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1 Introduction

This survey describes a general approach to a class of problems that arise
in combinatorial probability and combinatorial optimization. Formally, the
method is part of weak convergence theory, but in concrete problems the
method has a flavor of its own. A characteristic element of the method is that
it often calls for one to introduce a new, infinite, probabilistic object whose
local properties inform us about the limiting properties of a sequence of finite
problems.

The name objective method hopes to underscore the value of shifting ones
attention to the new, large random object with fixed distributional proper-
ties and way from the sequence of objects with changing distributions. The
new object always provides us with some new information on the asymptotic
behavior of the original sequence, and, in the happiest cases, the constants
associated with the infinite object even permit us to find the elusive limit
constants for that sequence.



The Random-Cluster Model

Geoffrey Grimmett

Abstract. The class of random-cluster models is a unification of a variety of
stochastic processes of significance for probability and statistical physics, includ-
ing percolation, Ising, and Potts models; in addition, their study has impact on
the theory of certain random combinatorial structures, and of electrical networks.
Much (but not all) of the physical theory of Ising/Potts models is best implemented
in the context of the random-cluster representation. This systematic summary of
random-cluster models includes accounts of the fundamental methods and inequali-
ties, the uniqueness and specification of infinite-volume measures, the existence and
nature of the phase transition, and the structure of the subcritical and supercrit-
ical phases. The theory for two-dimensional lattices is better developed than for
three and more dimensions. There is a rich collection of open problems, including
some of substantial significance for the general area of disordered systems, and these
are highlighted when encountered. Amongst the major open questions, there is the
problem of ascertaining the exact nature of the phase transition for general val-
ues of the cluster-weighting factor ¢, and the problem of proving that the critical
random-cluster model in two dimensions, with 1 < ¢ < 4, converges when re-scaled
to a stochastic Lowner evolution (SLE). Overall the emphasis is upon the random-
cluster model for its own sake, rather than upon its applications to Ising and Potts
systems.
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1 Introduction

During a classical period, probabilists studied the behaviour of independent
random variables. The emergent theory is rich, and is linked through theory
and application to areas of pure/applied mathematics and to other sciences.
It is however unable to answer important questions from a variety of sources
concerning large families of dependent random variables. Dependence comes
in many forms, and one of the targets of modern probability theory has been
to derive robust techniques for studying it. The voice of statistical physics has
been especially loud in the call for rigour in this general area. In a typical
scenario, we are provided with an infinity of random variables, indexed by the
vertices of some graph such as the cubic lattice, and which have some depen-
dence structure governed by the geometry of the graph. Thus mathematicians
and physicists have had further cause to relate probability and geometry. One
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Abstract. In Markov chain Monte Carlo theory a particular Markov chain is run for
a very long time until its distribution is close enough to the equilibrium measure.
In recent years, for models of statistical mechanics and of theoretical computer
science, there has been a flourishing of new mathematical ideas and techniques to
rigorously control the time it takes for the chain to equilibrate. This has provided
a fruitful interaction between the two fields and the purpose of this paper is to

provide a comprehensive review of the state of the art.
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Random Walks on Finite Groups
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Summary. Markov chains on finite sets are used in a great variety of situations
to approximate, understand and sample from their limit distribution. A familiar
example is provided by card shuffling methods. From this viewpoint, one is interested
in the “mixing time” of the chain, that is, the time at which the chain gives a good
approximation of the limit distribution. A remarkable phenomenon known as the
cut-off phenomenon asserts that this often happens abruptly so that it really makes
sense to talk about “the mixing time”. Random walks on finite groups generalize card
shuffling models by replacing the symmetric group by other finite groups. One then
would like to understand how the structure of a particular class of groups relates to
the mixing time of natural random walks on those groups. It turns out that this is an
extremely rich problem which is very far to be understood. Techniques from a great
variety of different fields — Probability, Algebra, Representation Theory, Functional
Analysis, Geometry, Combinatorics — have been used to attack special instances of
this problem. This article gives a general overview of this area of research.
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1 Introduction

This article surveys what is known about the convergence of random walks
on finite groups, a subject to which Persi Diaconis gives a marvelous intro-
duction in [27]. In the early twentieth century, Markov, Poincaré and Borel
discussed the special instance of this problem associated with card shuffling
where the underlying group is the symmetric group Ss2. Two early references
are to Emile Borel [15] and K.D. Kosambi and U.V.R. Rao [95]. The early
literature focuses mostly on whether or not a given walk is ergodic: for card
shuffling, ergodicity means that the deck gets mixed up after many shuffles.
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