Preface

The geometric approach to the algebraic theory of quadratic forms is the study
of projective quadrics over arbitrary fields. Function fields of quadrics were a
basic ingredient already in the proof of the Arason—Pfister Hauptsatz of 1971
(or even in Pfister’s 1965 construction of fields with prescribed level); they
are central in the investigation of deep properties of quadratic forms, such
as their splitting pattern, but also in the construction of fields which exhibit
particular properties, such as a given u-invariant. Recently, finer geometric
tools have been brought to bear on problems from the algebraic theory of
quadratic forms: results on Chow groups of quadrics led to an efficient use of
motives, and ultimately to Voevodsky’s proof of the Milnor conjecture.

The goal of the June 2000 summer school at Université d’Artois in Lens
(France), organized locally by J. Burési, N. Karpenko and P. Mammone, was
to survey three aspects of the algebraic theory of quadratic forms where geo-
metric methods had led to spectacular advances. Bruno Kahn was invited to
talk on the unramified cohomology of quadrics, Alexander Vishik on motives
of quadrics, and Oleg Izhboldin on his construction of fields whose u-invariant
is 9. However, Izhboldin passed away unexpectedly on April 17, 2000. His work
was surveyed by Karpenko, who had collaborated with Izhboldin on several
papers.

The closely related texts collected in this volume were written from some-
what different perspectives. The reader will find below:

1. The notes from the lectures of B. Kahn [K], A. Vishik [V] and N. Karpenko
[K1] prepared and updated by the authors. Additional material has been
included, in particular in Vishik’s notes.

2. Two papers left unfinished by O. Izhboldin, and edited by N. Karpenko.
The first paper [I1] was essentially complete and formed the basis for the
first part of Karpenko’s lectures. The second [I2] is only a sketch, listing
properties and examples that Izhboldin intended to develop in subsequent
work.
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3. A paper by N. Karpenko [K2] which provides complete proofs for the
statements that Izhboldin listed in [I2].

To give a more precise overview, we introduce some notation. Let F be
an arbitrary field of characteristic different from 2. To every quadratic form?!
q in at least two variables over F' corresponds the projective quadric @ with
equation ¢ = 0 (which has an F-rational point if and only if ¢ is isotropic).
The quadric Q is a smooth variety if ¢ is nonsingular (which we always assume
in the sequel); its dimension is dim @ = dimg¢ — 2, and it is irreducible if ¢
is not the hyperbolic plane H. We may then consider its function field F(Q),
which is also referred to as the function field of ¢ and denoted F(q).

The field extension F(Q)/F is of particular interest. Much insight into
quadratic forms could be obtained if we knew which quadratic forms over F
become isotropic over F'(Q)). This question can be readily rephrased into geo-
metric terms: a quadratic form ¢’ over F' becomes isotropic over F(q) if and
only if there is a rational map Q— — =Q’ between the corresponding quad-
rics. If there are rational maps in both directions Q= = >@Q’, the quadrics
are stably birationally equivalent, and the quadratic forms ¢ and ¢’ are also
called stably birationally equivalent. By the preceding observation, this rela-

tion, denoted ¢ Y ¢, holds if and only if the forms gp(4) and q},(q) are both
isotropic.

A very useful geometric construction is to view the quadric @) as an object
in a category where the maps are given by Chow correspondences. We thus
get the (Chow-) motive M (Q) of the quadric, whose structure carries a lot of
information on the form ¢. For example, Vishik has shown? that the motives
M(Q), M(Q') associated with quadratic forms ¢, ¢’ are isomorphic if and only
if every field extension F of F' produces the same amount of splitting in ¢ and
¢, i.e., the quadratic forms ¢g and ¢% have the same Witt index, a notion
which is spelled out next.

Recall from [Sch, Corollary 5.11 of Chap. 1] that every quadratic form ¢
has a (Witt) decomposition into an orthogonal sum of an anisotropic quadratic
form qay, called an anisotropic kernel of ¢, and a certain number of hyperbolic
planes H,

Q> Qan L H 1L ... 1 H.

iw (q)

The number iy (q) of hyperbolic planes in this decomposition (which is unique
up to isomorphism) is called the Witt index of ¢q. Even if ¢ is anisotropic (i.e.,
iw(q) = 0), it obviously becomes isotropic over F(g), and we have a Witt
decomposition over F(q),

qF(q)ﬁqlJ_HJ_...J_H

! With the usual abuse of terminology, a quadratic form is sometimes viewed as
a quadratic polynomial, sometimes as a quadratic map on a vector space or a
quadratic space.

2 See [12, Sect. 1].
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where ¢ is an anisotropic form over F(q). Letting F; = F(q), we may iterate
this construction. The process terminates in a finite number of steps since
dimg > dimg; > ---. We thus obtain the generic splitting tower of ¢, first
constructed by M. Knebusch [Kn],

FCF C---CkFp.

Clearly, 0 < iw(qr,) < tw(qr) < -+ < iw(gm,). It turns out that for any
field extension E/F', the Witt index iw (¢r) is equal to one of the indices
iw (qr;). The splitting pattern of ¢ is the set

{iw(¢r) | E a field extension of F'} = {iw (qr,),---,iw(q¢r,)}-

Variants of this notion appear in [V] and [I1]: Vishik calls (incremental) split-
ting pattern® of ¢ the sequence

i(q) = (i1(q), - - -, in(q))

defined by i1(q) = iw(qr,) and i;(q) = iw(qr;) — iw(qr;_,) for j > 1. The
integer i;(¢) indeed measures the Witt index increment resulting from the
field extension Fj/F;_q; it is called a higher Witt index of ¢. On the other
hand, Izhboldin concentrates on the dimension of the anisotropic kernels and
sets

Dim(q) = {dim(gg)an | E a field extension of F'}.

By counting dimensions in the Witt decomposition of qg, we obtain
dim g = dimgg = dim(¢g)an + 2iw (¢r),

hence the set Dim(q) and the splitting pattern of ¢ carry the same information.

Vishik’s contribution [V] to this volume is intended as a general introduc-
tion to the state-of-the-art in the theory of motives of quadrics. After setting
up the basic principles, he proves the main structure theorems on motives of
quadrics. The study of direct sum decompositions of these motives is a power-
ful tool for investigating the dimensions of anisotropic forms in the powers of
the fundamental ideal of the Witt ring, the stable equivalence of quadrics
and splitting patterns of quadratic forms. This last application is particularly
developed in the last section of [V], where all the possible splitting patterns
of odd-dimensional forms of dimension at most 21 and of even-dimensional
forms of dimension at most 12 are determined.

The papers of Karpenko [K1, K2] and Izhboldin [I1, 12] are closely inter-
twined. They also rely less on motives and more on elementary arguments.
As mentioned above, [K1] is an exposition of Izhboldin’s results in [I1] and on

3 No confusion should arise since Vishik’s splitting patterns are sequences, whereas
the “usual” splitting patterns are sets.
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the u-invariant. Recall from [Sch, Sect. 16 of Chap. 2] that the u-invariant of
a field F' is

u(F) = sup{dimq | ¢ anisotropic quadratic form over F'}.

Quadratically closed fields have u-invariant 1, but no other field with odd
u-invariant was known before Izhboldin’s construction of a field with u-
invariant 9. In the second part of [K1], Karpenko discusses the strategy of this
construction and provides alternative proofs for the main results on which it
is based. In the first part, he gives a simple proof of a theorem of Izhboldin on
the first Witt index i1 (¢) of quadratic forms of dimension 2" + 3. Izhboldin’s
original proof is given in [I1], while [I2] classifies the pairs of quadratic forms
of dimension at most 9 which are stably equivalent and lists without proofs
assorted isotropy criteria for quadratic forms over function fields of quadrics.
The proofs of Izhboldin’s claims are given in [K2], which also contains an
extensive discussion of correspondences on odd-dimensional quadrics.

In [K], Kahn studies the field extension F(Q)/F from a different angle.
The induced scalar extension map in Galois cohomology with coefficients po =
{£1}, called the restriction map

Res: H™(F, p2) — H"(F(Q), u2)

is a typical case of the maps he considers. For every closed point x of @ of
codimension 1, the image of this map lies in the kernel of the residue map

0p: H"(F(Q), p2) — H""(F (), n2).

Therefore, we may restrict the target of Res to the unramified cohomology
group
HL(F(Q).p2) = [ Kerd,.

zeQ

The kernel and cokernel of the restriction map H™(F, u2) — HI.(F(Q), p2)
were studied by Kahn-Rost—-Sujatha [KRS] and Kahn-Sujatha [KS1, KS2] for
n < 4. In his contribution to this volume, Kahn develops a vast generalization
which applies to various cohomology theories besides Galois cohomology with
ue coeflicients, and to arbitrary smooth projective varieties besides quadrics.
If X is a smooth projective variety which is also geometrically cellular, there
are two spectral sequences converging to the motivic cohomology of X. Results
on the restriction map are obtained by comparing these two sequences, since
one of them contains the unramified cohomology of X in its Fo-term. The
unramified cohomology of quadrics occurs as a crucial ingredient in the other
papers collected here, see [K1, Sect. 2.3], [K2, Lemma 7.5], [V, Lemmas 6.14
and 7.12].

The untimely death of Oleg Izhboldin was felt as a great loss by all the
contributors to this volume, who decided to dedicate it to his memory. A
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tribute to his work, written by his former thesis advisor Alexandr Merkurjev,
and posted on the web site www-math.univ-mlv.fr/~abakumov/oleg/, is in-
cluded as an appendix. We are grateful to A. Merkurjev and E. Abakumov
for the permission to reproduce it.
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