
35
Solving Differential Equations Using
the Exponential

. . . he climbed a little further. . . and further. . . and then just a little
further. (Winnie-the-Pooh)

35.1 Introduction

The exponential function plays a fundamental role in modeling and analysis
because of its basic properties. In particular it can be used to solve a variety
of differential equations analytically as we show in this chapter. We start
with generalizations of the initial value problem (31.2) from Chapter The
exponential function:

u′(x) = λu(x) for x > a, u(a) = ua, (35.1)

where λ ∈ R is a constant, with solution

u(x) = exp(λ(x − a))ua for x ≥ a. (35.2)

Analytic solutions formulas may give very important information and
help the intuitive understanding of different aspects of a mathematical
model, and should therefore be kept as valuable gems in the scientist and en-
gineer’s tool-bag. However, useful analytical formulas are relatively sparse
and must be complemented by numerical solutions techniques. In the Chap-
ter The General Initial Value Problem we extend the constructive numeri-
cal method for solving (35.1) to construct solutions of general initial value
problems for systems of differential equations, capable of modeling a very
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large variety of phenomena. We can thus numerically compute the solution
to just about any initial value problem, with more or less computational
work, but we are limited to computing one solution for each specific choice
of data, and getting qualitative information for a variety of different data
may be costly. On the other hand, an analytical solution formula, when
available, may contain this qualitative information for direct information.

An analytical solution formula for a differential equation may thus be
viewed as a (smart and beautiful) short-cut to the solution, like evaluating
an integral of a function by just evaluating two values of a corresponding
primitive function. On the other hand, numerical solution of a differen-
tial equation is like a walk along a winding mountain road from point A
to point B, without any short-cuts, similar to computing an integral by
numerical quadrature. It is useful to be able to use both approaches.

35.2 Generalization to u′(x) = λ(x)u(x) + f(x)

The first problem we consider is a model in which the rate of change of
a quantity u(x) is proportional to the quantity with a variable factor of
proportionality λ(x), and moreover in which there is an external “forcing”
function f(x). The problem reads:

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua, (35.3)

where λ(x) and f(x) are given functions of x, and ua is a given initial value.
We first describe a couple physical situations being modeled by (35.3).

Example 35.1. Consider for time t > 0 the population u(t) of rabbits
in West Virginia with inital value u(0) = u0 given, which we assume has
time dependent known birth rate β(t) and death rate δ(t). In general, we
would expect that rabbits will migrate quite freely back and forth across
the state border and that the rates of the migration would vary with the
season, i.e. with time t. We let fi(t) and fo(t) denote the rate of migration
into and out of the state respectively at time t, which we assume to be
known (realistic?). Then the population u(t) will satisfy

u̇(t) = λ(t)u(t) + f(t), for t > a, u(a) = ua, (35.4)

with λ(t) = β(t)− δ(t) and f(t) = fi(t)− fo(t), which is of the form (35.3).
Recall that u̇ = du

dt .

Example 35.2. We model the amount of solute such as salt in a solvent such
as water in a tank in which there is both inflow and outflow, see Fig. 35.1.
We let u(t) denote the amount of solute in the tank at time t and suppose
that we know the initial amount u0 at t = 0. We suppose that a mixture
of solute/solvent, of concentration Ci in say grams per liter, flows into the
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Fig. 35.1. An illustration of a chemical mixing tank

tank at a rate σi liters per second. We assume there is also outflow at a rate
of σo liters per second, and we assume that the mixture in the tank is well
mixed with a uniform concentration C(t) at any time t.

To get a differential equation for u(t), we compute the change u(t+ ∆t)−
u(t) during the interval [t, t+∆t]. The amount of solute that flows into the
tank during that time interval is σiCi∆t, while the amount of solute that
flows out of the tank during that time equals σoC(t)∆t, and thus

u(t+ ∆t) − u(t) ≈ σiCi∆t− σoC(t)∆t, (35.5)

where the approximation improves when we decrease ∆t. Now the concen-
tration at time t will be C(t) = u(t)/V (t) where V (t) is the volume of fluid
in the tank at time t. Substituting this into (35.5) and dividing by ∆t gives

u(t+ ∆t) − u(t)
∆t

≈ σiCi − σo
u(t)
V (t)

and taking the limit ∆t → 0 assuming u(t) is differentiable gives the fol-
lowing differential equation for u,

u̇(t) = − σo

V (t)
u(t) + σiCi.

The volume V (t) is determined simply by the flow rates of fluid in and
out of the tank. If there is initially V0 liters in the tank then at time t,
V (t) = V0 + (σi − σo)t because the flow rates are assumed to be constant.
This gives again a model of the form (35.3):

u̇(t) = − σo

V0 + (σi − σo)t
u(t) + σiCi for t > 0, u(0) = u0. (35.6)
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The Method of Integrating Factor

We now return to derive an analytical solution formula for (35.3), using the
method of integrating factor. To work out the solution formula, we begin
with the special case

u′(x) = λ(x)u(x) for x > a, u(a) = ua, (35.7)

where λ(x) is a given function of x. We let Λ(x) be a primitive function
of λ(x) such that Λ(a) = 0, assuming that λ(x) is Lipschitz continuous on
[a,∞). We now multiply the equation 0 = u′(x)−λ(x)u(x) by exp(−Λ(x)),
and we get

0 = u′(x) exp(−Λ(x)) − u(x) exp(−(x))λ(x) =
d

dx
(u(x) exp(−Λ(x))),

where we refer to exp(−Λ(x)) as an integrating factor because it brought
the given equation to the form d

dx of something, namely u(x) exp(−Λ(x)),
equal to zero. We conclude that u(x) exp(−Λ(x)) is constant and is there-
fore equal to ua since u(a) exp(−Λ(a)) = u(a) = ua. In other words, the
solution to (35.7) is given by the formula

u(x) = exp(Λ(x))ua = eΛ(x)ua for x ≥ a. (35.8)

We can check by differentiation that this function satisfies (35.7), and thus
by uniqueness is the solution. To sum up, we have derived a solution formula
for (35.7) in terms of the exponential function and a primitive function Λ(x)
of the coefficient λ(x).

Example 35.3. If λ(x) = r
x and a = 1 then Λ(x) = r log(x) = log(xr), and

the solution of

u′(x) =
r

x
u(x) for x �= 1, u(1) = 1, (35.9)

is according to (35.8) given by u(x) = exp(r log(x)) = xr. We may define xr

for

Duhamel’s Principle

We now continue with the general problem to (35.3). We multiply by e−Λ(x),
where again Λ(x) is the primitive function of λ(x) satisfying Λ(a) = 0, and
get

d

dx

(
u(x)e−Λ(x)

)
= f(x)e−Λ(x).

Integrating both sides, we see that the solution u(x) satisfying u(a) = ua

can be expressed as

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy. (35.10)
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This formula for the solution u(x) of (35.3), expressing u(x) in terms of the
given data ua and the primitive function Λ(x) of λ(x) satisfying Λ(a) = 0,
is referred to as Duhamel’s principle or the variation of constants formula.

We can check the validity of (35.10) by directly computing the derivative
of u(x):

u′(x) = λeΛ(x)ua + f(x) +
∫ x

0

λ(x)eΛ(x)−Λ(y)f(y) dy

= λ(x)
(

eΛ(x)ua +
∫ x

0

eΛ(x)−Λ(y)f(y) dy
)

+ f(x).

Example 35.4. If λ(x) = λ is constant, f(x) = x, a = 0 and u0 = 0, the
solution of (35.3) is given by

u(x) =
∫ x

0

eλ(x−y)y dy = eλx

∫ x

0

ye−λy dy

= eλx

([
− y
λ
e−λy

]y=x

y=0
+
∫ x

0

1
λ
e−λy dy

)

= −x
λ

+
1
λ2

(
eλx − 1

)
.

Example 35.5. In the model of the rabbit population (35.4), consider a sit-
uation with an initial population of 100, the death rate is greater than the
birth rate by a constant factor 4, so λ(t) = β(t) − δ(t) = −4, and there
is a increasing migration into the state, so f(t) = fi(t) − fo(t) = t. Then
(35.10) gives

u(t) = e−4t100 + e−4t

∫ t

0

e4ss ds

= e−4t100 + e−4t

(
1
4
se4s|t0 −

1
4

∫ t

0

e4s ds

)

= e−4t100 + e−4t

(
1
4
te4t − 1

16
e4t +

1
16

)

= 100.0625e−4t +
t

4
− 1

16
.

Without the migration into the state, the population would decrease ex-
ponentially, but in this situation the population decreases only for a short
time before beginning to increase at a linear rate.

Example 35.6. Consider a mixing tank in which the input flow at a rate of
σi = 3 liters/sec has a concentration of Ci = 1 grams/liter, and the outflow
is at a rate of σo = 2 liters/sec, the initial volume is V0 = 100 liters with
no solute dissolved, so u0 = 0. The equation is

u̇(t) = − 2
100 + t

u(t) + 3.
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We find Λ(t) = 2 ln(100 + t) and so

u(t) = 0 + e2 ln(100+t)

∫ t

0

e−2 ln(100+s)3 ds

= (100 + t)2
∫ t

0

(100 + s)−23 ds

= (100 + t)2
(

−3
100 + t

+
3

100

)

=
3

100
t(100 + t).

As expected from the conditions, the concentration increases steadily until
the tank is full.

35.3 The Differential Equation u′′(x) − u(x) = 0

Consider the second order initial value problem

u′′(x) − u(x) = 0 for x > 0, u(0) = u0, u
′(0) = u1, (35.11)

with two initial conditions. We can write the differential equation u′′(x) −
u(x) = 0 formally as

(D + 1)(D − 1)u = 0,

where D = d
dx , since (D + 1)(D − 1)u = D2u −Du +Du − u = D2u− u.

Setting w = (D−1)u, we thus have (D+1)w = 0, which gives w(x) = ae−x

with a = u1−u0, since w(0) = u′(0)−u(0). Thus, (D−1)u = (u1−u0)e−x,
so that by Duhamel’s principle

u(x) = exu0 +
∫ x

0

ex−y(u1 − u0)e−y dy

=
1
2
(u0 + u1)ex +

1
2
(u0 − u1)e−x.

We conclude that the solution u(x) of u′′(x) − u(x) = 0 is a linear combi-
nation of ex and e−x with coefficients determined by the initial conditions.
The technique of “factoring” the differential equation (D2 − 1)u = 0 into
(D + 1)(D − 1)u = 0, is very powerful and we now proceed to follow up
this idea.
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35.4 The Differential Equation
∑n

k=0 akD
ku(x) = 0

In this section, we look for solutions of the linear differential equation with
constant coefficients:

n∑

k=0

akD
ku(x) = 0 for x ∈ I, (35.12)

where the coefficients ak are given real numbers, and I is a given interval.
Corresponding to the differential operator

∑n
k=0 akD

k, we define the poly-
nomial p(x) =

∑n
k=0 akx

k in x of degree n with the same coefficients ak as
the differential equation. This is called the characteristic polynomial of the
differential equation. We can now express the differential operator formally
as

p(D)u(x) =
n∑

k=0

akD
ku(x).

For example, if p(x) = x2 − 1 then p(D)u = D2u− u.
The technique for finding solutions is based on the observation that the

exponential function exp(λx) has the following property:

p(D) exp(λx) = p(λ) exp(λx), (35.13)

which follows from repeated use of the Chain rule. This translates the
differential operator p(D) acting on exp(λx) into the simple operation of
multiplication by p(λ). Ingenious, right?

We now seek solutions of the differential equation p(D)u(x) = 0 on an
interval I of the form u(x) = exp(λx). This leads to the equation

p(D) exp(λx) = p(λ) exp(λx) = 0, for x ∈ I,

that is, λ should be a root of the polynomial equation

p(λ) = 0. (35.14)

This algebraic equation is called the characteristic equation of the differ-
ential equation p(D)u = 0. To find the solutions of a differential equa-
tion p(D)u = 0 on the interval I, we are thus led to search for the roots
λ1, . . . λn, of the algebraic equation p(λ) = 0 with corresponding solutions
exp(λ1x), . . . , exp(λnx). Any linear combination

u(x) = α1 exp(λ1x) + . . .+ αn exp(λnx), (35.15)

with αi real (or complex) constants, will then be a solution of the differential
equation p(D)u = 0 on I. If there are n distinct roots λ1, . . . , λn, then the
general solution of p(D)u = 0 has this form. The constants αi will be
determined from initial or boundary conditions in a specific situation.
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If the equation p(λ) = 0 has a multiple roots λi of multiplicity ri, then the
situation is more complicated. It can be shown that the solution is a sum
of terms of the form q(x) exp(λix), where q(x) is a polynomial of degree at
most ri − 1. For example, if p(D) = (D − 1)2, then the general solution of
p(D)u = 0 has the form u(x) = (α0 + α1x) exp(x). In the Chapter N-body
systems below we study the the constant coefficient linear second order
equation a0 + a1Du+ a2D

2u = 0 in detail, with interesting results!
The translation from a differential equation p(D)u = 0 to an algebraic

equation p(λ) = 0 is very powerful, but requires the coefficients ak of p(D)
to be independent of x and is thus not very general. The whole branch of
Fourier analysis is based on the formula (35.13).

Example 35.7. The characteristic equation for p(D) = D2−1 is λ2 − 1 = 0
with roots λ1 = 1, λ2 = −1, and the corresponding general solution is given
by α1 exp(x) + α2 exp(−x). We already met this example just above.

Example 35.8. The characteristic equation for p(D) = D2 +1 is λ2 +1 = 0
with roots λ1 = i, λ2 = −i, and the corresponding general solution is given
by

α1 exp(ix) + α2 exp(−ix).

with the αi complex constants. Taking the real part, we get solutions of
the form

β1 cos(x) + β2 sin(x)

with the βi real constants.

35.5 The Differential Equation∑n
k=0 akD

ku(x) = f(x)

Consider now the nonhomogeneous differential equation

p(D)u(x) =
n∑

k=0

akD
ku(x) = f(x), (35.16)

with given constant coefficients ak, and a given right hand side f(x). Sup-
pose up(x) is any solution of this equation, which we refer to as a particular
solution. Then any other solution u(x) of p(D)u(x) = f(x) can be written

u(x) = up(x) + v(x)

where v(x) is a solution of the corresponding homogeneous differential
equation p(D)v = 0. This follows from linearity and uniqueness since
p(D)(u− up) = f − f = 0.
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Example 35.9. Consider the equation (D2 − 1)u = f(x) with f(x) = x2.
A particular solution is given by up(x) = −x2 − 2, and thus the general
solution is given by

u(x) = −x2 − 2 + α1 exp(x) + α2 exp(−x).

35.6 Euler’s Differential Equation

In this section, we consider Euler’s equation

a0u(x) + a1xu
′(x) + a2x

2u′′(x) = 0, (35.17)

which has variable coefficients aix
i of a very particular form. Following

a grand mathematical tradition, we guess, or make an Ansatz on the form
of the solution, and assume that u(x) = xm for some m to be determined.
Substituting into the differential equation, we get

a0x
m + a1x(xm)′ + a2x

2(xm)′′ = (a0 + (a1 − 1)m+ a2m
2)xm,

and we are thus led to the auxiliary algebraic equation

a0 + (a1 − 1)m+ a2m
2 = 0

in m. Letting the roots of this equation be m1 and m2, assuming the roots
are real, any linear combination

α1x
m1 + α2x

m2

Fig. 35.2. Leonard Euler: “. . . I soon found an opportunity to be introduced to
a famous professor Johann Bernoulli. . . True, he was very busy and so refused
flatly to give me private lessons; but he gave me much more valuable advice to
start reading more difficult mathematical books on my own and to study them
as diligently as I could; if I came across some obstacle or difficulty, I was given
permission to visit him freely every Sunday afternoon and he kindly explained to
me everything I could not understand. . . ”
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is a solution of (35.17). In fact the general solution of (35.17) has this form
if m1 and m2 are distinct and real.

Example 35.10. The auxiliary equation for the differential equation x2u′′−
3
2xu

′ − 2u = 0 is m2 − 7
2m − 2 = 0 with roots m1 = − 1

2 and m2 = 4 and
thus the general solution takes the form

u(x) = α1
1√
x

+ α2x
4.

Leonard Euler (1707-83) is the mathematical genius of the 18th century,
with an incredible production of more than 800 scientific articles half of
them written after he became completely blind in 1766, see Fig. 35.2.

Chapter 35 Problems

35.1. Solve the initial value problem (35.7) with λ(x) = xr, where r ∈ R, and
a = 0.

35.2. Solve the following initial value problems: a) u′(x) = 8xu(x), u(0) = 1,

x > 0, b) (15x+1)u(x)
u′(x) = 3x, u(1) = e, x > 1, c) u′(x) + x

(1−x)(1+x)u = 0,

u(0) = 1, x > 0.

35.3. Make sure that you got the correct answer in the previous problem, part c).
Will your solution hold for x > 1 as well as x < 1?

35.4. Solve the following initial value problems: a) xu′(x)+u(x) = x, u(1) = 3
2
,

x > 1, b) u′(x) + 2xu = x, u(0) = 1, x > 0, c) u′(x) = x+u
2
, u(0) = 0, x > 0.

35.5. Describe the behavior of the population of rabbits in West Virginia
in which the birth rate exceeds the death rate by 5, the initial population is
10000 rabbits, and (a) there is a net migration out of the state at a rate of 5t
(b) there is a net migration out of the state at a rate of exp(6t).

35.6. Describe the concentration in a mixing tank with an initial volume of
50 liters in which 20 grams of solute are dissolved, there is an inflow of 6 liters/sec
with a concentration of 10 grams/liter and an outflow of 7 liters/sec.
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