Chapter 2

The Most Outstanding Ontologies

This chapter is devoted to presenting the most outstanding ontologies. In this survey,
we have considered different types of ontologies: knowledge representation
ontologies (Section 2.1), top-level ontologies (Section 2.2), linguistic ontologies
(Section 2.3) and domain ontologies (Section 2.4). In this last section, we will deal
with ontologies from the following domains: e-commerce, medicine, engineering,
enterprise, chemistry, and knowledge management.

At present, there is a huge number of ontologies; we have chosen those that are
outstanding because of their use in important projects, their theoretical contributions,
or their use as experimental bases to establish design criteria, to elaborate
methodologies, etc.

After reading this chapter, you will be able to decide whether the ontologies
presented here can be reused in your application, and you will know which
applications are already using them.

2.1 Knowledge Representation Ontologies

A knowledge representation (KR) ontology (van Heijst et al., 1997) gathers the
modeling primitives used to formalize knowledge in a KR paradigm. Examples of
such primitives are classes, relations, attributes, etc.

The most representative KR ontology is the Frame Ontology (Gruber, 1993a),
built for capturing KR conventions under a frame-based approach in Ontolingua.
The Frame Ontology (FO) was modified in 1997 and some of its primitives were
moved to the OKBC Ontology. The reason behind this change was the creation of
OKBC (Chaudhri et al., 1998), a frame-based protocol for accessing knowledge
bases stored in different languages: Ontolingua (Farquhar et al., 1997), LOOM
(MacGregor, 1991), CycL (Lenat and Guha, 1990), etc.
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Other ontology languages such as CycL (Lenat and Guha, 1990) and OCML
(Motta, 1999) have also their own KR ontologies. In both cases, the foundations of
such KR ontologies are similar to the Frame Ontology, since both languages are
based on a combination of frames and first order logic. These and other languages
will be described in depth in Chapter 4.

More recently, ontology markup languages have been created in the context of
the Semantic Web: RDF (Lassila and Swick, 1999) and RDF Schema (Brickley and
Guha, 2003), OIL (Horrocks et al., 2000), DAML+OIL (Horrocks and van
Harmelen, 2001) and OWL (Dean and Schreiber, 2003). All these languages have
also their corresponding KR ontologies. In this section we present these KR
ontologies with their current primitives, as in April 2003".

2.1.1 The Frame Ontology and the OKBC Ontology

The Frame Ontology (Gruber, 1993a) was developed in KIF (Genesereth and Fikes,
1992) by the Knowledge Systems Laboratory at Stanford University. The Frame
Ontology (FO) collects common knowledge-organization conventions used in
frame-based representations. Its goal is to unify the semantics of the primitives most
commonly used in the frame paradigm and to enable ontology developers to build
ontologies with a frame-based approach.

The first version of the FO contained an axiomatization of classes and instances,
slots and slot constraints, class and relation specialization primitives, relation
inverses, relation composition, and class partitions. The FO was described by a set
of ontological commitments that restricted the semantics of the FO primitives. Some
examples of these ontological commitments are: relations are sets of tuples,
functions are a special case of relations, classes are unary relations, etc.

The FO was modified in 1997 and some of its primitives were shifted to the
OKBC Ontology. The reason for this change was the creation of a frame-based
protocol to access knowledge bases stored in different languages: Ontolingua
(Gruber, 1993a), LOOM (MacGregor, 1991), CycL (Lenat and Guha, 1990), etc.,
and the result was that the OKBC Ontology (Chaudhri et al., 1998) replaced some of
the fundamental definitions of the original FO. At present the FO includes the
OKBC Ontology and only provides formal definitions of the primitives not included
in the latter. Such inclusion reflects that ontologies built with the FO primitives are
more expressive than those built with the OKBC primitives. For instance, concept
taxonomies built using OKBC primitives are based only on the Subclass-Of relation.
However, concept taxonomies built using the FO may contain knowledge with
exhaustive and disjoint partitions. Besides, the OKBC primitives are mainly
concerned with frames, classes, and slots, while the FO includes more complex
primitives for representing functions, relations, and axioms.

Both, the FO and the OKBC ontologies are available in the Ontolingua Server’s
ontology library®. Figures 1.11 and 1.12 presented the vocabulary provided by both

! Some ontology markup languages, such as RDF(S) and OWL, are not fully stable yet. Their
specification together with their KR primitives may undergo small changes in the future.
% http://ontolingua.stanford.edu
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KR ontologies. The FO contains 23 classes, 31 relations, and 13 functions; the
OKBC Ontology contains eight classes, 36 relations, and three functions. We will
not present all the primitives contained in these two ontologies, but only the most
representative.

When building a concept taxonomy using the FO and the OKBC Ontology, the
following primitives can be used:

Classes, class partitions and instances

In the frame-based KR paradigm, two types of frames can be represented: classes

and instances. On the one hand, classes (aka concepts) represent collections or

stereotypes of objects. On the other hand, instances represent individuals belonging

to one or to several of those classes. The latter are called individuals in the OKBC

Ontology. Two of the primitives, related to classes and instances, identified in the

FO and the OKBC Ontology are:

1 Class (?Class). This primitive defines the class ?Class as a collection of
individuals. It is the only primitive appearing in both ontologies.

1 Individual (?Individual). This primitive defines an individual or instance.

Class taxonomies

Taxonomies are used to organize classes and instances in the ontology. The most

important relations here are Subclass-Of (which means that a class is a specialization

of another class) and Instance-Of (which states that an individual is an element of a

class). Both primitives and some more specific ones for creating taxonomies are

described below.

T Subclass-Of (?Child-Class ?Parent-Class), which states that the class
?Child-Class is a subclass of the class ?Parent-Class.

1 Superclass-Of (?Parent-Class ?Child-Class), which states that the class
?Parent-Class is a superclass of the class ?Child-Class. This relation is the
inverse relation of the Subclass-Of relation.

1 Disjoint-Decomposition (?Class ?Class-Set), which defines the set of disjoint
classes ?Class-Set as subclasses of the class ?Class. This classification does not
necessarily have to be complete, that is, there may be instances of ?Class that
are not instances of any of the classes of ?Class-Set.

1 Exhaustive-Decomposition (?Class ?Class-Set), which defines the set of classes
?Class-Set as subclasses of the class ?Class. This classification is complete, that
is, there are no instances of ?Class that are not instances of any of the classes of
?Class-Set. However, the classes in the set ?Class-Set are not necessarily
disjoint, as with the previous primitive.

1 Partition (?Class ?Class-Set), which defines the set of disjoint classes ?Class-
Set as subclasses of the class ?Class. This classification is complete, that is, the
class ?Class is the union of all the classes that belong to ?Class-Set.

1 Instance-Of (?Individual ?Class), where the instance ?Individual is an instance
of the class ?Class.

Figure 2.1 shows examples where we use some of these primitives for creating class
taxonomies. The class AmericanAirlinesFlight is a subclass of the class
Flight. Hence, the class Flight is a superclass of the class
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AmericanAirlinesFlight. The classes AA7462, AA2010 and AA0488 form
a disjoint decomposition of the class AmericanAirlinesFlight (that is, there
are no flights operated by American Airlines that have two flight numbers from the
set AA7462, AA2010 and AA0488, but there are also other kinds of flights operated
by American Airlines). The classes Europeanlocation, Asianlocation,
AfricanLocation, AustralianLocation, AntarcticLocation,
NorthAmericanLocation, and SouthAmericanLocation form a partition
of the class Location (any location belongs to one, and only one, of the seven
continents).  Finally, NewYorkCity is an instance of the class
NorthAmericanLocation.

Flight Location
. .
Subclass-Of Superclass-Of Partition
¥
AmericanairlinesFlight Australianlocation || AntarcticLocation || Euwropeanlocation
Dizjoint-Decomposition SouthAmericanlocation || Asianlocation || Africanlocation
447462 ||442010 || A A0483 Morthamericanl.ogation.
i
1
Instance-0f |
NewVorkCity

Figure 2.1: Examples of taxonomies with the FO and the OKBC Ontology primitives.

Relations and their properties

A relation represents the dependency between concepts in the domain. In

Mathematics, relations are formally defined as sets of tuples of individuals.

Relations in an ontology can be organized in relation taxonomies according to a

specialization relationship, called Subrelation-Of. Several mathematical properties

of a relation can also be determined: reflexive, irreflexive, symmetric, etc. Some of
the primitives for defining relations identified in the FO are:

1 Relation (?Rel), which defines a relation ?Rel/ in the domain. The classes to
which the relation applies are defined as the domain and range of the relation
respectively.

1 Subrelation-Of (?Child-Rel ?Parent-Rel). A relation ?Child-Rel is a subrelation
of the relation ?Parent-Rel if, viewed as sets, ?Child-Rel is a subset of
?Parent-Rel. In other words, every tuple of ?Child-Rel is also a tuple of
?Parent-Rel, that is, if ?Child-Rel holds for some arguments arg I, arg 2,
...arg_n, then ?Parent-Rel holds for the same arguments. Thus a relation and its
subrelation must have the same arity, which could be undefined.

1 Reflexive-Relation (?Rel). Relation ?Rel is reflexive if ?Rel(x,x) holds for all x
in the domain and range of ?Rel.
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1 Irreflexive-Relation (?Rel). Relation ?Rel is irreflexive if ?Rel(x,x) never holds
for all x in the domain and range of ?Rel.

1 Symmetric-Relation (?Rel). Relation ?Rel is symmetric if ?Rel(x,y) implies
?Rel(y,x) for all x and y in the domain and range of ?Rel.

1 Antisymmetric-Relation (?Rel). Relation ?Rel is antisymmetric if ?Rel(x,y)
implies not ?Rel(y,x) when x_ y, for all x and y in the domain and range of ?Rel.

1 Asymmetric-Relation (?Rel). Relation ?Rel is asymmetric if it is antisymmetric
and irreflexive over its exact domain. The exact domain of ?Rel is the set
elements of the ?Rel/ domain linked to some element of the ?Rel range through
this relation; that is, the exact domain only keeps the domain elements that
participate in the relation.

1 Transitive-Relation (?Rel). Relation ?Rel is transitive if ?Rel(x,y) and ?Rel(y,z)
implies ?Rel(x,z), for all x and z in the domain and range of ?Rel respectively,
and for all y in the domain and range of ?Rel.

1 Equivalence-Relation (?Rel). Relation ?Rel is an equivalence relation if it is
reflexive, symmetric, and transitive.

1 Partial-Order-Relation (?Rel). Relation ?Rel is a partial-order relation if it is
reflexive, antisymmetric, and transitive.

1 Total-Order-Relation (?Rel). Relation ?Rel is a total-order relation if it is a
partial-order relation for which either ?Rel(x,y) or ?Rel(y,x) holds for every x or
¥ in its exact domain.

As shown in Figure 1.12, these primitives for defining relations have been
represented in the FO as classes, and they are organized in a class taxonomy. For
example, the class Asymmetric-Relation, which represents the collection of relations
that are asymmetric, is a subclass of the classes Antisymmetric-Relation and
Irreflexive-Relation. This specialization relationship can be extracted from the
definition of what an asymmetric relation is, as described above.

Slots

A slot (aka attribute) defines a characteristic of a class, which is also inherited by its

subclasses. Attributes can be defined with the following two primitives of the

OKBC Ontology:

1 Template-Slot-Of (?Slot ?Class), which states that ?Slot is a slot of ?Class. The
slot ?Slot can take different values in the different instances of ?Class.

1 Slot-Of (?Slot ?Frame), which states that ?Slot is a slot of ?Frame. ?Frame can
be either a class or an individual.

Facets and types of facets

A facet is a slot property. In the FO facets are defined as ternary relations that hold
between a frame (which can be either a class or an individual), a slot, and the facet.
Common facets in the frame-based KR paradigm are, for example, those that define
the cardinality of a slot, the type of a slot, and default values. Some of the primitives
related to facets that are identified in the OKBC Ontology are:

1 Facet-Of (?Facet ?Slot ?Frame), where ?Facet is facet of the slot ?Slot in the

frame ?Frame.
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1 Minimum-Cardinality (?Slot ?Frame ? Number), which expresses that ? Number
is the minimum cardinality of the slot ?Slot in the frame ?Frame.

1 Maximum-Cardinality (?Slot ?Frame ? Number), which expresses that ? Number
is the maximum cardinality of the slot ?Slot in the frame ?Frame.

Chapter 4 shows how to build ontologies with the FO and with the OKBC primitives
in Ontolingua.

2.1.2 RDF and RDF Schema knowledge representation ontologies

RDF (Lassila and Swick, 1999) stands for Resource Description Framework. It is a
recommendation of the W3C (the World Wide Web Consortium), developed for
describing Web resources with metadata.

The RDF data model is equivalent to the semantic network KR paradigm, as
explained by Staab and colleagues (2000), and by Conen and Klapsing (2001). A
semantic network is a directed labeled graph composed of a set of nodes and a set of
unidirectional edges, and each has a name. Nodes represent concepts, instances of
concepts and property values. Edges represent properties of concepts or
relationships between concepts. The semantics of the network depends on the node
and edge names. The semantic network KR paradigm has less expressiveness than
the frame-based KR paradigm, since it does not allow representing, for instance,
default values and cardinality constraints on attributes.

The RDF data model consists of three components:

1 Resources, which are any type of data described by RDF. Resources are
described with RDF expressions and are referred to as URIs (Uniform Resource
Identifiers) plus optional anchor identifiers.

1 Properties (aka predicates), which define attributes or relations used to describe
a resource.

T Statements, which assign a value to a property in a specific resource. Just as an
English sentence usually comprises a subject, a verb and objects, RDF
statements consist of subjects, properties and objects. For instance, in the
sentence “John bought a ticket”, John is the subject, bought is the verb, and
ticket is the object. If we represent this sentence in RDF, John and
ticket are resources, denoted graphically by nodes, while bought is a
property, denoted graphically by an edge.

Not only can resources be the objects of a RDF statement, but RDF statements can
also be objects themselves. For example, in the sentence “John said that Peter
bought a ticket”, John is the subject, said is the property and Peter bought
a ticket is the object, which can also be decomposed, as we did before. This is
known as reification in RDF.

It is important to note that the RDF data model does not make any assumption
about the structure of a document containing RDF information. That is, the
statements can appear in any order in a RDF ontology.
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The RDF KR ontology® is written in RDFS (which will be presented later in this
section) and contains the following modeling primitives* (seven classes, seven
properties, and one instance):

1 Class rdf:Statement. As we have commented, it defines the class of triples
containing a subject, a property and an object.

1 Class rdf:Property. It defines the class of properties.

1 Classes rdf:Bag, rdf:Seq and rdf:Alt. They define the classes of collections (aka
containers), and these can be unordered, ordered and alternative respectively.
While it is clear what we mean by unordered and ordered collections,
alternative collections may not be so. An alternative collection contains a set of
resources from which we must select one for the single value of a property. For
example, an alternative collection could be used to represent the values
“single”, “double” or “triple” for the attribute occupancy of a
RoomReservation.

1 Class rdf:List, properties rdf-first and rdf:rest, and instance rdf:nil. The class
rdf-List defines the class of RDF lists. It is used with the properties rdf:first and
rdf:rest, which represent the relationship between a list and its first item, and
between the list and the rest of the list, respectively. The primitive rdf:nil is an
instance of rdf:List that represents the empty list.

1 Class rdf:XMLLiteral. 1t is a datatype that defines the class of well-formed
XML literal values.

1 Properties rdf:predicate, rdf-subject and rdf:object. They define the property,
subject resource, and object resource of a statement respectively.

1 Property rdf:type. It defines the class to which a resource belongs.

1 Property rdf-value. It defines the value of a property, usually a string, when the
value is a structured resource (another RDF statement).

The RDF data model does not provide modeling primitives for defining the
relationships between properties and resources. For instance, in RDF we cannot
define that the relation arrivalPlace can only hold between instances of the
classes Travel and Location. This limitation is solved by the RDF Vocabulary
Description Language (Brickley and Guha, 2003), also known as RDF Schema or
RDFS. RDFS is a working draft of the W3C that extends RDF with frame-based
primitives. The combination of RDF and RDF Schema is usually known as RDF(S).

The RDFS KR ontology® is written in RDFS. It contains 16 new modeling
primitives (six classes and nine properties) added to the RDF modeling primitives.
Figure 2.2 shows the class taxonomy of the RDF(S) KR ontology. As we can see,
there are 13 classes in this KR ontology. The top concept in the class taxonomy is

3 http://www.w3.0rg/1999/02/22-rdf-syntax-ns. At the time this description was written, the RDF KR
ontology available at this URL was not yet compliant with the specification of RDF given by Lassila and
Swick (1999) and extended by Brickley and Guha (2003). We have described this KR ontology based on
the last document instead of the implemented KR ontology.

* In this section, we will use the prefix rdf to refer to RDF primitives and rdfs to refer to RDF Schema
primitives.

> http://www.w3.0rg/2000/01/rdf-schema. As in the case of the RDF KR ontology, the ontology available
at this URL is not yet compliant with the specification of RDF Schema given by Brickley and Guha
(2003). We have described this KR ontology based on the document instead of the implemented KR
ontology.
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rdfs:Resource (which means that RDF statements, RDFS containers, RDFS classes,
RDF properties, and RDFS literals are RDFS resources). The classes rdf:Bag,
rdf-Seq and rdf:Alt are subclasses of rdfs:Container. The class rdfs:Datatype is a
subclass of rdfs:Class, and the class rdf:List is defined apart in the class taxonomy.

rdfs:Fesource rdfList

rdf Staternent  rdfs Container rdfs.Class rdfPropetty rdfsLiteral

rdf Bag rdfiSeq rdfAl rdfsDataType  rdfsContainethembershipProperty  rdf 2L Literal

Figure 2.2: Class taxonomy of the RDF(S) KR ontology.

Table 2.1 summarizes the main features of the properties of the RDF(S) KR
ontology. As we can see in this table, there are 16 properties defined in this KR
ontology. In this table, we specify their domain and range, that is, the classes
between which these properties can hold.

Table 2.1: Property descriptions of the RDF(S) KR ontology.

Property name domain range
rdfitype rdfs:Resource rdfs:Class
rdf:subject rdf:Statement rdfs:Resource
rdf:predicate rdf:Statement rdf:Property
rdf:object rdf:Statement rdfs:Resource
rdf:value rdfs:Resource rdfs:Resource
rdf:first rdf:List rdfs:Resource
rdf:rest rdf:List rdf:List
rdfs:subClassOf rdfs:Class rdfs:Class
rdfs:subPropertyOf rdf:Property rdf:Property
rdfs:comment rdfs:Resource rdfs:Literal
rdfs:label rdfs:Resource rdfs:Literal
rdfs:seeAlso rdfs:Resource rdfs:Resource
rdfs:isDefinedBy rdfs:Resource rdfs:Resource
rdfs:member rdfs:Resource rdfs:Resource
rdfs:domain rdf:Property rdfs:Class
rdfs:range rdf:Property rdfs:Class

In addition to these classes and properties, RDF also uses the properties rdf:_1,
rdf:_2, rdf:_3, etc., each of which is both a subproperty of the property rdfs:member
and an instance of the class rdfs: ContainerMembershipProperty. These properties
(rdf-_1, rdf:_2, rdf:_3, etc.) are used to specify the members of collections such as
sequences, bags and alternatives, which were previously mentioned. A more simple
syntax for these properties consists in using rdf:li instead, which is equivalent to
them. All these properties are not included in the RDF nor in the RDFS KR
ontologies.

The RDFS primitives are grouped into core classes and properties, container
classes and properties, collections, reification vocabulary, and utility properties.
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1 Core classes (rdfs:Resource, vrdfs:Literal, rdf:XMLLiteral, rdfs:Class,
rdf:Property, and rdfs:Datatype). The class rdfs:Resource is the most general
class and defines any Web resource that can be described by RDF. The classes
rdfs:Literal and rdf:XMLLiteral represent the class of untyped literal values
(such as strings and integers) and well-formed XML string values respectively.
The class rdfs:Class defines the class of all classes. The class rdf:Property
defines the class of properties. The class rdfs:Datatype represents resources that
are RDF datatypes.

1 Core properties (rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, rdfs:label, and rdfs:comment). The property rdf:type states that a
resource is an instance of a class. The properties rdfs:subClassOf and
rdfs:subPropertyOf are used to define class taxonomies and property
taxonomies respectively. The properties rdfs:domain and rdfs:range define the
domain and range of the property they are applied to. Finally, the properties
rdfs:label and rdfs:comment, which were previously classified as
documentation primitives, are used for describing resources in natural language.
The property rdfs:comment is mainly for long descriptions while rdfs:label is
for defining alternative short labels of the resource to which it is applied.

1  Container classes and properties (rdfs:Container, rdf:Bag, rdf:Seq, rdf:Alt,
rdfs:ContainerMembershipProperty,  and  rdfs:member).  The  class
rdfs:Container defines the class of resource collections, which can be a bag
(rdf:Bag), a sequence (rdf:Seq), or an alternative (rdf:Alf). These containers
were described above. The class rdfs:ContainerMembershipProperty defines
the relationship between a resource and a container. The property rdfs:member
is used to specify the members of a container. As we explained above, the
properties rdf:_1, rdf:_2, rdf:_3, etc., are subproperties of this property, and
rdf-li can also be used to express them.

1 Collections (rdf:List, rdf-first, rdf:rest, and rdf:nil). The class rdf:List is used to
describe lists. The properties rdf:first and rdf:rest are used to manage lists, and
rdf:nil is an instance of rdf:List that represents the empty list.

1 Reification vocabulary (rdf:Statement, rdf:predicate, rdf:subject, and
rdf:object). This class and these properties were described when we referred to
the RDF KR ontology. As we said, the class rdf:Statement defines the class of
triples that can be described in RDF(S), and the properties rdf:predicate,
rdf:subject, and rdf:object define the property, subject resource, and object
resource of a statement, respectively.

1  Utility properties (rdfs:seeAlso, rdfs:isDefinedBy, and rdf-value). The property
rdfs:seeAlso defines a resource that might give additional information about the
resource being described. The property rdfs:isDefinedBy provides the
namespace where the resource is defined and is a subproperty of rdfs.seeAlso.
The property rdf:value was described when we referred to the RDF KR
ontology. It defines the value of a property when that value is a structured
resource.

In Chapter 4 we will describe in detail how to use all these KR primitives to
implement our ontologies in RDF(S), but now we want to show an example of how
to use primitives of the RDF and RDFS KR ontologies. Below we present the
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definitions of the class Flight and of the relation arrivalPlace. In these
definitions, primitives of the RDFS KR ontology (such as rdfs:Class, rdfs:comment,
rdfs:subClassOf, rdfs:domain and rdfs:range) are combined with primitives of the
RDF KR ontology (such as rdf:Property). The properties rdf:ID and rdf:resource
are also used. However, they should not be considered as KR primitives since they
are only used to identify RDF resources. We will describe their differences in
Chapter 4. Please note that rdf:resource, which is used to refer to a RDF resource,
should not be mistaken for rdfs:Resource, which is the class of RDF resources.

<rdfs:Class rdf:ID="Flight">
<rdfs:comment>A journey by plane</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Travel"/>
</rdfs:Class>

<rdf:Property rdf:ID="arrivalPlace">
<rdfs:domain rdf:resource="#Travel"/>
<rdfs:range rdf:resource="4#Location"/>
</rdf:Property>

2.1.3 OIL knowledge representation ontology

OIL (Horrocks et al., 2000) stands for Ontology Inference Layer. This language has
been built as an extension of RDF(S) by adding it more frame-based KR primitives
and avoiding the RDF reification mechanism. OIL uses description logics to give
clear semantics to its modeling primitives.

OIL was developed using a layered approach, as shown in Figure 2.3. Each new
layer is built on top of the existing ones and adds new functionality and complexity
to the lower layer. Core OIL groups the OIL primitives that have a direct mapping to
RDF(S) primitives, though it does not allow RDF(S) reification, as shown in the
figure. Standard OIL adds frame-based primitives. Its relationship with Core OIL

Heavy OIL
(possible future extensions)

Instance OIL
(Standard OIL + instances)

RDFS
Standard OIL -

Core OIL
(Standard OIL ~ RDFS)

reification

Figure 2.3: Layers of OIL.
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was explained in depth by Broekstra and colleagues (2001). Instance OIL permits
defining instances of concepts and roles and includes a full-fledged database
capability. Finally, Heavy OIL is reserved for future extensions (such as rules,
metaclasses, etc.). Standard OIL and Instance OIL share the same KR ontology. We
must add that the Heavy OIL KR ontology has not been developed yet at the time
this section was written.

Here we will only present the Standard OIL KR ontology®. This ontology
consists of 37 classes and 19 properties. It is mostly written in RDF(S), except for
two classes (0il: Top and oil:Bottom) written in OIL.

Figure 2.4 shows the class hierarchy of the OIL KR ontology in which we can
see how this KR ontology extends the RDF(S) KR ontology. There are six groups of
primitives that are classes:

1 Classes for defining concrete type expressions (oil:Equal, oil:Min, oil:Max,
oil:GreaterThan, oil:LessThan, and oil:Range). These primitives are subclasses
of the primitive oil:ConcreteTypeExpression, which in its turn is subclass of
oil:Expression. They allow defining numeric expressions for the numbers that
are equal, greater or equal than, less or equal than, greater than and less than a
number, as well as numeric ranges, respectively.

{ Classes for defining class expressions. These primitives are defined as
subclasses of the class oil:ClassExpression, which in its turn is subclass of
oil:Expression. In OIL, classes can be primitive (oil:PrimitiveClass) or defined
(oil:DefinedClass), and they specialize rdfs:Class. The difference between them
was explained in Section 1.3.2, where we described how to model ontologies
with description logic. Class expressions can also be formed with boolean
expressions, property restrictions and enumerated expressions.

1  With regard to Boolean expressions (primitives that are subclasses of
oil:BooleanExpression), we can use three primitives: oil:And, oil:Or, and
oil:Not. They express conjunction, disjunction, and negation of classes
respectively.

1 In relation to property restrictions (primitives that are subclasses of
oil: PropertyRestriction), we can express qualified number restrictions’ with
the primitives that are subclasses of oil:CardinalityRestriction
(oil:MinCardinality, oil:Cardinality and oil:MaxCardinality). We can also
express value restriction® (oil:ValueType), existential restriction’
(oil:HasValue) and role fillers to deal with individuals (oil: HasFiller).

¢ http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standard

" A qualified number restriction defines a cardinality restriction for a role when it is applied to instances
of a specific class. For example, we know that a person always has two parents, of which one is a man
and the other is a woman. This is represented as a qualified number restriction of the role hasParent,
which has cardinality 1 when it is applied to Man and cardinality 1 when it is applied to Woman.

¥ Value restrictions are used to express that a role may have any number of values, and that these values
must always be instances of the class specified in the restriction. For instance, a person can be married or
not to somebody, but must always be married to a person (not to an animal).

? Existential restrictions are used to express that a role must have at least one value that is an instance of
the class specified in the restriction. For instance, we can define a friendly person as a person who must
have at least one friend, which is another person. However, he/she can also have other friends that are not
persons (such as an animal).
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1 Regarding enumerated expressions, we can use the class o0il:OneOf. These
primitives configure OIL as a SHIQ language', according to the DL
terminology explained in Section 1.3.2.

Classes for defining mathematical characteristics of properties

(oil: TransitiveProperty, oil:FunctionalProperty and oil:SymmetricProperty).

They express that the property is transitive, that it can only have one value for

each instance in its domain and that it is symmetric respectively. All of them

specialize rdf:Property.

Classes for defining axioms (primitives that are subclasses of oil:Axiom).

These primitives are used to define disjoint and exhaustive knowledge in class

taxonomies (oil:Disjoint and the subclasses of oil:Covering, which are

oil:Cover and oil:DisjointCover, respectively), as well as equivalence between
classes (oil:Equivalence). The primitive oil: Disjoint defines a set of classes that
are disjoint, that is, that cannot have common instances. The primitive oil:Cover
expresses that a class is the union of a set of classes, that is, that there are no
instances of the class that are not instances of at least one of the classes in the

set. The primitive oil:DisjointCover expresses that a class is the union of a

disjoint set of classes.

Classes for defining datatypes (oil:String and oil:Integer). They specialize the

primitive rdfs:Literal, and define the datatype of strings and the datatype of

integers respectively.

Predefined classes (oil:Top and oil:Bottom). The class oil:Top is the most

general class and subsumes every other class. The class oil:Bottom is the empty

class and is subsumed by every other class.

There are also several primitives in the Standard OIL KR ontology that are
properties. Table 2.2 summarizes the main features of these 19 properties, specifying
their domain and range, that is, the classes between which these properties can hold.
We will first describe these properties and later present the table.

1
l

The properties oil:subClassOf, oil:domain and oil:range. They replace the
corresponding primitives in RDF(S).

The property oil:hasOperand. It connects a Boolean expression with the
operands. It is used with the primitives oil:And, 0il:Or and oil:Not, described
above.

The property oil:individual. 1t connects an 0il:OneOf expression with its
individuals.

The properties oil-hasPropertyRestriction, oil:onProperty, oil:toClass and
oil:toConcreteType. They are used to express the property restrictions of a class.
The primitive oil:toClass is used with properties whose range is another class,
and the primitive oil:toConcreteType are used with properties that are concrete
types.

The properties oil:stringValue and oil:integerValue. They connect a concrete
type expression with a string value or an integer value respectively.

' In Horrocks (2000) OIL appears as SHIQ(d), which means that it is a SHIQ language extended with
concrete data types.
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The properties oil:individualFiller, oil:integerFiller and oil:stringFiller. They
represent property values.

The property oil:number. Used to express the number of a cardinality
restriction.

The property oil:inverseRelationOf. Used to define the inverse of a property.
The properties oil:hasObject, oil:hasSubject and oil:isCoveredBy. They
represent disjoint and exhaustive knowledge in class taxonomies.

Table 2.2: Property descriptions of the Standard OIL KR ontology.

Property name domain range
oil:subClassOf rdfs:Class oil:ClassExpression
oil:domain rdf:Property oil:ClassExpression
oil:range rdf:Property oil:ClassExpression
oil:hasOperand oil:BooleanExpression oil:Expression
oil:individual 0il:OneOf rdfs:Resource
oil:hasPropertyRestriction rdfs:Class oil:PropertyRestriction
oil:onProperty oil:PropertyRestriction rdf:Property
oil:toClass oil:PropertyRestriction oil:ClassExpression
oil:toConcreteType oil:PropertyRestriction oil:ConcreteTypeExpression
oil:stringValue oil:ConcreteTypeExpression oil:String
oil:integerValue oil:ConcreteTypeExpression oil:Integer
oil:individualFiller oil:HasFiller rdfs:Resource
oil:stringFiller oil:HasFiller oil:String
oil:integerFiller oil:HasFiller oil:Integer
oil:number oil:CardinalityRestriction oil:Integer
oil:inverseRelationOf rdf:Property rdf:Property
oil:hasObject oil: Axiom oil:ClassExpression
oil:hasSubject oil:Covering oil:ClassExpression
oil:isCoveredBy oil:Covering oil:ClassExpression

In Chapter 4 we will describe in detail how to use these primitives to implement
ontologies in OIL and we will use OILs plain text syntax. We now show a small
example of how to use primitives of the OIL KR ontology with the XML syntax to
get its flavor. Below we present the definition of the defined class F1ight, which
was described in Section 1.3.2. This class is a subclass of the class Travel that has
exactly one value for the attribute £1ightNumber, whose type is integer, and
that has a filler for the attribute t ransportMeans with value “plane”.

<oil:DefinedClass rdf:ID="Flight">
<rdfs:comment>A journey by plane</rdfs:comment>
<oil:subClassOf>
<oil:And>
<oil:hasOperand rdf:resource="#Travel"/>
<oil:hasOperand>
<oil:Cardinality oil:number="1">
<oil:onProperty rdf:resource="#flightNumber"/>
<oil:toClass rdf:resource="&oil;Integer"/>
</oil:Cardinality>
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</0il:hasOperand>
<oil:hasOperand>
<oil:HasFiller oil:stringFiller="plane”>
<oil:onProperty rdf:resource="#transportMeans”/>

</oil:HasFiller>
</0il:hasOperand>

</0il:And>

</0il:subClassOf>

</oil:DefinedClass>

2.1.4 DAMLAOIL knowledge representation ontology

Like OIL, DAML+OIL (Horrocks and van Harmelen, 2001) was developed as an
extension of RDF(S). However, this language is not divided into different layers: it
provides DL extensions of RDF(S) directly. DAML+OIL is a SHIQ language
extended with datatypes and nominals'.

The DAMLA+OIL KR ontology"” is written in DAML+OIL and contains 53
modeling primitives (14 classes, 38 properties and one instance). Two of the classes
(daml:Literal and daml:Property) and 10 of the properties (daml:subPropertyOf,
daml:type, daml:value, daml:subClassOf, daml:domain, daml:range, daml:label,
daml:comment, daml:seeAlso and daml:isDefinedBy) are equivalent to their
corresponding classes and properties in RDF(S).

Figure 2.5 shows the class taxonomy of the DAMLAOIL KR ontology, and how
this KR ontology extends the RDF(S) KR ontology. The following groups of
primitives that are classes are defined in the DAML+OIL KR ontology:

1 Classes for defining classes, restrictions and datatypes (daml:Class,
daml:Restriction and daml:DataType). All these primitives specialize
rdfs:Class. The primitive daml:Class is used to define classes. The primitive
daml:Restriction is used to define property restrictions for classes (number
restrictions, existential restrictions, qualified number restrictions, etc.). And the
primitive daml:DataType is used to create datatypes. XML Schema datatypes
(Biron and Malhotra, 2001) are permitted in DAML++OIL, and are considered
subclasses of daml:DataType.

1 Classes for defining properties (daml:UnambiguousProperty,
daml: TransitiveProperty, daml:ObjectProperty, and daml:DatatypeProperty).
They are used to define properties, so they specialize the class daml:Property
(which is equivalent to rdf:Property, as stated above). The primitive
daml:ObjectProperty is used to define properties that connect a class with
another class. It is specialized in the primitives daml:TransitiveProperty and
daml:UnambiguousProperty, which refer to properties that are transitive and
injective"” respectively. The primitive daml:DatatypeProperty is used to define
properties that connect a class with a datatype. Finally, the primitive

1" Also known as SHOIQ(d).

2 http://www.daml.org/2001/03/daml+oil. There is another version of this ontology available at
http://www.w3.0rg/2001/10/daml+oil, but the DAML+OIL developers recommend using the first one.

13 If the relation R is injective, and R(x,y) and R(z,y) hold, then x=z.
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rdfs:Fesource

rofs: Container rafz:Class daml: Property=rdfProperty
rafiZeq ‘
daml: Class daml:DataType daml:DatatypeProperty
daml:List ‘
daml: Restriction daml: ObjectProperty daml: Unigue Property

daml:Literal=rdfs Literal ‘
daml: Ontology i o . y

laml: Thi daml: TransitiveProperty daml: UnambiguousProperty
daml:Nothing

Figure 2.5: Class taxonomy of the DAML~+OIL KR ontology defined as an extension of
RDE(S).

daml:UniqueProperty can be used to define both kinds of relations (between
classes and between a class and a datatype) provided that they are functional'.
Classes for defining containers (daml:Lisf). DAMLA+OIL lists are special
types of RDF sequences; hence daml:List is a subclass of rdf:Seq. Although
lists are now defined in the RDF(S) KR ontology, they were not when the
DAML+OIL KR ontology was created. This is why this primitive is included
here.

Predefined classes (daml:Thing and daml:Nothing). They represent the most
and the least general class respectively.

Classes for defining literal values (daml:Literal). This class represents
untyped literal values (that is, strings and integers). It is equivalent to
rdfs:Literal.

Classes for describing ontologies (daml:Ontology). This primitive is used as
the root element of a DAML+OIL ontology, containing all its definitions.

DAMLAOIL class expressions are built with KR primitives that are properties®.
These DAMLAOIL primitives allow expressing:

1

Conjunction (daml:intersectionOf), disjunction (daml:unionOf), and negation
(daml:complementOf).

Collection of individuals (dam!:oneOf).

Property restrictions. They are created with the class damli:Restriction, as
described above. These restrictions are defined with two elements:

' This primitive is equivalent to the primitive oil: FunctionalProperty. If the relation R is functional, and
R(x,y) and R(x,z) hold, then y=z.

!> Let us remember that OIL class expressions were built with KR primitives that are classes, such as
oil:And, oil:Or, oil:MinCardinality, etc.
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daml:onProperty (which refers to the property name) and another element that

expresses:

1 Value restriction (daml:toClass).

T Role fillers (daml:hasValue).

1 Existential restriction (daml:hasClass) and number restriction
(daml:cardinality, daml:maxCardinality, and daml:minCardinality).

1 Qualified number restriction (with the primitive daml:hasClassQ plus one
of the following primitives: daml:maxCardinalityQ, daml:minCardinalityQ
and daml:cardinalityQ).

Properties are not only used to create class expressions, but also to define other
relationships between ontology components. The following properties are also
defined in the DAMLA+OIL KR ontology:

1 The primitive daml:inverseOf. It defines the inverse of a role.

1 The primitives daml:equivalentTo, daml:sameClassAs, daml:samePropertyAs,
and daml:samelndividual4s. They define equivalences between resources,
classes, properties and instances, respectively.

1 The primitive daml.differentindividualFrom. 1t defines that two instances are
different.

1 The primitives daml:disjointWith and daml:disjointUnionOf. They express
disjoint and exhaustive knowledge between classes in the class taxonomy
respectively.

1 The primitives daml:versioninfo and daml:imports. They give information
about the ontology version and the ontologies imported by the current ontology.
There are no restrictions on the contents of the daml:versionInfo primitive.

1 The primitives daml:first, daml:rest and daml:item. They are used for managing
lists.

Finally, the primitive daml:nil is an instance of the class daml:List. It represents the
empty list.

Table 2.3 summarizes the main features of the DAMLA+OIL KR ontology properties
that are not a redefinition of the RDF(S) KR ontology primitives. As we can see in
the table, there are 28 properties defined in this KR ontology, apart from 10
properties that are equivalent to the corresponding RDF(S) properties, as described
at the beginning of this section. In this table we specify their domain and range, that
is, the classes between which these properties can hold. If the value for the range is
“not specified”, then the property can take any value which is not restricted to a
specific class of the DAMLAOIL KR ontology. The xsd prefix used in the range of
the cardinality restriction properties (xsd:nonNegativelnteger) refers to the XML
Schema datatype namespace'®.

' http://www.w3.0rg/2000/10/XMLSchema. As we will see later, this namespace is not used any more to
refer to XML Schema. However, DAMLAOIL still uses it.
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Table 2.3: Property descriptions of the DAML+OIL KR ontology.

Property name domain range
daml:intersectionOf daml:Class daml:List
daml:unionOf daml:Class daml:List
daml:complementOf daml:Class daml:Class
daml:oneOf daml:Class daml:List
daml:onProperty daml:Restriction rdf:Property
daml:toClass daml:Restriction rdfs:Class
daml:hasValue daml:Restriction not specified
daml:hasClass daml:Restriction rdfs:Class

daml:minCardinality

daml:Restriction

xsd:nonNegativelnteger

daml:maxCardinality

daml:Restriction

xsd:nonNegativelnteger

daml:cardinality

daml:Restriction

xsd:nonNegativelnteger

daml:hasClassQ

daml:Restriction

rdfs:Class

daml:minCardinalityQ

daml:Restriction

xsd:nonNegativelnteger

daml:maxCardinalityQ

daml:Restriction

xsd:nonNegativelnteger

daml:cardinalityQ

daml:Restriction

xsd:nonNegativelnteger

daml:inverseOf

daml:ObjectProperty

daml:ObjectProperty

daml:equivalentTo not specified not specified
daml:sameClassAs daml:Class daml:Class
daml:samePropertyAs rdf:Property rdf:Property
daml:samelndividualAs daml:Thing daml:Thing
daml:differentIndividualFrom daml:Thing daml:Thing
daml:disjointWith daml:Class daml:Class
daml:disjointUnionOf daml:Class daml:List
daml:versionInfo not specified not specified
daml:imports not specified not specified
daml:first daml:List not specified
daml:rest daml:List daml:List
daml:item daml:List not specified

In Chapter 4 we will describe in detail how to use these primitives to implement
ontologies in DAMLA+OIL. We will now show a small example of how to use them
to define the class F1ight exactly as the class Travel that has exactly one value
for the attribute £1ightNumber, whose type is integer, and that has a filler for
the attribute transportMeans with value “plane”.

<daml:Class rdf:ID="Flight">
<rdfs:comment>A journey by plane</rdfs:comment>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Travel"/>

<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#flightNumber"/>
<daml:toClass rdf:resource="&xsd;integer"/>

</daml:Restriction>
<daml :Restriction>

<daml:onProperty rdf:resource="#transportMeans"/>

<daml :hasValue>
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<xsd:string rdf:value="plane"/>
</daml :hasValue>
</daml:Restriction>
</daml:intersectionOf>
</daml:Class>

2.1.5 OWL knowledge representation ontology

The OWL language (Dean and Schreiber, 2003) has been created by the W3C Web
Ontology (WebOnt) Working Group. It is derived from the DAMLA+OIL language,
and it builds upon RDF(S). At the time of writing this section, the OWL
specification is a W3C Working Draft, though both the language and its KR
ontology"” (which is implemented in OWL) are already in a stable state.

Like OIL, OWL is divided in layers: OWL Lite, OWL DL, and OWL Full.
OWL Lite extends RDF(S) and gathers the most common features of OWL, so it is
intended for users that only need to create class taxonomies and simple constraints.
OWL DL includes the complete OWL vocabulary, which is described in this
section. Finally, OWL Full provides more flexibility to represent ontologies than
OWL DL does. We refer to Dean and Schreiber (2003) for a detailed description of
this layer.

There are 40 primitives in the OWL DL KR ontology (16 classes and 24
properties). Figure 2.6 shows the KR primitives used in OWL Lite and OWL DL. In
the figure, we can see that some RDF(S) primitives can be used in all the versions of
OWL (OWL Lite and OWL DL), and that OWL Lite primitives can be used in OWL
DL. OWL Full KR primitives are the same as the OWL DL ones, as explained
above.

In the figure we also present in parentheses the corresponding primitive in the
DAMLAOIL KR ontology, in case there is a correspondance with a DAML+OIL
KR primitive. For instance, owl:allValuesFrom (daml:toClass) means that the
primitive owl:allValuesFrom corresponds to the primitive daml:toClass from the
DAMLA+OIL KR ontology.

Figure 2.7 shows the class taxonomy of the primitives that are classes in the
OWL KR ontology. All belong to OWL Lite. Hence, they also belong to OWL DL
and OWL Full. These primitives can be grouped as follows:

1 Classes for defining classes and restrictions (ow/:Class and owl:Restriction).
The primitive owl:Class specializes rdfs:Class and is used to define classes.
The primitive owl:Restriction specializes owl:Class and is used to define
property restrictions for classes (number restrictions, existential restrictions,
universal restrictions, etc.).

1 Classes for defining properties (owl:ObjectProperty, owl:DatatypeProperty,
owl: TransitiveProperty,  owl:SymmetricProperty, — owl:FunctionalProperty,
owl:InverseFunctional Property, and owl:AnnotationProperty). They are used to
define properties, hence they specialize the class rdf:Property. The primitive

7 http://www.w3.0rg/2002/07/owl
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OWL DL
Class expressions allowed in: rdfs:dornain, rdfsrange, rdfssubClassOf

owlintersectionOf, owlequivalent Class, owlallValuesFrom, owlsomeWValuesFrom
Walues are not restricted (0. M in:  owlimin Cardinality, owlmaxCardinality, owl cardinality

owlDataRange, rdfList, rdf first, rdfirest, rdfindl

owlhas Value (dawl has Value)

owloneOf (damnl:one OF)

owlunionOf (daral union G, owlcomplementOf (daval: cormplementOF)
owldisjoirntWith (deal: disjointiWith)

OWL Lite

owl: Ontology (darnl: Ontologp),
owlwversionInfo (davl versionffo),
owlimports (dawal fmporis),
owlbackwardCompatib eWith,
owlincompatibleWith, owlpriorVersion,
owlDeprecatedClass,
owlDeprecatedProperty

owl: Class (daval - Class),

owlRestriction (daal: Restriction),

owl.onProperty (daml onFroperiy),

owlallValuesFrotn (depnl to Class) (only with class identifiers and named datatypes),
owlsomeValuesFrom (dearal hasClass) (only with class identifiers and natned datatypes),
owliminCardinality (daml minCardinality, restricted to {0,1}),

owltnaxCardinality (dowalmax Cardinality;, restricted to {0,13),

owl cardinality (dawl: covdinality, restricted to {0,1})

owlittersectionOf (only with class identifiers and property restrictions)

owl ObjectProperty (dawl: ObjectProperty),

owlDatatyp eProperty (dawl: Datatype Property),

owl TransitiveProperty (daval: Framsitive Fraperty),

owl SymtnetricProperty,

owlFunctionalProperty (daml: DhigueFroperty),

owl IrwrerseFunctionalProperty (daval: Unarnbiguous Froperty),
owl AnnotationProperty

owl Thing (dawal: Thing)
owlMNothing (darnl:Mothing)

owlitrverseQf (daml: verse OF),

owlequivalent Class (daral: sarne ClassAs) (only with clags identifiers and property restrictions),
owlequivalentProperty (daral: savne ProperipAs),

owlsameds (dam! eguivaentIo),

owlsamelndividual s,

owldifferentFrom (daval: differentndividual From),

owl AllDifferent, owldistinctiiembers

RDF(%)

rdfProperty

rdfssubPropetyOf

rdfs:dormain

rdfsrange (only with class identifiers and narned datatypes)
rdfscomment, rdfslabel, rdfesestlso, rdfsisDefinedBy
rifs:subClass OF (only with class identifiers and property restrictions)

Figure 2.6: OWL Lite and OWL DL KR primitives.
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owl:ObjectProperty serves to define properties that connect a class with another
class, and the primitive owl:DatatypeProperty is used to define properties that
connect a class with a datatype. The primitives owl:TransitiveProperty and
owl:SymmetricProperty serve to define logical characteristics of properties. The
primitives owl: FunctionalProperty and owl:InverseFunctional Property are used
to define global cardinality restrictions of properties. In OWL Lite and OWL
DL, owl:InverseFunctionalProperty is defined as a subclass of
owl:ObjectProperty. In OWL Full, owl:InverseFunctionalProperty can be also
an owl:DatatypeProperty. Hence, this primitive is defined as a subclass of
rdf:Property, as shown in Figure 2.7. The primitive owl:AnnotationProperty is
used to define properties that have no logical consequences on an OWL
ontology, but just give information about its classes, properties, individuals or
the whole ontology.

Classes for stating inequality among individuals (ow!:A/[Different). This is to
specify that several instances are different to each other. This is sometimes
needed because OWL does not assume the unique names assumption in its
ontologies. This means that two individual definitions with different identifiers
could refer to the same individual.

Classes for describing enumerations of datatypes (ow/:DataRange). This is
to create enumerated datatypes, that is, datatypes with a set of predefined
values.

Predefined classes (owl:Thing and owl:Nothing). They represent the most
general and the least general class respectively.

Classes for describing ontologies (ow/:Ontology). This primitive is used as the
root element of an OWL ontology, containing all its definitions.

Classes for describing ontology versioning (owl:DeprecatedClass and
owl:DeprecatedProperty). They specify, respectively, that a class or a property
have been deprecated in the current version of the ontology. As occurs with
owl:AnnotationProperty, these primitives have no logical consequences on an
OWL ontology. They are only used for ontology versioning purposes.

Like in DAMLA+OIL, OWL class expressions are built with KR primitives that are
properties. These will be organized in two groups: the one with primitives defined
for OWL Lite (which can be used in OWL Lite, OWL DL and OWL Full) and the
one with primitives defined for OWL DL (which can be used in OWL DL and OWL
Full).

1

Properties for defining class expressions in OWL Lite:

1 Conjunction (owl:intersectionOf). The range of this property is restricted in
OWL Lite to class identifiers and property restrictions.

1 Property restrictions. They are defined with the class owl:Restriction,
described above. Restrictions are defined with two elements:
owl:onProperty (which refers to the property name) and another element
that expresses:

f  Value restriction (owl:allValuesFrom).
1  Existential restriction (owl:someValuesFrom).
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{  Number restriction (owl:cardinality, owl:maxCardinality, and
owl:minCardinality). The values of these properties are restricted to 0

and 1. This permits the user to indicate “at least one”, “no more than
one”, and “exactly one”.

1  Properties for defining class expressions in OWL DL:

1l

Conjunction (owl:intersectionOf), disjunction (owl:unionOf), and negation
(owl:complementOf). Unlike in OWL Lite, there are no restrictions for the
range of these properties.

Collection of individuals (owl:oneOf).

Property restrictions. As in OWL Lite, they are defined with the class

owl:Restriction, decomposed in owl:onProperty and another element that

expresses:

1 Role fillers (owl:hasValue).

1 Number restriction (owl:cardinality, owl:maxCardinality, and
owl:minCardinality). The values of these properties are not restricted
as in OWL Lite provided that they are positive integer values,
including 0.

Other properties defined in OWL Lite and OWL DL are the following:
1 Other OWL Lite properties:

1

The primitives owl:versionlnfo, owl:priorVersion, owl:incompatibleWith,
owl:backwardCompatibleWith, —and  owl:imports. =~ The  primitive
owl:versioninfo gives information on the current ontology version. The
primitives owl:priorVersion, owl:incompatibleWith, and
owl:backwardCompatibleWith point to another OWL ontology, defining
that the current ontology has a previous version, or is incompatible or
compatible with another ontology respectively. Finally, owl:imports refers
to another OWL ontology, which the current ontology imports.

The primitive owl:inverseOf. It defines the inverse of a property.

The primitives owl:sameAs, owl:equivalentClass, owl:equivalentProperty,
and owl:samelndividualAs. They define equivalences between resources,
classes, properties, and instances respectively.

The primitive owl:differentFrom. It defines that two individuals are
different.

The primitive owl: distinctMembers. 1t 1is wused together with
owl:AllDifferent, to define a list of instances that are different from each
other.

1 Other OWL DL properties:

1

The primitive owl:disjointWith. It expresses disjoint knowledge between
classes in the class taxonomy.

Table 2.4 summarizes the main features of the properties of the OWL KR ontology,
specifying their domain and range. If the value for the range is “not specified”, we
mean that the property can take any value which is not restricted to a specific class
of the OWL KR ontology. As we can see in the table, there are 24 properties defined
in this KR ontology. Besides, in OWL we can use the properties rdfs:subClassOf,
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rdfs:label,

rdfs:seeAlso, and rdfs:isDefinedBy from the RDF(S) KR ontology.
As described in the table, the OWL KR ontology does not specify any domain
or range for owl:versioninfo.

Table 2.4: Property descriptions of the OWL KR ontology.

Property name domain range
owl:intersectionOf owl:Class rdf:List
owl:unionOf owl:Class rdf:List
owl:complementOf owl:Class owl:Class
owl:oneOf owl:Class rdf:List
owl:onProperty owl:Restriction rdf:Property
owl:allValuesFrom owl:Restriction rdfs:Class
owl:hasValue owl:Restriction not specified
owl:someValuesFrom owl:Restriction rdfs:Class

owl:minCardinality

owl:Restriction

xsd:nonNegativelnteger
OWL Lite: {0,1}
OWL DL/Full: {0,..,N}

owl:maxCardinality

owl:Restriction

xsd:nonNegativelnteger
OWL Lite: {0,1}
OWL DL/Full: {0,..,N}

owl:cardinality

owl:Restriction

xsd:nonNegativelnteger
OWL Lite: {0,1}
OWL DL/Full: {0,..,N}

owl:inverseOf owl:ObjectProperty owl:ObjectProperty
owl:sameAs owl:Thing owl:Thing
owl:equivalentClass owl:Class owl:Class
owl:equivalentProperty rdf:Property rdf:Property
owl:samelndividual As owl:Thing owl:Thing
owl:differentFrom owl:Thing owl:Thing
owl:disjointWith owl:Class owl:Class
owl:distinctMembers owl:AllDifferent rdfiList
owl:versionInfo not specified not specified

owl:priorVersion

owl:Ontology

owl:Ontology

owl:incompatibleWith

owl:Ontology

owl:Ontology

owl:backwardCompatibleWith

owl:Ontology

owl:Ontology

owl:imports

owl:Ontology

owl:Ontology

To sum up, we can say that there are not many differences between the OWL KR
ontology and the DAML++OIL one. In fact, most of the changes imply changing the
names of the original DAML+OIL KR primitives, since they were not always easy
to understand by non-experts. Two other important changes are the removal of
qualified number restrictions (OWL is a SHIN language, according to the DL
terminology) and the inclusion of symmetry as a characteristic of properties. The
primitives for managing lists that were defined in the DAML+OIL KR ontology
have not been included in this ontology, since OWL allows the use of the recent
RDF(S) primitives for managing lists.

In Chapter 4 we will describe in detail how to use these primitives to implement
ontologies in OWL. We now present a small example of how to use them to define
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the class F1ight as the class Travel that has exactly one value for the attribute
flightNumber, whose type is integer, and that has a filler for the attribute
transportMeans with value “plane”.

<owl:Class rdf:ID="Flight">
<rdfs:comment>A journey by plane</rdfs:comment>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Travel"/>
<owl:Restriction owl:cardinality="1">
<owl:onProperty rdf:resource="#flightNumber"/>
<owl:allValuesFrom rdf:resource="&xsd;integer"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#transportMeans"/>
<owl:hasValue rdf:datatype="&xsd;string">
plane
</owl:hasValue>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

2.2 Top-level Ontologies

Top-level ontologies (aka upper-level ontologies) describe very general concepts
that are common across the domains and give general notions under which all the
terms in existing ontologies should be linked to. Sometimes top-level ontologies are
used to build domain ontologies, but often these are built first and then linked to
upper-level ontologies.

On the framework of the Cyc project, the following characteristics are identified
as desirable in a top-level ontology**:

a) It should be “universal”: every concept imagined in a specific ontology can be
correctly linked to the upper-level ontology in appropriate places, no matter
how general or specific the concept is, and no matter what the background of
the ontology builder is (nationality, age, native language, epoch, childhood
experiences, current goals, etc.). For example, a top-level ontology that just
classifies entities in physical objects and mental objects is not universal, since
processes and situations are not considered.

b) It should be “articulate”: on the one hand, there is a justification for every
concept of the top-level ontology. On the other hand, there are enough concepts
to enable and support knowledge sharing, natural language disambiguation,
database cleaning and integration, and other kinds of applications. For example,
a top-level ontology that classifies entities in mortal entities and immortal
entities could be (in the best case) useful for theology, but not for other fields.

'® http://www.cyc.com/cyc-2-1/cover.htm]
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In the next subsections, we will present the following top-level ontologies: the
top-level ontologies of universals and particulars, built by Guarino and colleagues,
Sowa’s top-level ontology, Cyc’s Upper Ontology, and one of the Standard Upper
Ontology working group. The top-level ontologies of universals and particulars are
available in WebODE, Cyc’s Upper Ontology is available in CycL and
DAMLAOIL, the Standard Upper Ontology is available in KIF and DAML++OIL.
We do not know of any implementation of Sowa’s top-level ontology.

2.2.1 Top-level ontologies of universals and particulars

Guarino and colleagues have built two top-level ontologies, as shown in Figure 2.8:
one of universals, and another of particulars. A universal is a concept”, like car or
traveler, while a particular is an individual like my car or John Smith.
Therefore, the terms car and traveler in a domain ontology can be linked to the
top-level of particulars through the relation Subclass-Of, and they can be linked to
the top-level of universals through the relation Instance-Of. Both top-level
ontologies are presented in this section.

The top-level ontology of universals (Guarino and Welty, 2000) contains
concepts whose instances are universals. This ontology has been obtained

top level of universals

Instanc e—y‘ W:anc e-Of

UNIVERSALS

top level of particulars

~ LY
Zubclass-Of Subclass-Of

F. ) !

Instance-Of Instance-Of

PARTICULARS

Figure 2.8: Relationship between particulars and universals.

' This is a simplified definition, but it is enough for the purpose of this book. For a complete definition
consult Guarino and Welty (2000).
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considering the philosophical notions of rigidity, identity and dependency™. Let us

examine these notions (Gangemi et al., 2001), which will be explained in the context

of the Ontoclean method in Chapter 3:

1 Rigidity. This notion is defined according to the idea of essence. A property is
essential to an instance if and only if it is necessary for this instance. Thus, a
property is rigid (+R) if and only if it is necessarily essential to all its instances;
a property is anti-rigid (~R) if and only if it is not essential for all its instances;
and a property is non-rigid (-R) if and only if it is not essential for some of its
instances. For example, the concept person is usually considered rigid, since
every person is essentially such. The concept traveler is considered anti-
rigid, since every traveler can possibly be a non-traveler once the journey has
finished. Finally, the concept red is non-rigid, since there are instances that are
essentially red (e.g., drop of blood), and instances that are not essentially
red (my pullover).

1 Identity. A property carries an identity criterion (+I) if and only if all its
instances can be (re)identified by means of a suitable “sameness” relation. A
property supplies an identity criterion (+O) if and only if such criterion is not
inherited by any subsuming property. For example, if we take the DNA as an
identity criterion, we can say that person not only carries the identity
criterion, but also supplies it. Besides, if traveler is a subclass of person,
then traveler only inherits the identity criterion of person, without
supplying any further identity criteria.

1 Dependency. An individual x is constantly dependent on the individual y if and
only if, at any time, x cannot be present unless vy is fully present, and y is not
part of x. For example, a hole in a wall is constantly dependent on the wall. The
hole cannot be present if the wall is not present. A property P is constantly
dependent (+D) if and only if, for all its instances, there exists something on
which the instances are constantly dependent. Otherwise, the property P is not
constantly dependent (-D). For instance, the concept hole is constantly
dependent because every instance of hole is constantly dependent. Note that
the constant dependence of a property is defined according to the constant
dependence of individuals.

Every concept of the top-level ontology of universals has four attributes: rigidity,
supplies identity, carries identity, and dependency. This ontology has been built
considering several combinations of values of these attributes (Welty and Guarino,
2001). For instance, the concept #ype is rigid, supplies identity, and carries identity
(nothing is explicitly stated about its dependency). This means that the concepts that
are instances of the concept fype will be rigid and will supply and carry identity.
Every concept of a specific domain will be an instance of at least one of the leaves
of the top-level of universals. Figure 2.9 presents the class taxonomy of this
ontology.

20 Another important notion is unity. However, it has not been used to classify the properties of this top-
level ontology of universals. Therefore, such a notion will not be presented until Chapter 3, where the
OntoClean method is described.
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Figure 2.9: Class taxonomy of the top-level ontology of universals.

The top-level ontology of particulars (Gangemi et al., 2001) holds general
concepts (for example, object) to which domain concepts can be linked with the
relation Subclass-Of. Figure 2.10 shows part of the class taxonomy of this ontology.
As we can see, the ontology contains three roots (abstract, concrete and
relation). It is being developed following the principles established in the
OntoClean method (Welty and Guarino, 2001) for cleaning ontologies, described in

Section 3.8.3.

‘ independent H dependent symbol structure set |qua11ty space

N

P
Em—

Subclass-0f

1nter categorial H intra-categorial |

Figure 2.10: Partial view of the class taxonomy of top-level ontology of particulars.

Let us suppose that we want to link concepts of our travel domain to the top-
level ontologies of universals and particulars. In this case, the domain concepts (i.c.,
car, traveler, etc.) will be subclasses of concepts of the top-level ontology of
particulars, and they will also be instances of concepts of the top-level ontology of
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universals. Instances like my car or John Smith are instances of classes linked to
the top-level of particulars.

Both the top-level ontology of universals and the top-level ontology of
particulars are available in the ontology engineering workbench WebODE, which
will be presented in Chapter 5. At the end of the year 2002, the former had 15
concepts while the latter had over 30 concepts.

2.2.2 Sowa’s top-level ontology

Sowa’s top-level ontology includes the basic categories and distinctions that have
been derived from a variety of sources in logic, linguistics, philosophy, and artificial
intelligence (Sowa, 1999). Sowa’s top-level ontology has 27 concepts, all of them
identified in Figure 2.11.

Object Process Schema Script Juncture Participation Description Histery Structure SituationReason Purpose

TSRS N N S =l

1

Figure 2.11: Sowa’s top-level ontology.

This ontology has a lattice structure where the top concept is the universal type
(represented as T in Figure 2.11), and the bottom concept is the absurd type (©). The
universal type contains all the possible instances of the ontology. The absurd type
does not have instances and is a subclass of every concept of the taxonomy. The
direct subclasses of the umiversal type are the following: independent, relative,
mediating, continuant, physical, abstract, and occurrent. By combining these
primitive concepts more concepts of the lattice are obtained, for example,

history = proposition A occurrent
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The structure of this top-level ontology is a lattice (see a definition in Section
3.6.2) because every pair of concepts of the taxonomy has, at least, a common direct
or indirect superclass, and each pair of concepts has, at least, a common direct or
indirect subclass. Let us take as an example the pair {proposition, occurrent},
where the common superclass is of the universal type, and a common subclass is
history. In this example, the class history could be represented as the intersection of
proposition and occurrent. In this top-level ontology, concepts can be obtained by
combining concepts from the upper levels.

2.2.3 Cyc’s upper ontology

Cyc’s Upper Ontology is contained in the Cyc Knowledge Base (Lenat and Guha,
1990), which holds a huge amount of common sense knowledge. The Cyc KB is
being built upon a core of over 1,000,000 assertions hand-entered and designed to
gather a large portion of what people normally consider consensus knowledge of the
world. It is divided into hundreds of microtheories (bundles of assertions in the same
domain) and is implemented in the CycL language.

Cyc’s Upper Ontology”' contains about 3,000 terms arranged in 43 topical
groups (fundamentals, time and dates, spatial relations, etc.). The class Thing is the
root of the ontology, and it is also the universal set. This means that when we link
terms from a domain ontology to Cyc’s Upper Ontology through the genls relation
(which is the Subclass-Of relation in CycL), every concept of the domain ontology is
a subclass of Thing, therefore, every instance of the domain ontology is an instance
of Thing. Cyc’s Upper Ontology has been built by performing the following steps:
(1) dividing the universal set into tangible and intangible, into the static thing versus
the dynamic process, into collection versus individual, etc.; and (2) refining the
result when new knowledge is introduced (such as new concepts, new Subclass-Of
relations, etc.). During the refining process, some of these categories might

disappear.
Individual
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Figure 2.12: Fragment of the class taxonomy of Cyc’s Upper Ontology.

! http://www.cyc.com/cyc-2-1/cover.html
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Figure 2.12 shows a fragment of Cyc’s Upper Ontology. As we can see, the
concepts Timelnterval and Event are subclasses of the concepts TemporalThing and
Intangible. A TemporalThing is an Individual. SomethingExisting, which is a
subclass of the concept TemporalThing, is partitioned in the concepts
PartiallyTangible and PartiallyIntangible. An IntangibleExistingThing is something
Partiallylntangible and Intangible.

Cycorp®, the company supplier of Cyc’s Upper Ontology, provides several tools
to assist users in the handling of this ontology. Such tools include hypertext links
that permit browsing directly some of the taxonomies and navigating among the
references (a topical listing of the upper ontology divided into subject-areas to
facilitate systematic study, etc.).

2.2.4 The Standard Upper Ontology (SUO)

The Standard Upper Ontology® is the result of a joint effort to create a large,
general-purpose, formal ontology (Pease and Niles, 2002). It is promoted by the
IEEE Standard Upper Ontology working group, and its development began in May
2000. The participants were representatives of government, academia, and industry
from several countries. The effort was officially approved as an IEEE standard
project in December 2000.

There are currently two “starter documents” agreed by the working group and
that may be developed into a draft standard. One of the documents is known as the
IFF (Information Flow Framework) Foundation Ontology, a meta-ontology based on
Mathematics and viewed from the set-theoretic perspective. The other one is known
as SUMO (Suggested Upper Merged Ontology). Part of its current structure is
shown in Figure 2.13.

Subclass-Of
E—

Disioint
Physical |«------- . ¥ Abstract

NS

‘Object H Process H Quantlty Attnbute H Class HRelatlon H Proposition H Graph H GraphElement ‘

I

Figure 2.13: Structure of the first levels of SUMO (May 2002).

2 http://www.cyc.org/
2 http://suo.ieee.org/
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The goal of SUMO is to create a comprehensive and consistent top-level
ontology from some of the best public sources, such as:
1 CNR’s group mereotopology (Borgo et al., 1996; Borgo et al., 1997).
1 Upper-level ontologies; e.g., Sowa’s upper ontology and Russell and Norvig’s
upper-level ontology (1995).
1 Time theories; e.g., James Allen’s temporal axioms (Allen, 1984).
{1 Plan and process theories (Pease and Carrico, 1997); etc.

Therefore, SUMO considers some high level distinctions, and contains temporal
concepts and processes. It is a modular ontology, that is, the ontology is divided into
sub-ontologies. The dependencies between the various sub-ontologies can be
outlined as Figure 2.14 shows.

structural Ontology

T

Basze Ontology

Setfclass Theory Mumeric Temporal Mereotopology
Graph Measure Processes ‘_ Objects
Includes
e
Cualities

Figure 2.14: Modular structure of SUMO.

To decide which concepts should be removed, added or preserved during the
evolution of this top-level ontology, a series of steps must be performed (Niles and
Pease, 2001):

1) Take the current version of the top-level ontology as the base and add, one by
one, lower-level ontologies to this base.

2) Eliminate from the top-level ontology the concepts not related to any concept of
the domain ontologies, and add other top-level concepts suitable to model the
lower level ontologies.

The people involved in the SUMO development are currently in the process of
augmenting each of the records in the noun database of WordNet with pointers to
SUMO concepts.
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2.3 Linguistic Ontologies

This section collects information on linguistic ontologies. The purpose of this type
of ontology is to describe semantic constructs rather than to model a specific
domain. They offer quite a heterogeneous amount of resources, used mostly in
natural language processing. The main characteristic of these ontologies is that they
are bound to the semantics of grammatical units (words, nominal groups, adjectives,
etc.).

Most linguistic ontologies use words as grammatical units. In fact, of the
ontologies reviewed in this section, only the Generalized Upper Model (GUM) and
SENSUS gather information on grammatical units that are bigger than words. Other
ontologies focus on the word meaning (e.g., WordNet). Moreover, in some of the
ontologies there is a one-to-one mapping between concepts and words in a natural
language (e.g., wordnets of EuroWordNet), while in others many concepts may not
map to any word in a language or may map to more than one in the same language
(e.g., Mikrokosmos).

There are also differences with respect to their degree of language dependency;
some linguistic ontologies depend totally on a single language (e.g., WordNet);
others are multilingual — i.e., are valid for several languages — (e.g., GUM); some
others contain a language-dependent part and a language-independent part (e.g.,
EuroWordNet); and others are language independent (e.g., Mikrokosmos).

The origin and motivations of these ontologies are varied and thus we have: on-
line lexical databases (e.g., WordNet), ontologies for machine translation (e.g.,
Sensus), ontologies for natural language generation (e.g., GUM), etc.

In the next sections we present the following ontologies: WordNet,
EuroWordNet, GUM, Mikrokosmos, and SENSUS. Some of these, as for example
SENSUS and GUM, are also considered top-level ontologies since they chiefly
contain very abstract concepts.

2.3.1 WordNet

WordNet (Miller et al., 1990; Miller, 1995) is a very large lexical database for
English created at Princeton University and based on psycholinguistic theories.
Psycholinguistics is an interdisciplinary field of research concerned about the
cognitive bases of linguistic competence (Fellbaum and Miller, 1990). WordNet
attempts to organize lexical information in terms of word meanings rather than word
forms, though inflectional morphology is also considered. For example, if you
search for trees in WordNet, you will have the same access as if you search for tree.

WordNet 1.7 contains 121,962 words and 99,642 concepts. It is organized into
70,000 sets of synonyms (“synsets”), each representing one underlying lexical
concept. Synsets are interlinked via relationships such as synonymy and antonymy,
hypernymy and hyponymy (Subclass-Of and Superclass-Of), meronymy and
holonymy (Part-Of and Has-a). Approximately one half of the synsets include brief
explanations of their intuitive sense in English. WordNet divides the lexicon into
five categories: nouns, verbs, adjectives, adverbs, and function words. Nouns are
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organized as topical hierarchies. Figure 2.15 shows part of the noun hierarchy where
terms concerning a person, his (her) components, his (her) substances, and his (her)
family organization, appear related. The only relations that we can see in the figure
are meronymy, antonymy, and hyponymy, since it is a very reduced view of the noun
hierarchy.

hypotymy antonymy INETONYII
Figure 2.15: A partial view of the category of nouns of WordNet.

Verbs are organized according to a variety of entailment relations. For example,
the verbs succeed and try are related through a backward implication, and buy and
pay are related through a temporal inclusion. With adjectives and adverbs the
relations of similarity and antonymy play an important role. For instance, dry is
related to sere, anhydrous, arid, etc., through the relation of similarity. Wet is also
related to humid, watery, or damp through the relation of similarity. Besides, dry and
wet are related by means of the relation of antonymy.

2.3.2 EuroWordNet

EuroWordNet (Vossen, 1998; 1999)* is a multilingual database with wordnets for
several European languages (Dutch, Italian, Spanish, German, French, Czech,
Estonian). Some of the institutions involved in this project are: University of
Amsterdam (The Netherlands), UNED (Spain), and University of Sheffield (United
Kingdom).

The wordnets are structured in EuroWordNet in the same way as WordNet is for
English, with interrelated synsets. The wordnets are linked to an Inter-Lingual-
Index. Through this index the languages are interconnected so that it is possible to
go from the words in one language to similar words in any other language, and to
compare synsets and their relations across languages. The index also gives access to

* http://www.hum.uva.nl/~ewn/
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a shared upper-level ontology of 63 semantic distinctions. This upper-level ontology
provides a common semantic framework for all the languages, while language
specific properties are maintained in individual wordnets. This index can be used for
monolingual and cross-lingual information retrieval.

Figure 2.16 shows a small section of EuroWordNet. We can see that the English
words: move, ride, drive, etc., are related to words in other languages with similar
meaning through the Inter-Lingual-Index. Therefore, we can find language
dependent links inside words in the same language (represented by III), independent
language links that connect the Inter-Lingual-Index with the domain ontologies and
with the upper-level ontology (represented by I), and links that connect the Inter-
Lingual-Index with the synsets of other different languages (represented by II).

The EuroWordNet project was completed in the summer of 1999, and the design
of the EuroWordNet database, the defined relations, the upper ontology and the
Inter-Lingual-Index are now frozen. Nevertheless, many other institutes and
research groups are developing similar wordnets in other languages (European and
non-European) using the EuroWordNet specification. If compatible, these wordnets
can be added to the database and, through the index, connected to any other
wordnet. Wordnets are currently developed, at least, for the following languages:
Swedish, Norwegian, Danish, Greek, Portuguese, Basque, Catalan, Romanian,
Lithuanian, Russian, Bulgarian and Slovene.

The cooperative framework of EuroWordNet is continued through the Global
WordNet Association®, a free and public association created to stimulate the
building of new wordnets in EuroWordNet and WordNet.

2.3.3 The Generalized Upper Model

The Generalized Upper Model (GUM)* (Bateman et al., 1995) is the result of a
continuous evolution that began with the Penman Upper Model, used in the Penman
text generation system (Bateman et al., 1990). Three organizations were involved in
the development of GUM: the Information Sciences Institute (ISI, USA), GMD/IPSI
(Germany), and the Institute for the Technological and Scientific Research (CNR,
Italy).

GUM is a linguistic ontology bound to the semantics of language grammar
constituents. Unlike other linguistic ontologies, such as WordNet, it does not
describe the semantics of words but the semantics that can be expressed in bigger
grammatical units such as nominal groups, prepositional phrases, etc.

This ontology has two hierarchies, one of concepts and another of relations.
Figure 2.17 shows the first levels of these hierarchies.

2 http://www.hum.uva.nl/~ewn/gwa.htm
% http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html
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Figure 2.17: First levels of GUM hierarchies.

These taxonomies have their origin in Halliday’s (1985) functional grammar,
but can be applied to any theory. The concept hierarchy represents the basic
semantic entities and includes configurations of the processes, and the different
kinds of objects and qualities. A configuration is a set of objects that participate in
some activity or that are in some state. An example of configuration is
being&having, which indicates the existence of something or a relation of identity,
possession, attribution, etc. The relation hierarchy represents the participants and
the circumstances involved in the processes, and the logical combinations between
them. The actor, the message, or the attribute are examples of participants.
Company, comparison, cause, mode, time, space, etc., express circumstances.

2.3.4 The Mikrokosmos ontology

The Mikrokosmos Ontology”” (Mahesh and Nirenburg, 1995; Mahesh, 1996) is a
language-independent ontology that is part of the Mikrokosmos machine translation
project on the domain of mergers and acquisitions of companies. The New Mexico
State University, Carnegie Mellon University and some other organizations of the
US government have participated in this project.

Mikrokosmos is not committed to any particular ontological theory, it is built on
more practical considerations (Mahesh, 1996). Its main design principle is a careful
distinction between language-specific knowledge represented in the lexicon, and
language-neutral knowledge represented in the ontology. Lexicon entries represent
word or phrase meanings by mapping these entries to concepts of the ontology.

Figure 2.18 shows the first levels of the ontology. Currently, this ontology has
several thousands of concepts, most of which have been generated by retrieving
objects, events, and their properties from different sources. Each concept is
represented by a frame, which has a name in English, and the following attributes
(Mahesh and Nirenburg, 1995): a definition that contains an English string used
solely for human browsing purposes, a time-stamp for bookkeeping, taxonomy links

" http://ctl.nmsu.edu/mikro (user and password are required)
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(Subclass-Of and Instance-Of), etc. English terms are also used to refer to each
concept in the ontology.

Material <o ..
Physical-Object <E Separate Frtity < .

Place %

Representational 4-
Object MWental-Object <: b

Ahstract-Oject

Organization %- -
Social-Object < Geopolitical Entity <o
Social-Role %-

Physical-Event Perceptual Event <o ...

/ Cognitive-Event
All + Fvent \: Iflental-Fvent e
Social-Event Comrminicative-Event 4

Sealar-Afiritute. <
Aftribute <
Literal- Attribute <o -
Property
Ewvent-Felation %-
Relation é Object-Relation 4-
T Event-Object-Relation < ..

Figure 2.18: Mikrokosmos class taxonomy (from Mahesh and Nirenburg, 1995).

In parallel to the development of the Mikrokosmos ontology, a Spanish lexicon
of several thousands words has been built. These words cover a wide variety of
categories, though they put particular emphasis on the domain of mergers and
acquisitions of companies.

2.3.5 SENSUS

SENSUS* (Swartout et al., 1997) is a natural language-based ontology developed by
the Natural Language group at ISI to provide a broad conceptual structure for
working in machine translation.

SENSUS contains more than 70,000 nodes representing commonly encountered
objects, entities, qualities and relations. This ontology provides a hierarchically
structured concept base (Knight and Luck, 1994). The upper (more abstract) region
of the ontology is called the Ontology Base and consists of approximately 400 items
that represent essential generalizations for the linguistic processing during
translation. The middle region of the ontology provides a framework for a generic

% http://www.isi.edu/natural-language/projectsf ONTOLOGIES.html
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world model and contains items representing many word senses in English. The
lower (more specific) regions of the ontology provide anchor points for different
languages.

The current content of the SENSUS ontology was obtained by extracting and
merging information from various electronic knowledge sources. This process, as
shown in Figure 2.19, began by merging, manually, the PENMAN Upper Model,
ONTOS (a very high-level linguistically-based ontology) and the semantic
categories taken from a dictionary. As a result, the Ontology Base was produced.
WordNet was then merged (again, by hand) with the Ontology Base, and a merging
tool was used to merge WordNet with an English dictionary. Finally, and to support
machine translation, the result of this merge was increased by Spanish and Japanese
lexical entries from the Collins Spanish/English dictionary and the Kenkyusha
Japanese/English dictionary.

Upper Sermmtc
Maodel Categories High Level
e ity
\ wh Based Ontology

Fli 400 terms
Ditomary | Y (00rme)

\ y il \ Middle Structure
& and Terms

""'-..._* K—f
Collins

A Spanish English {

™ el N

A — ijha f Multilinguality

Figure 2.19: SENSUS ontology building process, by extracting and merging information from
existing electronic resources (adapted from Swartout et al., 1997).

2.4 Domain Ontologies

As we explained in Chapter 1, domain ontologies (Mizoguchi et al., 1995; van Heijst
et al.,, 1997) are reusable vocabularies of the concepts within a domain and their
relationships, of the activities taking place in that domain, and of the theories and
elementary principles governing that domain. In this section, we will deal with
representative ontologies in the domains of e-commerce, medicine, engineering,
enterprise, chemistry, and knowledge management.
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2.4.1 E-commerce ontologies

The popularity of the Internet and the huge growth of new Internet technologies in
recent years have brought about the creation of many e-commerce applications
(Fensel, 2000; Berners-Lee, 1999). Technology is not the only key factor for the
development of the current e-applications; the context of e-commerce, especially the
context of B2B (Business to Business) applications, requires an effective
communication between machines. As a consequence, several standards and
initiatives started to ease the information exchange between customers and
suppliers, and among different suppliers, by providing frameworks to identify
products and services in global markets.

In this section, we present five different proposals to classify products in the e-
commerce domain: UNSPSC¥, NAICS*, SCTG", e-cl@ss* and RosettaNet*. These
proposals have been agreed by a wide group of people and organizations, and are
codified using different computation languages and formats. Therefore, they provide
consensus and also top-level terms that can be used to classify products and services
in vertical domains*. However, they cannot be considered heavyweight ontologies
but simply lightweight ones, since they consist of concept taxonomies and some
relations among them.

The United Nations Standard Products and Services Codes (UNSPSC) has been
created by the United Nations Development Programme (UNDP) and Dun &
Bradstreet. UNSPSC is a global commodity code standard that classifies general
products and services and is designed to facilitate electronic commerce through the
exchange of product descriptions.

Initially the UNDP managed the code of the Electronic Commerce Code
Management Association (ECCMA)*. This partnership finished, and as a result
there are now two different versions of the UNSPSC: the United Nations Standard
Products and Services Codes owned by the UNDP, and the Universal Standard
Products and Services Classification managed by the ECCMA. In October 2002,
both organizations signed an agreement in which they proposed to have one single
version of the classification, which has marked the beginning of the UNSPSC
unification project.

The UNSPSC coding system is organized as a five-level taxonomy of products,
each level containing a two-character numerical value and a textual description.
These levels are defined as follows:

2 http://www.unspsc.org/

30 http://www.naics.com

3! http://www.bts.gov/programs/cfs/sctg/welcome.htm

32 http://www.eclass.de/

33 http://www.rosettanet.org/

3 Vertical portals usually serve a particular industry and provide deep domain expertise and content.
They are normally related with traditional industry segments, such as Electronics, Automotive, Steel, etc.
Horizontal portals are characterized by the large number of disperse suppliers and of distributors and
resellers.

3 http://www.eccma.org
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Segment. The logical aggregation of families for analytical purposes.

Family. A commonly recognized group of inter-related commodity categories.
Class. A group of commodities sharing a common use or function.

Commodity. A group of products or services that can be substituted.

Business Function. The function performed by an organization in support of the
commodity. This level is seldom used.

= —a —a —_a _—_a

UNSPSC version 6.0315 contains about 20,000 products organized in 55 segments.
Segment 43, for instance, which deals with computer equipment, peripherals and
components, contains about 300 kinds of products. Figure 2.20 shows part of this
segment.

segment Communications, Computer Equipment, ... —
43 Subclass-Of
Jamily Software Hw & Accessories| |Communications & Computer Supplies
4316 4317 4318

|

class Audio & Visual Accessories
431721
cammadity Television Cards Eadio Cards Multimedia Kits
43172104 43172105 43172106

Figure 2.20: Part of the classification of UNSPSC for computer equipment.

NAICS (North American Industry Classification System) was created by the
Census Office of USA in cooperation with the Economic National Classification
Committee of USA, Statistics Canada, and Mexico’s Instituto Nacional de
Estadistica, Geografia e Informatica (INEGI). It classifies products and services in
general, and is used in USA, Canada and Mexico. NAICS was developed after the
Standard Industrial Classification (SIC) was revised. SIC was created in the 1930s to
classify establishments according to the type of activity they were primarily engaged
in and to promote the comparison of their data describing various facets of the US
economy.

NAICS products are identified by means of a six-digit code, in contrast to the
four-digit SIC code. The NAICS code includes a greater number of sectors and
permits more flexibility to design subsectors. It also provides additional details not
necessarily appropriate for all three NAICS countries. The international NAICS
agreement fixes only the first five digits of the code. The sixth digit, when used,
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identifies subdivisions of NAICS industries that consider the user’s needs in
individual countries. Thus, six-digit US codes may differ from counterparts in
Canada or Mexico, but up to the five-digit level they are standardized. The general
structure is:

XX Industry Sector (20 broad sectors up from 10 SIC)
XXX Industry Subsector

XXXX Industry Group

XXXXX Industry

XXXXXX US, Canadian, or Mexican National specific

Table 2.5 presents the correspondence between some NAICS Sectors and SIC
Divisions. Many of the new sectors reflect parts of SIC divisions, such as the
Utilities and Transportation sectors, that are split from the SIC division
Transportation, Communications, and Public Utilities.

Table 2.5: Correspondence between some NAICS Sector and SIC Divisions.

Code NAICS Sectors SIC Divisions

11 Agriculture, Forestry, Fishing, and Hunting |Agriculture, Forestry and Fishing
21 Mining Mining

23 Construction Construction

31-33 |Manufacturing Manufacturing

22 Utilities Transportation, Communications, and
48-49 |Transportation and Warehousing Public Utilities

42 Wholesale Trade Wholesale Trade

44-45 |Retail Trade .

72 Accommodation and Food Services Retail Trade

gg i?;né:tZZ? lllne s;l;n:; d Leasing Finance, Insurance, and Real Estate

SCTG (Standard Classification of Transported Goods) was sponsored by the
Bureau of Transportation Statistics (BTS). It is a product classification for collecting
and reporting Commodity Flow Survey (CFS) data. SCTG was developed by the US
Department of Transportation’s (DOT), Volpe National Transportation Systems
Center (Volpe Center), Standards and Transportation Divisions of Statistics Canada,
US Bureau of the Census (BOC), and the US Bureau of Economic Analysis (BEA).

This classification has four levels, each of which follows two important
principles. First, each level covers the universe of transportable goods, and second,
each category in each level is mutually exclusive. The general structure is:

XX Product Category
XXX Commodities or Commodity Groups (different in US and Canada)
XXXX Domestic Freight Transportation Analyses

XXXXX  Freight Movement Data

The first level of the SCTG (two digits) consists of 43 product categories. These
categories were designed to emphasize the link between industries and their outputs.
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The second level (three digits) is designed to provide data for making comparisons
between the Canadian goods and the US goods. Categories specified at this level
consist of commodities or commodity groups for which very significant product
movement levels have been recorded in both the United States (US) and Canada.
The third level (four digits) is designed to provide data for domestic freight
transportation analyses. Four-digit categories may be of major data significance to
either the US or Canada, but not necessarily to both. The fourth level (five digits) is
designed to provide categories for collecting (and potentially reporting) freight
movement data. Product codes at this level have been designed to create statistically
significant categories for transportation analysis.

Figure 2.21 presents a partial view of this classification. We can see that in this
particular classification levels two and three do not contribute with additional
classes to the root of the hierarchy. This is so because every branch of the tree has
four levels.

| 01Live animals and live fish |

I

| 010 Live animals and five fish |

T

0100 Liwre anitnals and live fish

T TR

[ 01001 Bovine animals || 01002 Swine || 01003 Poultry || 01004 Fish including aquarium |[ 01005 Other inchuding
horses, sheep, goats, efc.

Figure 2.21: Partial view of the SCTG classification.

E-cl@ss is a German initiative to create a standard classification of material and
services for information exchange between suppliers and their customers, and
companies such as BASF, Bayer, Volkswagen-Audi, SAP, etc., make use of it.

The e-cl@ss classification consists of four levels of concepts (called material
classes), with a numbering code similar to the one used in UNSPSC (each level adds
two digits to its previous level). These four levels are: Segment, Main Group, Group
and Commodity Class. Inside the same commodity class we can have several
products (in this sense, several products can share the same code).

E-cl@ss contains about 12,000 products organized in 21 segments. Segment
number 27%*, which deals with Electrical Engineering, contains about 2,000
products. The main group 27-23, which deals with Process Control Systems and
with other computer devices, contains about 400 concepts. Figure 2.22 shows a
partial view of this classification.

36 Please note that the numbering of segments is not consecutive.
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EI Lok Subclass-Of
segment Electrical enginesring —_—
27-00-00-00
ProzeBleitsystem (FL3) Signalverarbeitung
main group Process control system (FCS) Bignal processing
27-23-00-00 27-21-00-00
/ T \
PL3-Komponenten ( Teile) MefRanlage, Regel-, Stever-, PLS (kompl )
L PCS components (parts) Ieas. control inst. PCS (complete)
27-23-02-00 27-23-01-00
Bedien- Darstellungskomponente (FLS) Software (PLS)
darinn ity thiss Oper., todeling components (FC3) Software (PCS)
27-23-02-03 27-23-02-13
Farbrnonitor (PLS) Grafikdarte (PL3) Monitor (PLS)
Color monitor (PCS) Graphic card (PC3) Monitor (PCS)

Figure 2.22: Part of the classification of e-cl@ss for electrical engineering products (German
and English).

E-cl@ss provides a set of attributes for every product that is a leaf in the
classification. The set of attributes is an addition of individual characteristics
describing the related commodity. This set distinguishes e-cl@ss from UNSPSC and
offers a solution to the shallowness of that. For example, PC System (with code 24-
01-99-03) has attributes like product type, product name, etc., in e-cl@ss.

The e-cl@ss search tool, which is available on-line”, allows finding terms with
an interface in different languages (German, Spanish, English and Czech). In fact,
the terms found are presented in any of these languages. The e-cl@ss classification
can also be downloaded from the same URL.

The RosettaNet classification has been created by RosettaNet, which is a self-
funded, non-profit consortium of about 400 companies of Electronic Components,
Information Technology, Semiconductor Manufacturing and Solution Provider
companies. Started in the IT industry, RosettaNet is currently being expanded to
other vertical areas, notably the automotive, consumer electronics and
telecommunications industries.

The RosettaNet classification does not use a numbering system, as UNSPSC
does, but is based on the names of the products it defines. This classification is

T http://www.eclass.de/



The Most Outstanding Ontologies 91

related to the UNSPSC classification and provides the UNSPSC code for each
product defined in RosettaNet. This classification has only two levels in its product
taxonomy:

1 RN Category. A group of products, such as Video Products.

1 RN Product. A specific product, such as Television Card, Radio Card, etc.

Category Wideo Products Subclass-0Of
 —
Product Video Chip H Eadic Card ‘ ‘ Television Card | ‘ Monitor

Figure 2.23: Partial view of the RosettaNet classification.

The RosettaNet classification consists of 14 categories and about 150 products.
It should be added that RosettaNet is more specific than the UNSPSC classification.
Figure 2.23 shows a small section of the RosettaNet classification related to video
products for computer equipment, and table 2.6 presents the classification structured
as in its original Microsoft Excel format. Unlike in the previous formats, the order of
contents here is of great importance, since the relationship between products and the
category they belong to are given by the order in which they appear. Hence Monitor,
RadioCard, TelevisionCard and VideoChip are products from the category Video
Products in the RosettaNet classification.

Table 2.6: Source format for the RosettaNet classification of video products.

RosettaNet RosettaNet UNSPSC Code UNSPSC
Category Name| Product Name Code Name
Video Products

Monitor 43172401 Monitors

Radio Card 43172105 Radio Cards

Television Card (43172104 Television Cards

Video Chip 321017 Hybrid Integrated Circuits

In this section, we have described five classifications of products and services
(UNSPSC, NAICS, SCTG, e-cl@ss, and RosettaNet), which present a big overlap
between them, so that a product or service could be classified in different places in
each classification. The proliferation of initiatives reveals that B2B markets have not
reached a consensus on coding systems, on level of detail, on granularity, etc., which
is an obstacle for the interoperability of applications following different standards.
For instance, an application that uses the UNSPSC code cannot interoperate with an
application that follows the e-cl@ss coding system. To align such initiatives, some
works have proposed to establish ontological mappings between existing standards
(Bergamaschi et al., 2001; Corcho and Gémez-Pérez, 2001; Gordijn et al., 2001).
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Figure 2.24 shows an example of Equivalent-To and Subclass-Of relations
between concepts of the RosettaNet and the UNSPSC classifications. The concept
Video Chip of the RosettaNet classification is a subclass of the concept Hybrid
Integrated Circuits of the UNSPSC classification, the concept Monitor of
RosettaNet is equivalent to the concept Monitors of UNSPSC, etc. As we can see,
two sibling concepts in RosettaNet are classified in different UNSPSC classes:
Monitor and Radio Card are subclasses of the same concept in RosettaNet (Video
Products), while their equivalent concepts in UNSPSC (Monitors and Radio Cards
respectively) are subclasses of different concepts in that classification (Monitors &
Displays and Radio Cards respectively).

Communications, Computer Equipment,. ..

43

UNSPSC Hybrid Integrated Circuits Hur & Accessories
321017 4317
" f ™~
Monitors & Displays Audio & Visual Accessories
431724 431721
Subclass-Of Monitors Television Cards Radio Cards
43172401 43172104 43172105

Video
Products

Telewision
Card

Video Chip

RosettaNet

Figure 2.24: Equivalence relationships between the RosettaNet and UNSPSC classifications
(Corcho and Gomez-Pérez, 2001).

2.4.2 Medical ontologies

Medical ontologies are developed to solve problems such as the demand for the
reusing and sharing of patient data, the transmission of these data, or the need of
semantic-based criteria for statistical purposes. The unambiguous communication of
complex and detailed medical concepts is a crucial feature in current medical
information systems. In these systems several agents must interact between them in
order to share their results and, thus, they must use a medical terminology with a
clear and non-confusing meaning.
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GALEN* (Rector et al, 1995), developed by the non-profit organization
OpenGALEN, is a clinical terminology represented in the formal and medical-
oriented language GRAIL (Rector et al., 1997). This language was specially
developed for specifying restrictions used in medical domains. GALEN was
intended to be used with different natural languages and integrated with different
coding schemata. It is based on a semantically sound model of clinical terminology
known as the GALEN COding REference (CORE) model. Figure 2.25 shows the
GALEN CORE top-level ontology.

Top Thing Subclass-Of

e

Associated-TWith

Domain Attribute

Diomain Category

Generalised Generalised Generalised Modifier Walue Type

ey Structure Process Substance Concept
A A

\ | Col?ection HAspect ” Tnit || Modality H Role "GeneralLevelOf‘Specification

.

y
i 3
1

¥ h |
| Feature H State H Selector ” Status ‘

Figure 2.25: GALEN CORE top-level ontology.

The GALEN CORE top-level ontology establishes four general categories

(which are subclasses of DomainCategory):

1 Structures (GeneralisedStructure), which are abstract or physical things with
parts that are time-independent (such as microorganism, protocol or heart).

1 Substances (GeneralisedSubstance), which are continuous abstract or physical
things that are time-independent, such as bile, drugs or radiation.

1 Processes (GeneralisedProcess), which are changes that occur over time, such
as irradiation, clinical act or breathing.

1 Modifiers (ModifierConcept), which refine or modify the meaning of the other
three categories, such as severe diabetes. In this ontology the following types of
modifiers are considered: modifiers of aspect (classified in feature, state,
selector, and status), unit, modality, role, general level of specification, and
collection.

The category ValueType is also a subclass of DomainCategory. It defines value
types such as Integer, Ordinal, etc. Besides, the category Phenomenon is included in
this top-level ontology, as shown in figure 2.25. It gathers the medical intuitions of
Disease and Disorder and it is associated with domain categories, more specifically

3 http://www.opengalen.org/
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with structures, processes, and substances, and with the modifiers of feature, state,
and collection.

Finally, the GALEN CORE top-level ontology defines relationships between
concepts that belong to general categories. These relationships are called attributes
(DomainAttribute) and are divided into two types: constructive attributes, which
link processes, structures and substances together; and modifier attributes, which
link processes, structures and substances to modifiers.

UMLS® (Unified Medical Language System), developed by the United States
National Library of Medicine, is a large database designed to integrate a great
number of biomedical terms collected from various sources (over 60 sources in the
2002 edition) such as clinical vocabularies or classifications (MeSH, SNOMED,
RCD, etc.).

UMLS is structured in three parts: Metathesaurus, Semantic Network and

Specialist Lexicon.

9 The Metathesaurus contains biomedical information about each of the terms
included in UMLS. If a term appears in several sources, which is usual, a
concept will be created in UMLS with a preferred term name associated to it.
The original source information about the terms (such as, definition, source,
etc.) is attached to the concept and some semantic properties are also specified,
such as concept synonyms, siblings and parents, or the relationships between
terms. In the UMLS edition of the year 2002, the Metathesaurus contained
about 1,5 million terms.

E— ) )
Biologic
Subclaszs-Of Function
Physiologic Pathologic
Function Function
Organiztn Organ s Cell Iolecular Disease or Gl Exp sl
Fincti Tizsue Fincti Funct Sundr Iolecular Model of
HREHI Function HILCHN et YIRS Dysfunction Disease
b b /v\
Mlental Getietic I\-'Ientgl o Meoplastic
P Functi Behavioral P
TOCESS unction Dysfunction TOCESS

Figure 2.26: Part of the Semantic Network of the UMLS ontology.

3 http://www.nih.gov/research/umls/
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1 The Semantic Network is a top-level ontology of biomedical concepts and
relations among these concepts. Figure 2.26 shows a partial view of this top-
level ontology. The Semantic Network was not derived from the biomedical
sources integrated in UMLS but created as a part of UMLS with the aim of
providing a consistent structure or categorization in which the Metathesaurus
concepts are included. Each Metathesaurus concept is attached to a concept or
concepts of the Semantic Network. Thus, the Semantic Network was introduced
in order to solve the heterogeneity among the UMLS sources, and it could be
considered the result of the integration of the UMLS sources. In the 2002
edition, the Semantic Network contained 134 top-level concepts and 54
relationships among them.

1 The Specialist Lexicon contains syntactic information about biomedical terms to
be used in natural language processing applications.

ON9* (Gangemi et al., 1998) is a medical set of ontologies that includes some
terminology systems, like UMLS. Figure 2.27 shows an inclusion network of some
ONO9 ontologies. Here, ontologies are represented with boxes. Thick dashed boxes
are sets of ontologies (some show the elements explicitly). Continuous arrows mean
included in, and dashed arrows mean integrated in. The ontologies at the top of the
hierarchy are the Frame Ontology and the set of KIF ontologies (Gangemi et al.,
1998).

structuring ontologies
,,_/«'—{ titne | |layers | |actants assessmmt‘ i"::z}:nnal m;i Ell:al ;
structural ontologies / oL Vs v
 [basic-sortals | [ processes | [ objects |4</’_‘ 2
/ i o0-grail-core E
infegrated- | 1 |0-snomed-111}:
: - ; mmedical-ontology i '
|systams biologic-ohjects ' :
clinical activities |—»|surgical activities | i[ o-gabrieli |
ontolingua traslation
clinical guidelines onfologies

*substemticd ontologies

**epatial ontologies

i ‘merunymy conexity

Figure 2.27: A significant subset of the inclusion network of the ONO library of ontologies
(from Gangemi et al., 1998).

“° http://saussure.irmkant.rm.cnr.it/ON9/index.html
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To link these ontologies with the generic ontology library several ontologies
have been defined: Structuring-Concepts, Meta-Level-Concepts and the Semantic-
Field-Ontology. The sets of Structural ontologies and of Structuring ontologies
contain generic ontologies. Particularly, the Integrated-Medical-Ontology includes
all the generic ontologies used to gather the terminological ontologies of the five
terminological systems.

2.4.3 Engineering ontologies

Engineering ontologies contain mathematical models that engineers use to analyze
the behavior of physical systems (Gruber and Olsen, 1994). These ontologies are
created to enable the sharing and reuse of engineering models among engineering
tools and their users. Among the various engineering ontologies, the EngMath
ontologies and PhysSys deserve special mention.

EngMath (Gruber and Olsen, 1994) is a set of Ontolingua ontologies developed for
mathematical modeling in engineering. These ontologies include conceptual
foundations for scalar, vector, and tensor quantities as well as functions of
quantities, and units of measure.

When the EngMath ontologies were designed, the developers had three kinds of
uses in mind. First, these ontologies should provide a machine and human-readable
notation for representing the models and domain theories found in the engineering
literature. Second, they should provide a formal specification of a shared
conceptualization and a vocabulary for a community of interoperating software
agents in engineering domains. And third, they should put the base for other
formalization efforts including more comprehensive ontologies for engineering and
domain-specific languages.

In Figure 2.28, we can see some of the ontologies that make up EngMath:

1 Abstract-Algebra. 1t defines the basic vocabulary for describing algebraic
operators, domains, and structures such as fields, rings, and groups.

1 Physical-Quantities. This ontology models the concept of physical quantity. A
physical quantity is a measure of quantifiable aspect. The ontology Physical-
Quantities has 11 classes, three relations, 12 functions (addition, multiplication,
division, etc.), and two instances.

1 Standard-Dimensions. It models the physical quantities most commonly used. It
has 18 classes (mass quantity, length quantity, temperature quantity, etc.), and
27 instances.

1 Standard-Units. This ontology defines a set of basic units of measure. It has one
class (Si-Unit, that is, unit of the International System), and 60 instances
(kilogram, meter, Celsius-degree, etc.).

1 Scalar-Quantities. This ontology permits modeling quantities whose magnitude
is a real number, for example, “6 kilograms”. It has one class (scalar quantity),
six functions (which specialize functions of the ontology Physical-Quantities
for scalar quantities), and one instance.
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Figure 2.28: Structure of the EngMath ontologies (from Gruber and Olsen, 1994).

EngMath has been an important experimental base to establish the design
criteria for building ontologies described in Section 1.6.

PhysSys (Borst, 1997) is an engineering ontology for modeling, simulating and
designing physical systems. It forms the basis of the OLMECO library*, a model
component library for physical systems such as heating systems, automotive systems
and machine tools. PhysSys formalizes the three viewpoints of physical devices:
system layout, physical process behavior and descriptive mathematical relations.

I mereology |

l extend

| topology |
extend

T

| system theory |

speciclize specialize
F

| component | | process | | Engldath [

View of View of /ﬁw of

Figure 2.29: Structure of the PhysSys ontologies (from Borst, 1997).

! http://www.rt.el.utwente.nl/bnk/olmeco.htm
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Figure 2.29 gives a general view of the structure of PhysSys ontology. As we
can observe, this structure is a pyramid where the most specific ontologies (the
nearest to the base) import the most general ones. Next, we describe briefly each of
the PhysSys ontologies:

1 Mereology Ontology. 1t defines the relation Part-Of and its properties. This
relation permits stating that devices are formed by components, which in their
turn, can be made up of smaller components. The Mereology Ontology is an
Ontolingua implementation of the Classical Extensional Mereology described in
Simons (1987).

1 Topology Ontology. It defines the relation is-connected-to and its properties.
This ontology is useful to describe the physical behavior of devices since it
represents how the components interact inside the system.

1 System Theory Ontology. It defines standard system-theoretic notions such as
system, sub-system, system boundary, environment, etc.

1 Component Ontology. 1t is focused on the structural aspects of devices and is
useful for representing what kind of dynamic processes occur in the system. The
Component Ontology is constructed with the Mereology Ontology, the Topology
Ontology, and the System Theory Ontology.

1 Physical Process Ontology. It specifies the behavioral view of physical systems.

1 Mathematical Ontology. 1t defines the mathematics required to describe
physical processes.

2.4.4 Enterprise ontologies

Enterprise ontologies are usually created to define and organize relevant knowledge
about activities, processes, organizations, strategies, marketing, etc. All this
knowledge is meant to be used by enterprises. Here, we will present the Enterprise
Ontology and TOVE. Both have been essentially the experimental basis of some
methodological approaches of ontology engineering presented in Chapter 3.

The Enterprise Ontology” (Uschold et al., 1998) was developed within the
Enterprise Project by the Artificial Intelligence Applications Institute at the
University of Edinburgh with its partners IBM, Lloyd’s Register, Logica UK
Limited, and Unilever. The project was supported by the UK's Department of Trade
and Industry under the Intelligent Systems Integration Programme (project
IED4/1/8032). This ontology contains terms and definitions relevant to businesses. It
is implemented in Ontolingua and it has 92 classes, 68 relations, seven functions and
10 individuals. Figure 2.30 shows a partial view of the class taxonomy.

Conceptually, the Enterprise Ontology is divided into four main sections:

T Activities and processes. The central term here is Activity, which is intended to
capture the notion of anything that involves doing, particularly when this
indicates action. The concept of Activity is closely linked to the idea of the
Doer, which may be a Person, Organizational-Unit or Machine.

2 http://www.aiai.ed.ac.uk/~entprise/enterprise/ontology.html
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Subclass-Of EO-Entity

‘ Activity-Or-Spec ‘ | Dec1510n EO Set | ‘ Employment-Contract |

R

‘ Activity ‘ ‘ Activity Spec | | Set-Of-Customers | | Set-Of-Products H Set-Of-Vendors |

Figure 2.30: Partial view of the taxonomy of the Enterprise Ontology.

1  Organization. The central concepts of the Organization section are: Legal-Entity
and Organizational-Unit.

T Strategy. The central concept of this section is Purpose. Purpose captures the
idea of something that a Plan can help achieve or the idea that an Organization-
Unit can be responsible for. In fact, this section includes any kind of purpose,
whether in a level of organization and time scale (normally called strategic), or
in a detailed and short term.

1 Marketing. The central concept of this section is Sale. A Sale is an agreement
between two Legal-Entities for the exchange of a Product for a Sale-Price.
Normally the Products are goods or services and the Sale-Price is monetary,
although other possibilities are included. The Legal-Entities play the (usually
distinct) roles of Vendor and Customer. A Sale may have been agreed on in the
past, and a future Potential-Sale can be envisaged, whether the actual Product
can or cannot be identified and whether it exists or not.

This ontology has been a relevant experimental foundation for the Uschold and
King’s (1995) approach to develop ontologies, which is described in Chapter 3.

The TOVE* (TOronto Virtual Enterprise) (Fox, 1992) project is being carried out
by the Enterprise Integration Laboratory (EIL) at the University of Toronto. Its goal
is to create a data model able (1) to provide a shared terminology for the enterprise
that agents can both understand and use, (2) to define the meaning of each term in a
precise and unambiguous manner, (3) to implement the semantics in a set of axioms
that will enable TOVE to deduce automatically the answer to many “common sense”
questions about the enterprise, and (4) to define a symbology for depicting a term, or
the concept constructed thereof in a graphical context.

TOVE ontologies are implemented with two different languages: C++ for the
static part, and Prolog for the axioms.

Figure 2.31 shows the structure of the TOVE ontologies. Up to now, the
existing ontologies developed to model Enterprises are: Foundational Ontologies
(Activity and Resource) and Business Ontologies (Organization, Quality, Products
and Requirements). These ontologies cover activities, state, causality, time,
resources, inventory, order requirements, and parts. They have also axiomatized the
definitions for portions of the knowledge of activity, state, time, and resources.

“ http://www.eil.utoronto.ca/tove/toveont.html
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Axioms are implemented in Prolog and provide answers for common-sense
questions via deductive query processing.

Enterprize Design Ontology
Project Ontology

Waterial Flow Ontology
EBusiness Process Ontology

Enterprise Ontologies

Transpottation Ontology
Inwentory Ontology

Cruality Ontology

Product Design Ontology

Goals Ontology

Derivative Ontologies Scheduling Ontology

Operating Strategies Ontology
Product Fequirements Ontology
Information Eesource Ontology
Intended Action Ontology
Electro Mechanical Product Ontology

Product Ontology
Service Ontology
Activity Ontology
Crganization Ontology
Eezource Ontology

Core Ontologies

Figure 2.31: Structure of the TOVE ontologies.

According to TOVE developers, their future work will be confined to the
development of ontologies and axioms for quality, activity-based costing, and
organization structures.

This ontology has been an important experimental basis for the Griininger and
Fox’s (1995) method to develop ontologies, described in Chapter 3.

2.4.5 Chemistry ontologies

Chemistry ontologies model the composition, structure, and properties of
substances, processes and phenomena. They can be used for many purposes: for
education (to teach students the periodic table of elements, the rules for molecule
composition, etc.), for environmental science (to detect environmental pollutants),
for scientific discovery (to analyze publications to learn about new molecules’
composition or to synthesize chemicals), etc. We will describe the set of chemistry
ontologies developed by the Ontology Group of the Artificial Intelligence
Laboratory at UPM: Chemicals (composed of Chemical Elements and Chemical
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Crystals), Ilons (composed of Monatomic Ions and Poliatomic Ions) and
Environmental Pollutants. All of them are available in WebODE, and both the
Chemical Elements and the Chemical Crystals ontologies are also implemented in
Ontolingua and available in the Ontolingua Server.

Figure 2.32 shows how all these ontologies are integrated in a hierarchical
architecture. It should be interpreted that the ontologies on top of this hierarchy
include the lower-level ontologies. Note that this hierarchical architecture facilitates
future users the comprehension, design and maintenance of ontologies. As we can
see, Chemical Elements is a key point in this ontology structure. It imports the
Standard-Units ontology available in the Ontolingua Server, which, in its turn,
imports other ontologies in the same ontology server, such as Standard-Dimensions,
Physical-Quantities, KIF-Numbers and the Frame-Ontology.

Environmental Pollutants

P

Monatomic Ions Polyatomic Tons

\/

Chemical Elements

T

Standard-TTnits

/

Standard-Dimensions

‘\\

Physical-Quantities

RN

ETF-Mumbers Frame-Cntology

Figure 2.32: Relationship between the chemistry ontologies described in this section and other
ontologies in the Ontolingua Server.

Chemicals is composed of two ontologies: Chemical Elements and Chemical
Crystals. These ontologies were used to elaborate METHONTOLOGY (Fernandez-
Loépez et al., 1999), an ontology development methodology that will be described in
Chapter 3.

The Chemical Elements ontology models knowledge of the chemical elements
of the periodic table, such as what elements these are (Oxygen, Hydrogen, Iron,
Gold, etc.), what properties they have (atomic number, atomic weight,
electronegativity, etc.), and what combination constraints of the attribute values they
have. Chemical Elements contains 16 classes, 20 instance attributes, one function,
103 instances and 27 formal axioms.
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Chemical Crystals was built to model the crystalline structure of the chemical
elements. Therefore, Chemical Elements imports this ontology. The ontology
contains 19 classes, eight relations, 66 instances and 26 axioms.

Tons is built on top of Chemical Elements and is also composed of two ontologies:
Monatomic Ions (which model ions composed of one atom only) and Polyatomic
Ions (which model ions composed of two or more atoms). lons contains 62 concepts,
11 class attributes, three relations and six formal axioms.

Finally, the environmental pollutants ontology (Gémez-Pérez and Rojas, 1999)
imports Monatomic lons and Polyatomic lons and is composed of three ontologies:
Environmental Parameters, Water and Soil. The first ontology defines parameters
that might cause environmental pollution or degradation in the physical environment
(air, water, ground) and in humans, or more explicitly, in their health. The second
and third ontologies define water and soil pollutants respectively. These ontologies
define the methods for detecting pollutant components of various environments, and
the maximum concentrations of these components permitted according to the
legislation in force.

2.4.6 Knowledge management ontologies

The objectives of knowledge management (KM) in an organization are to promote
knowledge growth, knowledge communication and knowledge preservation in the
organization (Steels, 1993). To achieve these objectives corporate memories can be
created. A corporate memory is an explicit, disembodied, persistent representation
of knowledge and information in an organization (van Heijst et al.,, 1996).
According to Dieng-Kuntz and colleagues (1998, 2001), a corporate memory can be
built following different techniques that can be combined: document-based,
knowledge-based, case-based, groupware-based, workflow-based and distributed.
Ontologies are included among the knowledge-based techniques for building
corporate memories.

Basically, Abecker and colleagues (1998) distinguish three types of KM

ontologies:

1 Information ontologies. They describe the different kinds of information
sources, their structure, access permissions, and format properties.

1 Domain ontologies. They model the content of the information sources.

1 Enterprise ontologies. They model the context of an organization, business
process, organization of the enterprise, etc., as described in Section 2.4.4.

Figure 2.33 shows an example of the existing relations between the aforementioned
ontologies. The ontologies presented in the figure have been built for the corporate
memory of the Artificial Intelligence Laboratory at UPM in Madrid. There are two
domain ontologies: Hardware&Software (which models the hardware equipment of
the laboratory and the software installed in it) and Documentation (which models all
the documents generated in the laboratory: publications, theses, faxes, etc.). There
are four enterprise ontologies: Organization and Groups (which model the structure
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of the laboratory and its organization in different research groups), Projects (which
models the projects that are developed in the laboratory), and Persons (which
models the members of the laboratory: research staff, administrative staff, students,
etc.). Three of these ontologies are also information ontologies: Documentation,
Projects and Persons since they describe the information sources of the corporate
memory and store information.

/ Information Ontologies \
Domain / Enterprise
Ontologies Ontologies

G | A

Person Organization

EN | AN || A3\ |

Hardware & Documentation Project Group
Software \

Figure 2.33: Information, domain and enterprise ontologies in a corporate memory for a
research and development laboratory.

The (KA)® ontologies (Decker et al., 1999) are also good examples of KM
ontologies. They were built inside the Knowledge Annotation Initiative of the
Knowledge Acquisition community (Benjamins et al., 1999), also known as the
(KA)* initiative. Its goal was to model the knowledge-acquisition community with
the ontologies built by 15 groups of people at different locations. Each group
focused on a particular topic of the (KA)* ontologies (problem solving methods,
ontologies, etc.). The result was seven related ontologies: an organization ontology,
a project ontology, a person ontology, a publication ontology, an event ontology, a
research-topic ontology and a research-product ontology. They formed the basis to
annotate WWW documents of the knowledge acquisition community, and thus to
enable intelligent access to these Web documents.

The first release of the (KA)” ontologies was built in the FLogic language (Kifer
et al., 1995), which is described in Chapter 4. These FLogic ontologies were
translated into Ontolingua with ODE translators (Blazquez et al., 1998) to make
them accessible to the entire community through the European mirror of the
Ontolingua Server in Madrid“. The updated version of (KA)® is not in Ontolingua

* http://granvia.dia.fi.upm.es:5915/ Log in as “ontologias-ka2” with password “adieu007”
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but in DAML+OIL and is maintained at the AIFB (Institute for Informatics and
Formal Description Methods) of the University of Karlsruhe®.

In the context of the European IST project Esperonto®, five KM ontologies have
been developed in WebODE to describe R&D projects: Project, Documentation,
Person, Organization, and Meeting. These ontologies describe R&D projects and
their structure, documents that are generated in a project, people and organizations
participating in it, and meetings (administrative, technical, etc.) held during a project
lifecycle. Figure 2.34 shows the relationships between all these ontologies (a project
has associated meetings, a document belongs to a project, a document summarizes a
meeting, people have a role in a project, etc.).

have associated

___'.ijel:t \v are related /' Meeting

havwe associated

lead | |havea role o) SUMINarize

Figure 2.34: Main ad hoc relationships between KM ontologies for R&D projects.

Part of the concept taxonomy of the Documentation ontology is presented in Figure
2.35. As the figure shows, we have distinguished four types of documents in a
project: management documents, technical documents, publications and additional
documents. Some of the technical documents generated in a project are deliverables,
manuals and presentations. Publications can be done as books or articles, and there
are different types of articles, depending on where they are published: in workshops,
as part of the proceedings of a conference, in books or in magazines and journals.

These ontologies can be accessed at the Esperonto Web site, powered by the
knowledge portal ODESeW*.

5 http://ka2portal.aifb.uni-karlsruhe.de
“© http://www.esperonto.net/
7 http://webode.dia.fi.upm.es/sew/index.html
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Figure 2.35: Fragment of the documentation ontology of R&D projects.

2.5 Bibliographical Notes and Further Reading

To those readers who want to have a thorough grounding in the contents of this

chapter, we recommend the following readings, grouped by topics:

1 Ontologies in general. The deliverable D.1.1 “Technical Roadmap” of the
OntoWeb thematic network, funded by the European Commission, contains
brief descriptions of and references to the most outstanding ontologies. The
OntoRoadMap application, which has been created inside the project OntoWeb
(http://babage.dia.fi.upm.es/ontoweb/wp 1/OntoRoadMap/index. html), lets
researchers consult and update the information on existing ontologies.

1 Knowledge representation ontologies. We recommend to download the KR
ontologies that have been presented in Section 2.1: the Frame Ontology and the
OKBC Ontology (available at the Ontolingua Server:
http://ontolingua.stanford.edu/), the RDF and RDF Schema KR ontologies
(available at http://www.w3.0org/RDF/), the OIL KR ontology (available at
http://www.ontoknowledge.org/oil/), the DAML+OIL KR ontology (available at
http://www.daml.org/language/), and the OWL KR ontology (available at
http://www.w3.0rg/2001/sw/WebOnt/).

1 Top-level ontologies. More information about top-level ontologies can be found
in  http://'www-sop.inria.fr/acacia/personnel/phmartin/RDF/phOntology.html.
We also advise to consult the SUO Web page at http://suo.ieee.org/.

1 Linguistic ontologies. For linguistic ontologies, we recommend periodically
access to the Web page of the OntoWeb SIG on Language Technology in
Ontology Development and Use (http://dfki.de/~paulb/ontoweb-It.html). Other
linguistic ontologies different to the ones dealt with in this chapter are: Corelex,
which is presented in Attp://www.cs.brandeis.edu/~paulb/CoreLex/corelex.html
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and (Buitelaar, 2001); EDR, presented in Ahttp://www.iijnet.or.jp/edr/ and
(Miyoshi et al., 1996); and the Goi-Takei’s ontology, presented in (Ikehara et
al., 1997) and http://www.kecl.ntt.co.jp/icl/mtg/topics/lexicon-index. html.

1 E-commerce ontologies. You can read about e-commerce ontologies in the
deliverable D3.1 of OntoWeb (IST-2000-29243), which deals with e-commerce
content standards. This deliverable is available in the following URL:
http://www.ontoweb.org/download/deliverables/D3.1.pdf. We also recommend
to read about the initiatives for aligning e-commerce classifications
(Bergamaschi et al., 2001; Corcho and Gdémez-Pérez, 2001; Gordijn et al.,
2000).

1 Medical ontologies. More information about the GALEN ontology can be found
in http://www.opengalen.org/resources.html. We recommend to download the
open source tool OpenKnoME (http.//www.topthing.com) to compile and to
browse the GALEN sources. Access to UMLS sources and resources
(applications and documentation) is free, though it is necessary to sign the
UMLS license agreement at Attp.//www.nlm.nih.gov/research/umls/license.html.
A general overview of medical ontologies is presented by Bodenreider (2001).

1 Chemistry ontologies. One of the data sets included in the DAML data sources
wishlist (http://www.daml.org/data/) is the periodic table of the chemical
elements, which would be considered as a reference data set for chemical and
related industries, probably combined with other chemistry ontologies including
elements, compounds, etc. So we recommend to take a close look at this effort.

1 Content standards. We recommend to have a look at the Special Interest Group
on Content Standards of OntoWeb (IST-2000-29243), whose URL is:
http://'www.ladseb.pd.cnr.it/infor/ontology/Onto Web/SIGContentStandards.htm.
The goal of this SIG is to coordinate cooperation and participation with current
initiatives related to ontology-based content standardization and content
harmonization across different standards.

1 Legal ontologies. We recommend to have a look at the Legal Ontologies
Working Group within the OntoWeb Content Standards SIG, whose URL is:
http://ontology.ip.rm.cnr.it/legontoweb.html. The objective of this working
group is (1) to collect the (possibly formalized) ontologies proposed so far in
the literature and still maintained or ‘alive’; (2) to contact the reference persons;
(3) to create a Web page in which a general outline of Legal Ontologies is
presented; and (4) to provide a preliminary description of the steps to reach a
“Common Core Legal Ontology Library”. Several events have dealt with legal
ontologies, such as http://lrijur.uva.nl/jurix2001/legont2001. htm,
http://www.cs.wustl.edu/icail2001/, and  http://www.cfslr.ed.ac.uk/icail03/.
Other URLs related to legal ontologies are: http://www.csc.liv.ac.uk/~lial/,
http://www.Iri jur.uva.nl,  http://www.idg.fi.cnr.it/researches/researches.htm,
and http://www.austlii.edu.au/au/other/col/1999/35/.
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