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Roots of Polynomials

1.1 Inequalities for roots

1.1.1 The Fundamental Theorem of Algebra

In olden times, when algebraic theorems were scanty, the following statement
received the title of the Fundamental Theorem of Algebra:

“A given polynomial of degree n with complex coefficients has exactly n
roots (multiplicities counted).”

The first to formulate this statement was Alber de Girard in 1629, but he
did not even try to prove it. The first to realize the necessity of proving the
Fundamental Theorem of Algebra was d’Alembert. His proof (1746) was not,
however, considered convincing. Euler (1749), Faunsenet (1759) and Lagrange
(1771) offered their proofs but these proofs were not without blemishes, either.

The first to give a satisfactory proof of the Fundamental Theorem of Al-
gebra was Gauss. He gave three different versions of the proof (1799, 1815
and 1816) and in 1845 he additionally published a refined version of his first
proof.

For a review of the different proofs of the Fundamental Theorem of Alge-
bra, see [Ti]. We confine ourselves to one proof. This proof is based on the
following Rouché’s theorem, which is of interest by itself.

Theorem 1.1.1 (Rouché). Let f and g be polynomials, and γ a closed curve
without self-intersections in the complex plane1. If

∣
∣f(z)− g(z)

∣
∣ <
∣
∣f(z)

∣
∣+
∣
∣g(z)

∣
∣ (1)

for all z ∈ γ, then inside γ there is an equal number of roots of f and g
(multiplicities counted).

1 The plane C
1 of complex variable.

1 V.V. Prasolov, Polynomials, Algorithms and Computation in Mathematics 11,
DOI 10.1007/978-3-642-03980-5_1, © Springer-Verlag Berlin Heidelberg 2010 
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Proof. In the complex plane, consider vector fields v(z) = f(z) and
w(z) = g(z). From (1) it follows that at no point of γ are the vectors v
and w directed opposite to each other. Recall that the index of the curve γ
with respect to a vector field v is the number of revolutions of the vector v(z)
as it completely circumscribes the curve γ. (For a more detailed acquaintance
with the properties of index we recommend Chapter 6 of [Pr2].) Consider the
vector field

vt = tv + (1− t)w.

Then v0 = w and v1 = v. It is also clear that at every point z ∈ γ the vector
vt(z) is nonzero. This means that the index ind(t) of γ with respect to the
vector field vt is well defined. The integer ind(t) depends continuously on t,
and hence ind(t) = const. In particular, the indices of γ with respect to the
vector fields v and w coincide.

Let the index of the singular point z0 be defined as the index of the curve
|z − z0| = ε, where ε is sufficiently small. It is not difficult to show that the
index of γ with respect to a vector field v is equal to the sum of indices of
singular points, i.e., those at which v(z) = 0. For the vector field v(z) = f(z),
the index of the singular point z0 is equal to the multiplicity of the root z0 of
f . Therefore the coincidence of the indices of γ with respect to vector fields
v(z) = f(z) and w(z) = g(z) implies that, inside γ, the number of roots of f
is equal to that of g. �

With the help of Rouché’s theorem it is not only possible to prove the
Fundamental Theorem of Algebra but also to estimate the absolute value of
any root of the polynomial in question.

Theorem 1.1.2. Let f(z) = zn + a1z
n−1 + · · · + an, where ai ∈ C. Then,

inside the circle |z| = 1+max
i
|ai|, there are exactly n roots of f (multiplicities

counted).

Proof. Let a = max
i
|ai|. Inside the circle considered, the polynomial

g(z) = zn has root 0 of multiplicity n. Therefore it suffices to verify that,
if |z| = 1 + a, then

∣
∣f(z) − g(z)

∣
∣ <
∣
∣f(z)

∣
∣ +
∣
∣g(z)

∣
∣. We will prove even that

∣
∣f(z)− g(z)

∣
∣ <
∣
∣g(z)

∣
∣, i.e.,

|a1z
n−1 + · · ·+ an| < |z|n.

Clearly, if |z| = 1 + a, then

|a1z
n−1 + · · ·+ an| ≤ a

(|z|n−1 + · · ·+ 1
)

= a
|z|n − 1
|z| − 1

= |z|n − 1 < |z|n. ��

1.1.2 Cauchy’s theorem

Here we discuss Cauchy’s theorem on the roots of polynomials as well as its
corollaries and generalizations.
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Theorem 1.1.3 (Cauchy). Let f(x) = xn − b1x
n−1 − · · · − bn, where all

the numbers bi are non-negative and at least one of them is nonzero. The
polynomial f has a unique (simple) positive root p and the absolute values of
the other roots do not exceed p.

Proof. Set

F (x) = −f(x)
xn

=
b1

x
+ · · ·+ bn

xn
− 1.

If x �= 0, the equation f(x) = 0 is equivalent to the equation F (x) = 0. As
x grows from 0 to +∞ the function F (x) strictly decreases from +∞ to −1.
Therefore, for x > 0, the function F vanishes at precisely one point, p. We
have

−f ′(p)
pn

= F ′(p) = − b1

p2
− · · · − nbn

pn+1
< 0.

Hence p is a simple root of f .
It remains to prove that if x0 is a root of f , then q = |x0| ≤ p. Suppose

that q > p. Then, since F is monotonic, it follows that q > p, i.e., f(q) > 0.
On the other hand, the equality xn

0 = b1x
n−1
0 + · · ·+ bn implies that

qn ≤ b1q
n−1 + · · ·+ bn,

i.e., f(q) ≤ 0, which is a contradiction. �

Remark. Cauchy’s theorem is directly related to the Perron-Frobenius
theorem on non-negative matrices (cf. [Wi1]).

The polynomial x2n − xn − 1 has n roots whose absolute values are equal
to the value of the positive root of this polynomial. Therefore, in Cauchy’s
theorem, the estimate

the absolute values of the roots are ≤ p

cannot, in general, be replaced by the estimate

the absolute values of the roots are < p.

Ostrovsky showed, nevertheless, that in a sufficiently general situation such
a replacement is possible.

Theorem 1.1.4 (Ostrovsky). Let f(x) = xn− b1x
n−1− · · · − bn, where all

the numbers bi are non-negative and at least one of them is nonzero.
If the greatest common divisor of the indices of the positive coefficients bi

is equal to 1, then f has a unique positive root p and the absolute values of
the other roots are < p.
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Proof. Let only the coefficients bk1 , bk2 , . . . , bkm , where k1 < k2 < · · · <
km, be positive. Since the greatest common divisor of k1, . . . , km is equal to
1, there exist integers s1, . . . , sm such that s1k1 + · · · + smkm = 1. Consider
again the function

F (x) =
bk1

xk1
+ · · ·+ bkm

xkm
− 1.

The equation F (x) = 0 has a unique positive solution p. Let x be any other
(nonzero) root of f . Set q = |x|. Then

1 =
bk1

xk1
+ · · ·+ bkm

xkm
≤
∣
∣
∣
∣

bk1

xk1

∣
∣
∣
∣
+ · · ·+

∣
∣
∣
∣

bkm

xkm

∣
∣
∣
∣
=

bk1

qk1
+ · · ·+ bkm

qkm
,

i.e., F (q) ≥ 0. We see that the equality F (q) = 0 is only possible if

bki

xki
=
∣
∣
∣
∣

bki

xki

∣
∣
∣
∣
> 0 for all i.

But in this case

bs1
k1
· . . . · bsm

km

x
=
(

bk1

xk1

)s1

· . . . ·
(

bkm

xkm

)sm

> 0,

i.e., x > 0. This contradicts the fact that x �= p and p is the only positive root
of the equation F (x) = 0. Thus F (q) > 0. Therefore, since F (x) is monotonic
for positive x, it follows that q < p. �

The Cauchy-Ostrovsky theorem implies the following estimate of the ab-
solute value of the roots of polynomials with positive coefficients.

Theorem 1.1.5. a) (Eneström-Kakeya) If all the coefficients of the polyno-
mial g(x) = a0x

n−1 + · · · + an−1 are positive, then, for any root ξ of this
polynomial, we have

min
1≤i≤n−1

{
ai

ai−1

}

= δ ≤ |ξ| ≤ γ = max
1≤i≤n−1

{
ai

ai−1

}

.

b) (Ostrovsky) Let ak

ak−1
< γ for k = k1, . . . , km. If the greatest common

divisor of the numbers n, k1, . . . , km is equal to 1, then |ξ| < γ.

Proof. Consider the polynomial

(x− γ)g(x) = a0x
n − (γa0 − a1)xn−1 − · · · − (γan−2 − an−1)x− γan−1.

By definition, γ ≥ ai

ai−1
, i.e., γai−1− ai ≥ 0. Therefore, by Cauchy’s theorem,

γ is the only positive root of the polynomial (x − γ)g(x) and the absolute
values of the other roots of this polynomial are ≤ γ.
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If ξ is a root of g, then η =
1
|ξ| is a root of an−1y

n−1 + · · ·+ a0. Hence

1
|ξ| = |η| = max

1≤i≤n−1

{
ai−1

ai

}

=
1

min
1≤i≤n−1

{
ai

ai−1

} ,

i.e.,

|ξ| ≥ δ = min
1≤i≤n−1

{
ai

ai−1

}

.

If condition b) is satisfied, the root γ of the polynomial (x − γ)g(x) is
strictly greater than the absolute values of the other roots of this polynomial.
�

Remark. The Eneström-Kakeya theorem is also related to the Perron-
Frobenius theorem, cf. [An2].

An essential generalization of the Eneström-Kakeya theorem is obtained in
[Ga1]. However, the formulation of this generalization is rather cumbersome,
and therefore we do not give it here.

1.1.3 Laguerre’s theorem

Let z1, . . . , zn ∈ C be points of unit mass. The point ζ = 1
n (z1 + · · · + zn) is

called the center of mass of z1, . . . , zn.
This notion can be generalized as follows. Perform a fractional-linear trans-

formation w that sends z0 to ∞, i.e.,

w(z) =
a

z − z0
+ b.

Let us find the center of mass of the images of z1, . . . , zn and then apply
the inverse transformation w−1. Simple calculations show that the result does
not depend on a and b, namely, we obtain the point

ζz0 = z0 + n
1

1
z1−z0

+ · · ·+ 1
zn−z0

(1)

which is called the center of mass of z1, . . . , zn with respect to z0.
Clearly,

the center of mass of z1, . . . , zn lies inside their convex hull.

This statement easily generalizes to the case of the center of mass with
respect to z0. One only has to replace the lines that connect the points zi and
zj by circles passing through zi, zj and z0. The point z0 corresponding to ∞
lies outside the convex hull.
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Theorem 1.1.6. Let f(z) = (z − z1) · . . . · (z − zn). Then the center of mass
of the roots of f with respect to an arbitrary point z is given by the formula

ζz = z − n
f(z)
f ′(z)

.

Proof. Clearly

f ′(z)
f(z)

=
1

z − z1
+ · · ·+ 1

z − zn
.

The desired statement follows directly from formula (1). �

Theorem 1.1.7 (Laguerre). Let f(z) be a polynomial of degree n and x its
simple root. Then the center of mass of all the other roots of f(z) with respect
to x is the point

X = x− 2(n− 1)
f ′(x)
f ′′(x)

.

Proof. Let f(z) = (z − x)F (z). Then f ′(z) = F (z) + (z − x)F ′(z) and
f ′′(z) = 2F ′(z) + (z − x)F ′′(z). Therefore f ′(x) = F (x) and f ′′(x) = 2F ′(x).
Applying the preceding theorem to the polynomial F of degree n − 1, and
point z = x, we obtain the desired statement. �

Theorem 1.1.8 (Laguerre). Let f(z) be a polynomial of degree n and

X(z) = z − 2(n− 1)
f ′(z)
f ′′(z)

.

Let the circle (or line) C pass through a simple root z1 of f and the other
roots of f belong to one of the two domains into which C divides the plane.
Then X(z1) also belongs to the same domain.

Proof. In the case of the “usual” center of mass, the circle C corresponds
to the line such that all the roots of f(z), except z1, lie on one side of it. The
center of mass of these roots lies on the same side of this line. �

Corollary. Let z1 be one of the simple roots of f with the maximal ab-
solute value. Then |X(z1)| ≤ |z1|, i.e.,

∣
∣
∣
∣
z1 − 2(n− 1)

f ′(z1)
f ′′(z1)

∣
∣
∣
∣
≤ |z1|.

Proof. All the roots of f lie in the disk
{

z ∈ C
∣
∣ |z| ≤ |z1|

}

, and therefore
X(z1) also belongs to this disk. �

Theorem 1.1.9. Let f be a polynomial with real coefficients and define

ζz = z − n
f(z)
f ′(z)

.

All the roots of f are real if and only if Im z · Im ζz < 0 for any z ∈ C \ R.
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Proof. Suppose first that all the roots of f are real. Let Im z = a > 0.
The line consisting of the points with the imaginary part ε, where 0 < ε < a,
separates the point z from all the roots of f since they belong to the real axis.
Therefore Im ζz ≤ ε. In the limit as ε → 0, we obtain Im ζz ≤ 0.

It is easy to verify that it is impossible to have Im ζz = 0. Indeed, let
ζz ∈ R. Consider a circle passing through z and tangent to the real axis at ζz .
Slightly jiggling this circle we can construct a circle on one side of which lie
the points z and ζz , and on the other side lie all the roots of f . If Im z = a < 0,
the arguments are similar.

Now suppose that Im z · Im ζz < 0 for all z ∈ C \ R. Let z1 be a root of f
such that Im(z1) �= 0. Then lim

z→z1
ζz = z1, and therefore Im z1 · Im ζz1 > 0. �

Our presentation of Laguerre’s theory is based on the paper [Gr], see
also [Pol].

1.1.4 Apolar polynomials

Let f(z) be a polynomial of degree n and ζ a fixed number or∞. The function

Aζf(z) =

{

(ζ − z)f ′(z) + nf(z) if ζ �=∞;
f ′(z) if ζ =∞

is called the derivative of f(z) with respect to point ζ. It is easy to verify that,
if

f(z) =
n∑

k=0

(
n

k

)

akzk, (1)

then
1
n

f ′(z) =
n−1∑

k=0

(
n− 1

k

)

ak+1z
k. (∗)

Therefore
1
n

Aζf(z) =
n−1∑

k=0

(
n− 1

k

)

(ak + ak+1ζ)zk. (2)

Let z1, . . . , zn be the roots of the polynomial (1), and let ζ1, . . . , ζn be the
roots of the polynomial

g(z) =
n∑

k=0

(
n

k

)

bkzk. (3)

Formula (2) implies that

1
n!

Aζ1Aζ2 · · ·Aζnf(z) = a0 + a1σ1 + a2σ2 + · · ·+ anσn,

where
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σ1 = ζ1 + ζ2 + · · ·+ ζn = −
(

n

1

)
bn−1

bn
,

σ2 = ζ1ζ2 + · · ·+ ζn−1ζn =
(

n

2

)
bn−2

bn
,

. . . . . . . . . . . . . . . . . . . . . . . .

σn = ζ1 · . . . · ζn = (−1)n b0

bn
.

Hence the equality Aζ1Aζ2 · · ·Aζnf(z) = 0 is equivalent to the equality

a0bn −
(

n

1

)

a1bn−1 +
(

n

2

)

a2bn−2 + · · ·+ (−1)nanb0 = 0. (4)

The polynomials f and g given by (1) and (3) and whose coefficients are
related via (4) are said to be apolar.

A circular domain is either the inner or the exterior part of a disk or the
half plane.

Theorem 1.1.10 (J. H. Grace, 1902). Let f and g be apolar polynomials.
If all the roots of f belong to a circular domain K, then at least one of the
roots of g also belongs to K.

Proof. We will need the following auxiliary statement.

Lemma 1.1.11. Let all the roots z1, . . . , zn of f(z) lie inside the circular
domain K and let ζ lie outside K. Then all the roots of Aζf(z) lie inside K.

Proof. Observe first that, if wi is a root of the polynomial Aζf(z), then ζ
is the center of mass of the roots of f(z) with respect to wi. Indeed, if ζ �=∞,
then we can express the equality Aζf(wi) = 0 in the form

(ζ − wi)f ′(wi) + nf(wi) = 0, i.e., ζ = wi − n
f(wi)
f ′(wi)

.

If ζ = ∞, then f ′(wi) = Aζf(wi) = 0, and hence

n∑

j=1

1
zj − wi

=
f ′(wi)
f(wi)

= 0.

Therefore the center of mass of the points z1, . . . , zn with respect to wi is
situated at

wi +
1

∑

j
1

zj−wi

= ∞.

Now it is clear that point wi cannot lie outside K. Indeed, if wi were
situated outside K, then the center of mass of z1, . . . , zn with respect to wi

would be inside K. However, this contradicts the fact that ζ lies outside K. �
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With the help of Lemma 1.1.11, Theorem 1.1.10 is proved as follows. Sup-
pose that all the roots ζ1, . . . , ζn of g lie outside K. Consider the polynomial
Aζ2 · · ·Aζnf(z). Its degree is equal to 1, i.e., it is of the form c(z− k). Lemma
1.1.11 implies that k ∈ K. Since f and g are apolar polynomials, it follows
that Aζ1(z − k) = 0. On the other hand, the direct calculation of the deriva-
tive shows that Aζ1(z − k) = ζ1 − k. Therefore k = ζ1 /∈ K and we have a
contradiction. �

Every polynomial f has a whole family of polynomials apolar to it. Having
selected a convenient apolar polynomial we can, thanks to Grace’s theorem,
prove that f possesses a root in a given circular domain. Sometimes for the
same goal it is convenient to use Lemma 1.1.11 directly.

Example 1. The polynomial

f(z) = 1− z + czn, where c ∈ C,

possesses a root in the disk |z − 1| ≤ 1.

Proof. The polynomials

f(z) = 1 +
(

n

1

)−1
n

z + czn and g(z) = zn +
(

n

1

)

bn−1z
n−1 + · · ·+ b0

are apolar if

1− n

(−1
n

)

bn−1 + cb0 = 0, i.e., 1 + bn−1 + cb0 = 0.

Now let ζk = 1− exp(2πik/n) for k = 1, . . . , n, and take g(z) to be

g(z) =
∏

(z − ζk) = zn +
(

n

1

)

bn−1z
n−1 + · · ·+ b0.

Then
bn−1 = −1 and b0 = ±

∏

ζk = 0.

Therefore the polynomials f(z) and g(z) are apolar. Since all the roots of g
lie in the disk |z − 1| ≤ 1, at least one of the roots of f lies in this disk. �

Example 2. The polynomial 1− z + c1z
n1 + · · ·+ ckznk , where 1 < n1 <

n2 < · · · < nk, has at least one root in the disk

|z| ≤ 1
(

1− 1
n1

)

· . . . ·
(

1− 1
nk

) .
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Proof. Let us start with the polynomial f(z) = 1 − z + c1z
n1 . Suppose

on the contrary that all its roots lie in the domain |z| > n1
n1−1 . Then by

Lemma 1.1.11 the roots of the polynomial

A0f(z) = n1 − (n1 − 1)z

also lie in the domain |z| > n1
n1−1 . But the root of A0f(z) is equal to n1

n1−1 and
we have a contradiction.

For the polynomial f(z) = 1 − z + c1z
n1 + · · · + ckznk , we use induction

on k. Consider the polynomial

A0f(z) = nk − (nk − 1)z + c1(nk − n1)zn1 + · · ·+ ck−1(nk − nk−1)znk−1 .

In this polynomial, replace z by nk

nk−1w. By the induction hypothesis, the
roots of the polynomial obtained lie in the disk

|w| ≤ n1

n1 − 1
· n2

n2 − 1
· . . . · nk−1

nk−1 − 1
,

and hence the roots of A0f(z) lie in the disk

|z| ≤ n1

n1 − 1
· n2

n2 − 1
· . . . · nk

nk − 1
.

Therefore the hypothesis that all the roots of f(z) lie outside the disk leads
to a contradiction. �

Let f(z) =
n∑

i=1

(
n
i

)

aiz
i and g(z) =

n∑

i=1

(
n
i

)

biz
i. The polynomial

h(z) =
n∑

i=1

(
n

i

)

aibiz
i

is called the composition of f and g.

Theorem 1.1.12 (Szegö). Let f and g be polynomials of degree n, and let all
the roots of f lie in a circular domain K. Then every root of the composition
h of f and g is of the form −ζik, where ζi is a root of g and k ∈ K.

Proof. Let γ be a root of h, i.e.,
n∑

i=1

(
n
i

)

aibiγ
i = 0. Then the polynomials

f(z) and G(z) = zng(−γz−1) are apolar. Therefore, by Grace’s theorem, one
of the roots of G(z) lies in K. Let, for example, g(−γk−1) = 0, where k ∈ K.
Then −γk−1 = ζi, where ζi is a root of g. �

For polynomials whose degrees are not necessarily equal, there is the fol-
lowing analogue of Grace’s theorem.
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Theorem 1.1.13 ([Az]). Let f(z) =
n∑

i=1

(
n
i

)

aiz
i and g(z) =

m∑

i=1

(
m
i

)

biz
i be

polynomials with m ≤ n. Let the coefficients of f and g be related as follows:
(

m

0

)

a0bm −
(

m

1

)

a1bm−1 + · · ·+ (−1)m

(
m

m

)

amb0 = 0. (5)

Then the following statements hold:
a) If all the roots of g(z) belong to the disk |z| ≤ r, then at least one of the

roots of f(z) also belongs to this disk;
b) If all the roots of f(z) lie outside the disk |z| ≤ r, then at least one of

the roots of g(z) also lies outside this disk.

Proof. [Ru] a) Relation (5) is invariant with respect to the change of z
to rz in f and g, and therefore we may assume that r = 1. Suppose on the
contrary that all the roots of f(z) lie in the domain |z| > 1. Then all the
roots of the polynomial znf(1

z ) lie in the domain |z| < 1. Therefore, from the
Gauss-Lucas theorem (Theorem 1.2.1 on p. 13), it follows that all the roots
of the polynomial

f1(z) = D(n−m)

(

znf

(
1
z

))

= n(n− 1) · . . . · (m + 1)
m∑

i=0

(
m

i

)

aiz
m−i

lie in the domain |z| < 1. Therefore all the roots of the polynomial

f2(z) = zm
m∑

i=0

(
m

i

)

ai

(
1
z

)m−i

=
m∑

i=0

(
m

i

)

aiz
i

lie in the domain |z| > 1.
Relation (5) means that the polynomials f2 and g are apolar. Since all the

roots of f2 lie in the circular domain |z| > 1, it follows from Grace’s theorem
that at least one of the roots of g also lies in this domain, and we have a
contradiction.

b) All the roots of f2 lie in the domain |z| ≥ 1, hence, it follows from
Grace’s theorem that at least one of the roots of g also lies in this domain. �

1.1.5 The Routh-Hurwitz problem

In various problems on stability one has to investigate whether all the roots
of a given polynomial belong to the left half-plane (i.e., whether the real parts
of the roots are negative). The polynomials with this property are said to be
stable. The Routh-Hurwitz problem is

how to find out directly by looking at the coefficients of the polynomial
whether it is stable or not.

Several different solutions of the problem are known (see, e.g., [Po2]). We
will confine ourselves with one simple criterion given in [St3].
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First, we observe that it suffices to consider the case of polynomials with
real coefficients. Indeed, if p(z) =

∑
anzn is a polynomial with complex coef-

ficients we can consider the polynomial

p∗(z) = p(z)p(z) =
(∑

anzn
)(∑

anzn
)

.

Clearly, the real parts of the roots of p(z) are the same as those of p(z).
Moreover, the coefficients of p∗(z) are symmetric with respect to an and an.
This means that the coefficients of p∗ are invariant under conjugation, that
is, they are real.

Theorem 1.1.14. Let p(z) = zn + a1z
n−1 + · · · + an be a polynomial with

real coefficients; let q(z) = zm + b1z
m−1 + · · · + bm, where m = 1

2n(n − 1),
be the polynomial whose roots are all the sums of pairs of the roots of p. The
polynomial p is stable if and only if all the coefficients of the polynomials p
and q are positive.

Proof. Suppose that p is stable. To a negative root α of p there corre-
sponds the factor z−α with positive coefficients. To a pair of conjugate roots
with the negative real part there corresponds the factor

(z − α− iβ)(z − α + iβ) = z2 − 2αz + α2 + β2

with positive coefficients. Thus all the coefficients of p are positive.
The complex roots of q fall into the pairs of conjugate roots because the

coefficients of q are real. Further, the real parts of all the roots of q are negative.
The same arguments as for p show that all the coefficients of q are positive.

Next, let all the coefficients of p and q be positive. In this case, all the real
roots of p and q are negative. Therefore, if α is a real root of p, then α < 0, and,
if α±iβ is a pair of complex conjugate roots of p, then 2α = (α+iβ)+(α−iβ)
is a root of q; hence 2α < 0. �

1.2 The roots of a given polynomial and of its derivative

1.2.1 The Gauss-Lucas theorem

In 1836, Gauss showed that all the roots of P ′, distinct from the multiple
roots of the polynomial P itself, serve as the points of equilibrium for the field
of forces created by identical particles placed at the roots of P (provided that
r particles are located at the root of multiplicity r) if each particle creates an
attractive force inversely proportional to the distance to this particle. From
this theorem of Gauss it is easy to deduce Theorem 1.2.1 given below. Gauss
himself did not mention this. The first to formulate and prove Theorem 1.2.1
was a French engineer F. Lucas in 1874. Therefore Theorem 1.2.1 is often
referred to as the Gauss-Lucas theorem.
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Theorem 1.2.1 (Gauss-Lucas). The roots of P ′ belong to the convex hull
of the roots of the polynomial P itself.

Proof. Let P (z) = (z − z1) · . . . · (z − zn). It is easy to verify that

P ′(z)
P (z)

=
1

z − z1
+ · · ·+ 1

z − zn
. (1)

Suppose that P ′(w) = 0, P (w) �= 0 and suppose on the contrary that w does
not belong to the convex hull of the points z1, . . . , zn. Then one can draw a
line through w that does not intersect the convex hull of z1, . . . , zn. Therefore
the vectors w−z1, . . . , w−zn lie in one half-plane determined by this line.
Hence the vectors

1
w−z1

, . . . ,
1

w−zn

also lie in one half-plane, since
1
z

=
z

|z|2 . Hence,

P ′(w)
P (w)

=
1

w − z1
+ · · ·+ 1

w − zn
�= 0.

This is a contradiction, and hence w belongs to the convex hull of the roots
of P . �

Relation (1) allows one to prove the following properties of the roots of P ′

for any polynomial P with real roots.

Theorem 1.2.2 ([An1]). Let

P (z) = (z − x1) · . . . · (z − xn), where x1 < · · · < xn.

If some root xi is replaced by x′
i ∈ (xi, xi+1), then all the roots of P ′ increase

their value.

Proof. Let z1 < z2 < · · · < zn−1 be the roots of P ′, and let x1, . . . , xn

be the roots of P . Let z′1 < z′2 < · · · < z′n−1 be the roots of Q′ and let
x′

1 = x1, . . . , x
′
i−1 = xi−1, x

′
i, x

′
i+1 = xi+1, . . . , x

′
n = xn be the roots of Q. For

the roots zk and z′k, the relation (1) takes the form

n∑

i=1

1
zk − xi

= 0,

n∑

i=1

1
z′k − x′

i

= 0. (2)

Suppose that the statement of the theorem is false, i.e., z′k < zk for some k.
Then z′k − x′

i < zk − xi. Observe that the differences z′k − x′
i and zk − xi are

of the same sign. Indeed,

zj < xi, z′j < x′
i for j ≤ i− 1 and zj > xi, z′j > x′

i for j ≥ i.

Hence, 1
zk−xi

< 1
z′

k−x′
i

for all i = 1, . . . , n. But in this case relations (2) cannot
hold simultaneously. �
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1.2.2 The roots of the derivative and the focal points of an ellipse

The roots of the derivative of a cubic polynomial have the following interesting
geometric interpretation.

Theorem 1.2.3 (van der Berg, [Be2]). Let the roots of a cubic polynomial
P form the vertices of a triangle ABC in the complex plane. Then the roots
of P ′ are at the focal points of the ellipse tangent to the sides of �ABC at
their midpoints.

First proof. Observe first of all that if Q(z) = P (z − z0), then Q′(z) =
P ′(z − z0). Therefore we can take any point for the origin.

We can represent any affine transformation of the plane as a composi-
tion of an isometry, a homothety, and a transformation of the form (x, y) �→
(x, y cosα) in a Cartesian coordinate system. Therefore we may assume that
the triangle ABC is obtained from the equilateral triangle with vertices w,

εw and ε2w, where |w| = 1 and ε = exp
(

2πi

3

)

, under the transformation

z �→ z + z

2
+

z − z

2
cosα = z cos2

α

2
+ z sin2 α

2
. (1)

Then the semi-axes a and b of the ellipse considered are equal to 1
2 and 1

2 cosα;
the distance between its focal points F1 and F2 is equal to

√
a2 − b2 = 1

2 sin α.
Under the dilation with coefficient

(
1
2

sinα

)−1

=
(

sin
α

2
cos

α

2

)−1

.

points F1 and F2 transform into (±1, 0). The composition of transformation
(1) and this dilation amounts to the transformation

z �→ z cot
α

2
+ z tan

α

2

Set a = w cot α
2 . Then the polynomial with roots A, B, and C is of the

form

P (x) =
(

x− a− 1
a

)(

x− aε− 1
aε

)(

x− aε2 − 1
aε2

)

It is easy to verify that P ′(x) = 3x2 + 3ε + 3ε = 3x2 − 3, and therefore the
roots of P ′ are ±1. �

Second proof. [Sc5] Let ε = exp
(

2πi

3

)

and let z0, z1, z2 be the roots of

the polynomial P considered. Select numbers ζ0, ζ1, ζ2 so that

z0 = ζ0 + ζ1 + ζ2, z1 = ζ0 + ζ1ε + ζ2ε
2, z2 = ζ0 + ζ1ε

2 + ζ2ε, (2)
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i.e.,

3ζ0 = z0 + z1 + z2, 3ζ1 = z0 + z1ε
2 + z2ε, 3ζ2 = z0 + z1ε + z2ε

2.

In what follows we assume that z0 + z1 + z2 = 0, i.e., ζ0 = 0.
It is easy to verify that the curve ζ1e

iϕ + ζ2e
−iϕ, where 0 ≤ ϕ ≤ 2π, is

an ellipse whose semi-axes are directed along the bisectors of the exterior and
interior angles of the angle ∠ζ1Oζ2, where O is the origin, and the lengths
of the semi-axes are equal to |ζ1| + |ζ2| and ||ζ1| − |ζ2||. Indeed, the curve
considered is the image of the unit circle under the map z �→ ζ1z + ζ2z.
Further, if ζ1 = |ζ1|eiα and ζ2 = |ζ2|eiβ , then

ζ1e
iϕ + ζ2e

−iϕ = |ζ1|ei(ϕ+α) + |ζ2|ei(β−ϕ).

The absolute value of this expression attains its maximum at ϕ = α+β
2 + kπ

and its minimum at ϕ = α+β
2 + π

2 +kπ. These values of ϕ correspond precisely
to the directions of the bisectors indicated.

The focal points f1 and f2 of the ellipse ζ1e
iϕ + ζ2e

−iϕ lie on the line
corresponding to the angle ϕ = α+β

2 , i.e., f1f2
ζ1ζ2

is a positive number. Further,
the square of the distance of the focal point to the center of the ellipse is equal
to the difference of the squares of the semi-axes, i.e., it is equal to

(|ζ1|+ |ζ2|)2 − (|ζ1| − |ζ2|)2 = 4|ζ1ζ2|.

Hence f1f2 = 4ζ1ζ2.
Relations (2) for ζ0 = 0 show that the vertices z0, z1, z2 of the triangle con-

sidered lie on the ellipse ζ1e
iϕ+ζ2e

−iϕ and the mid-points of its sides lie on the
ellipse 1

2

(

ζ1e
iϕ + ζ2e

−iϕ
)

. The mid-point of a chord of the first ellipse lies on
the second ellipse only if this chord is tangent to the second ellipse. Therefore
we have to prove that the focal points of the ellipse 1

2

(

ζ1e
iϕ + ζ2e

−iϕ
)

coincide
with the roots of the derivative of the polynomial P = (z−z0)(z−z1)(z−z2).
The focal points of the ellipse satisfy the equation z2−ζ1ζ2 = 0, and the roots
of P ′ satisfy

3z2 + z0z1 + z0z2 + z1z2 = 0, i.e., 3(z2 − ζ1ζ2) = 0. �

1.2.3 Localization of the roots of the derivative

Jensen’s disks

Let f be a polynomial with real coefficients. For every pair of conjugate roots
z and z of f , the disk with diameter1 zz is called a Jensen’s disk of f .

Theorem 1.2.4 (Jensen). Any non-real root of f ′ lies inside or on the
boundary of one of the Jensen’s disks of f .
1 We mean that z and z are the endpoints of a diameter of this disk.



16 1 Roots of Polynomials

Proof. Let z1, . . . , zn be the roots of f . Then

f ′(z)
f(z)

=
n∑

j=1

1
z − zj

. (1)

Let us show first of all that if z lies outside Jensen’s disk with diameter zpzq,
then

sgn Im
(

1
z − zp

+
1

z − zq

)

= − sgn Im z. (2)

Indeed,

1
z − a− bi

+
1

z − a + bi
=

2(z − a)
(

(z − a)2 + b2
)

|(z − a)2 + b2|2
and

Im
(

(z − a)|z − a|2 + (z − a)b2
)

=
(

b2 − |z − a|2) Im z.

Let us show now that if z /∈ R and zj = a ∈ R, then

sgn Im
(

1
z − zj

)

= − sgn Im z. (3)

Indeed,
1

z − a
− 1

z − a
=

z − z

|z − a|2 =
−2 Im z

|z − a|2 .

Formulas (1), (2), (3) imply that if point z /∈ R lies outside all the Jensen’s
disks, then

sgn Im
f ′(z)
f(z)

= − sgn Im z �= 0.

Hence f ′(z) �= 0, i.e., z is not a root of f ′. �

As a refinement of Jensen’s theorem, we prove the following estimate for
the number of the roots of the derivative whose real parts belongs to a given
segment.

Theorem 1.2.5 (Walsh). Let I = [α, β], and let K be the union of I and
Jensen’s disks intersecting I. If K contains k roots of a polynomial f(z), then
the number of the roots of f ′(z) that lie in K is between k − 1 and k + 1.

Proof. Let C be the boundary of the smallest rectangle whose sides are
parallel to the coordinate axes and which contain K. Consider the restriction
to C of the map z �→ eiϕ, where ϕ = arg f ′(z)

f(z) . Formulas (1), (2) and (3) imply
that the image of the part of C that lies in the upper half-plane lies on the
half-circle |z| = 1, Im z ≤ 0, whereas the image of the part of C that lies in
the lower half-plane lies on the half-circle |z| = 1, Im z ≥ 0. Therefore the
number of revolutions of the image of C around the origin is equal to either 0
or ±1. This means that the indices of C with respect to the vector fields f(z)
and f ′(z) either coincide or differ by ±1, i.e., the total numbers of the zeros
of functions f and f ′ lying inside C either coincide or differ by ±1. �
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Walsh’s theorem

Theorem 1.2.6 (Walsh). Let the roots of the polynomials f1 and f2 lie in
the disks K1 and K2 with radii r1 and r2 and centers at points c1 and c2,
respectively. Then every root of the derivative of f = f1f2 lie either in K1, or

in K2, or in the disk of radius
n2r1 + n1r2

n1 + n2
centered at

n2c1 + n1c2

n1 + n2
, where

n1 = deg f1 and n2 = deg f2.

Proof. Let z be the root of f lying outside K1 and K2. Then

f ′
1(z)f2(z) + f1(z)f ′

2(z) = 0;

moreover, f1(z), f2(z), f ′
1(z), f ′

2(z) are nonzero.
Consider ζ1 and ζ2, the centers of mass of the roots of f1 and f2 with

respect to z, respectively. By Theorem 1.1.6

ζ1 = z − n1
f1(z)
f ′
1(z)

, ζ2 = z − n2
f2(z)
f ′
2(z)

.

Hence

n2ζ1 + n1ζ2 = (n1 + n2)z − n1n2

(
f1(z)
f ′
1(z)

+
f2(z)
f ′
2(z)

)

= (n1 + n2)z,

i.e., z =
n2ζ1 + n1ζ2

n1 + n2
. Since all the roots of fi lie in Ki, it follows that ζi ∈ Ki.

It remains to observe that if points ζ1 and ζ2 of mass n2 and n1 lie in disks
K1 and K2, respectively, then their center of mass z lies in the disk K. �

The Grace-Heawood theorem

Theorem 1.2.7 (J. H. Grace, 1902; P. J. Heawood, 1907). If z1 and z2

are distinct roots of a polynomial f of degree n, then the disk |z−c| ≤ r, where

c = 1
2 (z1 + z2) and r =

|z1 − z2|
2

cot
(π

n

)

, contains at least one root of f ′.

Proof. Let1 f ′(z) =
n−1∑

k=0

(
n−1

k

)

akzk. Then

0 = f(z2)− f(z1) =

z2∫

z1

f ′(z) dz =
n−1∑

k=0

(−1)k

(
n− 1

k

)

akbn−1−k,

where the coefficients b0, . . . , bn−1 depend only on z1 and z2 and not on the
coefficients a0, . . . , an−1. Therefore, given z1 and z2, we can construct a poly-
nomial g(z) =

∑n−1
k=0

(
n−1

k

)

bkzk apolar to f ′(z).

1 This expression of f ′ differs by a factor of 1
n

from formula (∗) in sec. 1.1.4.
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To obtain an explicit formula for g, set ak = (−1)kxn−1−k, i.e., consider
h(z) = (x − z)n−1. In this case

g(x) =
n−1∑

k=0

(
n− 1

k

)

xn−1−kbn−1−k =

z2∫

z1

(x− 1)n−1dz =
(x − z1)n − (x − z2)n

n
.

The roots of g are of the form

ζk =
z1 + z2

2
+ i

z1 − z2

2
cot

kπ

n
for k = 1, 2, . . . , n− 1

and all of them lie on the boundary of the disk considered. Therefore, by
Theorem 1.1.10 (see p. 8), the disk |z − c| ≤ r contains at least one root
of f ′. �

In [Ma7], there are several other theorems on localization of the roots of
the derivative.

1.2.4 The Sendov-Ilieff conjecture

In 1962, the Bulgarian mathematician B. Sendov made the following conjec-
ture often ascribed to another Bulgarians mathematician, L. Ilieff:

“Let P (z) be a polynomial (deg P ≥ 2) all of whose roots lie in the disk
|z| ≤ 1. If z0 is one of the roots of P (z), then the disk |z− z0| ≤ 1 contains at
least one root of P ′(z)”.

This conjecture is proved for all polynomials of degree ≤ 5 and several
particular polynomials (see, e.g., [Sc4]).

We confine ourselves to the proof of the conjecture for polynomials of the
form

P (z) = (z − z0)n0(z − z1)n1(z − z2)n2 .

This proof is given in [Co2].
The case when n = n0 + n1 + n2 ≥ 4 is much the simplest. In this case we

have to prove that if |zi| ≤ 1 for i = 0, 1, 2, then the polynomial

P ′(z) = n(z − z0)n0−1(z − z1)n1−1(z − z2)n2−1(z − w1)(z − w2) (1)

has a root lying in the disk |z − z0| ≤ 1. If n0 > 1, then z0 is such a root.
We assume therefore that n0 = 1. Let us express P (z) in the form P (z) =
(z − z0)Q(z). It is clear that

P ′(z0) = Q(z0) = (z0 − z1)n1(z0 − z2)n2 . (2)
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It follows from (1) and (2) that

n(z0 − w1)(z0 − w2) = (z0 − z1)(z0 − z2). (3)

Taking into account that |z0−z1| ≤ |z0|+ |z1| = 2 and |z0−z2| ≤ 2, we obtain

|z0 − w1| · |z0 − w2| ≤ 4
n
≤ 1,

and hence either |z0 − w1| ≤ 1 or |z0 − w2| ≤ 1.
It remains to consider the case when n0 = n1 = n2 = 1. For this we need

the following auxiliary statement which we will formulate more generally than
is needed for this proof.

Lemma. Let P (z) be a polynomial of degree n, where n ≥ 2. If

|P ′′(z0)| ≥ (n− 1) |P ′(z0)| ,
then at least one of the roots of P ′ lies inside the disk |z − z0| ≤ 1.

Proof. Let w1, w2, . . . , wn−1 be the roots of P ′. We may assume that the

highest coefficient of P is equal to 1. In this case P ′(z) = n
n−1∏

j=1

(z − wj). If

P ′(z) �= 0 we may take the logarithm of both sides and differentiate. This
gives

P ′′(z)
P ′(z)

=
n−1∑

j=1

1
z − wj

.

By the hypothesis z0 is a simple root of P , i.e., P ′(z0) �= 0. Suppose that
|z0−wj | > 1 for j = 1, . . . , n−1. Then the inequality |P ′′(z0)| ≥ (n−1) |P ′(z0)|
implies that

n− 1 ≤
∣
∣
∣
∣

P ′′(z0)
P ′(z0)

∣
∣
∣
∣
≤

n−1∑

j=1

1
|z0 − wj | < n− 1,

and we have a contradiction. �

Now let us consider directly the polynomial

P (z) = (z − z0)(z − z1)(z − z2) = (z − z0)Q(z).

Clearly

P ′′(z)
P ′(z)

= 2
Q′(z)
Q(z)

= 2
(

1
z0 − z1

+
1

z0 − z2

)

=
2(2z0 − z1 − z2)

(z0 − z1)(z0 − z2)
.

Now consider the triangle ABC with vertices A = z0, B = z1, C = z2.
Obviously |z0 − z1| = c, |z0 − z2| = b and |2z0 − z1 − z2| = 2ma, where
ma is the length of the median drawn from A. By Lemma the Sendov-Ilieff
conjecture holds if 4ma ≥ 2bc.
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By the hypothesis, b ≤ 2 and c ≤ 2, and hence 2ma ≥ bc holds both for
ma ≥ b and for ma ≥ c. It remains to consider the case when ma < b and
ma < c.

Relation (3) shows that the Sendov-Ilieff conjecture holds if bc ≤ 3. There-
fore we may assume that bc > 3. In this case

b2 + c2 = (b− c)2 + 2bc > 6,

and therefore b2 +c2−a2 > 6−4 > 0, i.e., ∠A < 90◦. The inequalities b > ma

and c > ma imply that ∠C < 90◦ and ∠B < 90◦, and hence the triangle
ABC is acute.

Let R be the radius of its circumscribed circle, ha the length of the altitude

from A. Then
c

ha
= sin B =

2R

b
, i.e., bc = 2Rha ≤ 2Rma. To obtain the

inequality desired, bc ≤ 2ma, it remains therefore to prove that R ≤ 1. The
acute triangle ABC lies inside the unit circle |z| = 1. If the circumscribed
circle S of the triangle ABC lies inside the unit circle, the inequality R ≤ 1 is
obvious. Let now S and the unit circle have a common chord. Since ABC is
acute, this chord subtends an acute angle ϕ whose vertex coincides with one
of the vertices of the triangle ABC. The same chord subtends the angles ψ
and 180◦− ψ, where ψ ≤ 90◦, whose vertices lie on the unit circle. Moreover,
ψ ≤ ϕ. The inequalities ψ ≤ ϕ < 90◦ < 180◦ − ψ imply that R ≤ 1.

1.2.5 Polynomials whose roots coincide with the roots of their
derivatives

In the paper [Ya] it was stated that if P and Q are monic polynomials (i.e.,
their highest coefficients are equal to 1) and the sets of roots of P and Q
coincide, and the sets of roots of the polynomials P ′ and Q′ also coincide,
then Pm = Qn for certain positive integers m and n. Later certain gaps
were discovered in the proof of this statement and soon a counterexample
was constructed in [Ro2]. The construction of this counterexample is rather
complicated. We advise the interested reader to turn directly to [Ro2].

Concerning properties of polynomials whose roots coincide with the roots
of the derivatives see also [Do1].

1.3 The resultant and the discriminant

1.3.1 The resultant

Consider polynomials f(x) =
n∑

i=0

aix
n−i and g(x) =

m∑

i=0

bix
m−i, where a0 �= 0

and b0 �= 0. Over an algebraically closed field, f and g have a common divisor
if and only if they have a common root. If the field is not algebraically closed,
then the common divisor could be a polynomial without roots.
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The existence of a common divisor of f and g is equivalent, as one can
show, to the existence of polynomials p and q such that fq = gp, where
deg p ≤ n − 1 and deg q ≤ m − 1. Indeed, let f = hp and g = hq. Then
fq = hpq = gp. Suppose now that fq = gp, where deg q ≤ deg g − 1. If f and
g do not have a common divisor, then q divides g: a contradiction.

Let q = u0x
m−1 + · · ·+ um−1 and p = v0x

n−1 + · · ·+ vn−1. The equality
fq = gp can be expressed as a system of equations:

a0u0 = b0v0,

a1u0 + a0u1 = b1v0 + b0v1,

a2u0 + a1u1 + a0u2 = b2v0 + b1v1 + b0v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The polynomials f and g have a common root if and only if this system has
a nonzero solution (u0, u1, . . . , v0, v1, . . . ). If, for example, m = 3 and n = 2,
the determinant of this system of equations is of the form

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 0 0 −b0 0
a1 a0 0 −b1 −b0

a2 a1 a0 −b2 −b1

0 a2 a1 −b3 −b2

0 0 a2 0 −b3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ±

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 0 0
0 a0 a1 a2 0
0 0 a0 a1 a2

b0 b1 b2 b3 0
0 b0 b1 b2 b3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ± detS(f, g).

The matrix

S(f, g) =









a0 a1 a2 0 0
0 a0 a1 a2 0
0 0 a0 a1 a2

b0 b1 b2 b3 0
0 b0 b1 b2 b3









is called the Sylvester matrix of the polynomials f and g. The determinant
of S(f, g) is called the resultant of f and g and is denoted by R(f, g). Clearly,
R(f, g) is a homogeneous polynomial of degree m with respect to indetermi-
nates ai and of degree n with respect to indeterminates bj. The polynomials
f and g have a common divisor if and only if the determinant of the system
considered vanishes, i.e., R(f, g) = 0.

The resultant has many different applications. For example, given poly-
nomial relations P (x, z) = 0 and Q(y, z) = 0 we can, with the help of the
resultant, obtain a polynomial relation of the form R(x, y) = 0, i.e., eliminate
z. Indeed, consider the given polynomials P (x, z) and Q(y, z) as polynomials
in z regarding x and y as constants. Then the vanishing of the resultant of
these polynomials is exactly the relation desired R(x, y) = 0.

The resultant also allows one to reduce the solution of the system of alge-
braic equations to the search for roots of polynomials. Indeed, let P (x0, y0) = 0
and Q(x0, y0) = 0. Consider P (x, y) and Q(x, y) as polynomials in y. For
x = x0, they have a common root y0. Therefore their resultant R(x) vanishes
at x = x0.
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Theorem 1.3.1. Let xi be the roots of f , and yj the roots of g. Then

R(f, g) = am
0 bn

0

∏

(xi − yj) = am
0

∏

g(xi) = bn
0

∏

f(yj).

Proof. Since f(x) = a0(x− x1) · . . . · (x− xn), it follows that

ak = ±a0σk(x1, . . . , xn),

where σk is an elementary symmetric function. Similarly,

bk = ±b0σk(y1, . . . , ym).

The resultant is a homogeneous polynomial of degree m with respect to inde-
terminates ai and of degree n with respect to the bj . Hence

R(f, g) = am
0 bn

0P (x1, . . . , xn, y1, . . . , ym),

where P is a symmetric polynomial in x1, . . . , xn and y1, . . . , ym vanishing at
xi = yj . The formula

xk
i = (xi − yj)xk−1

i + yjx
k−1
i

shows that

P (x1, . . . , ym) = (xi − yj)Q(x1, . . . , ym) + U(x1, . . . , x̂i, . . . , ym).

Substituting xi = yj into this formula we see that U is the zero polynomial.
Similar arguments show that P is divisible by S = am

0 bn
0

∏
(xi − yj).

Since g(x) = b0

m∏

j=1

(x−yj), we have
n∏

i=1

g(xi) = bn
0

∏

i,j

(xi−yj), and therefore

S = am
0

n∏

i=1

g(xi) = am
0

n∏

i=1

(b0x
m
i + b1x

m−1
i + · · ·+ bm)

is a homogeneous polynomial of degree n in indeterminates b0, . . . , bm. For
indeterminates a0, . . . , an, the arguments are similar. It is also clear that the
symmetric polynomial am

0

∏n
i=1(b0x

m
i + b1x

m−1
i + · · · + bm) is a polynomial

in a0, . . . , an, b0, . . . , bm. Hence R(f, g) = R(a0, . . . , bm) = λS, where λ is a
number which does not depend on the ai and bi.

On the other hand, the coefficient of
∏

xm
i in am

0 bn
0P (x1, . . . , ym) and S is

equal to am
0 bn

0 , hence, λ = 1. �

Corollary 1. R(g, f) = (−1)deg f deg gR(f, g).

Corollary 2. If f = gq + r, then

R(f, g) = bdeg f−deg r
0 R(r, g),

where b0 is the leading coefficient of g.
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Proof. Let yj be the roots of g. Then f(yj) = r(yj). It remains use that
R(f, g) = bdeg f

0

∏
f(yj) and R(r, g) = bdeg r

0

∏
f(yj). �

Corollary 3. R(f, gh) = R(f, g)R(f, h)

Proof. Let xi be the roots of f and a0 its leading coefficient. Then

R(f, gh) = adeg g+deg h
0

∏

g(xi)h(xi),

R(f, g) = adeg g
0

∏

g(xi),

R(f, h) = adeg h
0

∏

h(xi). ��

Theorem 1.3.2. Let f(x) =
n∑

i=0

aix
n−i and g(x) =

m∑

i=0

bix
m−i. Then there

exist polynomials ϕ and ψ with integer coefficients in indeterminates a0, . . . , an,
b0, . . . , bm and x for which the identity

ϕ(x, a, b)f(x) + ψ(x, a, b)g(x) = R(f, g)

holds.

Proof. Let c0, . . . , cn+m−1 be the columns of the Sylvester matrix S(f, g)
and yk = xm+n−k−1. Then

y0c0 + · · ·+ yn+m−1cn+m−1 = c,

where c is the column vector
(

xm−1f(x), . . . , f(x), xn−1g(x), . . . , g(x)
)T

.

Consider y0, . . . , yn+m−1 as a system of linear equations for y0, . . . , yn+m−1

and make use of Cramer’s rule in order to find yn+m−1. We obtain

yn+m−1 det(c0, . . . , cn+m−1) = det(c0, . . . , cn+m−2, c). (1)

It remains to notice that yn+m−1 = 1, det(c0, . . . , cn+m−1) = R(f, g) and
the determinant on the right-hand side of (1) can be represented in the form
desired, i.e., as ϕ(x, a, b)f(x) + ψ(x, a, b)g(x). �

1.3.2 The discriminant

Let x1, . . . , xn be the roots of the polynomial f(x) = a0x
n + · · ·+ an, where

a0 �= 0. The quantity

D(f) = a2n−2
0

∏

i<j

(ai − aj)2

is called the discriminant of f .
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Theorem 1.3.3. R(f, f ′) = ±a0D(f).

Proof. By Theorem 1.3.1 we have R(f, f ′) = an−1
0

∏

i

f ′(xi). It is easy to

verify that f ′(xi) = a0

∏

j �=i

(xj − xi). Therefore

R(f, f ′) = a2n−1
0

∏

j �=i

(xj − xi) = ±a2n−1
0

∏

i<j

(xj − xi)2. ��

Remark. It is not difficult to show that

R(f, f ′) = −R(f ′, f) = (−1)n(n−1)/2a0D(f).

Corollary. The discriminant of f is a polynomial in a0, . . . , an with in-
teger coefficients.

Theorem 1.3.4. Let f , g, and h be monic polynomials. Then

D(fg) = D(f)D(g)R2(f, g)

D(fgh) = D(f)D(g)D(h)R2(f, g)R2(g, h)R2(h, f).

Proof. Let x1, . . . , xn be the roots of f , and y1, . . . , ym the roots of g.
Then

D(fg) =
∏

(xi − xj)2
∏

(yi − yj)2
∏

(xi − yj)2 = D(f)D(g)R2(f, g).

The second formula is proved similarly. �

Theorem 1.3.5. Let f be a real polynomial of degree n without real roots.
Then sgn D(f) = (−1)n/2.

Proof. Making use of the factorization

f(x) = a0(x− x1) · . . . · (x− xn)

it is easy to verify that

D ((x− a)f(x)) = D (f(x)) (f(a))2 .

Let a and a be a pair of conjugate roots of f , i.e., f(x) = (x−a)(x−a)g(x).
Then

D (f(x)) = D (g(x)) (a− a)2 (f(a)f(a))2 .

Clearly, sgn(a − a)2 = −1 and (f(a)f(a))2 = |f(a)|4 > 0. Therefore
sgnD(f) = − sgnD(g). Now it is easy to obtain the statement required by
induction on n. �

Theorem 1.3.6. Let f(x) = xn + a1x
n−1 + · · · + an be a polynomial with

integer coefficients. Then its discriminant D(f) is equal to either 4k or 4k+1,
where k is an integer.
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Proof. Let x1, . . . , xn be the roots of f . Then

D(f) = δ2(f), where δ(f) =
∏

i<j

(xi − xj).

Consider an auxiliary polynomial δ1(f) =
∏

i<j

(xi + xj). Clearly, δ1(f) is a

symmetric function of the roots of f , and hence δ1(f) is an integer. Moreover,

δ2
1(f)− δ2(f) =

∏

i<j

(

(xi − xj)2 + 4xixj

)−
∏

i<j

(xi − xj)2 = 4U(x1, . . . , xn),

where U is a symmetric polynomial in x1, . . . , xn with integer coefficients.
Therefore D(f) = δ2

1(f) + 4k1, where k1 is an integer. It is also clear that
δ2
1(f) = 4k2 or 4k2 + 1. �

1.3.3 Computing certain resultants and discriminants

In this section we give several examples on how to compute resultants and
discriminants.

Example 1.3.7. D(xn + a) = (−1)n(n−1)/2nnan−1.

Proof. Let us make use of the fact that

D(f) = (−1)n(n−1)/2R(f, f ′) = (−1)n(n−1)/2
n∏

i=1

f ′(xi),

where x1, . . . , xn are the roots of f . In our case f ′(x) = nxn−1 and
∏

xi =
(−1)na, and therefore

∏
xn−1

i = (−1)n(n−1)an−1 = an−1. �

Example 1.3.8. Let ϕ(x) = xn−1+· · ·+1. Then D(ϕ) = (−1)(n−1)(n−2)/2nn−2.

Proof. Since (x− 1)ϕ(x) = xn − 1, it follows that

D(ϕ) (ϕ(1))2 = D ((x− 1)ϕ(x)) = D(xn − 1) = (−1)(n−1)(n−2)/2nn.

It remains to observe that ϕ(1) = n. �

Example 1.3.9. Let fn(x) = 1 + x + x2

2! + · · ·+ xn

n! . Then

D(n!fn) = (−1)n(n−1)/2(n!)n.

Proof. The polynomial gn = n!fn is monic, and hence

D(g) = (−1)n(n−1)/2R(g, g′) = (−1)n(n−1)/2
n∏

i=1

g′(αi),
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where α1, . . . , αn are the roots of fn. Clearly,

g′(αi) = n!f ′
n(αi) = n!fn−1(αi) = n!

(

fn(αi)− αn
i

n!

)

= −αn
i .

Therefore

D(g) = (−1)n(n−1)/2
n∏

i=1

(−αn
i ).

It remains to observe that
∏

αi = (−1)ng(0) = (−1)nn!. �

Example 1.3.10. Let d = (r, s), r1 =
r

d
and s1 =

s

d
. Then

R(xr − a, xs − b) = (−1)s (as1 − br1)d .

Proof. The relation R(g, f) = (−1)deg f deg gR(f, g) shows that if the de-
sired statement holds for a pair (r, s), then it also holds for a pair (s, r).
Indeed, (−1)rs+d+r = (−1)s. We may therefore assume that r ≥ s.

For s = 0, the statement is obvious. If s > 0, then having divided xr − a
by xs − b we get the residue bxr−s − a. Hence

R(xr − a, xs − b) = R(bxr−s − a, xs − b) =

= R(b, xs − b)R
(

xr−s − a

b
, xs − b

)

=

= bsR
(

xr−s − a

b
, xs − b

)

.

It is easy to see that if R(xr−s− a
b , xs−b) = (−1)s

(

(a
b )s1 − br1−s1

)

, then

R(xr−a, xs−b) = (−1)s (as1 − br1)d
.

It remains to use induction on r + s. �

Example 1.3.11. Let n > k > 0, d = (n, k), n1 =
n

d
and k1 =

k

d
. Then

D(xn + axk + b) =

(−1)n(n−1)/2bk−1
(

nn1bn1−k1 + (−1)n1+1(n− k)n1−k1kk1an1

)d

.

Proof. [Sw] The formula D(f) = (−1)n(n−1)/2R(f, f ′) gives

D(xn + axk + b) = (−1)n(n−1)/2R(xn + axk + b, nxn−1 + kaxk−1) =

= (−1)n(n−1)/2nnR(xn + axk + b, xn−1 + n−1kaxk−1).

Using the fact that

R(f, xmg) = R(f, xm)R(f, g) = (f(0))m R(f, g),
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we obtain

D(xn + axk + b) = (−1)n(n−1)/2nnbk−1R(xn + axk + b, xn−k + n−1ka).

The residue after the division of xn + axk + b by xn−k + n−1ka is equal to
a(1− n−1k)xk + b, and hence

R(xn + axk + b, xn−k + n−1ka) = R
(

a(1 − n−1k)xk + b, xn−k + n−1ka
)

.

The resultant of a pair of two binomials is computed in Example 1.3.10. �

1.4 Separation of roots

Here we discuss various theorems which allow us to compute, or at least
estimate from above, the number of real roots of a polynomial on a given
segment (a, b). Formulations of such theorems often use the notion the number
of sign changes in the sequence a0, a1, . . . , an, where a0an �= 0. This number
is determined as follows: all the zero terms of the sequence considered are
deleted and, for the remaining non-zero terms, one counts the number of
pairs of neighboring terms of different sign.

1.4.1 The Fourier–Budan theorem

Theorem 1.4.1 (Fourier–Budan). Let N(x) be the number of sign changes
in the sequence f(x), f ′(x), . . . , f (n)(x), where f is a polynomial of degree n.
Then the number of roots of f (multiplicities counted) between a and b, where
f(a) �= 0, f(b) �= 0 and a < b, does not exceed N(a) − N(b). Moreover, the
number of roots can differ from N(a)−N(b) by an even number only.

Proof. Let x be a point which moves along the segment [a, b] from a to b.
The number N(x) varies only if x passes through a root of the polynomial
f (m) for some m ≤ n.

Consider first the case when x passes through a root x0 of multiplicity
r of f(x). In a neighborhood of x0, the polynomials f(x), f ′(x), . . . , f (r)(x)
behave approximately as

(x− x0)rg(x0), (x− x0)r−1rg(x0), . . . , r!g(x0),

respectively. Therefore, for x < x0, there are r sign changes in this sequence
and for x > x0 there are no sign changes (assuming that x is sufficiently close
to x0).

Now suppose that x passes through a root x0 of multiplicity r of f (m); let
x0 be not a root of f (m−1). (Of course, x0 can be a root of f as well, as it can
be not a root of f .) We have to prove that under the passage through x0 the
number of sign changes in the sequence f (m−1)(x), f (m)(x), . . . , f (m+r)(x)
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changes by a non-negative even integer. Indeed, in a vicinity of x0 these poly-
nomials behave approximately as

F (x0), (x− x0)rG(x0), (x− x0)r−1rG(x0), . . . , r!G(x0). (1)

Excluding F (x0), we see that the remaining system has exactly r sign changes
for x < x0 and no sign changes for x > x0. Concerning the first two terms,
F (x0) and (x − x0)rG(x0), of the sequence (1) we see that if r is even, then
the number of sign changes is the same for x < x0 and x > x0 whereas if r is
odd, then the number of sign changes for x < x0 is by 1 greater or less than
for x > x0 (depending whether F (x0) and G(x0) have the same sign or the
opposite sign). Thus, for r even, the difference in the number of sign changes
is equal to r and, for r odd, the difference of the number of sign changes is
equal to r± 1. In both these cases this difference is even and non-negative. �

Corollary 1. (The Descartes Rule) The number of positive roots of the
polynomial f(x) = a0x

n + a1x
n−1 + · · · + an does not exceed the number of

sign changes in the sequence a0, a1, . . . , an.

Proof. Since f (r)(0) = r!an−r , it follows that N(0) coincides with the
number of sign changes in the sequence of coefficients of f . It is also clear
that N(+∞) = 0. �

Remark. Jacobi showed that the Descartes Rule can be used also to es-
timate the number of roots between α and β. To this end one should make

the change of variables y =
x− α

β − x
, i.e., set x =

α + βy

1 + y
, and consider the

polynomial

(1 + y)nf

(
α + βy

1 + y

)

= b0y
n + b1y

n−1 + · · ·+ bn.

The Descartes Rule applied to this polynomial yields an estimate of the num-
ber of roots between α and β. Indeed, y varies from 0 to ∞, as x varies from
α to β.

Corollary 2. (de Gua) If the polynomial lacks 2m consecutive terms
(i.e., the coefficients of these terms vanish), then this polynomial has no less
than 2m imaginary roots. If 2m + 1 consecutive terms are missing, then if
they are between terms of different signs, the polynomial has no less than 2m
imaginary roots, whereas if the missing terms are between terms of the same
sign the polynomial has no less than 2m + 2 imaginary roots.

In certain cases the comparison of the sign changes in two sequences allows
one to sharpen the estimate of the number of roots as compared with the
estimate given by the Fourier-Budan theorem. The first to formulate this
type of theorem was Newton but it was proved (by Sylvester) much later,
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in 1871. Let us replace the sequence f(x), f ′(x), . . . , f (n)(x) by the sequence
f0(x), f1(x), . . . , fn(x), where

fi(x) =
(n− i)!

n!
f (i)(x), (2)

and consider one more sequence F0(x), F1(x), . . . , Fn(x), where F0(x) = F (x),
Fn(x) = f2

n(x) and

Fi(x) = f2
i (x)− fi−1(x)fi+1(x), i = 1, . . . , n−1. (3)

Convention 1.4.1 Let us take into account only the pairs fi(x), fi+1(x) for
which sgn Fi(x) = sgn Fi+1(x).

Let N+(x) be the number of pairs for which sgn fi(x) = sgn fi+1(x) and
let N−(x) be the number of pairs for which sgn fi(x) = − sgnfi+1(x).

Theorem 1.4.2 (Newton-Sylvester). Let f be a polynomial of degree n
without multiple roots. Then the number of roots of f between a and b, where
a < b and f(a)f(b) �= 0, does not exceed either N+(b) − N+(a) or N−(a) −
N−(b).

Proof. First consider the case when f satisfies the following conditions:

1) no two consecutive polynomials fi have common roots;
2) no two consecutive polynomials Fi have common roots;
3) the roots of fi and Fi are distinct from a and b.

In this case formula (3) implies that fi and Fi have no common roots.
It is easy to derive from (2) and (3) that

f ′
i = (n− i)fi+1, (4)

fiF
′
i = (n− i− 1)(Fifi+1 + Fi+1fi). (5)

Let x move from a to b. The numbers N±(x) only vary if x passes either
through a root of fi or through a root of Fi. Consider separately the following
three cases.

Case 1: the passage through a root x0 of f0 = f . If f0(x0) = 0, then

F1(x0) = f2
1 (x0)− f0(x0)f2(x0) = f2

1 (x0) > 0.

Therefore the passage through x0 does not involve a change of sign in the
sequence F0(x) = 1, F1(x). Formula (4) implies that sgn f ′(x) = sgn f1(x).
Therefore, if f1(x0) > 0, then f0(x0 − ε) < 0 and f0(x0 + ε) > 0, whereas if
f1(x0) < 0, then f0(x0 − ε) > 0 and f0(x0 + ε) < 0. In both cases

f0(x0 − ε)f1(x0 − ε) < 0 and f0(x0 + ε)f1(x0 + ε) > 0.
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Thus, the passage through x0 increases N+ by 1 and decreases N− by 1. (We
only consider the contribution to N± of the pair f0, f1.)

Case 2: the passage through a root x0 of the polynomial fi, where i ≥ 1.
In this case the change of signs occurs in the sequence fi−1, fi, fi+1. The
possible variants of the signs of the polynomials considered at x = x0 ± ε are
considerably restricted by the following relations:

1) sgn fi+1 = sgn f ′
i due to (4);

2) sgnFi(x0) = sgn
(

f2
i (x0)− fi−1(x0)fi+1(x0)

)

=
− sgn (fi−1(x0)fi+1(x0)) due to (3);

3) sgnFi±1 = sgn f2
i±1 = 1.

If Fi(x0) < 0 the sign changes occur in the pairs Fi−1, Fi and Fi, Fi+1

but, by Convention 1 just before the theorem, we do not consider such pairs.
If Fi(x0) > 0, then fi−1(x0)fi+1(x0) < 0. The signs of the polynomials fi−1,
fi, fi+1 considered at x = x0 ± ε are completely determined by the sign of
fi+1(x0). For both values of the signs, the pairs fi−1(x0 − ε), fi(x0 − ε) and
fi(x0 − ε), fi+1(x0 − ε) contribute to N+ and N−, respectively, and then the
pairs fi−1(x0 + ε), fi(x0 + ε) and fi(x0 + ε), fi+1(x0 + ε) contribute the other
way round to N− and N+, respectively. Thus, their total contribution to N+

as well as to N− does not vary.
Case 3: passage through a root x0 of Fi. In this case the signs of the

polynomials satisfy the following relations:

1)fi−1(x0)fi+1(x0) = f2
i (x0)− Fi(x0) = f2

i (x0) > 0;
2) sgn f ′

i = sgn fi+1;
3) formula (5) implies that sgnF ′

i = sgn fi−1fi+1Fi+1.

An easy perusal of the possible scenarios shows that either both N+

and N− do not vary, or N+ increases by 2, or N− decreases by 2.
It remains to explain how to get rid of conditions 1)–3) imposed on f .

If some of these conditions are not satisfied, then after a small variation of
the coefficients of f these conditions will be satisfied. But the roots of f are
simple ones, and therefore the number of roots of f lying strictly inside the
segment [a, b] does not vary under a small variation of the coefficients. �

Remark. For the polynomial f with multiple roots, one should make use
of a slightly more subtle argument. Namely, one should consider not arbi-
trary small variations but only those for which the real root of multiplicity r
splits into r distinct real roots. To produce such a small variation, it is more
convenient to modify the roots of the polynomial rather than its coefficients.

1.4.2 Sturm’s Theorem

Consider the polynomials f(x) and f1(x) = f ′(x). Let us seek the greatest
common divisor of f and f1 with the help of Euclid’s algorithm:
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f = q1f1 − f2,

f1 = q2f2 − f3,

. . . . . . . . . . . . . . .

fn−2 = qn−1fn−1 − fn,

fn−1 = qnfn.

The sequence f, f1, . . . , fn−1, fn is called the Sturm sequence of the polyno-
mial f .

Theorem 1.4.3 (Sturm). Let w(x) be the number of sign changes in the
sequence

f(x), f1(x), . . . , fn(x).

The number of the roots of f (without taking multiplicities into account) con-
fined between a and b, where f(a) �= 0, f(b) �= 0 and a < b, is equal to
w(a) − w(b).

Proof. First, consider the case when the roots of f are simple (i.e., the
polynomials f and f ′ have no common roots). In this case fn is a nonzero
constant.

Let us verify first of all that when we pass through one of the roots of
polynomials f1, . . . , fn−1 the number of sign changes does not vary. In the
case considered, the neighboring polynomials have no common roots, i.e., if
fr(α) = 0, then fr±1(α) �= 0. Moreover, the equality fr−1 = qr−1fr − fr+1

implies that fr−1(α) = −fr+1(α). But in this case the number of sign changes
in the sequence fr−1(α), ε, fr+1(α) is equal to 2 both for ε > 0 and for ε < 0.

Let us move from a to b. If we pass through a root x0 of f , then first the
numbers f(x) and f ′(x) are of different signs and then they are of the same
sign. Therefore the number of sign changes in the Sturm sequence diminishes
by 1. All the other sign changes, as we have already shown, are preserved
during the passage through x0.

Now consider the case when x0 is a root of multiplicity m of f . In this case
f and f1 have a common divisor (x− x0)m−1, and hence the polynomials are
divisible by (x−x0)m−1. Having divided f, f1, . . . , fr by (x−x0)m−1 we ob-

tain the Sturm sequence ϕ, ϕ1, . . . , ϕr for the polynomial ϕ(x) =
f(x)

(x − x0)m−1
.

The root x0 is a simple one for ϕ, and hence the passage through x0 increases
the number of sign changes in the sequence ϕ, ϕ1, . . . , ϕr by 1. But for a fixed x
the sequence f, f1, . . . , fr is obtained from ϕ, ϕ1, . . . , ϕr by multiplication
by a constant, and therefore the numbers of sign changes in these sequences
coincide. �

1.4.3 Sylvester’s theorem

To compute the Sturm sequence is rather a laborious task. Sylvester suggested
the following more elegant method for computing the number of the real roots
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of the polynomial. Let f be a real polynomial of degree n with simple roots
α1, . . . , αn. Set sk = αk

1 + · · ·+αk
n. (Clearly, to calculate sk one does not have

to know the roots of the polynomial because sk, being a symmetric function,
is expressed in terms of the coefficients of the polynomial.)

Theorem 1.4.4 (Sylvester). a) The number of the real roots of f is equal
to the signature of the quadratic form with the matrix








s0 s1 . . . sn−1

s1 s2 . . . sn

...
...

. . .
...

sn−1 sn . . . s2n








.

b) All the roots of f are positive if and only if the matrix







s1 s2 . . . sn

s2 s3 . . . sn+1

...
...

. . .
...

sn sn+1 . . . s2n+1








.

is positive definite.

Proof. (Hermite) Let ρ be a real parameter. Consider the quadratic form

F (x1, . . . , xn) =
y2
1

α1 + ρ
+ · · ·+ y2

n

αn + ρ
, (1.1)

where yr = x1 + αrx2 + · · ·+ αn−1
r xn. (1.2)

The coefficients of the polynomial F are symmetric functions in the roots
of f , and hence they are real. In particular, this means that the form F can
be represented as

h2
1 + · · ·+ h2

p − h2
p+1 − · · · − h2

n,

where h1, . . . , hn are linear forms in x1, . . . , xn with real coefficients.
To the real root αr there corresponds the summand

y2
r

αr + ρ
=

(x1 + αrx2 + · · ·+ αn−1
r xn)2

αr + ρ
.

This summand can be represented in the form ±h2
r, where the plus sign is

taken if αr + ρ > 0 and the minus sign otherwise.
The contribution of a pair of conjugate roots αr and αs is equal to

Fr,s =
y2

r

αr + ρ
+

y2
s

αr + ρ
.
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Let yr = u + iv and
y

αr + ρ
= λ + iµ, where u, v, λ, µ are real numbers. Then

ys = u− iv and
y

αs + ρ
= λ− iµ. Therefore

Fr,s = 2λ(u2 − v2)− 4µuv.

For u = 0 and for v = 0, the values of Fr,s have opposite signs. Hence after a
change of variables we may assume that Fr,s = u2

1 − v2
1 .

As a result we see that all the roots of f are real and satisfy the inequality
αr > −ρ if and only if the form (1) is positive definite. The matrix elements
of this form are

aij =
αi+j−2

1

α1 + ρ
+ · · ·+ αi+j−2

n

αn + ρ
.

Statements a) and b) are obtained by going to the limit as ρ −→ +∞ and
taking ρ = 0, respectively. �

The quadratic form that appears in Sylvester’s theorem has quite an in-
teresting interpretation. This interpretation will enable us to obtain another
proof of Sylvester’s theorem; moreover, even for polynomials with multiple
roots.

Consider the linear space V = R[x]/(f) consisting of polynomials consid-
ered modulo a polynomial f ∈ R[x]. We assume that f is monic and deg f = n.
The polynomials 1, x, . . . , xn−1 form a basis of V . To every a ∈ V , we may
assign a linear map V → V given by the formula v �→ av (since the elements
of V are polynomials we can multiply them). Let tr(a) be the trace of this
map. Consider the symmetric bilinear form

ϕ(v, w) = tr(vw).

Theorem 1.4.5. a) Let f(x) = (x − α1) · · · · · (x − αn) ∈ R[x] and sk =
αk

1 + · · ·+ αk
n. The matrix of ϕ in the basis 1, x, . . . , xn−1 has the form








s0 s1 . . . sn−1

s1 s2 . . . sn

...
...

. . .
...

sn−1 sn . . . s2n








.

b) The signature of the form ϕ is equal to the number of distinct real roots
of f .

Proof. a) Over C, the polynomial f can be factorized into the product
of relatively prime linear factors f = fm1

1 · . . . · fmr
r . Thanks to the Chinese

remainder theorem (Lemma on p. 69) the map

h (mod f) �→ (h (mod fm1
1 ), . . . , h (mod fmr

r ))
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determines a canonical isomorphism

C[x]/(f) ∼= C[x]/(fm1
1 )× · · · × C[x]/(fmr

r ).

In this decomposition the factors are orthogonal with respect to ϕ. Indeed, let
polynomials hi and hj correspond to factors with distinct numbers i and j,
i.e., hi ≡ 0 (mod f/fmi

i ) and hj ≡ 0 (mod f/f
mj

j ). Then hihj ≡ 0 (mod f),
and therefore the map v �→ hihjv is the zero one. Hence its trace vanishes.
Therefore ϕ = ϕ1 + · · ·+ϕr, where ϕi is the restriction of ϕ onto the subspace
C[x]/(fmi

i ) = C[x]/(x − αi)mi . It remains to verify that ϕi(1, xk) = miα
k
i .

It is easy to calculate the matrix of the form ϕi in the basis

1, x−αi, . . . , (x−αi)mi−1.

Indeed, in this basis the map v �→ (x−αi)kv has a triangular matrix; and the
trace of this matrix is equal to mi if k = 0 and to 0 if k > 0. Since

0 = ϕi(1, x− αi) = ϕi(1, x)− αiϕi(1, 1) = ϕi(1, x)−miαi,

it follows that ϕi(1, x) = miαi. Next, with the help of the equality

ϕi

(

1, (x− αi)k
)

= 0

and induction on k we see that ϕi(1, xk) = miα
k
i .

b) Computing the signature we must remain in R, and therefore we de-
compose f over R into the product of relatevely prime linear or quadratic
factors: f = fm1

1 · . . . · fmr
r . Again consider the decomposition

R[x]/(f) ∼= R[x]/(fm1
1 )× · · · × R[x]/(fmr

r ).

It suffices to verify that the signature of the restriction of ϕ onto R[x]/(fmi

i )
is equal to 1 if deg fi = 1 and to 0 if fi is an irreducible over R polynomial of
degree 2. As we have already established, in the basis 1, x−αi, (x−αi)mi−1,
the matrix of ϕi is equal to








mi 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0








.

Therefore if deg fi = 1 the signature of ϕi is equal to 1.
If fi is an irreducible over R polynomial of degree 2, then R[x]/(fmi

i ) ∼=
R[x]/(x2 + 1)mi . Here we mean an isomorphism over R. Therefore it suffices
to calculate the signature of ϕ on R[x]/(x2 +1)m. It is convenient to calculate
the matrix of ϕ in the basis

1, x2, x2 + 1, x(x2 + 1), (x2 + 1)2, . . . , x(x2 + 1)m−1, (x2 + 1)m−1.
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In this basis, the operators of multiplication by x and x2 have matrices









0 1 0 0 0 . . .
−1 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 −1 0 1 . . .
...

...
...

...
...

. . .










and










−1 0 1 0 0 . . .
0 −1 0 1 0 . . .
0 0 −1 0 1 . . .
0 0 0 −1 0 . . .
...

...
...

...
...

. . .










,

respectively. Therefore the trace of the operator of multiplication by x is equal
to 0 and the trace of the operator of multiplication by x2 is equal to −2m.
The operators of multiplication by xa(x2 + 1)k, where a = 0, 1, 2 and k ≥ 1,
are represented by diagonal matrices with zero main diagonals; their traces
vanish. As a result, we see that the matrix of the form ϕ is equal to










2m 0 0 . . . 0
0 −2m 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . 0










.

The signature of such a form is equal to zero. �

1.4.4 Separation of complex roots

Sturm’s theorem enables one to indicate algorithmically a set of segments that
contain all the real roots of a real polynomial and, moreover, each such seg-
ment contains precisely one root. In a series of papers (1869–1878), Kronecker
developed a theory with an algorithm to indicate a set of disks which contain
all the complex roots of a complex polynomial so that each disk contains ex-
actly one root. More exactly, Kronecker showed that the number of complex
roots inside the given disk can be computed with the help of Sturm’s theorem.

Let z = x + iy. Let us represent the polynomial P (z) in the form P (z) =
ϕ(x, y)+ iψ(x, y). We will assume that P has no multiple roots, i.e., if P (z) =
0, then P ′(z) �= 0.

To every root of P , there corresponds the intersection point of the curves
ϕ = 0 and ψ = 0. Therefore the number of roots of P lying inside a closed
non-self-intersecting curve γ is equal to the number of the intersection points
of the curves ϕ = 0 and ψ = 0 lying inside γ. This number can be calcu-
lated as follows. Let us circumscribe the curve γ in the positive direction, i.e.,
counterclockwise, and to each intersection point of the curves γ and ϕ = 0 we
assign the number εi = ±1 according to the following rule: εi = 1 if we move
from the domain ϕψ > 0 to the domain ϕψ < 0, or εi = −1 if, the other way
round, we move from the domain ϕψ < 0 to the domain ϕψ > 0.

In the general position the number of intersection points of the curves γ
and ϕ = 0 is even (since at every intersection point the function ϕ changes
its sign), and hence

∑
εi = 2k, where k is an integer.
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Theorem 1.4.6 (Kronecker). a) The number k is equal to the number of
intersection points of the curves ϕ = 0 and ψ = 0 lying inside the curve γ.

b) If γ is a circle of given radius with given center, then for the given
polynomial P the number k can be algorithmically computed.

Proof. a) Clearly, dP (z) = (ϕx + iψx)dx + (ψy − iϕy)i dy. Hence

ϕx + iψx = P ′(z) = ψy − iϕy,

and therefore
ψy = ϕx and ψx = −ϕy

(the Cauchy-Riemann relations). Therefore
∣
∣
∣
∣

φx φy

ψx ψy

∣
∣
∣
∣
=
∣
∣
∣
∣

φx φy

φy −φx

∣
∣
∣
∣
= φ2

x + ϕ2
y > 0.

This means that the rotation from the vector gradϕ = (ϕx, ϕy) to the vector
gradψ = (ψx, ψy) is a counterclockwise one. Geometrically this means that
the domains ϕψ > 0 and ϕψ < 0 are positioned as shown in Fig. 1.1.

φ = 0

ψ = 0

φψ < 0

φψ < 0

φψ > 0

φψ > 0

Figure 1.1

Let us contract the curve γ into a point. Under the passage through the
intersection point of the curves ϕ = 0 and ψ = 0 the number k diminishes by
1 (Fig. 1.2) and under the reconstruction depicted on Fig. 1.3 the number k
does not vary. It is also clear that when the curve becomes sufficiently small
it does not intersect the curves ϕ = 0 and ψ = 0, and in this case k = 0.

b) The circle of radius r and center (a, b) can be parameterized with the
real parameter t as follows:

x = a + r
1 − t2

1 + t2
, y = b + r

2t

1 + t2
.

Having substituted these expressions into ϕ(x, y) we obtain a polynomial Φ(t)
with real coefficients. The real roots of this polynomial correspond to the
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γ0

γ1

ψ = 0

φ = 0

+1

−1

Figure 1.2

γ0

γ1

φ = 0

Figure 1.3

intersection points of the curves γ and ϕ = 0. By Sturm’s theorem, for every
root, we can find a segment that contains it. Having calculated the sign of the
function ϕψ at the endpoints of this segment one can find the corresponding
numbers εi. �

1.5 Lagrange’s series and estimates of the roots of a
given polynomial

1.5.1 The Lagrange-Bürmann series

Recall that if f(z) =
∞∑

n=−∞
cn(z − a)n, then

1
2πi

∫

γ

f(z) dz = c−1,

where γ is any curve circumscribing point a. We will use this fact to obtain
the expansion of the function f(z) into a series in powers of ϕ(z) − b, where
b = ϕ(a). To be able to do so, the function ϕ(z) should be invertible in a
neighborhood of a, i.e., ϕ′(a) �= 0. If ϕ(z) is invertible, then

f ′(z)ϕ′(a)
ϕ(z)− ϕ(a)

=
f ′(z)ϕ′(a)

ϕ′(a)(z − a) + · · · =
f ′(a)
z − a

+ . . . ,

and hence
1

2πi

∫

γ

f ′(z)ϕ′(a)
ϕ(z)− ϕ(a)

dz = f ′(a).
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Having integrated this identity, we obtain

f(z)− f(a) =

z∫

a

f ′(ζ) dζ =
1

2πi

z∫

a

∫

γ

f ′(w)ϕ′(ζ)
ϕ(w) − ϕ(ζ)

dw dζ.

Let us transform the expression obtained having separated the terms ϕ(z)−b,
where b = ϕ(a):

f ′(w)ϕ′(ζ)
ϕ(w) − ϕ(ζ)

=
f ′(w)ϕ′(ζ)
ϕ(w) − b

· ϕ(w) − b

ϕ(w) − ϕ(ζ)
,

ϕ(w) − b

ϕ(w) − ϕ(ζ)
=
(

1− ϕ(ζ) − b

ϕ(w) − b

)−1

=
∞∑

m=0

(
ϕ(ζ) − b

ϕ(w) − b

)m

.

By changing the order of integration we obtain

f(z)− f(a) =
1

2πi

∫

γ





z∫

a

f ′(w)ϕ′(ζ)
ϕ(w) − b

∞∑

m=0

(
ϕ(ζ) − b

ϕ(w) − b

)m

dζ



 dw.

When we calculate the integral over ζ we only need the factors depending on
ζ:

z∫

a

ϕ′(z) (ϕ(ζ) − b)m
dζ =

ϕ(z)∫

ϕ(a)

(ϕ(ζ) − b)m
dϕ(ζ) =

(ϕ(ζ) − b)m+1

m + 1

(we have taken into account that ϕ(a)− b = 0).
Thus,

f(z)− f(a) =
∞∑

m=0

(ϕ(ζ) − b)m+1

m + 1
1

2πi

∫

γ

f ′(w) dw

(ϕ(w) − b)m+1 .

Consider a function ψ(w) such that
1

ϕ(w) − b
=

ψ(w)
w − a

, i.e.,

ψ(w) =
w − a

ϕ(w) − b
. (1)

For this function ψ(w), we have

1
2πi

∫

γ

f ′(w) dw

(ϕ(w) − b)m+1 =
1

2πi

∫

γ

f ′(w) (ψ(w))m+1
dw

(w − a)m+1
=

=
1
m!
· dm

dwm

(

f ′(w) (ψ(w))m+1
)

w=a
.
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Indeed,

f ′(w) (ψ(w))m+1 =
∞∑

k=0

ck(w − a)k,

where

ck =
1
k!
· dk

dwk

(

f ′(w) (ψ(w))k+1
)

w=a
.

The integral we are interested in is equal to cm — the coefficient of (w− a)−1

in the series
∞∑

k=0

ck(w − a)k−m−1.

As a result, we obtain the following expansion of f(z) into powers of ϕ(z)−
b:

f(z)− f(a) =
∞∑

n=1

(ϕ(z)− b)n

n!
· dn−1

dwn−1

(

f ′(w) (ψ(w))n
)

w=a
, (2)

where ψ(w) is given by formula (1). The series (2) is called Bürmann’s series.
Bürmann obtained it in 1799 while generalizing a series Lagrange obtained

in 1770. The Lagrange series can be obtained from Bürmann’s series for

ϕ(z) =
z − a

h(z)
, where h(z) is a function. In this case b = ϕ(a) = 0 and

ψ(z) =
z − a

ϕ(z)− b
= h(z).

Therefore

f(z) = f(a) +
∞∑

n=0

sn

n!
· dn−1

dan−1

(

f ′(a) (h(a))n
)

,

where s = ϕ(z). In particular,

z = a +
∞∑

n=0

sn

n!
· dn−1

dan−1
(h(a))n

. (3)

Thus, if the series (3) converges, it enables one to calculate the roots of the
equation

z = a + s h(z).

Example. Let h(z) =
1
z
. In this case the series (3) has the form

z = a +
∞∑

n=1

(−1)n−1(2n− 2)!
n! (n− 1)! a2n−1

sn. (4)

Series (4) converges for |s| < |a|2
4

. The equation under consideration,

z = a +
s

z
,
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has two roots

a

2

(

1 +

√

1 +
4s2

a2

)

and
a

2

(

1−
√

1 +
4s2

a2

)

.

The series (4) represents only the first of these roots.

1.5.2 Lagrange’s series and estimation of roots

Lagrange’s series enables one in certain cases to estimate the roots of polyno-
mials. Consider, for example, the polynomial

f(z) = a0 + a1(z − c) + a2(z − c)2 + · · ·+ ak(z − c)k.

The equation f(z) = 0 can be expressed in the form

z = c + s h(z),

where s = − 1
a1

and h(z) = a0 + a2(z − c)2 + a3(z − c)3 + · · · + ak(z − c)k.

Lagrange’s series for this equation is of the form

z = c +
∞∑

n=1

sn

n!
· dn−1

dzn−1
(hn(z))z=c .

In our case

hn(z) =
∑

ν0+ν2+···+νk=n

aν0
0 aν2

2 · . . . · aνk

k

n!
ν0! ν2! · . . . · νk!

(z − c)2ν2+···+kνk ,

and hence

dn−1

dzn−1
(hn(z))z=c =

∑ (n− 1)!
ν0! ν2! · . . . · νk!

aν0
0 aν2

2 · . . . · aνk

k , (1)

where the sum runs over the collections {ν0, ν2, . . . , νk} such that

ν0 + ν2 + · · ·+ νk = n, 2ν2 + · · ·+ kνk = n− 1.

These relations are equivalent to the relations

n− 1 = 2ν2 + · · ·+ kνk, ν0 = ν2 + 2ν3 + · · ·+ (k − 1)νk + 1.

Since s = − 1
a1

, we obtain

z = c− a0

a1

∑ (2ν2 + · · ·+ kνk)!
ν0! ν2! · . . . · νk!

(

a0a2

(−a1)2

)ν2

· . . . ·
(

ak−1
0 ak

(−a1)k

)νk

, (2)

where ν0 = ν2 + 2ν3 + · · ·+ (k − 1)νk + 1.
If the series (2) converges, the number z so determined is one of the roots

of the equation f(z) = 0.
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Theorem 1.5.1 ([Be3]). Let |a0| + |a2| + · · · + |ak| < |a1|. Then the series
(2) converges and the root z determined by the series satisfies

|z − c| ≤ − ln
(

1− 1
|a1| (|a0|+ |a2|+ · · ·+ |ak|)

)

.

Proof. Formula (1) implies that
∣
∣
∣
∣

1
n!
· dn−1

dzn−1
(hn(z))z=c

∣
∣
∣
∣
≤ 1

n
(|a0|+ |a2|+ · · ·+ |ak|)n

.

Hence

|z − c| ≤
∞∑

n=1

|a1|−n

n
(|a0|+ |a2|+ · · ·+ |ak|)n =

− ln
(

1− 1
|a1| (|a0|+ |a2|+ · · ·+ |ak|)

)

. ��

1.6 Problems to Chapter 1

1.1 Prove that a polynomial f(x) is divisible by f ′(x) if and only if f(x) =
a0(x− x0)n.

1.2 Prove that the polynomial

a0 + a1x
m1 + a2x

m2 + · · ·+ anxmn

has at most n positive roots.

1.3 [Newton] Prove that if all the roots of the polynomial

P (x) = a0x
n + a1x

n−1 + · · ·+ an

with real coefficients are real and distinct, then

a2
i >

n− i + 1
n− 1

· i + 1
i

ai−1ai+1 for i = 1, 2, . . . , n− 1.

1.4 Prove that the polynomial

a1x
m1 + a2x

m2 + · · ·+ anxmn

has no nonzero roots of multiplicity greater than n− 1.

1.5 Find the number of real roots of the following polynomials:

a) 1 + x +
x2

2
+ · · ·+ xn

n
;

b) nxn − xn−1 − · · · − 1.



42 1 Roots of Polynomials

1.6 Let 0 = m0 < m1 < · · · < mn and mi ≡ i (mod 2). Prove that the
polynomial

a0 + a1x
m1 + a2x

m2 + · · ·+ anxmn

has at most n real roots.

1.7 Let x0 be a root of the polynomial xn +a1x
n−1 + · · ·+an. Prove that for

any ε > 0 there exists a δ > 0 such that if |ai − a′
i| < δ for i = 1, . . . , n, then

the polynomial xn + a′
1x

n−1 + · · ·+ a′
n has a root x′

0 such that |x0 − x′
0| < ε.

1.8 Let the numbers a1, . . . , an be distinct and let the numbers b1, . . . , bn be
positive. Prove that all the roots of the equation

∑ bk

x− ak
= x− c, where c ∈ R,

are real.

1.9 Find all the roots of the equation

(x2 − x + 1)3

x2(x− 1)2
=

(a2 − a + 1)3

a2(a− 1)2
.

1.10 Find the number of roots of the polynomial xn +xm−1 whose absolute
values are less than 1.

1.11 Let f(z) = zn + a1z
n−1 + · · · + an, where a1, . . . , an ∈ C. Prove that

any root z of f satisfies −β ≤ Re z ≤ α, where α is the only positive root of
the polynomial

xn + (Re a1)xn−1 − |a2|xn−2 − · · · − |an|

and β is the only positive root of the polynomial

xn − (Re a1)xn−1 − |a2|xn−2 − · · · − |an|.

1.12 [Su1] Let f(z) be a polynomial of degree n with complex coefficients.
Prove that the polynomial F = f ·f ′ ·f ′′ · . . . ·f (n−1) has at least n+1 distinct
roots.

1.7 Solutions of selected problems

1.3. Set Q(y) = ynP (y−1). The roots of Q(y) are also real and distinct. Hence
the roots of the quadratic polynomial

Q(n−2)(y) = (n−2) ·(n−3) · · · ··4 ·3 (n(n− 1)any2 + 2(n− 1)an−1y + 2an−2

)
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are real and distinct. Therefore

(n− 1)2a2
n−1 > 2n(n− 1)anan−2.

If i = n− 1 the desired inequality is proved.
Now consider the polynomial

P (n−i−1)(x) = b0x
i+1 + b1x

i + · · ·+ bi+1x
2 + bix + bi−1.

Applying to it the inequality already proved we obtain

b2
i >

2(i + 1)
i

bi−1bi+1.

Since

bi+1 = (n− i + 1) · . . . · 4 · 3 ai+1,

bi = (n− i) · . . . · 3 · 2 ai,

bi−1 = (n− i− 1) · . . . · 2 · 1 ai−1,

it follows that

(2(n− i)ai)
2

>
2(i + 1)

i
2(n− i + 1)(n− i)ai−1ai+1.

After simplification we obtain the desired inequality.
1.11. As x grows from 0 to +∞, the function xn ± Re a1 monotonically

increases, whereas the function

|a2|
x

+
|a3|
x2

+ · · ·+ |an|
xn−1

monotonically decreases. Therefore each of the polynomials considered has
only one positive root.

Let f(z) = 0 and Re z > α. Then

α + Re a1 < Re(z + a1) ≤ |z + a1| =
∣
∣
∣
a2

z
+

a3

z2
+ · · ·+ an

zn−1

∣
∣
∣ ≤

≤ |a2|
|z| + · · ·+ |an|

|z|n−1
<
|a2|
α

+ · · ·+ |an|
αn−1

(the last inequality follows since |z| ≥ Re z > α). On the other hand, by the
hypothesis

α + Re a1 =
|a2|
α

+ · · ·+ |an|
αn−1

:

a contradiction.
The estimate of Re z from below is obtained as the estimate from above

of the real part of the root z of (−1)nf(−z).
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1.12. Let z1, . . . , zm be the distinct roots of F , and let µj(r) be the multi-
plicity of zj as a root of f (r), where r = 0, 1, . . . , n−1. Consider the symmetric
functions

sk(r) =
k∑

j=1

µj(r)zk
j , (1)

i.e., sk(r) is the sum of the kth powers of the roots of f (r). The elementary
symmetric functions in the roots of f (r) will be denoted by σk(r) (for k > n−r
we set σk(r) = 0).

It is easy to verify that, if f(z) =
n∑

k=0

(−1)kakzn−k, then

f (r)(z) =
n−r∑

k=0

(−1)kak
(n− k)!

(n− k − r)!
zn−k−r.

Hence

σk(r) =
ak

a0
· (n− k)!(n− r)!

n!(n− k − r)!
=

ak

a0
· (n− k)!

n!
· (n− r) · · · · · (n− k − r + 1).

Therefore σk(r) is a polynomial of degree k in r and σk(n) = 0.
On p. 79, for k ≥ 1, the identity

sk =

∣
∣
∣
∣
∣
∣
∣
∣
∣

σ1 1 0 . . . 0
2σ2 σ1 1 . . . 0
...

...
...

. . .
...

kσk σk−1 σk−2 . . . σ1

∣
∣
∣
∣
∣
∣
∣
∣
∣

is proved. This identity implies, in particular, that sk(r), where k > 0, can
be represented as a linear combination of expressions σk1(r) · · · σkp(r), where
k1 + · · ·+kp = k, and the coefficients of this linear combination do not depend
on r. Therefore, if k ≥ 1, then sk(r) is a polynomial in r of degree not greater

than k. It is also clear that s0(r) =
m∑

j=1

µj(r) = n − r and sk(n) = 0 for all

k ≥ 0.
Consider the relation (1) for k = 0, 1, . . . , m−1 as a system of linear equa-

tions for unknowns µj(r), where j = 1, . . . , m. By the hypothesis, the numbers
z1, . . . , zm are distinct, and therefore the determinant of the system consid-
ered does not vanish (this determinant is a it Vandermond determinant, see
[Pr1]). Having solved this system of linear equations via Cramer’s algorithm
we obtain a representation of µj(r) in the form of a linear combination of the
sk(r), where k = 0, . . . , m−1, with coefficients independent of r. Hence µj(r)
is a polynomial in r of degree dj ≤ m− 1. Since sk(n) = 0 for all k, we have
µj(n) = 0.

Let the number of distinct roots of F be strictly less than n + 1, i.e.,
m < n + 1. Then dj ≤ m − 1 < n, i.e., µj(r) is a polynomial in r of degree
≤ n− 1. In this case
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deg ∆1µj(r) = µj(r + 1)− µj(r) ≤ n− 2,

deg ∆2µj(r) = ∆1µj(r + 1)−∆1µj(r) ≤ n− 3, . . . ,

∆n−1µj(r) is a constant, and ∆nµj(r) is identically zero. In particular,

∆nµj(0) =
n∑

r=0

(−1)r

(
n

r

)

µj(r) = 0.

To arrive at a contradiction, it suffices to show that ∆nµ1(0) �= 0.
Consider the convex hull of the roots of f . By the Gauss-Lucas theorem

(Theorem 1.2.1 on p. 13), this convex hull coincides with the convex hull of
the points z1, . . . , zm. We may assume that z1 is a vertex of the convex hull of
the roots of f . Then z1 lies outside the convex hull of the points z2, . . . , zm.
Let µ = µ1(0) be the multiplicity of z1 as of a root of f . Then for 0 ≤ r ≤ µ−1
the number z1 is a root of multiplicity µ − r of f (r) and f (µ)(z1) �= 0. The
convex hull of the roots of f (µ) does not contain z1, and hence f (r)(z1) �= 0
for r ≥ µ. Therefore

µ1(r) =

{

µ− r for 0 ≤ r ≤ µ− 1;
0 for r ≥ µ.

It is also clear that µ ≤ n− 1, since f has at least one root distinct from z1.
Hence

∆2µ1(r) =

{

0 for 0 ≤ r ≤ n− 1, r �= µ− 1;
1 for r = µ− 1.

Therefore, for n > 2, we obtain

∆nµ1(0) = ∆n−2
(

∆2µ1

)

(0) =
n−2∑

r=0

(−1)r

(
n− 2

r

)

∆2µ1(r) = (−1)µ−1

(
n− 2
µ− 1

)

,

and, for n = 2, we obtain µ = 1 and ∆2µ1(0) = 1. In both cases ∆nµ1(0) �= 0,
as was required.
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