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Abstract. A workflow is a collection of coordinated activities designed to carry
out a well-defined complex process, such as trip planning, student registration,
or a business process in a large enterprise. An activity in a workflow might be
performed by a human, a device, or a program. Workflow management systems (or
WfMS) provide a framework for capturing the interaction among the activities in a
workflow and are recognized as a new paradigm for integrating disparate systems,
including legacy systems. A large workflow system might involve many disparate
activities that are coordinated in complex ways and are subject to many constraints.
Thus, modeling such systems and ensuring that they perform according to the
specifications is not an easy task. To be able to analyze the properties of workflows,
the latter must be specified using a formalism with well-defined semantics. The
popular formalisms in this area are the various logics, Petri Nets [1,35], Event-
Condition-Action rules [23,15], and State Charts [36]. In this chapter we survey and
compare a number of logic-based formalisms that were proposed in the literature.

5.1 Introduction

A workflow is a collection of coordinated activities designed to carry out a
well-defined complex process, such as trip planning, student registration, or
a business process in a large enterprise. Business processes are represented
as sets of tasks, where each task carries out some well-defined activity. An
activity can be as simple as reading and approving a document or it may
involve a complex process of its own. An activity can be completely auto-
mated or may involve manual interaction. A workflow management system
(WEMS) is a set of tools for defining, analyzing, and managing the execution
of workflows. To design a workflow, one uses a workflow modeling language
(often through a graphical interface) to specify the tasks, the flow of data,
the control flow, and a set of constraints on the execution. A WfMS includes
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an interpreter that understands workflow specifications, can analyze them
for correctness, and schedule workflow events accordingly. During the execu-
tion, a WIMS interacts with the participants in the workflow and invokes the
necessary applications when required.

Prior to the advent of workflow management systems, business processes
were automated in an ad hoc manner and each system involved one of a kind
solution. It was therefore hard to deploy a workflow system and also to adapt
it to a changing business environment. A W{MS can substantially reduce the
cost of business process engineering and maintenance through

e reduced operating costs — by driving down the cost per transaction

e improved productivity — by eliminating routine and repetitive tasks

e better analysis, which simplifies the job of creating correct workflows and
leads to higher quality designs

e improved change management — using the tools provided by a WIMS,
organizations can modify workflow specifications much more easily and
quickly adapt to changes in the business environment

e better decision support — the tools provided by a WIMS can be used
to analyze the workflow, flag inefficiencies, and verify that the workflow
specification meets its goals.

The development of robust workflow management systems is one of the most
important challenges in today’s information systems. Collaborative design,
health-care, and Web services are some examples of applications that require
automated workflow management. Though traditional applications have kept
researchers busy, Web services are driving the renewed interest in this area.
From the workflow point of view, a Web service is a task with a well-defined
interface. A number of proposals exist to standardize the various parts of this
interface (for example, UDDI [27], WSDL [26], DAML-S [3]). The promise of
Web services is that the standardized interface makes it possible to combine
disparate services into complex workflows, and thus many issues that arise
in the context of workflows are pertinent to Web services. In addition, Web
services present new, unique challenges. First, because different services are
under the control of different organizations, it can no longer be assumed
that they all cooperate. Therefore, it becomes necessary to be able to model
workflows whose tasks might execute in an adversarial environment. One
work in this vein is [14]. Related to this is the potential need to negotiate
services. As consumers, we do not always accept the first offer and try to find
a better deal — often from the same merchant. Thus, the ability to negotiate
is another unique aspect of a Web service, which brings us into the realm of
agent-based systems [22,31].

At its core, a workflow is a process, and, thus, a WIMS requires a pro-
cess specification language. Figure 5.1 is an example, borrowed from [5], of
a workflow that determines whether a student is allowed to register for a
course. The process definition is comprised of different tasks, which perform
the job of an advisor, instructor, etc. (pertaining to the registration process).
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Fig. 5.1. Example of a registration authorization workflow

For instance, the task advisor determines whether the student has the prereq-
uisites for the course; instructor may give the student permission to attend
the course if the class is not full, even if the student does not satisfy the pre-
requisites; chairperson can give permission to attend the course even if the
class is already full, but provided that the student satisfies the prerequisites.
The task secretary models the secretary who enters the registration informa-
tion into the system. A WfMS manages the registration process by creating
an instance of this process definition, which in turn contains an instance for
each task. The edges connecting the activities represent the flow of control
between the activities, and the labels represent transition conditions. The
control flow and transition conditions are enforced by the WfMS at run time.

The problem of scheduling events that arise during the execution of a
workflow can be hard both from the point of view of computational complex-
ity and also algorithmically. A business workflow can include dozens and even
hundreds of tasks, which might be related through a large number of global
dependencies that cannot be easily represented using a control flow graph
such as that in Figure 5.1. Typical global dependencies are of the form “if
events A and B occur, then event C must not occur” or “if A occurs, then it
must happen before B.” Apart from scheduling, workflow specifications might
need to be verified. One problem here is whether the constraints are consis-
tent with each other or with other parts of the specification. If they are not,
the workflow cannot be scheduled. A related problem is to find out whether
a certain property is ensured by the workflow specification. For instance, a
mail-order workflow might need to ensure that product is not shipped prior
to receiving an authorization from a credit card company. This constraint
might or might not follow from the already existing constraints. Of course,
we could simply add this constraint to those existing constraints, but then we
would have to waste time enforcing it when a verification procedure might
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determine that this constraint is automatically enforced if the rest of the
constraints are obeyed.

The need for formal methods in workflow modeling and verification has
been widely recognized [2,20] and a number of formal frameworks have been
proposed. These includes Event-Condition-Action rules (triggers) [16,18,23],
the various logic-based methods [4,5,10,13,14,21,28,29], Petri Nets [1,34,35],
and State Charts [36].

The past few years have seen progress in both the implementation and
foundational aspects of workflow management systems. However, commercial
systems offer only relatively rudimentary modeling capabilities. Specification
of global intertask constraints is still difficult, and verification tools are vir-
tually absent. These limitations force application developers to embed the
enterprise logic deep into the code, which leads to considerable implementa-
tion effort and high maintenance overhead.

In this survey, we discuss a number of logic-based approaches to modeling
and managing workflows. In particular, we are interested in the expressive
power of the approaches as well as their applicability to the problems of
scheduling and verification of workflows. In Section 5.3, we discuss a proposal
[4] based on temporal logic [17]. Section 5.4 presents a related approach,
which is formalized using a specially devised event algebra [29]. Section 5.5
reviews workflow modeling techniques [6,13], whose underlying formalism is
Concurrent Transaction Logic [7]. Finally, Section 5.7 concludes the chapter
and provides a brief comparison of the approaches discussed.

Though we were striving for completeness, limitation of space and scope
forces us to leave out some logic-based approaches, such as [5], which is
based on Action Logic and triggers; ACTA [10], which attempts to formalize
extended transaction models in first-order predicate logic; and Vortex [18],
which uses model checking techniques to verify properties of workflows. We
briefly survey these works in Section 5.6.

5.2 Preliminaries

A workflow can be modeled using one or more frameworks, and each frame-
work can use one or more of the formalisms, such as logic, Petri Nets, etc.
The most common frameworks are illustrated in Figure 5.2. These include
control flow graphs, global temporal constraints, and triggers.

Note that the boundary between the frameworks in Figure 5.2 is somewhat
subjective and can vary from one approach to the next. The control flow graph
can be represented as a set of constraints, and some global constraints can be
represented directly in the control flow graph. Likewise, some constraints can
be described as triggers, and some triggers can be modeled as constraints.
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Control Flow Graph Triggers Global Constraints

d cond, h If event d occursthen = If d is ever executedthen
If cond holdsthen g must also happen

execute activity p

k: If event g occurs then : If € and 1 are both executed
If cond holdsthen | then e must happen

execute activity before 1

Fig. 5.2. Frameworks for specifying workflows

5.2.1 Modeling Concepts

The control flow graph is the primary technique used in commercial work-
flow systems. A graph specifies the initial and final activity in a workflow,
the successor activities for each activity in the graph, and whether these
successors must all be executed concurrently, or it suffices to execute just
one branch nondeterministically. Arcs in a control flow graph can be labeled
with transition conditions. The condition applies to the current state of the
workflow. When the task at the tail of an arc is completed, the task at the
head can begin only if the corresponding transition condition evaluates to
true. The control flow graph is most appropriate for depicting the local inter-
task dependencies of the activities in a workflow. However, their limitation
is that they cannot be used to specify global intertask dependencies between
workflow tasks.! Dependencies (also known as constraints—we shall use these
two terms interchangeably) provide a more general framework for specifying
workflows. In particular, the precedence relationship that underlies the con-
trol flow graph is just another kind of constraint. Less obvious is the fact
that both the AND-nodes and OR-nodes can be modeled as constraints (see
Section 5.4). Nevertheless, separating global constraints from the graph is
useful both as a pragmatic modeling technique and as a way to find more
efficient scheduling algorithms (see Section 5.5). Triggers are another way of
specifying control flow dependencies. Like control flow graphs, triggers are
limited in their ability to specify global dependencies among tasks. They are

1 'We shall see in Section 5.5 that this is theoretically possible, but practically not
feasible, because compiling constraints into a control flow graph can lead to an
exponential explosion of the graph. Thus, constructing such graphs manually is
not an option.
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also not sufficiently expressive when it comes to specifying alternatives in
workflow execution (OR nodes).

The use of intertask dependencies for workflow modeling was first pro-
posed in [25] and has since become a basic staple of workflow modeling works.
The typical constraints on event occurrence and ordering are

e e — e (occurrence): If e; occurs, then so must be ea. No specific ordering
is implied.

e ¢1 < eg (order): If both e; and es occur, then e; must be scheduled before
eo. This constraint is trivially satisfied if only one of the events occurs.

A workflow specification in the form of constraints, control flow graph, or
triggers is analogous to a database schema. A concrete workflow executing
according to that specification is called a workflow instance and is analogous
to database instances. Execution of a particular workflow instance is typi-
cally defined in terms of its event history, i.e., the sequence of “significant”
events (see below) that have occurred during the execution. The semantics of
constraints is also defined in terms of these histories. For instance, e; < es is
satisfied in a given history if and only if e; occurs prior to es in that history.

The workflow scheduler is a module in a WIMS that examines the in-
coming sequence of events, generated by the execution of workflow activities,
and schedules them in a certain order so that all of the given constraints
would be satisfied. Alternatively, the scheduler might proactively construct a
concise model of all possible executions. In this case, scheduling is essentially
performed at compile time with only trivial decisions left to be made at run
time. Systems that follow the former approach are described in Sections 5.3
and 5.4. An example of the latter approach appears in Section 5.5.

Many formal approaches to workflow modeling and scheduling (in par-
ticular, those surveyed in this chapter) rely on some or all of the following
assumptions:

Significant events: Workflow tasks are modeled as black boxes that emit
significant events. A significant event is an abstraction that represents real
events that occur during the workflow execution, in which the scheduler
might be interested because they need to be put in a certain order (say,
because they are mentioned in a constraint). Negation of a significant
event e (denoted as € or —e) is also frequently used. The event € is said
to occur if the event e never occurs in the execution.

A significant event can be one of the standard events, such as start,
precommit, commit, and abort, whose semantics is known in advance,
or it might be application-specific, for example, sending a message to
another task. Certain constraints associated with the standard events
follow from their a priori semantics. For instance, startr must precede
any other event of the same task (starty < eventr) and a termina-
tion event, commity or abortp, must be the last event in any task
(eventr < commity, eventr < abortr). Similarly, commitr and abortr
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cannot happen in the same execution of a workflow (commity — aborty
and abortr — commitr).

For application-specific events, the workflow designer typically speci-
fies constraints explicitly, as they depend on the application domain.
For instance, the business rules of an enterprise might require that if
task shipProduct commits, then task confirmPayment must commit
prior to that (i.e., commitshipproduct — comMitcon firmPayment and
commitconfirmPayment < commitshipproduct)-

Unique event property: No event can occur more than once in the ex-
ecution of the same instance of a workflow. The rationale behind this
assumption is that an event is associated with a task and a timestamp,
S0 it cannot occur more than once in any given execution sequence.
This assumption does not preclude events of the same type from occurring
more than once. For instance, a task can send a message to another task
several times. However, if multiple events of the same type are allowed to
occur, this presents a problem for the constraint specification language.
For instance, how can one specify that a response to a request must follow
the request? Such a statement requires that events have properties (such
as event ID and context), which can be used to match a response to the
corresponding request.

Forcible, rejectable, and delayable events: Some formalizations assume
that significant events have certain attributes that the scheduler can use
in making its decisions:

e Forcible: an event is forcible if the scheduler is permitted to make
the event happen. Of course, constraints must be satisfied, but the
decision whether or not to start such an event is the scheduler’s pre-
rogative. For example, abort and start are forcible, since the scheduler
can always abort a running task or start another task. If starty, —
abortr, is a constraint and task T has already started, the scheduler
might decide to force the abort of T, to satisfy the constraint.

In contrast, the scheduler might not be allowed to send messages to
tasks on behalf of other tasks, so such events are not forcible.

e Rejectable: an event is rejectable if the scheduler is free to prevent this

event from happening. For example, the scheduler has the discretion
to prevent any task from committing its work or from starting (again,
subject to constraints).
To see where this is useful, suppose that the constraint is starty, <
commity, and T has already committed. If the event starty, arrives
later, the scheduler can still ensure that the constraint is satisfied by
rejecting this event.

e Delayable: an event is delayable if the scheduler is free to delay the ex-
ecution of that event. For instance, if a task has requested to commit,
the scheduler might decide to delay scheduling this event.

Delaying is typically done to make sure that certain constraints are
satisfied. For example, if starty, < commitr, is a constraint and 7%
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requests to commit, the scheduler might decide to delay this event
until 7T starts.

5.2.2 Example

To illustrate the different notions of events and constraints introduced in this
section, let us consider an airline reservation workflow. The tasks associated
with this workflow are

e Buy: buying an airline ticket
e Book: booking a car

The significant events associated with the task Buy are start g, commit gy,
and abort ., which, respectively, start, commit, and abort the task Buy. The
significant events associated with the task Book are startpoor, commitpook,
abort ook, and cancel oo, Which, respectively, start, commit, abort, and can-
cel the task Book. Observe that although booking a car can be canceled,
buying an airline ticket cannot be canceled. A dependency associated with
this workflow is that Buy commits only if Book commits. This can be rep-
resented as the occurrence constraint commitp,, — commitpeor. Also, if
the Buy aborts then Book should also abort. This can be similarly repre-
sented as the constraint abortp,, — abortpeor. Another dependency in this
workflow is that if both Book and Buy commit, then Book commits be-
fore Buy. This can be represented as the order constraint commitpeor <
commitpy,. Yet another dependency in the workflow is that Book is can-
celed if and only if Book commits and Buy aborts. This can be modeled as
the pair of occurrence constraints cancelpoor — (commitpoor A abortpyy)
and (commitpoor N abortpyy) — cancelpoor. All of the above mentioned
events are delayable by the scheduler. If the event commitp,, happens be-
fore commitpoor, then the scheduler can delay the acceptance of commit gy,
to satisfy the dependency that Book commits before Buy. An example of a
forcible event is cancel goor because the scheduler has to force that event to
satisfy constraints when Book commits and Buy aborts. On the other hand, if
Buy aborts and the event commit g,or is to be scheduled, then the scheduler
has to reject commitp,or to satisfy the dependencies. Thus, commit oo is
an example of a rejectable event.

5.2.3 The Role of Logic

Logic plays different roles in different formalisms surveyed in this chapter. In
[4], Temporal Logic serves only as a specification medium. It provides both
the syntax and the semantics for the constraints. However, the workflow
scheduler works directly with automata — the low-level representation of
temporal constraints.

In contrast, logic is much more closely interwoven into the frameworks
of [13] and [29]. In both formalisms, logic is a primary means of specifying
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the workflows. In addition, the workflow scheduler can be implemented as a
particular strategy in the proof theory of the logic. In [29], the proof theory
is based on the residuation operator, and the scheduler uses this operator to
make scheduling decisions. In [13], the scheduler depends on a preprocess-
ing step after which the proof theory of Concurrent Transaction Logic [7] is
employed directly to make scheduling decisions.

5.3 Modeling Workflows with Temporal Logic

In [4], Attie et al. proposed modeling workflows as a set of intertask de-
pendencies. Both local and global constraints (beginning of Section 5.2) can
be modeled in this way, and, therefore, the control flow graph is not repre-
sented explicitly.? The tasks in a workflow are described in terms of significant
events. A typical event is the beginning or termination of a task, but it can
also be sending an email to the boss, printing a report, etc.

When an event is received for execution, it is checked against every depen-
dency and, based on that, the event might be accepted, rejected, or delayed
and scheduled later. The dependencies are specified as formulas in Computa-
tional Tree Logic (CTL) [17]. The scheduler enforces these dependencies by
converting them into automata and ensuring that the sequence of scheduled
events is accepted by all of these automata. In this way, the automata provide
a low-level medium for the scheduler to work with, and the logic serves as a
high-level specification medium.

This work does not explicitly deal with verification issues, such as whether
the given set of constraints implies some other constraints. Of course, stan-
dard high-complexity model-checking techniques can be used here, but the
interesting question is whether the implication of workflow dependencies can
be tested more efficiently due to the specialized form of these constraints.

5.3.1 Formalization

Formalization makes all of the assumptions listed in Section 5.2: workflows
are modeled as streams of significant events such as start, precommit, commit,
and abort; the unique event assumption holds; and events can be delayable,
rejectable, or forcible.

A workflow is specified as a set of dependencies over the events associated
with the tasks. If ej,eo,...,e, are the significant events associated with a
number of tasks, then a dependency D involving these events is denoted
as D(ey,ea, ..., e,). Computational Tree Logic (CTL) is used to specify these
dependencies. For instance, the order dependency, e; < ez, is specified in CTL
as Ad(ea — AO=ey), i.e., the following is true on every path: If es occurs
then e; will not occur later on any continuation of that path. A dependency,

2 It is unclear whether triggers can be naturally modeled using temporal logic.
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D, specified in CTL, is compiled into a finite state automaton Ap, which is
a tuple (sg, S, X, p), where:

e S is a set of states.
e sq is the initial state.
e Y is a set of event expressions, which can have one of the following forms:

— aley, ..., en), where ey, ..., e, are events. This expression says that the
events ey, ..., e, are accepted by Ap and scheduled for execution. Each
e; is a significant event of some task.

— r(ey,...,en), where eq, ..., e, are events. This expression says that the
events eq, ..., e, are rejected by Ap. The automaton Ap is constructed
so that the rejection takes place precisely when the execution of these
events (in any order) would violate the dependency D.

— 01| ... || on, where o; € X. This expression specifies that the event
expressions o1, ..., 0, are run concurrently in an interleaved fashion.

— 01;...;0p, Where o; € Y. In this expression, the operations oy, ..., oy,
are run in sequence.

e p C S x X xS is the transition relation.

Figure 5.3a is an automaton for the occurrence dependency e; — es.
Here, we use t; to denote the significant event of termination (i.e., abort or
commit) of task 1 and ¢5 to denote the termination event for task 2. Symbols
e; and eg are used to denote other nontermination events. Because of the
special semantics of termination events, no significant events from a task ¢
can arrive once the event t; has arrived, and ¢; must be scheduled last.

The symbol | indicates choice — either event can cause the correspond-
ing transition. This should be contrasted with the event combinator ||. For
instance, an arc labeled with a(e1) || a(e2) means that both events, e; and ey,
must occur and the corresponding state transition can happen in one of two
ways: Either by scheduling a(ey) first and a(e2) next or by scheduling these
events in the reverse order.

The initial state in every automaton is denoted by ¢ and the final state
by f. Every path from the initial state to the final state corresponds to a
way in which the dependency can be satisfied. Formally, for any dependency
automaton, Ap, a path 7 is a sequence of event expressions o7 ... o, such that
there are states s1, 8o, ..., Sp_1, S, in Ap, where

e s is the initial state of Ap;

e s, is a final state of Ap; and

e for each i = 1,...,n —1: (84,04,8+1) € pp, where pp is the transition
relation of Ap (i.e., each o; is a legal transition from state s; to s;41 in
Ap.

Figure 5.3a shows some sequences of events that satisfy the dependency e; —
€9:

e r(e1)a(es) — rejection of ey followed by acceptance of es.
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e a(t1) a(ez) — termination of task 1 followed by acceptance of es.

e a(er)a(ez) and a(es)a(er) — because a(ey) || a(ez) is a label on one of
the arcs, which means that executing e; and es in any order can cause
the corresponding transition.

a(e2) a(t1) — acceptance of ey followed by termination of task 1.

a(ty) r(e;) — termination of task 2 followed by rejection of e;.

a(ts) a(t1) — termination of task 2 followed by termination of task 1.
Other event sequences that satisfy the above dependency are r(e1) a(tz),
a(ty) a(es), and a(ez) aler). Note that in the first case, the event e; does
not occur in the history, so the dependency e; — e is satisfied trivially. In
the last case, the events occur in the reverse order. However, because both
of them occur, the constraint is satisfied once again, as it only implies
occurrence, not order.

Similarly, Figure 5.3b is an automaton for the order dependency e; < es.
The sequence of events a(ty)a(es) is accepted by both automata, because
each automaton has a path consistent with this sequence of events. However,
the sequence a(e1)a(te) is accepted by the automaton only for e; < eo,
because a(ey) a(tz) does not correspond to a legal execution sequence in the
automaton for the dependency e; — es.

We can now define what it means for a sequence of events to be a legal
execution. To simplify matters, we augment the dependency automata with
additional arcs, namely, we add a self-loop to every state in each automaton.
If n is a node in an automaton, then the corresponding self-looping arc has
n as its beginning and end, and it is labeled by every event expression of the
form a(event) or r(event) such that event is not mentioned on other outgoing
arcs of n. (Note that if, say, a(e2) is mentioned on an outgoing arc of n then
neither a(ez) nor r(ez) can occur on the self-looping arc.) The idea is that
events that are not mentioned on these outgoing arcs leave the automaton in
state n. In addition, we also make the initial state of the automaton into an
accepting (final) state. The automaton of Figure 5.3a transformed in such a
way is depicted in Figure 5.4. In this figure, a label such as “not es, t3” means
that the transition along that arc can be caused by any event expression that
does not mention ey or ¢o. For instance, neither r(ez) nor a(ez) can cause the
transition, but a(t;) or r(ey) can.

We now define a sequence of events as a legal execution path if it is ac-
cepted by every such augmented automaton. Note that due to the unique
event assumption, an event can be mentioned in at most one event expres-
sion on the execution path.

5.3.2 Scheduling

In the previous subsection, we defined execution paths as sequences of event
expressions. However, the scheduler receives sequences of events rather than
event expressions. Thus, given a sequence of events, seq, the work of the
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a(ty) lr(eq)

a(eq) lla(ep)

a(e 2) | a(t2)

a(ty) I r(ey)

a(t 1) lla(ep)
a(eyfalt)
a(e 1) [a(t 1)

Fig. 5.3. Dependency automata: (a) Automaton for the dependency e; — es,
(b) Automaton for the dependency e1 < ez

scheduler is to find a legal execution path, 7, such that the events mentioned
in the expressions in 7 are all and the only events that occur in seq. If every
automaton is of size N and there are m automata, then one can build a
product automaton of size N. Unfortunately, this might be unacceptable for
workflows that have many constraints.? To avoid this state explosion problem,
the individual automata are checked at run-time, as explained below. The
worst time complexity of run-time scheduling is still exponential. However,
it is believed that the worst case does not occur in practice [4].

The global state of the scheduler is a tuple whose components are the
local states of the dependency automata — one state per automaton. The

3 Observe that in this framework, even the control flow graph is represented as a
set of constraints, so the number of such constraints is expected to be large.
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not 4, ty, €1, €y

a(ty) I r(eq)

not

anything

Fig. 5.4. Automaton of Figure 5.3a augmented with self-looping transitions

initial global state is a tuple of the initial states of these automata. When
an event, e, arrives, the algorithm tries to construct an event sequence, 7,
which is accepted by every augmented automaton, such that 7 includes e and
(possibly) some of the events that have arrived previously but have not yet
been scheduled (these are called delayed events).* In addition, each event on
the path must occur at most once (for example, a(ez) and r(e2) count as
multiple occurrences of event ez). If such a path cannot be found, then the
scheduler delays the execution of event e.

Consider the dependencies e; — es and e; < e with the automata A_,
and A, respectively, shown in Figure 5.3. Let A”, and A be the augmen-
tations of these automata. Augmentation for A_, is shown in Figure 5.4, and
augmentation of A is constructed similarly. Let e; be an event submitted
to the scheduler. Because there is no path in both automata that begins by
either accepting or rejecting ey, the scheduling of e; has to be delayed. Now
suppose that event e is submitted to the scheduler. Two execution paths
can be found in A_, that accept both e; and ey: a(es)a(er) and a(eq)a(es).
The only path in A that accepts both e; and es is a(e)a(ez). However, in
a(er)a(es), the order of events is different from the path a(eg)a(e;) in A_,.
Thus, the only legal execution path is a(e;)a(es) — the scheduler can execute
ey followed by es and satisfy both constraints.

4 Note that e might not be mentioned in a nonaugmented automaton, so there
would be no guidance as to what to do when such an event arrives. An augmented
automaton would simply discard such an event.



180 Saikat Mukherjee et al.
5.4 Modeling Workflows Using Event Algebra

n [29], Singh defines an algebra, that is suitable for reasoning about con-
straints over an incoming stream of events. This algebra is sufficiently ex-
pressive to represent very general temporal intertask dependencies, including
control flow graphs. But conditions on transitions between tasks in such a
graph cannot be expressed.® A scheduling algorithm starts with an expression
that represents the entire set of constraints and then chips away at these ex-
pressions (or residuates in the terminology of [29]) as it schedules the arriving
events.

Though event algebra is an elegant solution for the problem at hand, it
is unclear whether it can model subworkflows or be used to verify workflow
properties such as whether a given set of constraints has redundancy in it or
whether a constraint is implied by a set of constraints.

5.4.1 Formalization

Execution of a workflow relies on the notion of significant events produced
by the tasks that comprise the workflow. Examples of such events are start,
precommit, commit, and abort. A workflow is specified as a set of dependencies
among these significant events. The dependencies are represented as event
expressions in the algebra.

The set of symbols that represent significant events is denoted by Y. This
set does not need to be finite. An atomic event expression is either an event
symbol from X or its negation. If e € X, then its negation is represented as
e; it represents the assertion that e does not occur in the execution of the
workflow. We will use lowercase letters to represent atomic events and capital
letters for more complex event expressions.

The language of event expressions, denoted by &£, is defined as follows:

o '={eelec X} CE.

This just states that atomic events are event expressions. We use I to
represent the set of atomic events.

e We distinguish two special event expressions : 0 and T in £. The event
0 represents the event expression that is always false and the event T
represents the expression that is always true.

o If F1,Fy € &, then E; - Es € £. The operator “” denotes sequencing,
i.e., the event expression E; followed by the event expression Es (not
necessarily immediately).

o If F1,FEy € £, then Fy + E; € £. The operator “4” denotes choice or
disjunction. The expression says that either the event expression F; must
occur or Fs.

5 Note that although [4] does not discuss scheduling in the presence of such con-
ditions, they can at least be expressed in temporal logic.
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o If E1,Fy € &, then Eq|Ey € £. The operator “|” means conjunction. It
denotes an event expression that represents both Fy and Es5 occurring in
any order.

The event algebra uses denotational style semantics where an event ex-
pression represents a set of legal traces. A legal trace (which we will often call
just a trace) is a sequence of atomic events where

e cach event symbol occurs at most once in the same trace (the unique
event assumption);

e an event and its negation cannot occur in the same trace; and

e for each e € X, either e or € occurs in the trace.

Note that if € occurs in a trace, then the exact placement of this symbol
is immaterial: If an event does not occur in a trace, then this remains true
regardless of where € was actually placed in the trace.

An event expression represents a constraint on the execution and the set
of traces it represents are those that satisfy this constraint. For example, e is
a constraint that says that the event e must occur, and the corresponding set
of traces contains precisely those that have e in them. The event expression
e - f is a constraint that says that after e occurs, then f cannot occur any
longer (i.e., if f occurs at all, it must occur before e). The corresponding set
of traces includes those that have e and either have no f or f occurs before
e.

The set of traces (or denotation) for an event expression F is denoted by
[E]. Given a set of atomic events, I', Up C I'* U I is the set of all finite
(I'*) and infinite (I'*) traces over the language I, i.e., sequences of events
that satisfy the three conditions given above.® The denotations of the various
event expressions are defined as follows:

[e] ={r€Ur|ecr,ie., eoccursin 7}

[0] = @, that is, no trace satisfies the expression 0.

[T] = Ur, that is, every trace satisfies the expression T.

Sequencing: [Eq - Eq) = {vT € Ur | v € [E1] and 7 € [Es]}, that is the
resulting trace is obtained by concatenation of the traces of F; and Fs.
Disjunction: [Ey + E2| = [E1]) U [E2].

Congunction: [Ey|Es] = [Eq] N [E3].

For an event expression E € £ and a trace 7 € Up, 7 = E denotes satisfia-
bility of the event expression E by the trace 7, i.e., the fact that 7 € [E].

Consider a travel workflow where one attempts to buy an airline ticket
and book a car. The constraint is that either both tasks succeed or none
succeeds. The other constraint is that buy cannot be canceled whereas book
can. This workflow can be formulated in this algebra as the following set of
dependencies:

5 Note that if X is finite, then there can be no infinite legal traces due to the unique
event assumption.
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o D : startpyy + startyeor: If buy starts then book must also start.

o Dy : commitpoor +commityyy + commitpoor - cOmmityyy,: If both book and
buy commit then book commits before buy.

o D3 : commityyy + commityoor: Task buy commits only if book commits.

o Dy : commityook +commityyy + starteancer: If book commits and buy does
not then start cancel.

o D5 : startcancel + commityyy|commityoer: Start cancel only if book com-
mits and buy does not.

This workflow is satisfied by several traces some of which are starty,ystartpook
COMMitpook, COMMIthuy, StaTThook STATThuyStaT cancel, and  staTtpook StATThuy
COMMit ook COMMEtpyy .

5.4.2 Scheduling

Given a set of dependencies specified as a set of event expressions, the job of
the scheduler is to find traces that satisfy the dependencies. The scheduler
starts with an event expression that represents all dependencies. An incoming
event is scheduled when this act is guaranteed not to break the dependen-
cies, regardless of which events will arrive in the future. The major insight
here is that there is no need to record the past history of scheduled events.
Instead, the information that is contained in the history and is relevant to
the scheduler can be “recorded” in the residual event expression that remains
to be satisfied by the future incoming event stream. We say “recorded” (in
quotes) because — counter to the common intuition that recording of infor-
mation leads to an increase of the data to be kept — recording of the relevant
history leads to simpler residual event expressions.

This “recording” of history is done through the residuation operator. The
state of the scheduler is represented by an event expression, D, which remains
to be satisfied by the incoming stream of events. When a new event arrives,
the residuation of D by e, denoted by D/e, is the new state of the scheduler.

Before giving a formal definition, we illustrate this notion by an example.
Figure 5.5 shows the effect of residuation on the dependency Dy = startp,, +
startpoor in the travel workflow discussed above. The dependency appears at
the top of the figure, and each node is labeled with an event expression
(which might be a compound expression). Arcs are labeled by atomic event
expressions. If the scheduler schedules an event that labels an arc, the result
of the residuation would be the expression pointed to by the arc.

Suppose that the scheduler schedules the event starty,,. Because this im-
plies that from now on all traces will contain this event, the traces represented
by the starty,, will not be possible, so we can remove this part of D; and
do not need to worry about it. Thus, D; is residuated to startpyeer. If, how-
ever, the scheduler decides that book is not allowed to start (i.e., it schedules
startpeor, because of the need to satisfy some other constraint), then none of
the traces that satisfy startpeor can occur, so we can remove that part of Dy,
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Fig. 5.5. Scheduler transitions for the dependency D; in the traveler workflow

that is, startyeor is scheduled, then D residuates to startp,,, which becomes
the dependency left to be satisfied. Informally, this means that if book is not
allowed to start, then the scheduler must ensure that buy is not allowed to
start either. If the scheduler can schedule either starty,, or starty.or, then
the dependency D; is satisfied, and it is residuated to T. If a dependency
cannot be satisfied, then it residuates to 0. For example, suppose that the
current state of the scheduler is represented by the dependency starty,, and
the event starty,, arrives. because there is no way to schedule this event (now
or in the future) and still have the dependency satisfied, it is residuated to 0.
Formally, the residuation operator is defined as follows:

v € [E1/FE5], where Es is an atomic event expression, if and only if
uv € [E1] holds for every trace u € [Fa].

If F has the form where neither “” nor “4” occur under the scope of the
sequencing operator “-”, then the following rewrite rules provide an algorithm
that computes residuation:

0/e=0

T/e=T

(E1|Eq)/e = (E1/e)|(E2/e), where Ey and Ey are event expressions.
(By + Ep)/e = (Er/e) + (Ez/e)

(e-E)/e =E, if e,€ do not appear in the event expression F.

(

(

NO ot W

e - FE)/e=0,if e # ¢ and e occurs in E.
e - E)/e=0,if € occurs in E.
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8. E/e = E, if e or € does not appear in the event expression F. This
means that only the dependencies that mention the event e are relevant
to residuation when e comes up for scheduling.

The residuation operator is sound and complete in the following sense. Let
E be an event expression, e an event, and F/e = E’. Then there is a trace
that satisfies F if and only if there is a trace that satisfies E’. Furthermore,
7/ is a trace that satisfies E’ if and only if er’ (a sequence of events whose
head is e and tail 7’) is a trace that satisfies E.

A scheduler can now be constructed as follows. Let E be the initial event
expression, which is a conjunction of all constraints. When an event, e, arrives,
we compute E' = E/e. If E' # 0, the event is scheduled, and E’ becomes the
new constraint that needs to be satisfied.

If E/ =0 due to rule (7), then e cannot be scheduled, and we have two
choices. If e can be rejected, the scheduler does so and keeps E as its current
state. If e is not rejectable, then the event stream cannot be scheduled, and
an error results.

If E/ = 0 due to rule (6), then e cannot be scheduled at this time, but
it might be in the future. So, if e is delayable, it is delayed until such time
when the dependency can be residuated by e to a non-0. Otherwise, if e is
not delayable, the stream of events cannot be scheduled, and an error results.

If F is in a form that permits using of the above rewrite rules, the cost of
a single scheduling operation is the cost of checking whether an event occurs
in an expression and whether the result of residuation is 0. The former can be
done in time logarithmic in the size of the expression. The complexity of the
latter is linear in the size of E. If E is not in a proper form, we can achieve
the desired form via a preprocessing step where “” is pushed into the event
expression past the operators “+” and “|” using the following equivalences:

o By -(Ey+E3)=FE,-Ey+E,-E3
o [y - (Ea|Es) = (B, - Eo)|(Ey - E3)

This is analogous to the computation of a disjunctive/conjunctive normal
form in classical logic and is exponential in the size of F.

It can be shown that the above scheduling process terminates (albeit not
always with success) because the size of the input event expression decreases
monotonically.

5.5 Workflow Modeling Using Concurrent Transaction
Logic

Concurrent Transaction Logic (CTR) [7] provides a uniform mechanism for
modeling complex workflows, transforming them into more efficient workflows
using logical equivalences and for reasoning about workflow properties. The
model theory of CTR provides precise semantics both for workflows and
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global intertask dependencies and serves as the yardstick of correctness for
the transformation and verification algorithms. The proof theory of the logic
can serve as a scheduler, which can also execute workflow specifications.

5.5.1

Introduction to Concurrent Transaction Logic

The alphabet of CTR consists of

e A set F' of function symbols
e A set P of predicate symbols
e A set V of variables

CTR terms are defined as in classical logic. A variable is a term. If f is a
n-ary function symbol and ¢1, ..., t,, are terms, then f(¢y, ..., ¢,) is also a term.

CTR formulas are intended to represent transactions that execute by
querying the underlying database state and modifying that state by adding
or deleting facts. Informally, executing a transaction along a sequence of
database states Dy, ..., D, (called a path) means that the transaction starts
at state Dg, changes it to state Dy, then to D, etc., terminating in state

D,.

Formally, CTR formulas are defined as follows:

e Every atomic formula, p(ti, ..., t,), where p € P and each t; is a term, is
a CTR formula.
An atomic formula represents either an elementary update operation or
a call to a complex transaction, whose behavior is defined via Horn-like
rules.

o If ¢ is a CTR formula, then so are the following formulas:

— Negation: =¢. A negated formula represents exactly those executions

that are not executions of ¢.

Isolation: ®¢. We shall see soon that execution of a CTR formula
can interleave with the execution of other CTR formulas, that is,
execution of ¢ can be interrupted to let another formula execute and
then resumes. The operator ® prevents this from happening, i.e., ®¢
represents “uninterrupted” executions of ¢ (or “isolated” executions,
if we use the terminology of database transaction processing).
Quantification: (VX)¢. Executing such a formula along a path, 7,
means that 7 is an execution path for every formula that is obtained
from ¢ by instantiating X with a ground (i.e., variable-free) term.

e If ¢ and ¥ are CTR formulas then so are

— Classical Conjunction: ¢ Av. This formula says, execute ¢ so that the

execution path will also be a valid execution of ¥ (or, equivalently,
execute 1 so that it will also be a valid execution of ¢). We shall see
later that classical conjunction forms the basis for representing con-
straints on the executions of workflows. Typically, ¢ would represent
a workflow and v a constraint.
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— Serial Conjunction: ¢ ® 1. Intuitively, this formula says, execute ¢
and then . Serial conjunction forms the basis for representing a
sequential composition of tasks in a workflow.

— Concurrent Conjunction: ¢|1p. Concurrent conjunction is used to spec-
ify concurrent, interleaved execution of subworkflows. A valid execu-
tion of the above formula could be a path where one subworkflow,
say, ¢ starts. This execution may be interrupted by execution of 1.
Execution of 9 can also be interrupted, and ¢ may be resumed. The
resumed execution of ¢ may again be interrupted and v resumed, etc.

We omit other operators, such as ¢ and [, which are not used for work-
flow modeling. Additional, convenience operators can be defined similarly to
classical logic:

¢ OV =(-0 ).
o p— Y=oV
o 36 = V0.

The following CTR, formula illustrates the use of some of the above connec-
tives:

b® ((d® conds ® h) Ve)®j

This formula happens to represent the part of the workflow graph in Fig-
ure 5.2, page 171, which begins with activity b and ends with activity 5. We
will talk more about modeling of workflows in CTR in Section 5.5.

The semantics of database states and state transitions in CTR is defined
using a pair of oracles. Intuitively, a state is a set of data items.

e A data oracle, O%, is a mapping from states to sets of first-order formulas.
If D is a state, O%(D) represents the set of formulas that are true in that
state.

e A transition oracle, O, is a mapping from pairs of states to sets of atomic
formulas. If b € OY(Dy, Ds), then b is interpreted as an update that
changes state D; into Ds.

For example, if D; is a database state where the formulas p and ¢ are
true, then p,q € O%(D;). Also, let insert(r) and delete(p) be atomic for-
mulas that insert and delete propositions r and p, respectively. Let Dy be
the database state where the formulas p,q, and r are true and D3 be the
database state where ¢ and r are true. Then insert(r) € O'(Dy, Ds) and
delete(p) € O'(Da, D3). Note that in this example we have defined a con-
crete data oracle and a transition oracle. The propositions insert and delete
are given special meaning by that particular transition oracle; they are not,
however, special keywords of CTR. Some other oracle might use a differ-
ent set of propositions for elementary updates, and the semantics of those
propositions can be completely different [8] as well.
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The semantics of CTR formulas are defined over multipaths. A multipath
is a finite sequence of paths. A path is a finite sequence of database states that
represents the execution of a formula ¢. A path must have at least one state
and a multipath at least one path. In a multipath, every constituent path
represents a period of continuous execution of a transaction. For instance, if
D1, D, ..., Dg are database states, then m = (D1DsD3, DyDs, DgD7Dg) is
a multipath comprised of three paths, which represents the execution of a
formula. The paths that constitute 7 are separated with commas. Thus, the
first path, D1 D5 D3 in 7 represents the first burst of continuous execution of
¢ in which the transaction changes the initial state, Dy to Dy and then to Ds.
This initial burst is interrupted by the execution of other transactions, which
(possibly through a long sequence of changes) leaves the database in state Dy.
At this point, ¢ resumes, changes the database state to D5, and is interrupted
again. While ¢ is suspended, other transactions change the database state to
Dg. At this time, ¢ wakes up again, and its execution changes the state to
D7, Dg, and terminates.

The semantics of CTR formulas is given by multipath structures, which
determine the truth-value of each formula on the different multipaths. The
intuitive meaning of a formula that is true on a multipath is that this formula
can execute along this multipath, changing the underlying database state as
specified in that multipath.

Formally, a multipath structure, M, is a mapping from multipaths to the
classical first-order semantic structures that are used to interpret formulas in
predicate calculus. Thus, given a multipath, 7, M (7) is a first-order seman-
tic structure. This mapping is required to be consistent with the data and
transition oracle in a natural way:

e Data oracle consistency: For 1-paths of the form (D), M({D)) = O%(D)
Intuitively, this means that formulas in O%(D) are defined to have valid
executions over the path (D). (Note that = is well-defined here because
M((D)) is, by definition, a first-order semantic structure.)

e Transition oracle consistency: For 2-paths of the form (D1, Ds),

M((D1 Ds)) = O'(D1, Ds).

Intuitively this means that the elementary transitions in O!(Dy, Ds) are
defined to have valid executions over the path (D; D). (Note that =
is, again, well-defined, because M ({D; D5)) is a regular first-order struc-
ture.)

If M is a multipath structure and 7 a multipath, then the satisfaction
of formula ¢ on 7 in structure M is denoted by M, 7 = ¢ and is defined as
follows:

o Atomic Formula: M, 7 |= p(t1,...,tn), if and only if M () | p(t1,...,tn)
for any atomic formula p(t1,...,t,). Intuitively, the truth of an atom
p(t1,...,tn) on a multipath 7 means that a transaction p can execute
along m when invoked with the arguments ¢4, ...,¢,.
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e Negation: M, m |= ¢, if and only if it is not the case that M, 7 = ¢.

e Isolation: M,m |= ©¢, if and only if M, 7 &= ¢ and « is a path (not a
multipath). Intuitively, this means execute ¢ in isolation without inter-
leaving with the execution of other formulas.

e Quantification: M, 7 | VX.¢, if and only if M, 7 | ¢[X/a] for every
assignment of a ground term to the variable X. Here ¢[X/t] denotes ¢
with all free occurrences of the variable X replaced by the term ¢.

e Classical Conjunction: M, w |= ¢ A1, if and only if M, 7 = ¢ and M, 7 |
.

e Serial Conjunction: M, 7 = ¢®1), if and only if M, 7, = ¢ and M, 7o = ¢
for some multipaths 71, 7o, and ™ = 7w @ 5.

Here m = 7 ® m5 denotes the concatenation of the multipaths 7 and 7.
For instance, <D1D2D3, l)4D57 D6D7D8>.<D9D10, D11D12> is <D1D2D3,
DyDs, DgD7Dg, DgD1g, D11D12).

e Concurrent Conjunction: M,m = ¢|¢, if and only if M, 7 = ¢ and
M, o =, for some multipaths 71, 7o, and with an interleaving in 7y ||mo
that reduces to m, as explained below.

Here, m1||m2 denotes an interleaving of the multipath 71 with the multi-
path mo, which is a multipath that consists of paths drawn from mw; and
w9, and the order of those paths in the interleaving is consistent with
their order in 7; and ms. For instance, one interleaving of the multipath
<D1D2D3,D4D5, D6D7D8> with <D9D10,D11D12> is <D1D2D3,Dgl)107
D4D5, 1)11D127 D6D7D8>. Another is <D1D2D3, Dngo, 1)41)57 D6D7D8,
D11 Dq2).

A multipath © reduces to another multipath if some adjacent paths in
7w can be spliced into one path because the end of the preceding path
coincides with the start of the next path. For instance, none of the
paths above reduces to any other path (except itself). But the follow-
ing multipath (D1 DsDs, DsDy, DsDgD7, D7Dg, DgD1) reduces to the
path <D1 D2D3D4, .D5.D6.D7.Dg7 D9D10>.

A multipath structure M is a model of formula ¢, denoted by M = ¢, if and
only if M, 7 = ¢ for every multipath 7.

The following example illustrates how updates can be combined with
queries to define complex transactions using CTR. It also illustrates the role
of oracles for defining state queries and elementary transitions as well as the
model theory.

Ezample 1 (Relational Database Transactions). For this example, we will use
relational data and transition oracles that encapsulate queries and updates
performed on relational databases. They are defined as follows:

Relational oracles: A relational database state is a set of ground atomic for-
mulas, D. For each relation name p in the database, we define the relational
data oracle as p(Z) € O%(D) iff p(F) € D. The relational transition oracle
defines, for each variable-free atomic formula p(Z), a pair of new proposi-
tions, insert(p(T)) and delete(p(T)), representing the insertion of the atom
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p(T) and its deletion, respectively. Formally, insert(p(z)) € O(Dy, Ds) iff
Dy = Dy U{p(Z)} and delete(p(z)) € O'(Dy, Ds) iff Dy = D1 — {p(Z)}.

Note that due to the consistency requirement for transition oracles, if M
is an m-path structure then the first-order semantic structure M ({D1, Ds))
must interpret the predicates insert and delete that are defined by the
oracle. However, it can interpret additional predicates as well. For instance,
if we have a rule,

foobar(X) « delete(X).

and M is a model of this rule, then M ({D;, D2)) must interpret the predicate
foobar as well.

Consider the following formula:
¢ = insert(a) ® (insert(b) | (b® delete(a)))

The possible models for ¢ can be computed from the models of the compo-
nents of ¢ as follows:

1. By the definition of the relational transition oracle: ({} {a}) = insert(a),
({a} {a,b}) |= insert(b), ({a,b} {b}) |= delete(a); (({a,b})) |= b by the
definition of the relational data oracle

2. ({a,b} {b}) E (b ® delete(a)); by the definition of ®

({a} {a,b} {b}) E (insert(b) | (b ® delete(a)), by the definition of |

4. ({} {a} {a,b} {b}) E insert(a) ® (insert(b) | (b® delete(a)), by the
definition of ®

w

Ezecutional entailment ties the semantics described above to the notion
of execution. If P is a set of formulas and Dy is a database state, then
P, Dyg--- = ¢ is true if and only if there are states Dy, ..., D, such that
M,(DyD;...Dy,,) = ¢ for every multipath structure M that is a model of P.
Note that here we are interested in an uninterrupted execution because the
multipath has only one path in it. Informally, this means that formula ¢ can
execute successfully starting from the database state Dy and may change the
database state in the process.

As we shall see, ¢ can be thought of as a workflow with tasks composed
sequentially and in parallel. P could be empty, or it can be a set of rules that
define the behavior of the individual tasks in the workflow. If P, Do--- |= ¢
holds, it means that the workflow can execute along some path starting at
state Dy. One of the most interesting properties of CTR is that its proof
theory constructs this execution path and in this sense it can be said to
execute ¢.

We shall not go into the details of the proof theory of CTR (see [7]) but
will illustrate it via an example. A sound and complete proof theory exists
for the concurrent-Horn subset of the logic. A concurrent-Horn goal (which
is used either as a query or a rule body) is as follows:
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e Any atomic formula.

e If ¢ and v are concurrent-Horn goals, then so are
- QY.
= Pl
AN

e If ¢ is a concurrent-Horn goal, then so is ®¢.

Concurrent Horn goals are used here as queries or rule bodies. This is slightly
different from some conventions where goals are of the form « body. The
difference is, however, in exposition, not substance.

A concurrent-Horn rule is a CTR formula of the form head «— body,
where head is an atomic formula and body is a concurrent-Horn goal. The
concurrent-Horn subset of CTR consists of concurrent-Horn rules and concur-
rent-Horn goals. Given a concurrent-Horn goal, the proof theory identifies the
set of subformulas that can execute at any given time and applies inference
rules to simplify the goal until the deduction either succeeds or fails.

To illustrate, assume that our database states are simply sets of proposi-
tional constants and the oracles are relational, as defined in Example 1. Let
program P contain the following rules:

p «— insert(a) ® g ® delete(p).
r —insert(q) ® a ® insert(s).

and consider the goal (p ® s) | r. In this example, the goal can be viewed as
a workflow and p, r, and s as its subworkflows.

Suppose we want to find out if it can be executed beginning with the
database state {p}, i.e., whether the executional entailment

PAip}-——-FE(es)|r

is true. The proof theory proceeds by trying to execute either side of |. Let us
choose 7, which we can expand using the second rule and obtain the following
goal:

(p® s) | (insert(q) ® a @ insert(s))

Let us proceed with the execution of the right side of the formula and execute
its first literal, insert(q). This will reduce the goal to

(p®@s)| (a®insert(s))

and change the database state to {p, ¢}. We can try to continue executing the
right side of the formula, which requires checking if the proposition a is true
in the current state. It is not. In Prolog, the entire goal would fail (i.e., found
to be false), but in CTR we have to wait and see if @ might become true as
a result of other, concurrent activities. Not being able to proceed with the
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right side of the goal, we switch our attention to the left side and expand p
using the first rule:

(insert(a) ® ¢ @ delete(p) ® s) | (a @ insert(s))

Continuing with the left side, we can execute insert(a), which causes a state
change to {p,q,a}. The goal now reduces to

(¢ ® delete(p) ® s) | (a @ insert(s))

Note that now a has become true and we can proceed with the right side of
the formula. Having checked that a is true, we can delete it from the goal.
We can also check ¢, which happens to be true, and delete it from the goal.
Neither operation causes a state change. The resulting goal is

(delete(p) ® s) | insert(s)

We can now execute delete(p), causing a state transition to {q, a}. We cannot
proceed with the left side of the formula because s is not true in the current
state, but we can proceed with the right side, inserting s. Thus, the new state
becomes {q, a, s} and the goal reduces to the query s. Because it is true in the
current state, the executional entailment has been established. By tracing the
sequence of state changes that occurred during the proof, we can reconstruct

the execution path of the goal: {p}, {p,q}, {p,q, a}, {¢,a}, {q,qa,s}.

5.5.2 Modeling Workflows as CTR Goals

CTR can model workflows at several levels. CTR goals are expressive enough
to model complex control flow graphs and rules can be used to model sub-
workflows. The head of a rule can be seen as a compound task and the body
of a rule (which is a CTR goal) is a control flow graph that represents the
workflow that defines that compound task.

The overall idea behind using CTR for modeling workflow control graphs
is very simple. Propositional constants can be used to represent individual
tasks, the connective ® represents sequential compositions of tasks and | can
be used to combine tasks in parallel. In addition, classical disjunction, V,
represents nondeterministic choice, and transition conditions between tasks
can be modeled as queries. For instance, consider the control flow graph
in Figure 5.2 on page 171, which includes both sequential and concurrent
composition of tasks as well as transition conditions. It can be represented
as the concurrent-Horn goal as follows:

a® ((condl ®@b® ((d®conds @h)Ve)®j) |

(cond2®c® ((f ®1i® condy) \/(g®cond5)))) Rk (5.1)

This goal represents a workflow control graph, which is part of the workflow
specification. The remaining part, intertask dependencies, is also specified
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using CTR, as explained later. We shall see that CTR can be used not only
to specify workflows, but also to reason and schedule them.

One can also represent data flow using predicates with variables in the
CTR goals, but we will not get into these aspects.

5.5.3 Using CTR to Schedule and Verify Workflows

A uniform framework for specifying, verifying, and scheduling workflows was
proposed in [13]. A workflow is modeled as a control flow graph, which is spec-
ified as a concurrent-Horn CTR goal, G, and a set of global dependencies, D.
Note that unlike the approaches based on Temporal Logic and algebra, here
we distinguish between local precedence constraints, which are represented
in the control flow graph, and global constraints (such as those listed in the
third column in Figure 5.2 on page 171), which cannot be easily represented
in this way.

The entire workflow is represented as a conjunction G A D. Recall that
in CTR such a conjunction means: execute the workflow G so that all of the
constraints in D will be satisfied. The question here is how to execute such
a workflow. We saw that the proof theory of CTR can execute concurrent-
Horn goals, but the above specification is not such a goal due to the classical
conjunction A. We could try to execute the G part of the workflow constantly
checking that the D part is satisfied, but this would cause much backtracking
at run time, which is undesirable.

It turns out, however, that under certain assumptions, we can find an
equivalent CTR formula, G’, which happens to be concurrent-Horn and thus
can be executed by the proof theory (and without backtracking). Equiva-
lence here means that G and G’ have the same models, as in most other
logics. We can view the process of finding G’ as scheduling because G’ can be
viewed as a concise representation of all possible valid schedules. Thus, there
is an important difference between the nature of scheduling in CTR and the
approaches described in Sections 5.3 and 5.4. In the latter approaches, the
scheduler is passive — it is waiting for the events to arrive during workflow
execution. In CTR, on the other hand, the scheduler is proactive: it compiles
an original workflow specification, G A D, into one (G’) where scheduling
decisions become trivial.

The size of G’ is linear in the size of G but ezponential in the size of
the dependencies D. Because the size of the dependency set is usually much
smaller than the size of the control flow graph, verification of the proper-
ties of G using this method is more efficient than standard model-checking
techniques which are worst-case exponential in the size of the control flow
graph.

Thus, the approach of [13] causes a certain blowup in the size of the con-
trol flow graph (which might be expensive, but not prohibitively so, because
it is exponential only in the size of the global dependencies), but run-time
scheduling takes linear time in the depth of that graph. The temporal logic
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approach in [4] faces a similar choice: pay an exponential price at compile
time to enable linear-time scheduling, or do nothing at compile time and incur
exponential complexity during scheduling. Unfortunately, the first choice is
prohibitively expensive for large workflows (exponential in the size of both the
control graph and global dependencies). Although the second choice (paying
at run-time) has exponential worst-case complexity, it is believed that the
average complexity is “not so bad.” The algebraic approach [29] requires
a preprocessing step (conversion to DNF) that can increase the size of the
constraints exponentially. Because these constraints represent both the local
control flow and the global constraints, the worst-case complexity is rather
high. The algebraic approach also incurs certain run-time overhead, as dis-
cussed in Section 5.4.2.

Formalization. As in [4,29], workflows are modeled in terms of significant
events of the workflow tasks such as start, precommit, commit, and abort. As
with other approaches considered in this chapter, the unique event property
is assumed to hold.

The events are specified as propositions drawn from a set of events, de-
noted as FEvent. A special proposition path, defined as ¢ V —¢ for any CTR
formula ¢, is used to denote the counterpart of true in classical logic, that is,
path is true on all execution paths. For convenience, we use \y¢ as a short-
hand for path® ¢®path. If G is a CTR goal that represents a workflow graph,
then G A \y¢ means that G must be executed so that ¢ is true somewhere on
the execution path. Thus, if ¢ is an event, /¢ is a constraint that the event
must occur some time during the execution. The dependencies that can be
specified in this framework are as follows:

e Primitive Dependencies: \Je and — v/ e, where e € Fvent.
The first constraint says that e must occur, whereas the second says that
it should not occur.

e Serial Dependencies: If dy,ds,...,d, are primitive dependencies of the
form v/e;, then d; ® ... ® d, is a serial dependency.
For instance, Ve® v/ f ® Vg is a constraint that says that the execution
consists of three parts. In the first, the event e must occur. This should
be followed by an execution where f does not occur. In the third phase,
g must occur.

o Complex Dependencies: If Dy, Do are dependencies, then so are Dy V Do
and Dl A D2.

The logic is expressive enough to model both order (e; < e2) and occurrence
(e1 — e2) dependencies. The order dependency is modeled as — 71 V—57eaV
(ve1 ® wes). The occurrence dependency is modeled as =57 e1 V 7¢ea. It can
be proved that the set of dependencies is closed under negation.

Scheduling and verification. Given a workflow, GG, specified as a concurrent-
Horn goal, and a set of dependencies, D, it can be verified whether G is



194 Saikat Mukherjee et al.

consistent with D. If so, the workflow can be scheduled in linear time in
the depth of G (after some transformation, which is described below). In
addition, it can be checked whether the workflow specification entails some
other constraint, ¢. To this end, one simply needs to check whether GADA—¢
is consistent.

The main technique rests on a transformation that compiles the depen-
dencies, D, into the control flow graph G. The result is another control flow
graph, G’, which is logically equivalent to G A D. Thus, the transformation
is sound and complete. Although, as mentioned above, G’ is worst-case ex-
ponential in the size of D, this is not a serious problem in practice. First,
D is much smaller than G. Second, for some constraints, the blowup is only
polynomial.

The constraints are compiled into G using the procedure Apply. If G is
a concurrent-Horn goal and d is a dependency, then Apply(d, G) is defined
to yield a CTR goal, G, which is equivalent to G A d. This is done in the
following way:

o Compiling Primitive Dependencies: If e;,es € FEvent and G1,Gy are
concurrent-Horn goals, then
— Apply(ver,e1) = e
— Apply(sye1, e2) = —path, if e; # ey
— Apply(— v e1, e1) = —path
— Apply(—! \V4 61,62) = e, if eq 75 €2
— Apply(ver, G1 ®G2) = Apply(V e1,G1) ® Ga V G1 @ Apply(ver, G2)
— Apply(= v e1,G1 ® G) = Apply(—v e1,G1) @ Apply(= </ e1, Ga)
— Apply(e1, G1|G2) = Apply(7 e1,G1)|Ga V Gi|Apply(ver, Gz)
— Apply(— v e1,G1|Ge) = Apply(—=7 e1, G1)|Apply(— 7 e1, G2)
— Apply(o, ©G1) = O Apply(c,G1), where o is \7eq or -/ €1
— Apply(o,G1 V Gs) = Apply(o,G1) V Apply(o, G2)
o Compiling Serial Dependencies: If e, e5 € Fvent and G is a concurrent-
Horn goal, then
— Apply(Ve1 ®@ves, G) = Apply(s7(e1) @ send(e) N Apply(receive(e) ®
v(e2), G)), where ¢ is a new constant. The send and receive primitives
can be defined in CTR as part of a transition oracle (just like delete
and insert), so that their semantics would be such that receive(e) is
true if and only if send(e) has been previously executed [7].
o Compiling Complex Dependencies: If Dy, Dy are complex dependencies
and G is a concurrent-Horn goal, then
— Apply(Dy V Do, G) = Apply(D1,G) V Apply(D2, G)
— Apply(Dy A Do, G) = Apply(Dy, Apply(D2, G))

Compiling the dependencies D into the original goal G yields either a
new concurrent-Horn goal G’ or —path. The workflow control flow graph is
inconsistent with the set of dependencies if the result of the Apply procedure
is —path. Even if Apply does not yield —path, the result might still be incon-
sistent or contain redundancy because G’ can have subformulas where the
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send/receive primitives form a circular wait. These regions in G’ are known
as knots. A procedure Excise (which we will not describe here) takes the
result of the Apply procedure and returns either a knot-free concurrent-Horn
goal or —path.

The procedures Apply and Excise can be used to check workflows for
consistency and verify some other properties as follows. Given a workflow
specification, G, and a set of dependencies, D, the workflow specification
is inconsistent if and only if Exzcise(Apply(D,G)) = —path. A property @
(represented as a constraint) is satisfied by every execution of the workflow
if and only if Fxcise(Apply(-® A D, G)) = —path.

A consistent workflow can be scheduled by simply using the proof the-
ory of CTR on the goal obtained by computing Excise(Apply(D,G)). This
will find a suitable execution path for the workflow G while obeying the
constraints in D.

In general, workflow scheduling in CTR is N P-complete if both compile-
time and run-time phases are taken into the account [13]. A similar NP-
completeness result was obtained in [32]. However, after the compilation is
done, unlike [4,29], the scheduler need not make any run-time decisions be-
cause all of the dependencies are pre-compiled into the control-flow graph.
As a result, each scheduling step takes a constant time, and the entire sched-
ule can be constructed in linear time in the size of the original control flow
graph.

Extensions. As we have seen, unlike the other framework discussed in this
chapter, CTR can model workflows whose control flow graphs have transition
conditions on the arcs of the control flow graph. (See, for example, how the
transition conditions of the graph in Figure 5.2 are represented in the CTR
formula (5.1).) The compilation technique of [13] described earlier is still ap-
plicable to such workflows. In particular, it eliminates the need for run-time
scheduling decisions due to global constraints, and it can also detect inconsis-
tency between these constraints and the control flow graph. Scheduling can
still be performed by the proof theory of CTR. However, due to the presence
of transition conditions, scheduling is no longer linear as it might require
backtracking over some previously scheduled tasks.

CTR-based modeling can also be extended in the direction of workflows
that must execute under various aggregate or resource allocation constraints.
Examples of such constraints are cumulative time and cost constraints on the
execution of a workflow such as travel reservations, or constraints on the allo-
cation of machines in a job-shop scheduling workflow. One way to model such
problems is to extend CTR to Constraint CTR, which adds constraint-solving
capability a la Constraint Logic Programming. This direction is pursued in
[28].

Another extension of CTR, which can potentially be useful for modeling
Web services, is to add certain game-theoretic capabilities to the logic. As a
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result, it becomes possible to model workflows that include noncooperating
(or even adversarial) activities. For instance, the Web services standards such
as UDDI, WSDL, and BPEL4WS [27,9,11] make it possible for anybody to
publish an aggregate Web service, i.e., a workflow composed of Web services
published by others. The constituent services might uphold the various con-
tracts and laws, but they cannot be assumed to act in the best interests of
the aggregator. Therefore, there is a need to be able to specify contracts and
verify that the goals of the aggregate workflow will be met, provided that
the constituent workflows follow the letter of the contracts. A step in this
direction was made in [14].

Expressiveness. In [6], Bonner investigated the expressive power of concur-
rent-Horn CTR. The complexity of the logic depends on what kind of atomic
formulas are allowed. Four kinds of atomic formulas have been identified:

e Querying, p(z): Check if p(x) is in the database.

e Emptiness Checking, empty(p): Check if the database contains no atom
of the form p(zx).

e Insertion, insert(p(x)): Insert atom p(z) into the database.

e Deletion, delete(p(zx)): Delete atom p(x) from the database.

The semantics of these four elementary operations can be defined in terms of
the executional entailment.

o Querying: P, D1 D5 = p(x) if and only if Dy = Dy and p(x) € D;.

e Emptiness Checking: P, D1Ds = empty(p) if and only if D; = Dy and
p(z) € Dy for all .

e Insertion: P, DDy |=insert(p(zx)) if and only if Dy = Dy U {p(z)}.

e Deletion: P, Dy Dy [ delete(p(z)) if and only if Dy = Dy — {p(x)}.

The expressiveness of the logic depends on the complexity of the trans-
actions accepted by it. A database schema S is a finite set of predicate
symbols. The domain of a database D, denoted by dom(D), is the set of con-
stant symbols in it. A database transaction (Si,S2) is a binary relation on
database states Dy, Dy with respective schemas S7, S5. Informally, a trans-
action changes a database D; with schema S; to a database Dy with schema
Sy. A transaction T is safe if dom(D1) 2 dom(Ds) for every pair (D1, D) in
T. Given a set of formulas P and a goal ¢, the logic expresses a transaction T'
if (D1, D5) € T if and only if P, D1 Dy = ¢. The data complexity of the logic
is the complexity of the most complex transaction accepted by the logic. The
logic is data complete for a complexity class if it can accept all transactions
in that class. For instance, if a logic is data complete for NP, then it can
express all N P-complete transactions. It turns out that, depending on which
atoms are allowed, the expressive power of the logic can vary greatly.

o If queries are the only atomic formulas, the logic is data complete for
PTIME.
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o If queries are allowed and either insertion or deletion, the data complexity
is PSPACE.

o If queries and both insertion and deletion are allowed, the logic is data
complete for RE.

o Without emptiness checking, the logic can accept only monotonic goals.
A monotonic goal has the property that if it terminates and commits
starting from a database state D, then it also terminates and commits
when started from any database state containing D. With the addition
of emptiness checking, the logic becomes nonmonotonic. It can express
every safe transaction in RE.

The effect of concurrency and recursion on the data complexity of the logic
is as follows:

e The logic is data complete for EX PTIM E without the | operator (i.e. a
sequential logic).

e Without recursion — but with concurrency — the data complexity is
LOGSPACE.

e If only sequential tail recursion is allowed, the logic is data complete for
PSPACE. A rule exhibits sequential tail recursion if it has the form
p — ¥ ® q, where ¥ is a goal and ¢ is the only atom in the body which
is mutually recursive with p.

A subset of concurrent-Horn CTR, called fully-bounded, is further developed
in [6]. It retains a wide range of workflow modeling capabilities and yet has
low complexity. The idea behind full-boundedness is as follows:

e Every recursive call to a predicate must remove a tuple from a base
relation.

e Tuples that are removed from a relation must not find their way back
into the relation.

To find out if a set of rules is fully-bounded, a data flow graph is constructed.
This graph keeps track of the flow of tuples between different relations at
each level of recursion. If the graph is acyclic, then the set of rules is fully-
bounded. It has been shown in [6] that fully-bounded concurrent-Horn CTR
is data complete for N P.

5.6 Other Uses of Logic in Workflow Modeling

Logic can be used is many different ways, and the approaches surveyed here
are by no means the only ones where logic has been gainfully employed. One
of the earliest works in this area is ACTA [10], which presented a method-
ology for specifying properties of complex transactions as axioms in regular
first-order predicate calculus. In particular, workflow dependencies of the
kind discussed in Section 5.2 can be represented in this way. Thus, ACTA
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can be viewed as a workflow modeling framework. However, ACTA is not
a complete framework. Because it is so general, it does not come with any
special technique for verifying the properties of workflows and instead relies
on a general-purpose theorem prover. Likewise, the ACTA framework does
not come with a scheduler that could be used to enact workflows.

Vortex [18] uses logic in a different way. By itself, Vortex is not based
on a logic. However, declarative abstractions can be derived from Vortex
workflows. For instance, one such abstraction models temporal dependencies
among the invocations of activities in these workflows. This abstraction as
well as workflow properties can then be represented as formulas in temporal
logic, and standard model-checking techniques can be used to verify these
properties. Vortex also provides a rich language for specifying conditions on
when different activities can be executed. However, in general, the scheduling
problem for Vortex workflows is undecidable. It is reported that scheduling
algorithms can be developed by imposing various restrictions on the form of
the workflows [24].

An action logic approach to workflow modeling is described in [5]. Work-
flows are specified as sets of triggers of the form “on eventy if condition then
events.” In action logic, such triggers are represented as logical formulas with
a well-defined semantics. Because triggers can be viewed as global intertask
dependencies, this framework resembles the three frameworks discussed in
the main part of this survey [4,13,29]. The correctness of a workflow is speci-
fied using formulas of the form “¢ must hold after event sequence P at initial
state ¢.” The approach comes with an algorithm for scheduling workflows
to guarantee that the given correctness conditions hold. However, this algo-
rithm is exponential in the size of the workflow. The constraints defined by
the triggers are not as general as those in [4,13,29] in some respects, but, on
the other hand, they have features that are missing in the other logic-based
approaches (save [13]). For instance, triggers cannot define dependencies such
as “if a happens, then either b or ¢ should also happen” or “if a, then b must
precede ¢.” On the other hand, triggers allow conditions to be imposed on the
state of the execution, which is not allowed in [4,29]. Although such conditions
can easily be expressed in the CTR-based framework of [13], the algorithm
developed there does not guarantee linear-time run-time scheduling under
these circumstances.

5.7 Conclusion

In this chapter we surveyed three approaches to modeling and managing
workflows: one based on Temporal Logic [4,21], one on Event Algebra [29],
and one on Concurrent Transaction Logic (CTR) [13,6]. At the moment, the
approach based on CTR seems to be the most promising. Not only can it
handle very general constraints, but it can also represent control flow graphs
with transition conditions on the arcs. Apart from modeling, the CTR-based
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framework can also be used to check workflow specifications for consistency
and for property verification. Together with the recent works on scheduling
under resource allocation constraints and in noncooperative environments
[28,14], the CTR framework is clearly the most developed logic-based ap-
proach to workflow modeling.

Despite these early successes, the existing formal methods are not ready
for prime time yet. Among the unsolved problems, we can list exception
handling (including recovery with compensation a la Sagas [19]),” scheduling
of workflows with repeated events (for example, workflows with loops), and
dynamic modification of workflows.

In addition, the emerging field of Web services [12,30] brings in the issues
of modeling service ontologies, matchmaking and brokering algorithms, di-
alogs, and negotiation for services establishment. Web services standards pro-
vide languages for specifying technical, business-related, and process-related
information about services. Such descriptions should enable two basic func-
tions in the Web services model. First, they should allow applications to
query and find services that satisfy their business requirements. Second, they
should permit dynamic composition of service components and organize them
into workflows.

These developments open up a vast area for research in formal methods
for workflow modeling and verification with a real possibility of practical im-
pact. In particular, we have identified the following challenging problems that
could use input from the research community: (1) automatic identification of
component services that match a client’s business rules; (2) behavioral anal-
ysis for determining how disparate services could be composed (perhaps in
an optimal way with respect to some cost constraints) into a workflow that
satisfies user’s request; (3) coordination of multiple services from different,
not necessarily trusted, participants; and (4) reconfiguration of component
services as a client’s requirements and operating conditions change.

A vast number of products on the market claim to be workflow-related,
but not all of them are WfMSs in the true sense of this word. For instance,
IBM’s Lotus Notes is often referred to as a workflow management system, but
it really is just a groupware collaborative software. A long list of workflow-
related products can be found in [33]. Commercial workflow tools, such as
IBM’s MQSeries Workflow, Oracle Workflow, and Fujitsu’s iFlow provide sup-
port for business process modeling via flow charts for processes with static
structures or via event-condition-action (ECA) type triggers for evolving and
less structured processes. Currently, these solutions provide little or no sup-
port for querying repositories of existing processes to identify reusable pro-
cesses and for composing them under constraints. Neither do they provide
languages suitable for expressing workflow dependencies beyond the very sim-

" Note that ACTA, described in Section 5.6, can model Sagas-style compensation-
based rollback. However, as we mentioned, ACTA is not a complete framework
in many other ways.
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ple ones. We believe that the techniques surveyed here can be used to enrich
the existing products. Moreover, as Web services become more and more pop-
ular, complex processes will be routinely constructed on an ad hoc basis by
a variety of users. In this environment, there will be growing need for logic-
based formalisms and verification techniques that can ensure that workflow
designs comply with their specifications.
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