17. Convergence of Random Variables

In elementary mathematics courses (such as Calculus) one speaks of the con-
vergence of functions: f,: R — R, then lim, o fr, = f if im, oo fr(x) =
f(z) for all  in R. This is called pointwise convergence of functions. A ran-
dom variable is of course a function (X: {2 — R for an abstract space {2),
and thus we have the same notion: a sequence X,,: 2 — R converges point-
wise to X if limy, 00 Xp(w) = X (w), for all w € (2. This natural definition
is surprisingly useless in probability. The next example gives an indication
why.

Example 1: Let X, be an i.i.d. sequence of random variables with P(X,, =
1) =p and P(X,, = 0) = 1 —p. For example we can imagine tossing a slightly
unbalanced coin (so that p > %) repeatedly, and {X,, = 1} corresponds to
heads on the nt! toss and {X,, = 0} corresponds to tails on the nth toss. In
the “long run”, we would expect the proportion of heads to be p; this would
justify our model that claims the probability of heads is p. Mathematically
we would want

lim Xi(w)+ ...+ Xp(w)

n—o00 n

=p forallwe .

This simply does not happen! For example let wy = {T,T,T, ...}, the se-
quence of all tails. For this wy,

1 n
lim — ; =0.
nl—{go n Z XJ (WO) 0
j=1
More generally we have the event
A ={w: only a finite number of heads occur}.

Then .
1
lim — X, = 0 for all A.
Jim nj§=1 i(w) or all w €

We readily admit that the event A is very unlikely to occur. Indeed, we
can show (Exercise 17.13) that P(A) = 0. In fact, what we will eventually
show (see the Strong Law of Large Numbers [Chapter 20]) is that
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This type of convergence of random variables, where we do not have conver-
gence for all w but do have convergence for almost all w (i.e., the set of w
where we do have convergence has probability one), is what typically arises.

Caveat: In this chapter we will assume that all random variables are defined
on a given, fixed probability space ({2, .4, P) and takes values in R or R".
We also denote by |z| the Euclidean norm of z € R".

Definition 17.1. We say that a sequence of random variables (Xp)n>1 con-
verges almost surely to a random variable X if

N = {w: lim Xn(w);éX(w)} has P(N)=0.

n—oo
Recall that the set N is called a null set, or a negligible set.

Note that

N¢=A= {w :lim X, (w) = X(w)} and then P(A) = 1.

n—oo

We usually abbreviate almost sure convergence by writing

lim X,, = X a.s.

n—oo
We have given an example of almost sure convergence from coin tossing pre-
ceding this definition.

Just as we defined almost sure convergence because it naturally occurs
when “pointwise convergence” (for all “points”) fails, we need to introduce
two more types of convergence. These next two types of convergence also
arise naturally when a.s. convergence fails, and they are also useful as tools
to help to show that a.s. convergence holds.

Definition 17.2. A sequence of random variables (X, )n>1 converges in LP
to X (wherel <p < o0) if | X,|, |X| are in LP and:

lim E{|X, — X[} = 0.
n—oo

h

Alternatively one says X,, converges to X in pt mean, and one writes

x, 2 x.

The most important cases for convergence in pth mean are when p = 1
and when p = 2. When p = 1 and all r.v.’s are one-dimensional, we have
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[E{Xn — X} < E{|X, — X[} and |E{|X,|} — E{|X[}] < E{|X, — X[}
because ||z| — |y|| < |z — y|. Hence

X, B X implies E{X,} — E{X} and E{|X,|} — E{|X[}. (17.1)

Similarly, when X, L X for p € (1,00), we have that E{|X,,|P} converges to
E{|X|P}: see Exercise 17.14 for the case p = 2.

Definition 17.3. A sequence of random wvariables (X,)n>1 converges in
probability to X if for any € > 0 we have
lim P{w: | Xn(w) — X(w)| > ¢e}) =0.

n—o0

This is also written
lim P(| X, — X|>¢)=0,

n—oo

and denoted
X, & x.

Using the epsilon-delta definition of a limit, one could alternatively say
that X, tends to X in probability if for any € > 0, any 6 > 0, there exists
N = N(§) such that

P(X,—X|>e)<é
for all n > N.
Before we establish the relationships between the different types of con-

vergence, we give a surprisingly useful small result which characterizes con-
vergence in probability.

Theorem 17.1. X, x if and only if

. | X, — X
1 EFEqd————3%=0.
i {1+|XH_X| 0

Proof. There is no loss of generality by taking X = 0. Thus we want to show

X, £ 0if and only if lim,, . F{ 1_‘:‘()’2|L|} = 0. First suppose that X, £o.

Then for any € > 0, lim,,_. P(|X,| > &) = 0. Note that

o] 1%l Lix, e T elqx,i<e < Lyx,|>e} + &
L+ [Xn] 7 14X, Y s "

Therefore

Xn
E{lipgn} < E{l{\Xn|>6}} + e = P(an| > E) + €.

Taking limits yields
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: | X
lim B4 —-— 7 <c¢;

. . . Xn
since € was arbitrary we have lim,,_,o, E{ 1J‘F‘X| |} =0.

X I} = 0. The function f(x) = 14% is strictly

Next suppose lim,, o, E{
increasing. Therefore

. < Kol < Xl
1+e {IXn|>e} = 1+ X, {IXn|>e} = 1+ [Xa|

Taking expectations and then limits yields

e . R
< _— = 0.
1+57}EI;0P(|X”|>E)_nh—{goE{1+|Xn|} 0
Since € > 0 is fixed, we conclude lim,, o P(|X,| >¢) =0. O

Remark: What this theorem says is that X, = X it E{f(| X, — X|)} =0

for the function f(z) = 1f‘]w| . A careful examination of the proof shows that
the same equivalence holds for any function f on R, which is bounded,

strictly increasing on [0, 00), continuous, and with f(0) = 0. For example we
have X,, 5 X iff E{|X,—X|A1} — 0 and also iff E{arctan(]X,, — X|)} — 0.

The next theorem shows that convergence in probability is the weakest of
the three types of convergence (a.s., LP, and probability).

Theorem 17.2. Let (X,,)n>1 be a sequence of random variables.

a) If X, 2 X, then X, & X.
b) If X, 3 X, then X, 2 X.

Proof. (a) Recall that for an event A, P(A) = E{14}, where 14 is the indi-
cator function of the event A. Therefore,

P{|Xn, — X|>e} = E{lx,—x|>} } -

Note that lX”E;pX‘p > 1 on the event {|X,, — X| > ¢}, hence

X, — X|P
< E{||1{|Xn—X|>a}}

ep
1 P
= B {IXn = X"l x,—xp>a )

and since |X,, — X|P > 0 always, we can simply drop the indicator function
to get:

! The notation iff is a standard notation shorthand for “if and only if’
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1
R _ p
< S B{X, - X},

The last expression tends to 0 as n tends to oo (for fixed e > 0), which gives
the result.

(b) Since % < 1 always, we have

. X, — X| X, — X|
lim Eq ————— 7 = lim —% " =F{0} =
o {1+ X, — x| A T X, = X {0y =0

by Lebegue’s Dominated Convergence Theorem (9.1(f)). We then apply The-
orem 17.1. O

The converse to Theorem 17.2 is not true; nevertheless we have two partial
converses. The most delicate one concerns the relation with a.s. convergence,
and goes as follows:

Theorem 17.3. Suppose X,, L X. Then there eists a subsequence ny, such
that limg_,o0 Xn, = X almost surely.

Proof. Since X, L X we have that lim,_.. E{%} = 0 by The-

orem 17.1. Choose a subsequence nj such that E{m} < 5%. Then

2k
X, —X
S ore 1E{1+\X } < 0o and by Theorem 9.2 we have that Y p- 1#}(;(‘

< 00 a.8.; since the general term of a convergent series must tend to zero, we
conclude
lim |X,, — X|=0as.

n—n

0

Remark 17.1. Theorem 17.3 can also be proved fairly simply using the
Borel-Cantelli Theorem (Theorem 10.5).

Example 2: X, £ X does not necessarily imply that X,, converges to X
almost surely. For example take 2 = [0,1], A the Borel sets on [0, 1], and
P the uniform probability measure on [0,1]. (That is, P is just Lebesgue
measure restricted to the interval [0,1].) Let A,, be any interval in [0, 1] of
length a,, and take X,, = 14,_. Then P(|X,| > €) = ay, and as soon as

an — 0 we deduce that X, 5 0 (that is, X,, tends to 0 in probability). More
precisely, let X, ; be the indicator of the interval [J 1 1]1] 1<j<n,n>1
We can make one sequence of the X,, ; by ordering them first by increasing
n, and then for each fixed n by increasing j. Call the new sequence Y,,. Thus
the sequence would be:

Xi11,X01,X02,X31,X32,X33,X41,...
Yl aYQ aY3 7Y4 7}/5 7Y6 7Y7 3 v
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Note that for each w and every n, there exists a j such that X, ;(w) = 1.
Therefore limsup,,,_, ., Ym = 1 a.s., while liminf,, . ¥,, = 0 a.s. Clearly
then the sequence Y,, does not converge a.s. However Y, is the indicator of
an interval whose length a,, goes to 0 as n — o0, so the sequence Y,, does
converge to 0 in probability.

The second partial converse of Theorem 17.2 is as follows:

Theorem 17.4. Suppose X, £ X and also that | X, <Y, alln, and Y €
LP. Then |X| is in L? and X, = X.

Proof. Since E{|X,|P} < E{Y?} < oo, we have X, € LP. For ¢ > 0 we have

{X|>Y +e} C{|X]|>|Xn|+¢}
C{[X] = [Xn| >}
CA{IX — X,| > ¢},
hence
P(IX|>Y +¢) < P(|X - Xy > ¢),

and since this is true for each n, we have
P(X|>Y +e) < nan;oP(|X - X, >¢e)=0,
by hypothesis. This is true for each € > 0, hence
P(|X|>Y)< %EHOOP(‘X| >Y + %) =0,

from which we get |X| <Y a.s. Therefore X € L? too.

Suppose now that X, does not converge to X in LP. There is a subse-
quence (ng) such that E{|X,, — X|’} > e for all k, and for some £ > 0.
The subsequence X, trivially converges to X in probability, so by Theorem
17.3 it admits a further subsequence X, which converges a.s. to X. Now,
the r.v.’s Xnkj — X tend a.s. to 0 as j — oo, while staying smaller than 2Y,
so by Lebesgue’s Dominated Convergence we get that E{|Xnkj - X|P} — 0,
which contradicts the property that E{|X,, — X |’} > ¢ for all k: hence we
are done. O

The next theorem is elementary but also quite useful to keep in mind.

Theorem 17.5. Let f be a continuous function.

a) Iflim, o X,, = X a.s., then lim,,_., f(X,) = f(X) a.s.
b) If X, 5> X, then f(X,) = f(X).
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Proof. (a) Let N = {w : lim,_ o Xpn(w) # X(w)}. Then P(N) = 0 by
hypothesis. If w ¢ N, then

lim f(X(w)) = f ( lim X)) = F(X (@),

n—oo

where the first equality is by the continuity of f. Since this is true for any
w¢ N, and P(N) =0, we have the almost sure convergence.
(b) For each k > 0, let us set:

{lf (Xn) = F(X)[ > e} C{IF(Xn) = F(X)| > &, [X]| < k}U{[X]| >k} (17.2)

Since f is continuous, it is uniformly continuous on any bounded interval.
Therefore for our ¢ given, there exists a § > 0 such that |f(z) — f(y)| < e if
|z —y| < 6 for  and y in [—k, k]. This means that

{If(Xn) = (X > &, |X| <k} C{[Xn — X[ > 6, |X] < k} C {| X —X][ > 6}
Combining this with (17.2) gives
{If(X0) = f(X)| > e} C {| X = X| > 8} U{|X]| > k}. (17.3)
Using simple subadditivity (P(AUB) < P(A)+ P(B)) we obtain from (17.3):
PAIf(Xn) = f(X)] > e} < P(|Xy = X[ > 6) + P(IX]| > k).

However {|X| > k} tends to the empty set as k increases to oo so
limg_,0o P(|X| > k) = 0. Therefore for v > 0 we choose k so large that
P(]X| > k) < . Once k is fixed, we obtain the é§ of (17.3), and therefore

lim P (|f(X,) ~ f(X)| > &) < lim P(X, ~ X|>6) +7=n.

Since v > 0 was arbitrary, we deduce the result. O
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Exercises for Chapter 17

17.1 Let X,, ; be as given in Example 2. Let Z,, ; = n%Xn,j. Let Y,, be the
sequence obtained by ordering the Z,, ; as was done in Example 2. Show that
Y., tends to 0 in probability but that (Y,,)m>1 does not tend to 0 in L?,
although each Y,, belongs to LP.

17.2 Show that Theorem 17.5(b) is false in general if f is not assumed to
be continuous. (Hint: Take f(x) = 10j(z) and the X,’s tending to 0 in
probability.)

17.3 Let X, be i.i.d. random variables with P(X, = 1) = % and P(X, =

—1) = 4. Show that
1 n
2%
Jj=1

converges to 0 in probability. (Hint: Let S, = Z;-lzl X, and use Chebyshev’s
inequality on P{|S,| > ne}.)

17.4 Let X,, and S,, be as in Exercise 17.3. Show that #Snz converges to
zero a.s. (Hint: Show that Y o° | P{%[S,2| > e} < oo and use the Borel-
Cantelli Theorem.)

17.5* Suppose |X,,| <Y a.s.,eachn,n=1,2,3.. .Show that sup,, | X,| <Y
a.s. also.

17.6 Let X, £ X. Show that the characteristic functions ¢x, converge
pointwise to px (Hint: Use Theorem 17.4.)

17.7 Let Xq,..., X, beii.d. Cauchy random variables with parameters o =
0 and § = 1. (That is, their density is f(z) = m, —0 < x < 00.) Show
that %Z;;l X, also has a Cauchy distribution. (Hint: Use Characteristic

functions: See Exercise 14.1.)

17.8 Let Xi,...,X,, be i.i.d. Cauchy random variables with parameters o =

0 and B = 1. Show that there is no constant  such that %Z?:l X; il 5.
(Hint: Use Exercise 17.7.) Deduce that there is no constant « such that
limy, o0 doio1 Xj =7 as. as well.

17.9 Let (X,,)n>1 have finite variances and zero means (i.e., Var(X,) =
0%, < oo and E{X,} = 0, all n). Suppose lim, . 0% = 0. Show X,

converges to 0 in L? and in probability.

17.10 Let X; be ii.d. with finite variances and zero means. Let S, =
2?21 X;. Show that %Sn tends to 0 in both L? and in probability.
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17.11 * Suppose lim,, o, X, = X a.s. and | X| < oo a.s. Let Y = sup,, | X,|.
Show that ¥ < oo a.s.

17.12* Suppose lim, o X, = X a.s. Let Y = sup,, | X,, — X|. Show ¥ < o0
a.s. (see Exercise 17.11), and define a new probability measure @ by

1 1 1
A)=-FE«q1 h =FE{—— .
QA4) - {A1+Y},Werec {1+Y}

Show that X,, tends to X in L' under the probability measure Q.

17.13 Let A be the event described in Example 1. Show that P(A) = 0.
(Hint: Let
A,, = { Heads on n'" toss }.

Show that > 2, P(A,) = co and use the Borel-Cantelli Theorem (Theo-
rem 10.5.))

17.14 Let X,, and X be real-valued r.v.’s in L?, and suppose that X,, tends
to X in L?. Show that E{X?2} tends to E{X?} (Hint: use that |2? — y?| =
(z —y)? + 2|y||z — y| and the Cauchy-Schwarz inequality).

17.15 * (Another Dominated Convergence Theorem.) Let (X,,),,>1 be random
variables with X, x (limy,—, o0 X, = X in probability). Suppose | X, (w)| <
C for a constant C' > 0 and all w. Show that lim,, .., E{| X, —X|} = 0. (Hint:
First show that P(|X| < C)=1.)
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