontology of universals and the top-level ontology of 
particulars are available in the ontology engineering workbench WebODE, which 
will be presented in Chapter 5. At the end of the year 2002, the former had 15 
concepts while the latter had over 30 concepts. 

2.2.2 Sowa’s top-level ontology 

Sowa’s top-level ontology includes the basic categories and distinctions that have 
been derived from a variety of sources in logic, linguistics, philosophy, and artificial 
intelligence (Sowa, 1999). Sowa’s top-level ontology has 27 concepts, all of them 
identified in Figure 2.11. 

Figure 2.11: Sowa’s top-level ontology. 

This ontology has a lattice structure where the top concept is the universal type
(represented as ț in Figure 2.11), and the bottom concept is the absurd type (^). The 
universal type contains all the possible instances of the ontology. The absurd type 
does not have instances and is a subclass of every concept of the taxonomy. The 
direct subclasses of the universal type are the following: independent, relative,
mediating, continuant, physical, abstract, and occurrent. By combining these 
primitive concepts more concepts of the lattice are obtained, for example, 

history = proposition Æ occurrent
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The structure of this top-level ontology is a lattice (see a definition in Section 
3.6.2) because every pair of concepts of the taxonomy has, at least, a common direct 
or indirect superclass, and each pair of concepts has, at least, a common direct or 
indirect subclass. Let us take as an example the pair {proposition, occurrent},
where the common superclass is of the universal type, and a common subclass is 
history. In this example, the class history could be represented as the intersection of 
proposition and occurrent. In this top-level ontology, concepts can be obtained by 
combining concepts from the upper levels. 

2.2.3 Cyc’s upper ontology 

Cyc’s Upper Ontology is contained in the Cyc Knowledge Base (Lenat and Guha, 
1990), which holds a huge amount of common sense knowledge. The Cyc KB is 
being built upon a core of over 1,000,000 assertions hand-entered and designed to 
gather a large portion of what people normally consider consensus knowledge of the 
world. It is divided into hundreds of microtheories (bundles of assertions in the same 
domain) and is implemented in the CycL language. 

Cyc’s Upper Ontology21 contains about 3,000 terms arranged in 43 topical 
groups (fundamentals, time and dates, spatial relations, etc.). The class Thing is the 
root of the ontology, and it is also the universal set. This means that when we link 
terms from a domain ontology to Cyc’s Upper Ontology through the genls relation 
(which is the Subclass-Of relation in CycL), every concept of the domain ontology is 
a subclass of Thing, therefore, every instance of the domain ontology is an instance 
of Thing. Cyc’s Upper Ontology has been built by performing the following steps: 
(1) dividing the universal set into tangible and intangible, into the static thing versus 
the dynamic process, into collection versus individual, etc.; and (2) refining the 
result when new knowledge is introduced (such as new concepts, new Subclass-Of
relations, etc.). During the refining process, some of these categories might 
disappear. 

                                                          
21 http://www.cyc.com/cyc-2-1/cover.html 

Figure 2.12: Fragment of the class taxonomy of Cyc’s Upper Ontology. 
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Figure 2.12 shows a fragment of Cyc’s Upper Ontology. As we can see, the 
concepts TimeInterval and Event are subclasses of the concepts TemporalThing and 
Intangible. A TemporalThing is an Individual. SomethingExisting, which is a 
subclass of the concept TemporalThing, is partitioned in the concepts 
PartiallyTangible and PartiallyIntangible. An IntangibleExistingThing is something 
PartiallyIntangible and Intangible.

Cycorp22, the company supplier of Cyc’s Upper Ontology, provides several tools 
to assist users in the handling of this ontology. Such tools include hypertext links 
that permit browsing directly some of the taxonomies and navigating among the 
references (a topical listing of the upper ontology divided into subject-areas to 
facilitate systematic study, etc.). 

2.2.4 The Standard Upper Ontology (SUO) 

The Standard Upper Ontology23 is the result of a joint effort to create a large, 
general-purpose, formal ontology (Pease and Niles, 2002). It is promoted by the 
IEEE Standard Upper Ontology working group, and its development began in May 
2000. The participants were representatives of government, academia, and industry 
from several countries. The effort was officially approved as an IEEE standard 
project in December 2000. 

There are currently two “starter documents” agreed by the working group and 
that may be developed into a draft standard. One of the documents is known as the 
IFF (Information Flow Framework) Foundation Ontology, a meta-ontology based on 
Mathematics and viewed from the set-theoretic perspective. The other one is known 
as SUMO (Suggested Upper Merged Ontology). Part of its current structure is 
shown in Figure 2.13.  

Figure 2.13: Structure of the first levels of SUMO (May 2002). 

                                                          
22 http://www.cyc.org/ 
23 http://suo.ieee.org/ 
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The goal of SUMO is to create a comprehensive and consistent top-level 
ontology from some of the best public sources, such as: 
¶ CNR’s group mereotopology (Borgo et al., 1996; Borgo et al., 1997). 
¶ Upper-level ontologies; e.g., Sowa’s upper ontology and Russell and Norvig’s 

upper-level ontology (1995).  
¶ Time theories; e.g., James Allen’s temporal axioms (Allen, 1984).  
¶ Plan and process theories (Pease and Carrico, 1997); etc. 

Therefore, SUMO considers some high level distinctions, and contains temporal 
concepts and processes. It is a modular ontology, that is, the ontology is divided into 
sub-ontologies. The dependencies between the various sub-ontologies can be 
outlined as Figure 2.14 shows. 

Figure 2.14: Modular structure of SUMO.

To decide which concepts should be removed, added or preserved during the 
evolution of this top-level ontology, a series of steps must be performed (Niles and 
Pease, 2001): 
1) Take the current version of the top-level ontology as the base and add, one by 

one, lower-level ontologies to this base.
2) Eliminate from the top-level ontology the concepts not related to any concept of 

the domain ontologies, and add other top-level concepts suitable to model the 
lower level ontologies. 

The people involved in the SUMO development are currently in the process of 
augmenting each of the records in the noun database of WordNet with pointers to 
SUMO concepts. 
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2.3 Linguistic Ontologies 

This section collects information on linguistic ontologies. The purpose of this type 
of ontology is to describe semantic constructs rather than to model a specific 
domain. They offer quite a heterogeneous amount of resources, used mostly in 
natural language processing. The main characteristic of these ontologies is that they 
are bound to the semantics of grammatical units (words, nominal groups, adjectives, 
etc.).

Most linguistic ontologies use words as grammatical units. In fact, of the 
ontologies reviewed in this section, only the Generalized Upper Model (GUM) and 
SENSUS gather information on grammatical units that are bigger than words. Other 
ontologies focus on the word meaning (e.g., WordNet). Moreover, in some of the 
ontologies there is a one-to-one mapping between concepts and words in a natural 
language (e.g., wordnets of EuroWordNet), while in others many concepts may not 
map to any word in a language or may map to more than one in the same language 
(e.g., Mikrokosmos).  

There are also differences with respect to their degree of language dependency; 
some linguistic ontologies depend totally on a single language (e.g., WordNet); 
others are multilingual – i.e., are valid for several languages – (e.g., GUM); some 
others contain a language-dependent part and a language-independent part (e.g., 
EuroWordNet); and others are language independent (e.g., Mikrokosmos).  

The origin and motivations of these ontologies are varied and thus we have: on-
line lexical databases (e.g., WordNet), ontologies for machine translation (e.g., 
Sensus), ontologies for natural language generation (e.g., GUM), etc. 

In the next sections we present the following ontologies: WordNet, 
EuroWordNet, GUM, Mikrokosmos, and SENSUS. Some of these, as for example 
SENSUS and GUM, are also considered top-level ontologies since they chiefly 
contain very abstract concepts. 

2.3.1 WordNet 

WordNet (Miller et al., 1990; Miller, 1995) is a very large lexical database for 
English created at Princeton University and based on psycholinguistic theories. 
Psycholinguistics is an interdisciplinary field of research concerned about the 
cognitive bases of linguistic competence (Fellbaum and Miller, 1990). WordNet 
attempts to organize lexical information in terms of word meanings rather than word 
forms, though inflectional morphology is also considered. For example, if you 
search for trees in WordNet, you will have the same access as if you search for tree.

WordNet 1.7 contains 121,962 words and 99,642 concepts. It is organized into 
70,000 sets of synonyms (“synsets”), each representing one underlying lexical 
concept. Synsets are interlinked via relationships such as synonymy and antonymy, 
hypernymy and hyponymy (Subclass-Of and Superclass-Of), meronymy and 
holonymy (Part-Of and Has-a). Approximately one half of the synsets include brief 
explanations of their intuitive sense in English. WordNet divides the lexicon into 
five categories: nouns, verbs, adjectives, adverbs, and function words. Nouns are 
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organized as topical hierarchies. Figure 2.15 shows part of the noun hierarchy where 
terms concerning a person, his (her) components, his (her) substances, and his (her) 
family organization, appear related. The only relations that we can see in the figure 
are meronymy, antonymy, and hyponymy, since it is a very reduced view of the noun 
hierarchy.

Figure 2.15: A partial view of the category of nouns of WordNet. 

Verbs are organized according to a variety of entailment relations. For example, 
the verbs succeed and try are related through a backward implication, and buy and 
pay are related through a temporal inclusion. With adjectives and adverbs the 
relations of similarity and antonymy play an important role. For instance, dry is 
related to sere, anhydrous, arid, etc., through the relation of similarity. Wet is also 
related to humid, watery, or damp through the relation of similarity. Besides, dry and 
wet are related by means of the relation of antonymy. 

2.3.2 EuroWordNet 

EuroWordNet (Vossen, 1998; 1999)24 is a multilingual database with wordnets for 
several European languages (Dutch, Italian, Spanish, German, French, Czech, 
Estonian). Some of the institutions involved in this project are: University of 
Amsterdam (The Netherlands), UNED (Spain), and University of Sheffield (United 
Kingdom). 

The wordnets are structured in EuroWordNet in the same way as WordNet is for 
English, with interrelated synsets. The wordnets are linked to an Inter-Lingual-
Index. Through this index the languages are interconnected so that it is possible to 
go from the words in one language to similar words in any other language, and to 
compare synsets and their relations across languages. The index also gives access  to

                                                          
24 http://www.hum.uva.nl/~ewn/ 
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Figure 2.16: Links between different elements of EuroWordNet.  
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a shared upper-level ontology of 63 semantic distinctions. This upper-level ontology 
provides a common semantic framework for all the languages, while language 
specific properties are maintained in individual wordnets. This index can be used for 
monolingual and cross-lingual information retrieval.  

Figure 2.16 shows a small section of EuroWordNet. We can see that the English 
words: move, ride, drive, etc., are related to words in other languages with similar 
meaning through the Inter-Lingual-Index. Therefore, we can find language 
dependent links inside words in the same language (represented by III), independent 
language links that connect the Inter-Lingual-Index with the domain ontologies and 
with the upper-level ontology (represented by I), and links that connect the Inter-
Lingual-Index with the synsets of other different languages (represented by II). 

The EuroWordNet project was completed in the summer of 1999, and the design 
of the EuroWordNet database, the defined relations, the upper ontology and the 
Inter-Lingual-Index are now frozen. Nevertheless, many other institutes and 
research groups are developing similar wordnets in other languages (European and 
non-European) using the EuroWordNet specification. If compatible, these wordnets 
can be added to the database and, through the index, connected to any other 
wordnet. Wordnets are currently developed, at least, for the following languages: 
Swedish, Norwegian, Danish, Greek, Portuguese, Basque, Catalan, Romanian, 
Lithuanian, Russian, Bulgarian and Slovene. 

The cooperative framework of EuroWordNet is continued through the Global 
WordNet Association25, a free and public association created to stimulate the 
building of new wordnets in EuroWordNet and WordNet. 

2.3.3 The Generalized Upper Model 

The Generalized Upper Model (GUM)26 (Bateman et al., 1995) is the result of a 
continuous evolution that began with the Penman Upper Model, used in the Penman 
text generation system (Bateman et al., 1990). Three organizations were involved in 
the development of GUM: the Information Sciences Institute (ISI, USA), GMD/IPSI 
(Germany), and the Institute for the Technological and Scientific Research (CNR, 
Italy).

GUM is a linguistic ontology bound to the semantics of language grammar 
constituents. Unlike other linguistic ontologies, such as WordNet, it does not 
describe the semantics of words but the semantics that can be expressed in bigger 
grammatical units such as nominal groups, prepositional phrases, etc. 

This ontology has two hierarchies, one of concepts and another of relations. 
Figure 2.17 shows the first levels of these hierarchies. 

                                                          
25 http://www.hum.uva.nl/~ewn/gwa.htm 
26 http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html 
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Figure 2.17: First levels of GUM hierarchies. 

These taxonomies have their origin in Halliday’s (1985) functional grammar, 
but can be applied to any theory. The concept hierarchy represents the basic 
semantic entities and includes configurations of the processes, and the different 
kinds of objects and qualities. A configuration is a set of objects that participate in 
some activity or that are in some state. An example of configuration is 
being&having, which indicates the existence of something or a relation of identity, 
possession, attribution, etc. The relation hierarchy represents the participants and 
the circumstances involved in the processes, and the logical combinations between 
them. The actor, the message, or the attribute are examples of participants.
Company, comparison, cause, mode, time, space, etc., express circumstances.

2.3.4 The Mikrokosmos ontology 

The Mikrokosmos Ontology27 (Mahesh and Nirenburg, 1995; Mahesh, 1996) is a 
language-independent ontology that is part of the Mikrokosmos machine translation 
project on the domain of mergers and acquisitions of companies. The New Mexico 
State University, Carnegie Mellon University and some other organizations of the 
US government have participated in this project. 

Mikrokosmos is not committed to any particular ontological theory, it is built on 
more practical considerations (Mahesh, 1996). Its main design principle is a careful 
distinction between language-specific knowledge represented in the lexicon, and 
language-neutral knowledge represented in the ontology. Lexicon entries represent 
word or phrase meanings by mapping these entries to concepts of the ontology.  

Figure 2.18 shows the first levels of the ontology. Currently, this ontology has 
several thousands of concepts, most of which have been generated by retrieving 
objects, events, and their properties from different sources. Each concept is 
represented by a frame, which has a name in English, and the following attributes 
(Mahesh and Nirenburg, 1995): a definition that contains an English string used 
solely for human browsing purposes, a time-stamp for bookkeeping, taxonomy links 

                                                          
27 http://crl.nmsu.edu/mikro (user and password are required) 
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(Subclass-Of and Instance-Of), etc. English terms are also used to refer to each 
concept in the ontology.  

Figure 2.18: Mikrokosmos class taxonomy (from Mahesh and Nirenburg, 1995). 

In parallel to the development of the Mikrokosmos ontology, a Spanish lexicon 
of several thousands words has been built. These words cover a wide variety of 
categories, though they put particular emphasis on the domain of mergers and 
acquisitions of companies. 

2.3.5 SENSUS 

SENSUS28 (Swartout et al., 1997) is a natural language-based ontology developed by 
the Natural Language group at ISI to provide a broad conceptual structure for 
working in machine translation.  

SENSUS contains more than 70,000 nodes representing commonly encountered 
objects, entities, qualities and relations. This ontology provides a hierarchically 
structured concept base (Knight and Luck, 1994). The upper (more abstract) region 
of the ontology is called the Ontology Base and consists of approximately 400 items 
that represent essential generalizations for the linguistic processing during 
translation. The middle region of the ontology provides a framework for a generic 
                                                          
28 http://www.isi.edu/natural-language/projects/ONTOLOGIES.html 
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world model and contains items representing many word senses in English. The 
lower (more specific) regions of the ontology provide anchor points for different 
languages. 

The current content of the SENSUS ontology was obtained by extracting and 
merging information from various electronic knowledge sources. This process, as 
shown in Figure 2.19, began by merging, manually, the PENMAN Upper Model, 
ONTOS (a very high-level linguistically-based ontology) and the semantic 
categories taken from a dictionary. As a result, the Ontology Base was produced. 
WordNet was then merged (again, by hand) with the Ontology Base, and a merging 
tool was used to merge WordNet with an English dictionary. Finally, and to support 
machine translation, the result of this merge was increased by Spanish and Japanese 
lexical entries from the Collins Spanish/English dictionary and the Kenkyusha 
Japanese/English dictionary. 

Figure 2.19: SENSUS ontology building process, by extracting and merging information from 
existing electronic resources (adapted from Swartout et al., 1997). 

2.4 Domain Ontologies 

As we explained in Chapter 1, domain ontologies (Mizoguchi et al., 1995; van Heijst 
et al., 1997) are reusable vocabularies of the concepts within a domain and their 
relationships, of the activities taking place in that domain, and of the theories and 
elementary principles governing that domain. In this section, we will deal with 
representative ontologies in the domains of e-commerce, medicine, engineering, 
enterprise, chemistry, and knowledge management. 
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2.4.1 E-commerce ontologies 

The popularity of the Internet and the huge growth of new Internet technologies in 
recent years have brought about the creation of many e-commerce applications 
(Fensel, 2000; Berners-Lee, 1999). Technology is not the only key factor for the 
development of the current e-applications; the context of e-commerce, especially the 
context of B2B (Business to Business) applications, requires an effective 
communication between machines. As a consequence, several standards and 
initiatives started to ease the information exchange between customers and 
suppliers, and among different suppliers, by providing frameworks to identify 
products and services in global markets.  

In this section, we present five different proposals to classify products in the e-
commerce domain: UNSPSC29, NAICS30, SCTG31, e-cl@ss32 and RosettaNet33. These 
proposals have been agreed by a wide group of people and organizations, and are 
codified using different computation languages and formats. Therefore, they provide 
consensus and also top-level terms that can be used to classify products and services 
in vertical domains34. However, they cannot be considered heavyweight ontologies 
but simply lightweight ones, since they consist of concept taxonomies and some 
relations among them. 

The United Nations Standard Products and Services Codes (UNSPSC) has been 
created by the United Nations Development Programme (UNDP) and Dun & 
Bradstreet. UNSPSC is a global commodity code standard that classifies general 
products and services and is designed to facilitate electronic commerce through the 
exchange of product descriptions. 

Initially the UNDP managed the code of the Electronic Commerce Code 
Management Association (ECCMA)35. This partnership finished, and as a result 
there are now two different versions of the UNSPSC: the United Nations Standard 
Products and Services Codes owned by the UNDP, and the Universal Standard 
Products and Services Classification managed by the ECCMA. In October 2002, 
both organizations signed an agreement in which they proposed to have one single 
version of the classification, which has marked the beginning of the UNSPSC 
unification project. 

The UNSPSC coding system is organized as a five-level taxonomy of products, 
each level containing a two-character numerical value and a textual description. 
These levels are defined as follows: 

                                                          
29 http://www.unspsc.org/ 
30 http://www.naics.com 
31 http://www.bts.gov/programs/cfs/sctg/welcome.htm 
32 http://www.eclass.de/ 
33 http://www.rosettanet.org/ 
34 Vertical portals usually serve a particular industry and provide deep domain expertise and content. 
They are normally related with traditional industry segments, such as Electronics, Automotive, Steel, etc. 
Horizontal portals are characterized by the large number of disperse suppliers and of distributors and 
resellers.
35 http://www.eccma.org 
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¶ Segment. The logical aggregation of families for analytical purposes. 
¶ Family. A commonly recognized group of inter-related commodity categories. 
¶ Class. A group of commodities sharing a common use or function. 
¶ Commodity. A group of products or services that can be substituted. 
¶ Business Function. The function performed by an organization in support of the 

commodity. This level is seldom used. 

UNSPSC version 6.0315 contains about 20,000 products organized in 55 segments. 
Segment 43, for instance, which deals with computer equipment, peripherals and 
components, contains about 300 kinds of products. Figure 2.20 shows part of this 
segment. 

Figure 2.20: Part of the classification of UNSPSC for computer equipment. 

NAICS (North American Industry Classification System) was created by the 
Census Office of USA in cooperation with the Economic National Classification 
Committee of USA, Statistics Canada, and Mexico’s Instituto Nacional de 
Estadística, Geografía e Informática (INEGI). It classifies products and services in 
general, and is used in USA, Canada and Mexico. NAICS was developed after the 
Standard Industrial Classification (SIC) was revised. SIC was created in the 1930s to 
classify establishments according to the type of activity they were primarily engaged 
in and to promote the comparison of their data describing various facets of the US 
economy.

NAICS products are identified by means of a six-digit code, in contrast to the 
four-digit SIC code. The NAICS code includes a greater number of sectors and 
permits more flexibility to design subsectors. It also provides additional details not 
necessarily appropriate for all three NAICS countries. The international NAICS 
agreement fixes only the first five digits of the code. The sixth digit, when used, 
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identifies subdivisions of NAICS industries that consider the user’s needs in 
individual countries. Thus, six-digit US codes may differ from counterparts in 
Canada or Mexico, but up to the five-digit level they are standardized. The general 
structure is: 

XX  Industry Sector (20 broad sectors up from 10 SIC) 
XXX Industry Subsector 
XXXX Industry Group 
XXXXX Industry 
XXXXXX US, Canadian, or Mexican National specific 

Table 2.5 presents the correspondence between some NAICS Sectors and SIC 
Divisions. Many of the new sectors reflect parts of SIC divisions, such as the 
Utilities and Transportation sectors, that are split from the SIC division 
Transportation, Communications, and Public Utilities.

Table 2.5: Correspondence between some NAICS Sector and SIC Divisions. 

Code NAICS Sectors SIC Divisions 
11 Agriculture, Forestry, Fishing, and Hunting Agriculture, Forestry and Fishing 
21 Mining Mining 
23 Construction Construction 
31-33 Manufacturing Manufacturing 
22 Utilities 
48-49 Transportation and Warehousing 

Transportation, Communications, and 
Public Utilities 

42 Wholesale Trade Wholesale Trade 
44-45 Retail Trade 
72 Accommodation and Food Services 

Retail Trade 

52 Finance and Insurance 
53 Real Estate, Rental and Leasing 

Finance, Insurance, and Real Estate 

SCTG (Standard Classification of Transported Goods) was sponsored by the 
Bureau of Transportation Statistics (BTS). It is a product classification for collecting 
and reporting Commodity Flow Survey (CFS) data. SCTG was developed by the US 
Department of Transportation’s (DOT), Volpe National Transportation Systems 
Center (Volpe Center), Standards and Transportation Divisions of Statistics Canada, 
US Bureau of the Census (BOC), and the US Bureau of Economic Analysis (BEA). 

This classification has four levels, each of which follows two important 
principles. First, each level covers the universe of transportable goods, and second, 
each category in each level is mutually exclusive. The general structure is: 

XX  Product Category 
XXX Commodities or Commodity Groups (different in US and Canada) 
XXXX Domestic Freight Transportation Analyses 
XXXXX Freight Movement Data 

The first level of the SCTG (two digits) consists of 43 product categories. These 
categories were designed to emphasize the link between industries and their outputs. 
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The second level (three digits) is designed to provide data for making comparisons 
between the Canadian goods and the US goods. Categories specified at this level 
consist of commodities or commodity groups for which very significant product 
movement levels have been recorded in both the United States (US) and Canada. 
The third level (four digits) is designed to provide data for domestic freight 
transportation analyses. Four-digit categories may be of major data significance to 
either the US or Canada, but not necessarily to both. The fourth level (five digits) is 
designed to provide categories for collecting (and potentially reporting) freight 
movement data. Product codes at this level have been designed to create statistically 
significant categories for transportation analysis.

Figure 2.21 presents a partial view of this classification. We can see that in this 
particular classification levels two and three do not contribute with additional 
classes to the root of the hierarchy. This is so because every branch of the tree has 
four levels. 

Figure 2.21: Partial view of the SCTG classification. 

E-cl@ss is a German initiative to create a standard classification of material and 
services for information exchange between suppliers and their customers, and 
companies such as BASF, Bayer, Volkswagen-Audi, SAP, etc., make use of it.  

The e-cl@ss classification consists of four levels of concepts (called material
classes), with a numbering code similar to the one used in UNSPSC (each level adds 
two digits to its previous level). These four levels are: Segment, Main Group, Group
and Commodity Class. Inside the same commodity class we can have several 
products (in this sense, several products can share the same code).  

E-cl@ss contains about 12,000 products organized in 21 segments. Segment 
number 2736, which deals with Electrical Engineering, contains about 2,000 
products. The main group 27-23, which deals with Process Control Systems and 
with other computer devices, contains about 400 concepts. Figure 2.22 shows a 
partial view of this classification. 

                                                          
36 Please note that the numbering of segments is not consecutive. 
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Figure 2.22: Part of the classification of e-cl@ss for electrical engineering products (German 
and English). 

E-cl@ss provides a set of attributes for every product that is a leaf in the 
classification. The set of attributes is an addition of individual characteristics 
describing the related commodity. This set distinguishes e-cl@ss from UNSPSC and 
offers a solution to the shallowness of that. For example, PC System (with code 24-
01-99-03) has attributes like product type, product name, etc., in e-cl@ss. 

The e-cl@ss search tool, which is available on-line37, allows finding terms with 
an interface in different languages (German, Spanish, English and Czech). In fact, 
the terms found are presented in any of these languages. The e-cl@ss classification 
can also be downloaded from the same URL. 

The RosettaNet classification has been created by RosettaNet, which is a self-
funded, non-profit consortium of about 400 companies of Electronic Components, 
Information Technology, Semiconductor Manufacturing and Solution Provider 
companies. Started in the IT industry, RosettaNet is currently being expanded to 
other vertical areas, notably the automotive, consumer electronics and 
telecommunications industries.  

The RosettaNet classification does not use a numbering system, as UNSPSC 
does, but is based on the names of the products it defines. This classification is 

                                                          
37 http://www.eclass.de/ 



The Most Outstanding Ontologies  91 

   

related to the UNSPSC classification and provides the UNSPSC code for each 
product defined in RosettaNet. This classification has only two levels in its product 
taxonomy: 
¶ RN Category. A group of products, such as Video Products.
¶ RN Product. A specific product, such as Television Card, Radio Card, etc. 

Figure 2.23: Partial view of the RosettaNet classification. 

The RosettaNet classification consists of 14 categories and about 150 products. 
It should be added that RosettaNet is more specific than the UNSPSC classification. 
Figure 2.23 shows a small section of the RosettaNet classification related to video 
products for computer equipment, and table 2.6 presents the classification structured 
as in its original Microsoft Excel format. Unlike in the previous formats, the order of 
contents here is of great importance, since the relationship between products and the 
category they belong to are given by the order in which they appear. Hence Monitor,
RadioCard, TelevisionCard and VideoChip are products from the category Video 
Products in the RosettaNet classification. 

Table 2.6: Source format for the RosettaNet classification of video products. 

RosettaNet
Category Name 

RosettaNet
Product Name

UNSPSC Code UNSPSC 
Code Name 

Video Products  
 Monitor 43172401 Monitors 
 Radio Card 43172105 Radio Cards 
 Television Card 43172104 Television Cards 
 Video Chip 321017 Hybrid Integrated Circuits 

In this section, we have described five classifications of products and services 
(UNSPSC, NAICS, SCTG, e-cl@ss, and RosettaNet), which present a big overlap 
between them, so that a product or service could be classified in different places in 
each classification. The proliferation of initiatives reveals that B2B markets have not 
reached a consensus on coding systems, on level of detail, on granularity, etc., which 
is an obstacle for the interoperability of applications following different standards. 
For instance, an application that uses the UNSPSC code cannot interoperate with an 
application that follows the e-cl@ss coding system. To align such initiatives, some 
works have proposed to establish ontological mappings between existing standards 
(Bergamaschi et al., 2001; Corcho and Gómez-Pérez, 2001; Gordijn et al., 2001). 
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Figure 2.24 shows an example of Equivalent-To and Subclass-Of relations 
between concepts of the RosettaNet and the UNSPSC classifications. The concept 
Video Chip of the RosettaNet classification is a subclass of the concept Hybrid
Integrated Circuits of the UNSPSC classification, the concept Monitor of 
RosettaNet is equivalent to the concept Monitors of UNSPSC, etc. As we can see, 
two sibling concepts in RosettaNet are classified in different UNSPSC classes: 
Monitor and Radio Card are subclasses of the same concept in RosettaNet (Video 
Products), while their equivalent concepts in UNSPSC (Monitors and Radio Cards
respectively) are subclasses of different concepts in that classification (Monitors & 
Displays and Radio Cards respectively).

Figure 2.24: Equivalence relationships between the RosettaNet and UNSPSC classifications 
(Corcho and Gómez-Pérez, 2001).

2.4.2 Medical ontologies 

Medical ontologies are developed to solve problems such as the demand for the 
reusing and sharing of patient data, the transmission of these data, or the need of 
semantic-based criteria for statistical purposes. The unambiguous communication of 
complex and detailed medical concepts is a crucial feature in current medical 
information systems. In these systems several agents must interact between them in 
order to share their results and, thus, they must use a medical terminology with a 
clear and non-confusing meaning.  
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GALEN38 (Rector et al., 1995), developed by the non-profit organization 
OpenGALEN, is a clinical terminology represented in the formal and medical-
oriented language GRAIL (Rector et al., 1997). This language was specially 
developed for specifying restrictions used in medical domains. GALEN was 
intended to be used with different natural languages and integrated with different 
coding schemata. It is based on a semantically sound model of clinical terminology 
known as the GALEN COding REference (CORE) model. Figure 2.25 shows the 
GALEN CORE top-level ontology.  

Figure 2.25: GALEN CORE top-level ontology. 

The GALEN CORE top-level ontology establishes four general categories 
(which are subclasses of DomainCategory):
¶ Structures (GeneralisedStructure), which are abstract or physical things with 

parts that are time-independent (such as microorganism, protocol or heart).
¶ Substances (GeneralisedSubstance), which are continuous abstract or physical 

things that are time-independent, such as bile, drugs or radiation.
¶ Processes (GeneralisedProcess), which are changes that occur over time, such 

as irradiation, clinical act or breathing.
¶ Modifiers (ModifierConcept), which refine or modify the meaning of the other 

three categories, such as severe diabetes. In this ontology the following types of 
modifiers are considered: modifiers of aspect (classified in feature, state,
selector, and status), unit, modality, role, general level of specification, and 
collection.

The category ValueType is also a subclass of DomainCategory. It defines value 
types such as Integer, Ordinal, etc. Besides, the category Phenomenon is included in 
this top-level ontology, as shown in figure 2.25. It gathers the medical intuitions of 
Disease and Disorder and it is associated with domain categories, more specifically 

                                                          
38 http://www.opengalen.org/ 
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with structures, processes, and substances, and with the modifiers of feature, state, 
and collection. 

Finally, the GALEN CORE top-level ontology defines relationships between 
concepts that belong to general categories. These relationships are called attributes 
(DomainAttribute) and are divided into two types: constructive attributes, which 
link processes, structures and substances together; and modifier attributes, which 
link processes, structures and substances to modifiers. 

UMLS39 (Unified Medical Language System), developed by the United States 
National Library of Medicine, is a large database designed to integrate a great 
number of biomedical terms collected from various sources (over 60 sources in the 
2002 edition) such as clinical vocabularies or classifications (MeSH, SNOMED, 
RCD, etc.).

UMLS is structured in three parts: Metathesaurus, Semantic Network and 
Specialist Lexicon.
¶ The Metathesaurus contains biomedical information about each of the terms 

included in UMLS. If a term appears in several sources, which is usual, a 
concept will be created in UMLS with a preferred term name associated to it. 
The original source information about the terms (such as, definition, source, 
etc.) is attached to the concept and some semantic properties are also specified, 
such as concept synonyms, siblings and parents, or the relationships between 
terms. In the UMLS edition of the year 2002, the Metathesaurus contained 
about 1,5 million terms.  

Figure 2.26: Part of the Semantic Network of the UMLS ontology. 

                                                          
39 http://www.nih.gov/research/umls/ 
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¶ The Semantic Network is a top-level ontology of biomedical concepts and 
relations among these concepts. Figure 2.26 shows a partial view of this top-
level ontology. The Semantic Network was not derived from the biomedical 
sources integrated in UMLS but created as a part of UMLS with the aim of 
providing a consistent structure or categorization in which the Metathesaurus
concepts are included. Each Metathesaurus concept is attached to a concept or 
concepts of the Semantic Network. Thus, the Semantic Network was introduced 
in order to solve the heterogeneity among the UMLS sources, and it could be 
considered the result of the integration of the UMLS sources. In the 2002 
edition, the Semantic Network contained 134 top-level concepts and 54 
relationships among them. 

¶ The Specialist Lexicon contains syntactic information about biomedical terms to 
be used in natural language processing applications. 

ON940 (Gangemi et al., 1998) is a medical set of ontologies that includes some 
terminology systems, like UMLS. Figure 2.27 shows an inclusion network of some 
ON9 ontologies. Here, ontologies are represented with boxes. Thick dashed boxes 
are sets of ontologies (some show the elements explicitly). Continuous arrows mean 
included in, and dashed arrows mean integrated in. The ontologies at the top of the 
hierarchy are the Frame Ontology and the set of KIF ontologies (Gangemi et al., 
1998).

Figure 2.27: A significant subset of the inclusion network of the ON9 library of ontologies 
(from Gangemi et al., 1998). 

                                                          
40 http://saussure.irmkant.rm.cnr.it/ON9/index.html 
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To link these ontologies with the generic ontology library several ontologies 
have been defined: Structuring-Concepts, Meta-Level-Concepts and the Semantic-
Field-Ontology. The sets of Structural ontologies and of Structuring ontologies
contain generic ontologies. Particularly, the Integrated-Medical-Ontology includes 
all the generic ontologies used to gather the terminological ontologies of the five 
terminological systems. 

2.4.3 Engineering ontologies 

Engineering ontologies contain mathematical models that engineers use to analyze 
the behavior of physical systems (Gruber and Olsen, 1994). These ontologies are 
created to enable the sharing and reuse of engineering models among engineering 
tools and their users. Among the various engineering ontologies, the EngMath 
ontologies and PhysSys deserve special mention. 

EngMath (Gruber and Olsen, 1994) is a set of Ontolingua ontologies developed for 
mathematical modeling in engineering. These ontologies include conceptual 
foundations for scalar, vector, and tensor quantities as well as functions of 
quantities, and units of measure. 

When the EngMath ontologies were designed, the developers had three kinds of 
uses in mind. First, these ontologies should provide a machine and human-readable 
notation for representing the models and domain theories found in the engineering 
literature. Second, they should provide a formal specification of a shared 
conceptualization and a vocabulary for a community of interoperating software 
agents in engineering domains. And third, they should put the base for other 
formalization efforts including more comprehensive ontologies for engineering and 
domain-specific languages. 

In Figure 2.28, we can see some of the ontologies that make up EngMath: 
¶ Abstract-Algebra. It defines the basic vocabulary for describing algebraic 

operators, domains, and structures such as fields, rings, and groups.
¶ Physical-Quantities. This ontology models the concept of physical quantity. A 

physical quantity is a measure of quantifiable aspect. The ontology Physical-
Quantities has 11 classes, three relations, 12 functions (addition, multiplication,
division, etc.), and two instances. 

¶ Standard-Dimensions. It models the physical quantities most commonly used. It 
has 18 classes (mass quantity, length quantity, temperature quantity, etc.), and 
27 instances. 

¶ Standard-Units. This ontology defines a set of basic units of measure. It has one 
class (Si-Unit, that is, unit of the International System), and 60 instances 
(kilogram, meter, Celsius-degree, etc.). 

¶ Scalar-Quantities. This ontology permits modeling quantities whose magnitude 
is a real number, for example, “6 kilograms”. It has one class (scalar quantity),
six functions (which specialize functions of the ontology Physical-Quantities
for scalar quantities), and one instance. 
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Figure 2.28: Structure of the EngMath ontologies (from Gruber and Olsen, 1994). 

EngMath has been an important experimental base to establish the design 
criteria for building ontologies described in Section 1.6. 

PhysSys (Borst, 1997) is an engineering ontology for modeling, simulating and 
designing physical systems. It forms the basis of the OLMECO library41, a model 
component library for physical systems such as heating systems, automotive systems 
and machine tools. PhysSys formalizes the three viewpoints of physical devices: 
system layout, physical process behavior and descriptive mathematical relations. 

Figure 2.29: Structure of the PhysSys ontologies (from Borst, 1997). 

                                                          
41 http://www.rt.el.utwente.nl/bnk/olmeco.htm 
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Figure 2.29 gives a general view of the structure of PhysSys ontology. As we 
can observe, this structure is a pyramid where the most specific ontologies (the 
nearest to the base) import the most general ones. Next, we describe briefly each of 
the PhysSys ontologies: 
¶ Mereology Ontology. It defines the relation Part-Of and its properties. This 

relation permits stating that devices are formed by components, which in their 
turn, can be made up of smaller components. The Mereology Ontology is an 
Ontolingua implementation of the Classical Extensional Mereology described in 
Simons (1987). 

¶ Topology Ontology. It defines the relation is-connected-to and its properties. 
This ontology is useful to describe the physical behavior of devices since it 
represents how the components interact inside the system.  

¶ System Theory Ontology. It defines standard system-theoretic notions such as 
system, sub-system, system boundary, environment, etc. 

¶ Component Ontology. It is focused on the structural aspects of devices and is 
useful for representing what kind of dynamic processes occur in the system. The 
Component Ontology is constructed with the Mereology Ontology, the Topology 
Ontology, and the System Theory Ontology.

¶ Physical Process Ontology. It specifies the behavioral view of physical systems. 
¶ Mathematical Ontology. It defines the mathematics required to describe 

physical processes.

2.4.4 Enterprise ontologies 

Enterprise ontologies are usually created to define and organize relevant knowledge 
about activities, processes, organizations, strategies, marketing, etc. All this 
knowledge is meant to be used by enterprises. Here, we will present the Enterprise 
Ontology and TOVE. Both have been essentially the experimental basis of some 
methodological approaches of ontology engineering presented in Chapter 3. 

The Enterprise Ontology42 (Uschold et al., 1998) was developed within the 
Enterprise Project by the Artificial Intelligence Applications Institute at the 
University of Edinburgh with its partners IBM, Lloyd’s Register, Logica UK 
Limited, and Unilever. The project was supported by the UK's Department of Trade 
and Industry under the Intelligent Systems Integration Programme (project 
IED4/1/8032). This ontology contains terms and definitions relevant to businesses. It 
is implemented in Ontolingua and it has 92 classes, 68 relations, seven functions and 
10 individuals. Figure 2.30 shows a partial view of the class taxonomy.  

Conceptually, the Enterprise Ontology is divided into four main sections: 
¶ Activities and processes. The central term here is Activity, which is intended to 

capture the notion of anything that involves doing, particularly when this 
indicates action. The concept of Activity is closely linked to the idea of the 
Doer, which may be a Person, Organizational-Unit or Machine.

                                                          
42 http://www.aiai.ed.ac.uk/~entprise/enterprise/ontology.html 
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Figure 2.30: Partial view of the taxonomy of the Enterprise Ontology. 

¶ Organization. The central concepts of the Organization section are: Legal-Entity 
and Organizational-Unit.

¶ Strategy. The central concept of this section is Purpose. Purpose captures the 
idea of something that a Plan can help achieve or the idea that an Organization-
Unit can be responsible for. In fact, this section includes any kind of purpose,
whether in a level of organization and time scale (normally called strategic), or 
in a detailed and short term. 

¶ Marketing. The central concept of this section is Sale. A Sale is an agreement 
between two Legal-Entities for the exchange of a Product for a Sale-Price.
Normally the Products are goods or services and the Sale-Price is monetary, 
although other possibilities are included. The Legal-Entities play the (usually 
distinct) roles of Vendor and Customer. A Sale may have been agreed on in the 
past, and a future Potential-Sale can be envisaged, whether the actual Product
can or cannot be identified and whether it exists or not. 

This ontology has been a relevant experimental foundation for the Uschold and 
King’s (1995) approach to develop ontologies, which is described in Chapter 3. 

The TOVE43 (TOronto Virtual Enterprise) (Fox, 1992) project is being carried out 
by the Enterprise Integration Laboratory (EIL) at the University of Toronto. Its goal 
is to create a data model able (1) to provide a shared terminology for the enterprise 
that agents can both understand and use, (2) to define the meaning of each term in a 
precise and unambiguous manner, (3) to implement the semantics in a set of axioms 
that will enable TOVE to deduce automatically the answer to many “common sense” 
questions about the enterprise, and (4) to define a symbology for depicting a term, or 
the concept constructed thereof in a graphical context. 

TOVE ontologies are implemented with two different languages: C++ for the 
static part, and Prolog for the axioms. 

Figure 2.31 shows the structure of the TOVE ontologies. Up to now, the 
existing ontologies developed to model Enterprises are: Foundational Ontologies 
(Activity and Resource) and Business Ontologies (Organization, Quality, Products 
and Requirements). These ontologies cover activities, state, causality, time, 
resources, inventory, order requirements, and parts. They have also axiomatized the 
definitions for portions of the knowledge of activity, state, time, and resources. 

                                                          
43 http://www.eil.utoronto.ca/tove/toveont.html 
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Axioms are implemented in Prolog and provide answers for common-sense 
questions via deductive query processing. 

Figure 2.31: Structure of the TOVE ontologies.

According to TOVE developers, their future work will be confined to the 
development of ontologies and axioms for quality, activity-based costing, and 
organization structures.  

This ontology has been an important experimental basis for the Grüninger and 
Fox’s (1995) method to develop ontologies, described in Chapter 3. 

2.4.5 Chemistry ontologies 

Chemistry ontologies model the composition, structure, and properties of 
substances, processes and phenomena. They can be used for many purposes: for 
education (to teach students the periodic table of elements, the rules for molecule 
composition, etc.), for environmental science (to detect environmental pollutants), 
for scientific discovery (to analyze publications to learn about new molecules’ 
composition or to synthesize chemicals), etc. We will describe the set of chemistry 
ontologies developed by the Ontology Group of the Artificial Intelligence 
Laboratory at UPM: Chemicals (composed of Chemical Elements and Chemical 
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Crystals), Ions (composed of Monatomic Ions and Poliatomic Ions) and 
Environmental Pollutants. All of them are available in WebODE, and both the 
Chemical Elements and the Chemical Crystals ontologies are also implemented in 
Ontolingua and available in the Ontolingua Server. 

Figure 2.32 shows how all these ontologies are integrated in a hierarchical 
architecture. It should be interpreted that the ontologies on top of this hierarchy 
include the lower-level ontologies. Note that this hierarchical architecture facilitates 
future users the comprehension, design and maintenance of ontologies. As we can 
see, Chemical Elements is a key point in this ontology structure. It imports the 
Standard-Units ontology available in the Ontolingua Server, which, in its turn, 
imports other ontologies in the same ontology server, such as Standard-Dimensions,
Physical-Quantities, KIF-Numbers and the Frame-Ontology.

Figure 2.32: Relationship between the chemistry ontologies described in this section and other 
ontologies in the Ontolingua Server. 

Chemicals is composed of two ontologies: Chemical Elements and Chemical 
Crystals. These ontologies were used to elaborate METHONTOLOGY (Fernández-
López et al., 1999), an ontology development methodology that will be described in 
Chapter 3.  

The Chemical Elements ontology models knowledge of the chemical elements 
of the periodic table, such as what elements these are (Oxygen, Hydrogen, Iron,
Gold, etc.), what properties they have (atomic number, atomic weight,
electronegativity, etc.), and what combination constraints of the attribute values they 
have. Chemical Elements contains 16 classes, 20 instance attributes, one function, 
103 instances and 27 formal axioms. 
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Chemical Crystals was built to model the crystalline structure of the chemical 
elements. Therefore, Chemical Elements imports this ontology. The ontology 
contains 19 classes, eight relations, 66 instances and 26 axioms. 

Ions is built on top of Chemical Elements and is also composed of two ontologies: 
Monatomic Ions (which model ions composed of one atom only) and Polyatomic 
Ions (which model ions composed of two or more atoms). Ions contains 62 concepts, 
11 class attributes, three relations and six formal axioms.  

Finally, the environmental pollutants ontology (Gómez-Pérez and Rojas, 1999)
imports Monatomic Ions and Polyatomic Ions and is composed of three ontologies: 
Environmental Parameters, Water and Soil. The first ontology defines parameters 
that might cause environmental pollution or degradation in the physical environment 
(air, water, ground) and in humans, or more explicitly, in their health. The second 
and third ontologies define water and soil pollutants respectively. These ontologies 
define the methods for detecting pollutant components of various environments, and 
the maximum concentrations of these components permitted according to the 
legislation in force. 

2.4.6 Knowledge management ontologies 

The objectives of knowledge management (KM) in an organization are to promote 
knowledge growth, knowledge communication and knowledge preservation in the 
organization (Steels, 1993). To achieve these objectives corporate memories can be 
created. A corporate memory is an explicit, disembodied, persistent representation 
of knowledge and information in an organization (van Heijst et al., 1996). 
According to Dieng-Kuntz and colleagues (1998, 2001), a corporate memory can be 
built following different techniques that can be combined: document-based, 
knowledge-based, case-based, groupware-based, workflow-based and distributed. 
Ontologies are included among the knowledge-based techniques for building 
corporate memories. 

Basically, Abecker and colleagues (1998) distinguish three types of KM 
ontologies: 
¶ Information ontologies. They describe the different kinds of information 

sources, their structure, access permissions, and format properties. 
¶ Domain ontologies. They model the content of the information sources. 
¶ Enterprise ontologies. They model the context of an organization, business 

process, organization of the enterprise, etc., as described in Section 2.4.4.  

Figure 2.33 shows an example of the existing relations between the aforementioned 
ontologies. The ontologies presented in the figure have been built for the corporate 
memory of the Artificial Intelligence Laboratory at UPM in Madrid. There are two 
domain ontologies: Hardware&Software (which models the hardware equipment of 
the laboratory and the software installed in it) and Documentation (which models all 
the documents generated in the laboratory: publications, theses, faxes, etc.). There 
are four enterprise ontologies: Organization and Groups (which model the structure 
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of the laboratory and its organization in different research groups), Projects (which 
models the projects that are developed in the laboratory), and Persons (which 
models the members of the laboratory: research staff, administrative staff, students, 
etc.). Three of these ontologies are also information ontologies: Documentation,
Projects and Persons since they describe the information sources of the corporate 
memory and store information. 

Figure 2.33: Information, domain and enterprise ontologies in a corporate memory for a 
research and development laboratory.  

The (KA)2 ontologies (Decker et al., 1999) are also good examples of KM 
ontologies. They were built inside the Knowledge Annotation Initiative of the 
Knowledge Acquisition community (Benjamins et al., 1999), also known as the 
(KA)2 initiative. Its goal was to model the knowledge-acquisition community with 
the ontologies built by 15 groups of people at different locations. Each group 
focused on a particular topic of the (KA)2 ontologies (problem solving methods, 
ontologies, etc.). The result was seven related ontologies: an organization ontology,
a project ontology, a person ontology, a publication ontology, an event ontology, a 
research-topic ontology and a research-product ontology. They formed the basis to 
annotate WWW documents of the knowledge acquisition community, and thus to 
enable intelligent access to these Web documents.  

The first release of the (KA)2 ontologies was built in the FLogic language (Kifer 
et al., 1995), which is described in Chapter 4. These FLogic ontologies were 
translated into Ontolingua with ODE translators (Blázquez et al., 1998) to make 
them accessible to the entire community through the European mirror of the 
Ontolingua Server in Madrid44. The updated version of (KA)2 is not in Ontolingua 

                                                          
44 http://granvia.dia.fi.upm.es:5915/ Log in as “ontologias-ka2” with password “adieu007” 
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but in DAML+OIL and is maintained at the AIFB (Institute for Informatics and 
Formal Description Methods) of the University of Karlsruhe45.

In the context of the European IST project Esperonto46, five KM ontologies have 
been developed in WebODE to describe R&D projects: Project, Documentation,
Person, Organization, and Meeting. These ontologies describe R&D projects and 
their structure, documents that are generated in a project, people and organizations 
participating in it, and meetings (administrative, technical, etc.) held during a project 
lifecycle. Figure 2.34 shows the relationships between all these ontologies (a project 
has associated meetings, a document belongs to a project, a document summarizes a 
meeting, people have a role in a project, etc.).  

Figure 2.34: Main ad hoc relationships between KM ontologies for R&D projects. 

Part of the concept taxonomy of the Documentation ontology is presented in Figure 
2.35. As the figure shows, we have distinguished four types of documents in a 
project: management documents, technical documents, publications and additional 
documents. Some of the technical documents generated in a project are deliverables, 
manuals and presentations. Publications can be done as books or articles, and there 
are different types of articles, depending on where they are published: in workshops, 
as part of the proceedings of a conference, in books or in magazines and journals.  

These ontologies can be accessed at the Esperonto Web site, powered by the 
knowledge portal ODESeW47.

                                                          
45 http://ka2portal.aifb.uni-karlsruhe.de
46 http://www.esperonto.net/ 
47 http://webode.dia.fi.upm.es/sew/index.html 
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Figure 2.35: Fragment of the documentation ontology of R&D projects. 

2.5 Bibliographical Notes and Further Reading 

To those readers who want to have a thorough grounding in the contents of this 
chapter, we recommend the following readings, grouped by topics: 
¶ Ontologies in general. The deliverable D.1.1 “Technical Roadmap” of the 

OntoWeb thematic network, funded by the European Commission, contains 
brief descriptions of and references to the most outstanding ontologies. The 
OntoRoadMap application, which has been created inside the project OntoWeb 
(http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html), lets 
researchers consult and update the information on existing ontologies. 

¶ Knowledge representation ontologies. We recommend to download the KR 
ontologies that have been presented in Section 2.1: the Frame Ontology and the 
OKBC Ontology (available at the Ontolingua Server: 
http://ontolingua.stanford.edu/), the RDF and RDF Schema KR ontologies 
(available at http://www.w3.org/RDF/), the OIL KR ontology (available at 
http://www.ontoknowledge.org/oil/), the DAML+OIL KR ontology (available at 
http://www.daml.org/language/), and the OWL KR ontology (available at 
http://www.w3.org/2001/sw/WebOnt/).

¶ Top-level ontologies. More information about top-level ontologies can be found 
in http://www-sop.inria.fr/acacia/personnel/phmartin/RDF/phOntology.html.
We also advise to consult the SUO Web page at http://suo.ieee.org/.

¶ Linguistic ontologies. For linguistic ontologies, we recommend periodically 
access to the Web page of the OntoWeb SIG on Language Technology in 
Ontology Development and Use (http://dfki.de/~paulb/ontoweb-lt.html). Other 
linguistic ontologies different to the ones dealt with in this chapter are: Corelex, 
which is presented in http://www.cs.brandeis.edu/~paulb/CoreLex/corelex.html
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and (Buitelaar, 2001); EDR, presented in http://www.iijnet.or.jp/edr/ and 
(Miyoshi et al., 1996); and the Goi-Takei’s ontology, presented in (Ikehara et 
al., 1997) and http://www.kecl.ntt.co.jp/icl/mtg/topics/lexicon-index.html.

¶ E-commerce ontologies. You can read about e-commerce ontologies in the 
deliverable D3.1 of OntoWeb (IST-2000-29243), which deals with e-commerce 
content standards. This deliverable is available in the following URL: 
http://www.ontoweb.org/download/deliverables/D3.1.pdf. We also recommend 
to read about the initiatives for aligning e-commerce classifications 
(Bergamaschi et al., 2001; Corcho and Gómez-Pérez, 2001; Gordijn et al., 
2000).

¶ Medical ontologies. More information about the GALEN ontology can be found 
in http://www.opengalen.org/resources.html. We recommend to download the 
open source tool OpenKnoME (http://www.topthing.com) to compile and to 
browse the GALEN sources. Access to UMLS sources and resources 
(applications and documentation) is free, though it is necessary to sign the 
UMLS license agreement at http://www.nlm.nih.gov/research/umls/license.html.
A general overview of medical ontologies is presented by Bodenreider (2001). 

¶ Chemistry ontologies. One of the data sets included in the DAML data sources 
wishlist (http://www.daml.org/data/) is the periodic table of the chemical 
elements, which would be considered as a reference data set for chemical and 
related industries, probably combined with other chemistry ontologies including 
elements, compounds, etc. So we recommend to take a close look at this effort. 

¶ Content standards. We recommend to have a look at the Special Interest Group 
on Content Standards of OntoWeb (IST-2000-29243), whose URL is: 
http://www.ladseb.pd.cnr.it/infor/ontology/OntoWeb/SIGContentStandards.htm.
The goal of this SIG is to coordinate cooperation and participation with current 
initiatives related to ontology-based content standardization and content 
harmonization across different standards.

¶ Legal ontologies. We recommend to have a look at the Legal Ontologies 
Working Group within the OntoWeb Content Standards SIG, whose URL is: 
http://ontology.ip.rm.cnr.it/legontoweb.html. The objective of this working 
group is (1) to collect the (possibly formalized) ontologies proposed so far in 
the literature and still maintained or ‘alive’; (2) to contact the reference persons; 
(3) to create a Web page in which a general outline of Legal Ontologies is 
presented; and (4) to provide a preliminary description of the steps to reach a 
“Common Core Legal Ontology Library”. Several events have dealt with legal 
ontologies, such as http://lri.jur.uva.nl/jurix2001/legont2001.htm,
http://www.cs.wustl.edu/icail2001/, and http://www.cfslr.ed.ac.uk/icail03/.
Other URLs related to legal ontologies are: http://www.csc.liv.ac.uk/~lial/,
http://www.lri.jur.uva.nl, http://www.idg.fi.cnr.it/researches/researches.htm,
and http://www.austlii.edu.au/au/other/col/1999/35/.
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