
Foreword

When Don Knuth undertook his masterpiece to lay the foundations of com-
puter science in a treatise on programming, he did not choose to entitle his
work “The Science of Computer Programming” but “The Art of Computer
Programming.” Accordingly, it took 30 more years of research to really es-
tablish a rigorous field on programming and algorithms. In a similar fashion,
the rigorous foundations of the field of formal proof design are still being laid
down. Although the main concepts of proof theory date back to the work of
Gentzen, Gödel, and Herbrand in the 1930s, and although Turing himself had
a pioneering interest in automating the construction of mathematical proofs,
it is only during the 1960s that the first experiments in automatic first-order
logic by systematically enumerating the Herbrand domain took place. Forty
years later, the Coq proof assistant is the latest product in a long series of
investigations on computational logic and, in a way, it represents the state of
the art in this field. However, its actual use remains a form of art, difficult
to master and to improve. The book of Yves Bertot and Pierre Castéran is
an invaluable guide, providing beginners with an initial training and regular
practitioners with the necessary expertise for developing the mathematical
proofs that are needed for real-size applications.

A short historical presentation of the Coq system may help to understand
this software and the mathematical notions it implements. The origins of the
underlying concepts may also provide clues to understanding the mechanics
that the user must control, the various points of view to adopt when building
a system’s model, the options to consider in case of trouble.

Gérard Huet started working on automatic theorem proving in 1970, us-
ing LISP to implement the SAM prover for first-order logic with equality. At
the time, the state of the art was to translate all logical propositions into lists
(conjunctions) of lists (disjunctions) of literals (signed atomic formulas), quan-
tification being replaced by Skolem functions. In this representation deduction
was reduced to a principle of pairing complementary atomic formulas modulo
instantiation (so-called resolution with principal unifiers). Equalities gave rise
to unidirectional rewritings, again modulo unification. Rewriting order was



determined in an ad hoc way and there was no insurance that the process
would converge, or whether it was complete. Provers were black boxes that
generated scores of unreadable logical consequences. The standard working
technique was to enter your conjecture and wait until the computer’s mem-
ory was full. Only in exceptionally trivial cases was there an answer worth
anything. This catastrophic situation was not recognized as such, it was un-
derstood as a necessary evil, blamed on the incompleteness theorems. Nev-
ertheless, complexity studies would soon show that even in decidable areas,
such as propositional logic, automatic theorem proving was doomed to run
into a combinatorial wall.

A decisive breakthrough came in the 1970s with the implementation of a
systematic methodology to use termination orders to guide rewriting, starting
from the founding paper of Knuth and Bendix. The KB software, implemented
in 1980 by Jean-Marie Hullot and Gérard Huet, could be used to automate
in a natural way decision and semi-decision procedures for algebraic struc-
tures. At the same time, the domain of proofs by induction was also making
steady progress, most notably with the NQTHM/ACL of Boyer and Moore.
Another significant step had been the generalization of the resolution tech-
nique to higher-order logic, using a unification algorithm for the theory of
simple types, designed by Gérard Huet back in 1972. This algorithm was con-
sistent with a general approach to unification in an equational theory, worked
out independently by Gordon Plotkin.

At the same time, logicians (Dana Scott) and theoretical computer sci-
entists (Gordon Plotkin, Gilles Kahn, Gérard Berry) were charting a logical
theory of computable functions (computational domains) together with an
effectively usable axiomatization (computational induction) to define the se-
mantics of programming languages. There was hope of using this theory to
address rigorously the problem of designing trustworthy software using formal
methods. The validity of a program with respect to its logical specifications
could be expressed as a theorem in a mathematical theory that described the
data and control structures used by the algorithm. These ideas were set to
work most notably by Robin Milner’s team at Edinburgh University, who im-
plemented the LCF system around 1980. The salient feature of this system
was its use of proof tactics that could be programmed in a meta-language
(ML). The formulas were not reduced to undecipherable clauses and users
could use their intuition and knowledge of the subject matter to guide the
system within proofs that mixed automatic steps (combining predefined and
specific tactics that users could program in the ML language) and easily un-
derstandable manual steps.

Another line of investigation was explored by the philosopher Per Martin-
Löf, starting from the constructive foundations of mathematics initially pro-
posed by Brouwer and extended notably by Bishop’s development of con-
structive analysis. Martin-Löf’s Intuitionistic Theory of Types, designed at
the beginning of the 1980s, provided an elegant and general framework for
the constructive axiomatization of mathematical structures, well suited to

ForewordX



serve as a foundation for functional programming. This direction was seri-
ously pursued by Bob Constable at Cornell University who undertook the
implementation of the NuPRL software for the design of software from formal
proofs, as well as by the “Programming methodology” team headed by Bengt
Nordström at Chalmers University in Gothenburg.

All this research relied on the λ-calculus notation, initially designed by
the logician Alonzo Church, in its pure version as a language to define recur-
sive functionals, and in its typed version as a higher-order predicate calculus
(the theory of simple types, a simpler alternative for meta-mathematics to
the system originally used by Whitehead and Russell in Principia Mathemat-
ica). Furthermore, the λ-calculus could also be used to represent proofs in
a natural deduction format, thus yielding the famous “Curry–Howard corre-
spondence,” which expresses an isomorphism between proof structures and
functional spaces. These two aspects of the λ-calculus were actually used
in the Automath system for the representation of mathematics, designed by
Niklaus de Bruijn in Eindhoven during the 1970s. In this system, the types of
λ-expressions were no longer simple hierarchical layers of functional spaces.
Instead they were actually λ-expressions that could express the dependence
of a functional term’s result type on the value of its argument—in analogy
with the extension of propositional calculus to first-order predicate calculus,
where predicates take as arguments terms that represent elements of the car-
rier domain.

λ-calculus was indeed the main tool in proof theory. In 1970, Jean-Yves
Girard proved the consistency of Analysis through a proof of termination for a
polymorphic λ-calculus called system F . This system could be generalized to
a calculus Fω with polymorphic functionals, thus making it possible to encode
a class of algorithms that transcended the traditional ordinal hierarchies. The
same system was to be rediscovered in 1974 by John Reynolds, as a proposal
for a generic programming language that would generalize the restricted form
of polymorphism that was present in ML.

In the early 1980s, research was in full swing at the frontier between logic
and computer science, in a field that came to be known as Type Theory.
In 1982 Gérard Huet started the Formel project at INRIA’s Rocquencourt
laboratory, jointly with Guy Cousineau and Pierre-Louis Curien from the
computer science laboratory at École Normale Supérieure. This team set the
objective of designing and developing a proof system extending the ideas of
the LCF system, in particular by adopting the ML language not only as the
meta-language used to define tactics but also as the implementation language
of the whole proof system. This research and development effort on functional
programming would lead over the years to the Caml language family and,
ultimately, to its latest offspring Objective Caml, still used to this day as the
implementation language for the Coq proof assistant.

At the international conference on types organized by Gilles Kahn in
Sophia Antipolis in 1984, Thierry Coquand and Gérard Huet presented a syn-
thesis of dependent types and polymorphism that made it possible to adapt

Foreword XI



Martin-Löf’s constructive theory to an extension of the Automath system
called the Calculus of Constructions. In his doctoral thesis, Thierry Coquand
provided a meta-theoretical analysis of the underlying λ-calculus. By proving
the termination of this calculus, he also provided a proof of its logical sound-
ness. This calculus was adopted as the logical basis for the Formel project’s
proof system and Gérard Huet proposed a first verifier for this calculus (CoC)
using as a virtual machine his Constructive Engine. This verifier made it
possible to present a few formal mathematical developments at the Eurocal
congress in April 1985.

This was the first stage of what was to become the Coq system: a type
verifier for λ-expressions that represent either proof terms in a logical sys-
tem or the definition of mathematical objects. This proof assistant kernel was
completely independent from the proof synthesis tool that was used to con-
struct the terms to be verified—the interpreter for the constructive engine is
a deterministic program. Thierry Coquand implemented a sequent-style proof
synthesis algorithm that made it possible to build proof terms by progressive
refinement, using a set of tactics that were inspired from the LCF system. The
second stage would soon be completed by Christine Mohring, with the initial
implementation of a proof-search algorithm in the style of Prolog , the famous
Auto tactic. This was practically the birth of the Coq system as we know it
today. In the current version, the kernel still rechecks the proof term that is
synthesized by the tactics that are called by the user. This architecture has
the extra advantage of making it possible to simplify the proof-search machin-
ery, which actually ignores some of the constraints imposed by stratification
in the type system.

The Formel team soon considered that the Calculus of Constructions could
be used to synthesize certified programs, in the spirit of the NuPRL system. A
key point was to take advantage of polymorphism, whose power may be used
to express as a type of system F an algebraic structure, such as the integers,
making systematic use of a method proposed by Böhm and Berarducci. Chris-
tine Mohring concentrated on this issue and implemented a complex tactic to
synthesize induction principles in the Calculus of Constructions. This allowed
her to present a method for the formal development of certified algorithms
at the conference “Logic in Computer Science (LICS)” in June 1986. How-
ever, when completing this study in her doctoral thesis, she realized that the
“impredicative” encodings she was using did not respect the tradition where
the terms of an inductive type are restricted to compositions of the type
constructors. Encodings in the polymorphic λ-calculus introduced parasitic
terms and made it impossible to express the appropriate inductive principles.
This partial failure actually gave Christine Mohring and Thierry Coquand the
motivation to design in 1988 the “Calculus of Inductive Constructions,” an ex-
tension of the formalism, endowed with good properties for the axiomatization
of algorithms on inductive data structures.

The Formel team was always careful to balance theoretical research and
experimentation with models to assert the feasibility of the proposed ideas,

ForewordXII



prototypes to verify the scalability to real-size proofs, and more complete sys-
tems, distributed as free software, with a well-maintained library, documen-
tation, and a conscious effort to ensure the compatibility between successive
versions. The team’s in-house prototype CoC became the Coq system, made
available to a community of users through an electronic forum. Nevertheless,
fundamental issues were not neglected: for instance, Gilles Dowek developed
a systematic theory of unification and proof search in Type Theory that was
to provide the foundation for future versions of Coq .

In 1989, Coq version 4.10 was distributed with a first mechanism for ex-
tracting functional programs (in Caml syntax) from proofs, as designed by
Benjamin Werner. There was also a set of tactics that provided a certain
degree of automatization and a small library of developments about mathe-
matics and computer science—the dawn of a new era. Thierry Coquand took
a teaching position in Gothenburg, Christine Paulin-Mohring joined the École
Normale Supérieure in Lyon, and the Coq team carried on its research between
the two sites of Lyon and Rocquencourt. At the same time, a new project
called Cristal took over the research around functional programming and the
ML language. In Rocquencourt, Chet Murthy, who had just finished his PhD
in the NuPRL team on the constructive interpretation of proofs in classical
logic, brought his own contribution to the development of a more complex
architecture for Coq version 5.8. An international effort was organized within
the European funded Basic Research Action “Logical Frameworks,” followed
three years later by its successor “Types.” Several teams were combining their
efforts around the design of proof assistants in a stimulating emulation: Coq
was one of them of course, but so were LEGO, developed by Randy Pollack
in Edinburgh, Isabelle, developed by Larry Paulson in Cambridge and later
by Tobias Nipkow in Munich, Alf, developed by the Gothenburg team, and so
on.

In 1991, Coq V5.6 provided a uniform language for describing mathemat-
ics (the Gallina “vernacular”), primitive inductive types, program extraction
from proofs, and a graphical user interface. Coq was then an effectively us-
able system, thus making it possible to start fruitful industrial collaborations,
most notably with CNET and Dassault-Aviation. This first generation of users
outside academia was an incentive to develop a tutorial and reference man-
ual, even if the art of Coq was still rather mysterious to newcomers. For
Coq remained a vehicle for research ideas and a playground for experiments.
In Sophia Antipolis, Yves Bertot reconverted the Centaur effort to provide
structure manipulation in an interface CTCoq that supported the interactive
construction of proofs using an original methodology of “proof-by-pointing,”
where the user runs a collection of tactics by invoking relevant ones through
mouse clicks. In Lyon, Catherine Parent showed in her thesis how the problem
of extracting programs from proofs could be inverted into the problem of us-
ing invariant-decorated programs as skeletons of their own correctness proof.
In Bordeaux, Pierre Castéran showed that this technology could be used to
construct certified libraries of algorithms in the continuation semantics style.

Foreword XIII



Back in Lyon, Eduardo Giménez showed in his thesis how the framework of
inductive types that defined hereditarily finite structures could be extended
to a framework of co-inductive types that could be used to axiomatize po-
tentially infinite structures. As a corollary, he could develop proofs about
protocols operating on data streams, thus opening the way to applications in
telecommunications.

In Rocquencourt, Samuel Boutin showed in his thesis how to implement
reflective reasoning in Coq , with a notable application in the automatization of
tedious proofs based on algebraic rewriting. His Ring tactic can be used to sim-
plify polynomial expressions and thus to make implicit the usual algebraic ma-
nipulations of arithmetic expressions. Other decision procedures contributed
to improving the extent of automatic reasoning in Coq significantly: Omega
in the domain of Presburger arithmetic (Pierre Crégut at CNET-Lannion),
Tauto and Intuition in the propositional domain (César Muñoz in Rocquen-
court), Linear for the predicate calculus without contraction (Jean-Christophe
Filliâtre in Lyon). Amokrane Saïbi showed that a notion of subtype with in-
heritance and implicit coercions could be used to develop modular proofs in
universal algebra and, most notably, to express elegantly the main notions in
category theory.

In November 1996, Coq V6.1 was released with all the theoretical advances
mentioned above, but also with a number of technical innovations that were
crucial for improving its efficiency, notably with the reduction machinery con-
tributed by Bruno Barras, and with advanced tactics for the manipulation
of inductive definitions contributed by Christina Cornes. A proof translator
to natural language (English and French) contributed by Yann Coscoy could
be used to write in a readable manner the proof terms that had been con-
structed by the tactics. This was an important advantage against competitor
proof systems that did not construct explicit proofs, since it allowed auditing
of the formal certifications.

In the domain of program certification, J.-C. Filliâtre showed in his thesis
in 1999 how to implement proofs on imperative programs in Coq . He proposed
to renew the approach based on Floyd–Hoare–Dijkstra assertions on imper-
ative programs, by regarding these programs as notation for the functional
expressions obtained through their denotational semantics. The relevance of
Coq ’s two-level architecture was confirmed by the certification of the CoC
verifier that could be extracted from a Coq formalization of the meta-theory
of the Calculus of Constructions, which was contributed by Bruno Barras—a
technical tour de force but also quite a leap forward for the safety of formal
methods. Taking his inspiration from Objective Caml’s module system, Judi-
caël Courant outlined the foundations of a modular language for developing
mathematics, paving the way for the reuse of libraries and the development
of large-scale certified software.

The creation of the company Trusted Logic, specialized in the certification
of smart-card-based system using technologies adapted from the Caml and

ForewordXIV



Coq teams, confirmed the relevance of their research. A variety of applicative
projects were started.

The Coq system was then completely redesigned, resulting in version 7
based on a functional kernel, the main architects being Jean-Christophe Fil-
liâtre, Hugo Herbelin, and Bruno Barras. A new language for tactics was
designed by David Delahaye, thus providing a high-level language to program
complex proof strategies. Micaela Mayero addressed the axiomatization of real
numbers, with the goal of supporting the certification of numerical algorithms.
Meanwhile, Yves Bertot recast the ideas of CtCoq in a sophisticated graphical
interface PCoq, developed in Java.

In 2002, four years after Judicaël Courant’s thesis, Jacek Chrz̨aszcz man-
aged to integrate a module and functor system analogous to that of Caml.
With its smooth integration in the theory development environment, this ex-
tension considerably improved the genericity of libraries. Pierre Letouzey pro-
posed a new algorithm for the extraction of programs from proofs that took
into account the whole Coq language, modules included.

On the application side, Coq had become robust enough to be usable
as a low-level language for specific tools dedicated to program proofs. This
is the case for the CALIFE platform for the modeling and verification of
timed automata, the Why tool for the proof of imperative programs, or the
Krakatoa tool for the certification of Java applets, which was developed in
the VERIFICARD European project. These tools use the Coq language to
establish properties of the models and whenever the proof obligations are too
complex for automatic tools.

After a three-year effort, Trusted Logic succeeded in the formal modeling
of the whole execution environment for the JavaCard language. This work on
security was awarded the EAL7 certification level (the highest level in the
so-called common criteria). This formal development required 121000 lines of
Coq development in 278 modules.

Coq is also used to develop libraries of advanced mathematical theorems in
both constructive and classical form. The domain of classical mathematics re-
quired restrictions to the logical language of Coq in order to remain consistent
with some of the axioms that are naturally used by mathematicians.

At the end of 2003, after a major redesign of the input syntax, the version
8.0 wasreleased—this is the version that is used in Coq’Art.

A glance at the table of contents of the contributions from the Coq user
community, at the address http://coq.inria.fr/contribs/summary.html,
should convince the reader of the rich variety of mathematical developments
that are now available in Coq . The development team followed Boyer and
Moore’s requirement to keep adapting these libraries with the successive re-
leases of the system, and when necessary, proposed tools to automatically
convert the proof scripts—an insurance for the users that their developments
will not become obsolete when a new version comes along. Many of these li-
braries were developed by users outside the development team, often abroad,
sometimes in industrial teams. We can only admire the tenacity of this user

Foreword XV



community to complete very complex formal developments, using a Coq sys-
tem that was always relatively experimental and, until now, without the sup-
port of a comprehensive and progressive user manual.

With Coq’Art, this need is now fulfilled. Yves Bertot and Pierre Castéran
have been expert users of Coq in its various versions for many years. They are
also “customers,” standing outside the development team, and in this respect
they are less tempted to sweep under the rug some of the “well-known” quirks
that an insider would rather not discuss. Nor are they tempted to prematurely
announce solutions that are still in a preliminary stage—all their examples can
be verified in the current release. Their work presents a progressive introduc-
tion to all the functionalities of the system. This near exhaustiveness has a
price in the sheer size of their work. Beginners should not be rebuked; they
will be guided in their exploration by difficulty gradings and they should not
embark on a complete, cover-to-cover, reading. This work is intended as a ref-
erence, which long term users should consult as they encounter new difficulties
in their progress when using the system. The size of the work is also due to
the many good-sized examples, which are scrutinized progressively. The reader
will often be happy to review these examples in detail by reproducing them in
a face-to-face confrontation with the beast. In fact, we strongly advise users
to read Coq’Art only with a computer running a Coq session nearby to con-
trol the behavior of the system as they read the examples. This work presents
the results of almost 30 years of research in formal methods, and the intrinsic
complexity of the domain cannot be overlooked—there is a price to pay to be-
come an expert in a system like Coq . Conversely, the genesis of Coq’Art over
the last three years was a strong incentive to make notions and notation more
uniform, to make the proof tools explainable without excessive complexity, to
present to users the anomalies or difficulties with error messages that could
be understood by non-experts—although we must admit there is still room
for improvement. We wish readers good luck in their discovery of a difficult
but exciting world—may their efforts be rewarded by the joy of the last QED,
an end to weeks and sometimes months of adamant but still unconcluded toil,
the final touch that validates the whole enterprise.

November 2003 Gérard Huet
Christine Paulin-Mohring

ForewordXVI



http://www.springer.com/978-3-540-20854-9


