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Abstract We propose a new algorithm for solving the Blind Signal Separation (BSS) prob-
lem for convolutive mixing completely in the time domain. The closed form
expressions used for first and second order optimization techniques derived in
[1] for the instantaneous BSS case are extended to accommodate the more prac-
tical convolutive mixing scenario. Traditionally convolutive BSS problems are
solved in the frequency domain [2–4] but this requires additional solving of the
inherent frequency permutation problem. Where this is good for higher order
systems, systems with a low to medium number of variables benefit from not
being subject to a transform such as the DFT. We demonstrate the performance
of the algorithm using two optimization methods with a convolutive synthetic
mixing system and real speech data.
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1. INTRODUCTION
Blind Signal Separation (BSS) [5, 6] has been a topic which attracted many

researchers in recent years. With the advent of more powerful processors and
the ability to realize more complex algorithms BSS has found useful applica-
tions in the areas of audio processing such as speech recognition, audio in-
terfaces, and hands free telephony in reverberant environments. In view of
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the exponential growth of mobile users in the wireless-communications world
together with the limited capacity of resources available for data transmis-
sion, modern communication systems increasingly require training-less adap-
tation, to save on bandwidth capacity or to accommodate unpredictable chan-
nel changes. Future systems must utilize spatial diversity multiple access tech-
niques that obtain their channel information exclusively from the received sig-
nal. These systems fit the instantaneous and convolutive BSS models. Blind
algorithms are useful here as they can be self-recovering and do not require a
priori knowledge of any training sequence [7]. For example communication
systems such as GSM can devote up to 22% of their transmission time to pilot
tones which could be otherwise used for data transmission [8]. BSS has also
found a fruitful application in multimedia modelling, and recent work on mod-
elling combined text/image data for the purpose of cross-media retrieval has
been made using ICA [9].

There is an abundance of various methods used to solve BSS problems and
these are often application dependent, however; this paper investigates an al-
gorithm which demonstrates the convolutive mixing model which is relevant
to the applications mentioned above and provides a method that avoids the
frequency domain permutation problem. The most prevalent of the aforemen-
tioned applications suitable for this particular BSS criterion is in the area of
speech processing as it exploits the nonstationarity assumption of the algo-
rithm.

We extend approaches in [1] to the convolutive mixing cases. Section 2
gives a brief description of modelling BSS in a convolutive mixing environ-
ment. In Section 3 the approaches in [1] are briefly reviewed. The extended
approach to convolutive mixing cases is given in Section 4. Section 5 presents
the simulation results giving the performance of two optimization methods:
Gradient, and Newton optimization with speech data. Finally, a conclusion is
provided in Section 6.

The following notations are used in this chapter. We use bold upper and low-
ercase letters to show matrices and vectors, respectively in the time, frequency
and domains, e.g., for matrices and for vectors. Ma-
trix and vector transpose, complex conjugation, and Hermitian transpose are
denoted by (·)*, and respectively. E{·} means the expec-
tation operation. is the Frobenius norm of a matrix. is the Kronecker
product and Trace(A) is the trace of matrix A. With a = diag(A) we ob-
tain a vector whose elements are the diagonal elements of A and diag(a) is a
square diagonal matrix which contains the elements of a. ddiag(A) is a diag-
onal matrix where its diagonal elements are the same as the diagonal elements
of A and
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is an N × N matrix of ones, is an N × N matrix of zeros, and
is the N × N identity matrix. vec(A) forms a column vector by stacking

the columns of A. The operator reshapes a vector a of length

N M Q to an N × MQ matrix.  The matrices and in Table
2-1 are mainly defined in accordance with [1].  and are given by

The matrix is the permutation matrix defined by

for N × L matrices A. Note that for the matrix is, in general,
not self-inverse like the one that occurs in [1].

2. BSS MODEL
The main issue of BSS is that neither the signal sources nor the mixing

system are known a priori. The only assumption made is that the unknown
signal sources are statistically independent. Assume there are N statistically
independent sources, These sources are mixed in a
medium providing M sensor or observed signals,
given by

where is a M × N mixing matrix with its element being the impulse
response from source signal to measurement. * defines the convolution
of corresponding elements of and following the same rules for matrix
multiplication.

Assuming that the mixing channels can be modelled as FIR filters with
length P, Equation (2.5) can be rewritten as

The M observed signals are coupled to the N reconstructed signals
via the demixing system. The demixing system has a similar structure to

the mixing system. It contains N × M FIR filters of length Q,where
The de-mixing system can also be expressed as an N × M matrix with
its element being the impulse response from measurement to
output. The reconstructed signal can be obtained as
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where A straight forward approach for BSS is to
identify the unknown system first and then to apply the inverse of the identified
system to the measurement signals in order to restore the signal sources. This
approach can lead to problems of instability. Therefore it is desired that the
demixing system be estimated based on the observations of mixed signals.

The simplest case is the instantaneous mixing in which matrix
is a constant matrix with all elements being scalar values. In practical appli-
cations such as hands free telephony or mobile communications where multi-
path propagation is evident, mixing is convolutive, in which situation BSS is
much more difficult due to the added complexity of the mixing system. The
frequency domain approaches are considered to be effective to separate signal
sources in convolutive cases, but another difficult issue, the inherent permu-
tation and scaling ambiguity in each individual frequency bin, arises which
makes the perfect reconstruction of signal sources almost impossible [10].
Therefore it is worthwhile to develop an effective approach in the time do-
main for convolutive mixing systems that don’t have an exceptionally large
amount of variables. Joho and Rahbar [1] proposed a BSS approach based on
joint diagonalization of the output signal correlation matrix using gradient and
Newton optimization methods. However the approaches in [1] are limited to
the instantaneous mixing cases whilst in the time domain.

3. OPTIMIZATION OF INSTANTANEOUS
BSS

This section gives a brief review of the algorithms proposed in [1]. Assum-
ing that the sources are statistically independent and non-stationary, observing
the signals over K different time slots, we define the following noise free in-
stantaneous BSS problem. In the instantaneous mixing cases both the mixing
and demixing matrices are constant, that is, and In
this case the reconstructed signal vector can be expressed as

The instantaneous correlation matrix of at time frame can be obtained
as

For a given set of K observed correlation matrices, the aim is to
find a matrix W that minimizes the following cost function
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where are positive weighting normalization factors such that the cost
function is independent of the absolute norms and are given as

Perfect joint diagonalization is possible under the condition that
where are diagonal matrices due to the assumption of

the mutually independent unknown sources. This means that full diagonal-
ization is possible, and when this is achieved, the cost function is zero at its
global minimum. This constrained non-linear multivariate optimization prob-
lem can be solved using various techniques including gradient-based steepest
descent and Newton optimization routines. However, the performance of these
two techniques depends on the initial guess of the global minimum, which in
turn relies heavily on an initialization of the unknown system that is near the
global trough. If this is not the case then the solution may be sub-optimal as
the algorithm gets trapped in one of the local multi-minima points.

To prevent a trivial solution where W = 0 would minimize Equation (2.11),
some constraints need to be placed on the unknown system W. One possible
constraint is that W is unitary. This can be implemented as a penalty term such
as given below

or as a hard constraint that is incorporated into the adaptation step in the op-
timization routine. For problems where the unknown system is constrained to
be unitary, Manton presented a routine for computing the Newton step on the
manifold of unitary matrices referred to as the complex Stiefel manifold. For
further information on derivation and implementation of this hard constraint
refer to [1] and references therein.

The closed form analytical expressions for first and second order informa-
tion used for gradient and Hessian expressions in optimization routines are
taken from Joho and Rahbar [1] and will be referred to when generating re-
sults for convergence. Both the Steepest gradient descent (SGD) and Newton
methods are implemented following the same frameworks used by Joho and
Rahbar. The primary weakness of these optimization methods is that although
they do converge relatively quickly there is no guarantee for convergence to a
global minimum which provides the only true solution. This is exceptionally
noticeable when judging the audible separation of speech signals. To demon-
strate the algorithm we assume a good initial starting point for the unknown
separation system to be identified by setting the initial starting point of the un-
known system in the region of the global trough of the multivariate objective
function.
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4. OPTIMIZATION OF CONVOLUTIVE BSS
IN THE TIME DOMAIN

As mentioned previously and as with most BSS algorithms that assume con-
volutive mixing, solving many BSS problems in the frequency domain for in-
dividual frequency bins can exploit the same algorithm derivation as the instan-
taneous BSS algorithms in the time domain. However the inherent frequency
permutation problem remains a major challenge and will always need to be
addressed. The tradeoff is that by formulating algorithms in the frequency
domain we can perform less computations and processing time falls, but we
still must fix the permutations for individual frequency bins so that they are
all aligned correctly. This chapter aims to provide a way to utilize the existing
algorithm developed for instantaneous BSS and apply it to convolutive mixing
but avoid the permutation problem.

Now we extend the above approach to the convolutive case. We still assume
that the demixing system is defined by Equation (2.7), which consists of N × M
FIR filters with length Q. We want to get a similar expression to those in the
instantaneous cases. It can be shown that Equation (2.7) can be rewritten in the
following matrix form

where is a (N × QM) matrix given by

and is a (QM × 1) vector defined as

The output correlation matrix at time frame can be derived as

where,

Correlation matrices for the recovered sources for all necessary time lags can
also be obtained as
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Using the joint-diagonalization criterion in [1] for the instantaneous mod-
elling of the BSS problem we can formulate a similar expression for convo-
lutive mixing in the time domain. Consider the correlation matrices with all
different time lags we should have the following cost function

The only difference between and is that we now take into account all
the different time lags for the correlation matrices for each respective time
epoch where the SOS are changing. Also is now defined as

and we note the new structure of In the ideal case where we know the
exact system all off-diagonal elements would equal zero and the value
of the objective function would reach its global minimum where Each
value of represents a different time window frame where the Second Or-
der Statistics (SOS) are considered stationary over that particular time frame.
In adjacent non-overlapping time frames the SOS are changing due to the
nonstationarity assumption. As this is a non-linear constrained optimization
problem with N Q M unknown parameters we can rewrite it as

Due to the structure of the matrices and with the technique of matrix multi-
plication to perform convolution in the time domain, optimization algorithms
similar to those performed in the instantaneous climate can be utilized. No-
tice also that in the instantaneous version the constraint used to prevent the
trivial solution W = 0 was a unitary one. In the convolutive case a different
constraint is used where the row vectors of are normalized to have length
one. Again referring to the SGD and Newton algorithms closed form analytical
expressions of the gradient and Hessian deduced by Joho and Rahbar [1] are
extended slightly to accommodate the time domain convolutive climate of the
new algorithm. These expressions are shown in Table 2-1. will be
denoted as With these expressions the SGD and Newton methods are
summarized in the Tables 2-2 and 2.3 respectively. Table 2-2 is relatively easy
to interpret as it is a simple iterative update or learning rule with a fixed step
size. As an alternative to a constant step-size the natural gradient method
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proposed by Amari [11] could be used instead of the absolute gradient al-
though faster convergence can be expected from second-order methods. Table
2-3 gives the general Newton update with penalty terms incorporated to en-
sure that the Hessian of the constraint, denoted as and the gradient of the
constraint, denoted as are accounted for in the optimization process. Note
the defines the constraint given in Equation (2.22) and expresses the unit
energy of the rows of
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5. SIMULATION RESULTS
To investigate the performance of the extended instantaneous BSS algorithm

to the convolutive case in the time domain the SGD and Newton algorithm im-
plementations in [1] were altered to the learning rules given in Tables 2-2 and
2-3 respectively. As the constraint no longer requires the unknown system
to be unitary the constraint was changed to that given in Equation (2.22). The
technique of weighted penalty functions was used to ensure the constraints
preventing the trivial solution were met. No longer performing the optimiza-
tion on the Stiefel manifold as in [1] the SGD and Newton algorithms were
changed to better reflect the row normalization constraint for the convolutive
case. Using the causal
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a first-order two-input-two-output (TITO) two tap FIR known mixing system
was chosen and is given below in the domain as

The corresponding known un-mixing system which would separate mixed sig-
nals which are produced by convolving the source signals with the TITO mix-
ing system given above is

This is the exact known inverse multiple-input-multiple-output (MIMO) FIR
system of the same order. The convolution of these two systems in cascade
would ensure the global system would be a delayed
version of the identity, i.e. Using matrix multiplication to perform con-
volution in the time domain, Equation (2.15) can be used to represent the equiv-
alent structure of Equation (2.24),

Through empirical analysis we set the parameters and and
solve the constrained optimization problem given in Equation (2.22) using the
SGD and Newton methods. A set of K = 15 real diagonal square uncorrelated
matrices for the unknown source input signals were randomly generated. Us-
ing convolution in the time domain a corresponding set of correlation matrices

for each respective time instant at multiple time lags
were generated for the observed signals. Each optimization algorithm was run
ten independent times and convergence graphs were observed and are shown in
Figure 2-1. The various slopes of the different convergence curves of the gra-
dient method depends entirely on the ten different sets of randomly generated
diagonal input matrices. Poor initial values for the unknown system lead to
convergence to local minima as opposed to the desired global minimum. The
initialization of the SGD and Newton algorithms plays an important role in
the convergence to either a local or global minimum. Initial values for the esti-
mated unmixing system were generated using a perturbed version of the true
unmixing system. This was done by adding Gaussian random variables with
standard deviation to the coefficients of the true system. As a possible
alternative strategy, a global optimization routine glcCluster from TOMLAB
[12], a robust global optimization software package, can be used where no
initial value for the unknown system is needed. This particular solver uses a
global search to approximately obtain the set of all global solutions and then
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Figure 2-1. Convergence of gradient descent and Newton algorithms for a first order TITO
FIR demixing system over 10 trials.

uses a local search method which utilizes the derivative expressions to obtain
more accuracy on each global solution. This method will be further analyzed
as a future alternative to obtaining additional information on the initial system
value.

After convergence of the objective function to an order of magnitude ap-
proximately equal to the unknown demixing FIR filter system in cas-
cade with the known mixing system resulted in a global system which
was equivalent to a scaled and permuted version of the true global system I
as can be seen by the following example,

A first order system has been identified up to an arbitrary global permuta-
tion and scaling factor. The TITO system identified above using the optimiza-
tion algorithms has only 8 unknown variables to identify. We now examine a
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MIMO FIR mixing system with a higher dimension. Again we have chosen an
analytical MIMO multivariate system whose exact FIR inverse is known. The
3rd order mixing system is given below in the domain

The corresponding known inverse FIR system of the same order is given below
also in the domain as

The convolution of the mixing and unmixing MIMO FIR systems given in
Equations (2.28-2.35) gives the identity matrix I exactly. A comparison of the
convergence behaviour for the more efficient Newton method is given in Fig-
ure 2-2 using the same methods described for the first order systems above,
keeping the learning factor and weighting terms the same. We see from the
figure that with twice as many unknown variables to solve for the demixing
system, the third order unknown system takes longer to converge by roughly
a factor of two. Both systems converge to their global minimums due to good
initialization at approximately For the third order system, one trial pro-
duced an outlying convergence curve that takes more iterations than the other
trials. This is dependent on the randomly generated set of diagonal correlation
matrices where for each trial.

To test the performance of the algorithm on real speech data two indepen-
dent segments of speech were used as input signals to the MIMO FIR mixing
system given in Equation (2.24). These signals were both 4 seconds long and
sampled at 8kHz. The signals were convolutively mixed with the synthetic
mixing system to obtain 2 mixed signals. With the assumption that speech is
quasi-stationary over a period of approximately 20ms, the observed mixed sig-
nals were buffered and segmented into 401 frames each having 160 samples
in length. The nonstationarity assumption assumes that the SOS in each frame
does not change. The correlation matrices can be found via Equations
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Figure 2-2. Convergence of Newton algorithms for first and third order TITO FIR demixing
systems over 10 trials.

Figure 2-3. (a) and (b) are the two original signals, (c) and (d) are the convolutively mixed
signals, (e) and (f) are the permuted separated results.

(2.18,2.19) for K = 401 frames of the two mixed signals. This allows the
method of joint diagonalization by minimizing the off-diagonal elements of
the correlation matrices of the recovered signals at each respective time lag
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as defined in Equations (2.20,2.22). Figure 2-3 shows the input, mixed and re-
covered speech signals. A good qualitative recovery is confirmed by subjective
listening to the recovered audio signals and inspection of graphs (e) and (f) in
Figure 2-3.

6. CONCLUSION
A new method for convolutive BSS in the time domain using an existing

instantaneous BSS framework has been presented. This method avoids the
inherent permutation problem when dealing with solving the convolutive BSS
problem in the frequency domain. Optimization algorithms including SGD and
Newton methods have been compared for convolutive mixing environments.
Future work will be directed at implementing the simulations with recorded
data such as speech in real reverberant environments where the orders of the
mixing and unmixing MIMO FIR systems are very high.
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