Chapter 2

COMPUTATIONAL FRAMEWORK

Paul M. Meaney, Ph.D. and Keith Paulsen, Ph.D.

1 INTRODUCTION

All of the imaging modalities discussed in this book require unique numeri-
cal algorithms and data acquisition hardware. However, they also share a
good deal of algorithmic common ground. The Dartmouth Breast Imaging
Group has therefore articulated a shared numerical-analysis framework for
these modalities. This framework facilitates communication between teams
working on different modalities while being flexible enough to allow for
needful variations, especially as dictated by the data-acquisition requirements
of each modality.

In all four modalities, imaging requires the solution of an inverse prob-
lem. That is, measurements are made of some physical process (e.g., micro-
waves, infrared light, or mechanical vibrations) that interacts with the tissue,
and from these external recordings the two- or three-dimensional distribution
of physical properties of the tissue (dielectric properties, optical absorption
coefficient, elasticity) is estimated using numerical algorithms.

The imaging strategies used by three of the modalities—electrical im-
pedance spectroscopy (EIS), microwave imaging spectroscopy (MIS), and
near-infrared spectroscopic imaging (NIS)—resemble those of x-ray com-
puted tomography (CT). That is, they collect data with an array of detectors
positioned around a central target while illuminating the target successively
from all directions. The fourth modality, magnetic resonance elastography
(MRE), is distinctly nontomographic in that it excites the whole tissue vol-
ume using a piezoelectric-based mechanical vibration system and collects
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displacement information at each voxel within the target using magnetic
resonance imaging techniques.

Because x-rays propagate in nearly straight lines through tissue, in CT an
attenuation coefficient can be assigned directly to each pixel. The inverse
solution for these attenuation coefficients requires only linear matrix opera-
tions. For the imaging modalities treated in this book, however, the inverse
problem is nonlinear, because the physical interactions do not occur along
straight lines but rather are distributed essentially throughout the imaging
field-of-view. As a result, the measured response is not a linear function of
tissue properties and iterative numerical methods are required to solve the in-
version problem.

We have chosen to apply a well-known iterative technique, the Gauss-
Newton method, to the solution of this suite of nonlinear inverse problems
[1]. We estimate the spatial distribution of the tissue’s physical properties;
calculate the response that would be observed, given this distribution (i.e.,
solve the “forward problem”); compare these calculated observations to the
actual data; and update the estimated property distribution accordingly. This
process is iterated until the real and calculated observations converge,
whereupon the estimated distribution is taken as the desired image.

2 FORWARD PROBLEM
2.1 Field Equations

Our finite-element approach requires that the measurable physical phenome-
non of interest (e.g., electromagnetic waves) must be governed by a partial
differential equation. Listed below are the model equations for the four mo-
dalities, along with the tissue properties associated with the measurable re-
sponses.

1. Helmholtz wave equation (MIS). For sinusoidal electromagnetic waves in
source-free regions, Maxwell’s equations reduce to the homogeneous Helm-
holtz wave equations [2]. In particular, the electric-field component E of a
sinusoidal electromagnetic wave obeys

VZE+Kk*E=0 2.1
Here k* =@*ue+ jouo, where k is the wave number, @ is radian fre-

quency, j=/—1, and the medium is characterized by magnetic permeability
U, electrical permittivity €, and conductivity &. In media with nonuniform
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electrical properties (e.g., tissue), k? varies locally. Its spatial variation
throughout the breast is the quantity we are interested in imaging in MIS.

2. Diffusion equation (NIS). The diffusion equation for an absorptive, scat-
tering, linearly anisotropic optical medium is

—V-DV(I)+(,ua +j§’—]c1>=q0 2.2)

m

where @ is the photon fluence, ¢, is the speed of light in the medium, q, is
the intensity of an isotropic light source, and D is the diffusion coefficient,
which is a function of the absorption and reduced scattering coefficients K,
and y., ie., D=1/[3(u,+ 1)]. The diffusion coefficient is the locally-
varying physical quantity of interest in this modality.

3. Laplace’s equation (EIS). In any charge-free region in a dielectric me-
dium, the voltage (potential) at every point is governed by Laplace’s equa-
tion:

V-(0+jwe)V¥ =0 (2.3)

Here, ¥ is the voltage and the medium has electrical permittivity € and
conductivity . Laplace’s equation is an appropriate relationship for EIS be-
cause the EIS system operates at frequencies several orders of magnitude
below those used by the MIS system (a realm where the Helmholtz equation
applies). As in MIS, the electrical properties of the tissue (€ and @) are the
physical quantities of interest.

4. Navier’s equation (MRE). The governing differential relationship for the
MRE modality is Navier’s equation, which is in essence a multidimensional
generalization of Hooke’s Law of linear elasticity. Navier’s equation de-
scribes the displacement field inside an elastic body subject throughout to
stress and strain as follows:

d*u

Here, the three-dimensional vector u represents displacement within the me-
dium, ¢ and A are the material stiffness moduli known as Lamé’s constants
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(presumed here to vary throughout the medium as scalar fields), and p is the
density. The properties of interest are the moduli # and A (and possibly p).

For all modalities we have focused on the frequency-domain version of
the problem; that is, we have assumed a periodic time variation of the form
e for all nonconstant quantities and have solved the resulting steady-state
system. An equally valid time-domain solution could be obtained on identical
FE meshes by modeling the evolution of the system through time, but we
have chosen the frequency-domain approach for the three tomographic mo-
dalities (MIS, NIS, EIS) because of limitations imposed by hardware cali-
bration procedures and the advantages of exploiting the frequency-dispersion
characteristics of the propagating media.*

For MRE, likewise, data are acquired at only a single mechanical-
excitation frequency. Acquiring data at multiple mechanical excitation fre-
quencies is possible but would be time-consuming using current methods.

2.2  Numerical Solution Framework

There are a number of numerical approaches for computing the electromag-
netic fields or mechanical displacements throughout an inhomogeneous me-
dium. These include finite elements, finite differences, method of moments,
finite-difference time domain, and others [3-6]. Each has merits, but the fi-
nite element (FE) method is particularly useful for our purposes.

The FE method approximates a continuous medium as a mesh of po-
lygonal or polyhedral elements with shared vertices (the nodes of the mesh).
These elements are usually triangular (in 2D problems) or tetrahedral (in 3D
problems). A basis function is centered on each node, and the physical phe-
nomenon of interest is modeled at every point in the region of interest as a
weighted sum of these basis functions. For an N-node mesh, this entails the
solution of a matrix equation of the form [A]{®}={b}, where [A] is
N x N; however, because the basis function associated with each node is
nonzero only over those finite elements which contain that node, [A] is
sparse (populated with zeroes except near the diagonal) and therefore ame-
nable to iterative and/or banded-matrix solutions. This enables important ef-
ficiencies in storage and computation [7]. Furthermore, the nodes of an FE
mesh can be placed arbitrarily, allowing accurate modeling of irregular ob-

* Time-domain signals could be synthetically derived from frequency data by fast Fourier
transform if it could be collected at a sufficiently large number of fixed frequencies, but this
would dramatically increase hardware complexity and data-acquisition time. Conversely, the
full-spectrum frequency response could be obtained from time-domain data.
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ject contours and increased node density in areas where the fields to be mod-
eled vary rapidly [4].

In the two-dimensional case (readily generalizable to three dimensions),
we consider the physical phenomenon of interest (i.e., waves propagating
through the image region) as a scalar field, ®(x, y) (readily generalizable to
a vector field). ®@(x,y) is defined over an area covered by a mesh of finite
elements (Figure 1).
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Figure 1. A two-dimensional finite-element mesh composed of several hundred
triangular elements. In this particular mesh, each node (element vertex) is shared
by as many as eight or as few as two elements.

Let F[®(x,y)]=0 be the differential equation (e.g., Laplace’s) for
which ®(x, y) is the exact solution and for which some ®y(x,y),to be de-
termined, is an approximate solution over an FE mesh having N nodes.
@, (x,y) is defined as the sum of N “basisfunctions,” ¢,(x,y), that are
weighted by N constants, ®D;:

N
Dy(x,y)= Z‘D,- 6:(x,y) (2.5)
i=1

The ¢,(x,y) are known and the N coefficients ®; areunknown.

In general, F[®y(x,y)]= R, the nonzero “residual” or error that results
from substituting ®y(x,y) for the exact solution ®(x,y). To minimize R,
that is, to find the best possible ®y(x,y), we use the weighted residual
method (described in many textbooks on finite element methods, e.g., [4]). In
this approach, R is multiplied by a chosen weighting function wi(x,y), the
product w;(x,y)R is integrated over the domain of the entire FE mesh, £2,
and the result is set equal to zero:



30 Model-Based Breast Imaging
fwi(x.y)R dxdy=0 2.6)

Substituting N different weighting functions w;(x,y) into (2.6) produces N
equations in the N unknowns @,.

Several simplifications can be made. First, each Lagrangian basis func-
tion ¢,(x,y) can be chosen to be nonzero only over those mesh elements of
which the i th node is a vertex. Within each triangular finite element, there-
fore, only three ¢,(x,y) are nonzero and (2.5) simplifies to

3
(x,y)= 2 2.7)

where 7 is a local index denoting the three vertices of the element, ¢,(x,y)
is the basis function centered on node n, and @, is the coefficient for
¢.(x,y) (see Figure 2).

Node 3: @, ¢,(x,y)

Node 1:

@, ¢,(x.y)
1 ! Node 2: ¢)2, ¢2(X’y)

Figure 2. A triangular finite element. A coefficient ®a and linear basis function
¢,(x,y) are associated with each node. Each ¢,(x,y) is nonzero over this element
and over all other elements of which its node is a vertex.

Second, in our implementation each basis function ¢, is linear, decreas-
ing from 1 at the i th node to 0 along the opposite edge of each element
sharing that node. The basis function ¢, at any node i that is surrounded en-
tirely by mesh elements (i.e., any node that is not an edge node) can thus be
visualized as an irregular pyramid with its peak over node i and its faces

sloping down to the distal edges of all the elements sharing the node (Figure
3).



Computational Framework 31

Figure 3. Relationship of piecewise-linear basis functions to triangular FE mesh
elements. Top left: ¢;(x,y), the piecewise-linear basis function that is centered at
node j, is shown over its whole domain (in this case, five elements). Its peak value
is 1. Top right: The portion of @;(x,y) that overlaps element jk€ (dark gray).
Bottom left: The portion of ¢,(x,y) that overlaps element jk€. Bottom right: The
portion of @,(x,y) that overlaps element jk£. All other basis functions are zero
over this element.

Third, the N basis functions @; used to form Py(x,y) in (2.5) are em-
ployed as the N weighting functions w;,. When the weighting functions are
equal to the basis functions, the resulting weighted-residuals method is
termed the Galerkin method.

The presence of a Laplacian term (i.e., a second-order derivative) in the
partial differential equation for each modality presents difficulties, since
the basis functions are linear. That is, wherever a Laplacian term appears in
the governing equation, it generates

N N
Vo, =V Y @9, |= ), DV, (2.8)

i=1 i=1
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in the residual R, and V*@;=0 for linear ¢, on the element interior. (Tech-
nically, (2.8) generates an integrable singularity at the boundaries between
elements because of the discontinuity in V@, at element interfaces.) The dis-
appearance of all second-derivative terms from R can be resolved by gener-
ating a weak form of (2.6) that has lower continuity requirements on
resulting derivative terms. When a basis function ¢; is used as the weighting
function w; in (2.6) (i.e., when the Galerkin method is used), second deriva-
tives like those in (2.8) give rise to

[0;V%¢, dxdy (2.9)
Q

We apply Green’s identity to (2.9). In the two-dimensional case, Green’s
identity states that for any two scalar functions u and v continuous on some
domain Q with boundary C,

J'quvdxdy Sgu—dS IVu Vv dxdy (2.10)
Q

where dS is a differential segment of C and dv/dn=Vé, -n (ie., the nor-
mal derivative) [4]. This yields

<¢V2 fﬁa‘pl")ds <V¢ V¢> (2.11)

where (-) designates integration over the problem domain Q. (In the three-
dimensional case, (-) designates volume integration and the contour integral
becomes a surface integral.) Equation (2.11) contains derivatives of at most
first order in both integral terms, sidestepping the problem of vanishing (sin-
gular) second-order derivatives. Another advantage of (2.11) is the appear-
ance of the boundary integral, which is represented in terms of the natural
boundary conditions expressed as the flux of the field through the enclosing
surface.

When forcing and boundary conditions are taken into account, the re-
sulting set of N weighted integral equations can be written in matrix form as

[Alf®} = {b) e.12)
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Matrix [A] is Nx N and contains terms dependent on the governing equa-
tion. The vector of basis-function coefficients, {®} ={®,,®P,,... P}, is the
quantity to be computed. The entries in {b}, which account for forcing func-
tions (i.e., external inputs to the system) and boundary conditions, arise dur-
ing evaluation of the contour integral in (2.11). Matrix [A] is sparse due to
the localized nature of the basis functions, lending itself to efficient matrix-
factorization routines [8] and/or iterative solvers.

Boundary conditions vary among modalities. For instance, the NIS and
EIS approaches utilize mixed boundary conditions with

o=a+B22 2.13)
on

Here, A and B are known constants and n is the unit normal vector oriented
outward at the boundary [9]. The MRE approach applies either a Dirichlet or
Neumann boundary conditions, depending on the physics of the mechanical
vibration apparatus being used [4]. The MIS approach eliminates the need for
approximate radiation boundary conditions by implementing a hybrid ele-
ment method in which the FE method described above is used for the imag-
ing zone and a boundary element (BE) method is used for the surrounding
medium (i.e., in the breast-imaging setup, a homogeneous liquid in which the
breast is immersed) [10]. The methods used to cope with boundary condi-
tions are discussed in detail in the chapters devoted to the individual imaging
modalities.

3 INVERSE PROBLEM
3.1 Gauss-Newton Iteration

The forward solution described above computes the spatial variation of an
external observable (e.g., electric field) based on a given tissue-property dis-
tribution, governing equation, boundary conditions, and source terms. The
inverse solution estimates the property distribution given the governing
equation, boundary conditions, source terms, and measurements of the exter-
nal observable. For all modalities considered in this book, the forward prob-
lem is linear and the inverse problem nonlinear [1, 4]. That is, the tissue
properties to be estimated depend nonlinearly on the observable.

We have pursued a Gauss-Newton iterative scheme for solution of the
inverse problem [1]. This approach begins with an initial estimate of the
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property distribution and solves the forward problem based on this initial
distribution. It then compares this solution with the measured data (as speci-
fied below) and solves a linearized approximation of the inverse problem to
obtain a new estimate of the property distribution. This procedure is iterative:
the property-estimate updating is repeated until the algorithm converges to an
optimal least-squares fit of modeled data to measured data.

We employ an iterative Newton algorithm defined by

Evn=E,~(F(E) £(¢) 2.14)

Here, &, is the estimate of the material property distribution at the vth itera-
tion, &,,, is the updated estimate, and f’(§) is the derivative of f(&) with re-
spect to & [11]. The functional f(€) is defined in terms of a cost function,
G, that expresses the difference between the measured and modeled data at
each iteration:

G =min|@(8) -, (2.15)
and (&)= %g— =2(®(&)- cpm)%—? (2.16)

Here, vectors ®(§) and @, are the computed (i.e., forward-solution)
and measured values, respectively, of the observable quantity of interest at
the measurement sites. Both are Oy, = Ny X Og long, where Ny is the num-
ber of different excitations and Og is the number of measurement sites per
observation. (For example, in an imaging region surrounded by 16 micro-
wave antennas, one of which transmits at any given time while the others re-
ceive, Ny =16, Og =15, and O, =240.) Furthermore, vectors & , €., and
AE=E —&, are all L long, where L is the number of material parameter
values to be reconstructed. L is not necessarily equal to N, the number of
nodes in the mesh used to model the observable phenomenon of interest; see
discussion of the dual mesh scheme in the next section.

Using (2.16) and the fact that f(§) =2(d®/9&)* (if 9*P/dE? is assumed
small enough to neglect),

(F&) " £(&)= (%%3] (0(¢)-.,) (2.17)
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Matrix d®/9& is (M x O) x L and is termed the Jacobian matrix, [J], In-
serting (2.17) into (2.14) and rearranging produces (in matrix notation)

[T {ag}={®, - o)} (2.18)

where {AE}={& ..} —{&,}. Multiplying both sides by [J*], we have
[13{ag} =[1" ){@,, - (&)} (2.19)

We wish to calculate the update vector {AE}, which, with {&§,}, gives
{£,.,} at the new iteration. The entries of {®,} are known and the entries of
{®P(&)} are computed using {& } by the forward-solution method described
earlier. Therefore, the only term of (2.19) still needed is [J]. We obtain this
by differentiating (2.12) with respect to &. Vector {b} contains only bound-
ary and forcing information; it is therefore not a function of &€ and
{db/d€} =0. After rearranging,

3] e o)

Furthermore, [A] and {®(£)} are computed at each iteration as part of the
forward solution. Thus, only [0dA/d&] is needed to solve (2.20) for
[0®/0E]=[]]. The details of computing [dA/9E] and [dD/0&] differ
among the imaging modalities (see [12] and other chapters in this book). In
Section 3.3, a closer look is taken at the method used for one particular mo-
dality (MIS).

A few of the computational techniques required for the efficient solution
of the inverse problem will now be discussed, including the dual mesh
scheme, the adjoint technique, and zone iterative reconstruction.

3.2  Dual Mesh Scheme

The system [A]{®} ={b} is rank N, but the dimension of the property dis-
tribution vector {} need not be N. We have exploited this fact to develop a
dual mesh scheme [12].



36 Model-Based Breast Imaging

In solving for the spatial distribution of the observable of interest in each
modality, mesh discretization must be fine enough to meet accuracy criteria.
For instance, in the MIS approach the nodes of the mesh must be separated
by no more than approximately A/10 (or one seventh of the exponential de-
cay distance, whichever is less [13]). On the other hand, the spatial resolution
required for {€}, which is directly related to the final image resolution, is
dependent both on the spatial frequency of the parameter or parameters to be
estimated (which is relatively low in all cases considered here) and on the
amount of measurement data available. This points to a natural link between
the amount of measurement data available and image resolution.

In the dual mesh method, the parameter & is represented on a mesh that
is coincident with the forward-solution mesh but coarser. The nodes of this
coarse mesh may be placed arbitrarily with respect to those of the mesh used
for the forward solution of the observable phenomenon (Figure 4). Over each
element of the L-node (“coarse” or “property”) mesh, & is defined as a
weighted sum of Lagrangian basis functions analogous to that defining
®,(x,y) over the N-node (“fine” or “forward-solution””) mesh:

&(x.y)= 2 £ @) 2.21)

Each ¢,,, like each ¢, in (2.5), is a linear basis function that is nonzero only
over its associated triangular elements; however, each ¢, is associated with
a node of the coarse mesh, while each ¢; was associated with a node of the
fine mesh. The summation in (2.21), like that in (2.7), only has three nonzero
terms in two dimensions (four, in three dimensions) for any (x, y) in the area
covered by the mesh element.

The dual mesh approach entails some computational overhead. For in-
stance, in solving the forward problem, the property distribution must be
mapped from the parameter mesh to the forward solution mesh. However,
this is a linear operation that can be accomplished efficiently by matrix mul-
tiplication. As will be seen below, more significant computational overhead
occurs in calculating the terms of the Jacobian matrix, [0®/d€ ].

As mentioned above, computing [9®/d€ ] differs among modalities. For
illustrative purposes, the MIS case is considered here; the following equa-
tions are therefore specifically valid only when the governing equation is
(2.1). More detailed treatments for each modality are provided in other
chapters.
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Figure 4. A portion of a parameter mesh (large triangles) with a portion of the for-
ward-solution mesh (small triangles) that it overlays. In practice, the meshes are co-
extensive.

We begin by examining the element at row i and column j of [A] in
(2.12):

Q= <V¢i V¢, > + <¢i 9; §.> (2.22)

The first term on the right-hand side results from multiplying the divergence
operator in the Helmholtz equation by the weighting function ¢, and apply-
ing Green’s identity to produce the weak-form solution. The second term re-
sults from multiplying (x,y) by ¢, and integrating over the model domain.
(In the MIS case, £ is equal to the wave number squared, k?.)

The next step in computing [d®/9&] is to differentiate [A] with respect
to &,, where £ denotes a node in the coarse mesh. This is accomplished by
differentiating (2.22). (In principle, the calculation of L derivatives of [A] is
required, each an N x N matrix; however, as will be shown, only a few
terms of each [0A/d,] are nonzero.) Using the fact that neither ¢; nor ¢; is
a function of &, and substituting for &, from (2.21), differentiation of (2.22)
gives

aa,, _ ((Ve:- Vo) +(9:0,8)) < oo ag,.>

&, 3¢, 2,

L
=( ¢:9, a(,,,z:‘,gm(pm) =<¢1¢j‘Pe>

(2.23)
95,

where ¢, is the basis function associated with node £ in the parameter mesh.
Although in principle each (¢,¢,¢,) term requires integration over the
entire fine-mesh area, its argument is nonzero only where @,, ¢,, and ¢, are
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all nonzero. That is, the integration in (2.23) need be performed only where
those fine-mesh elements specified by the overlap of fine-mesh basis func-
tions ¢, and ¢; are covered or masked by coarse-mesh basis function ¢,.
This means that the Nx N matrix [0A/d&,] contains only a few nonzero
elements, simplifying computation.

A minor complication arises whenever a fine-mesh element happens to
straddle the boundary between two coarse-mesh elements (see Figure 3). In
such a case, the argument of (¢,¢,¢,) is nonzero over only part of that fine-
mesh element, i.e., the part masked by ¢, [12]. One might choose, when
constructing the two meshes originally, to place their nodes so that each fine-
mesh element resides entirely within one coarse-mesh element (no border-
crossers). This would eliminate fragmentary element integrations but con-
strain mesh generation. Alternatively, one might allow arbitrary generation of
both meshes and then perform fragmentary element integrations as needed.
We have chosen the latter method [12]. The required procedures are compu-
tationally complex but not conceptually difficult.

The fact that da:;,;/d&, is a function only of the basis functions of the fine
and coarse meshes offers large computational savings. Since the basis func-
tions are a fixed feature of algorithm design, all nonzero elements of
[0A/0&,] can be precalculated and stored in a lookup table, which saves the
effort of recomputing them at each iteration.

3.3  Adjoint Method

A direct-differentiation technique for constructing the Jacobian matrix, which
is used to solve for the property update vector {A} at each iteration, was
described in Section 3.1. However, this method can be computationally ex-
pensive. For instance, in a case where the forward-solution and parameter
meshes have N and L nodes, respectively, and are surrounded by Ny
source excitations, the computational load at each iteration includes (a) Ng
LU factorizations of [A] and Ny matrix back-substitutions for the forward
problem and (b) NyX L matrix back-substitutions for the inverse problem.
Little can be done to reduce the computational costs of the forward
problem. However, in the inverse problem an alternative to direct computa-
tion of the Jacobian matrix is the adjoint method [14]. This is utilized in the
NIS, EIS, and MIS modalities, where the principle of reciprocity can be ex-
ploited. Reciprocity holds where, for a fixed property distribution, the physi-
cal phenomenon measured at point r due to a given source at point s is equal
to that which would be measured at s due to an equivalent source at r [15].
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Interchangeability of image and source in lens optics is an example of recip-
rocity.

Each entry of the Jacobian matrix describes the change in the observable
(e.g., electromagnetic field) corresponding to an infinitesimal property
change at node £ in the coarse mesh, where the wave phenomenon is gener-
ated by a point source at location s and is measured at location r. Each entry
in the Jacobian can thus be written as

90,
Js.r.l —'< agl 6(Xr’.Yr )> (224)

where @, is the distribution of the observable resulting from a point source
at s, 0 is the Dirac delta function, x, and y, are the Cartesian coordinates
of the measurement site r, and () signifies integration over the region
where ¢,, the coarse-mesh basis function at node ¢, is nonzero. Putting
(2.24) aside for the moment, we rewrite (2.20) as

&, 98,
Here, the right-hand side has been set equal to {b.4}, an “effective” source;
that is, {b.;} holds the same place in (2.25) as does the source term {b} in
(2.12).

By reciprocity, if an auxiliary source {b,} is (conceptually) placed at the
receiver location r, the resulting observable {®,} is found by solving

[Al{®,}={b,} (2.26)

Here, each of the N entries of {b,} is given by the inner product {(§;V,),
which is constructed by the process described in Section 2.2 (i.e., ¢, is the
i th forward-mesh basis function employed as a weighting function). In
agreement with assumption in (2.24) of a point source, V; is chosen as

V,=|V,|8(x,.y,) (2.27)

Combining (2.25) and (2.26) by reciprocity (and temporarily dropping matrix
notation for simplicity), we obtain
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20,\
<b, '857> = (b ®,) (2.28)

By (2.25), by =—(0A/9E,)D;, where the (i,j)th element of dA/dE, is (as
shown in the previous section) given by (¢,¢,¢,). Substituting for terms on
both sides of (2.28) thus yields, for a reciprocal point source b,,

<|V 8(x,0,) 2 5 > ~((0.9,0,)®,,) (2.29)

Dividing both sides of (2.29) by |V, | produces

<a£l 8(x r,yr)> |é |<<¢¢ 0,)0,,) (2.30)

The left-hand term, per (2.24), is J,.. Since all values of (¢,¢,¢,) can be
stored as a precomputed weighting vector, each entry of the Jacobian can be
computed during image reconstruction by means of a simple inner product of
(®,®,) times a constant (i.e., {(¢,0.¢,)/|Vi|) —always providing that the
sources and receivers are colocated, i.e., that each source antenna can also be
configured to operate as a receiver. (In practice, many J,,, need not be com-
puted because (¢,¢.¢,) is often zero.) This computation is an O(N) opera-
tion, in contrast to the O(N x M) matrix back-substitutions in (2.20), where
M is the bandwidth of the sparse matrix [A]. For large N, the savings can
be significant. Finally, this approach is quite general and can be readily ex-
panded to 3D for each modality.

34 Iterative Reconstruction in MRE

In the MRE system, tissue is vibrated along a single axis at low amplitude
and low frequency. This excitation is phase-locked to the sequencing of the
MR system to measure the harmonic displacement of each pixel in space.
Because an information-rich volumetric data set is acquired in this case,
strategies other than those described above (which exploit the fact that there
are relatively few observations) must be utilized to improve computational
efficiency. In the MRE case, the volumetric nature of the data allows dissec-
tion of the problem into multiple subzones, where the boundary conditions of
each subzone are essentially the MR-measured displacements at each bound-
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ary node. Coupling of these multiple subzone problems allows for accurate
and efficient calculation of the inverse problem. The details of this approach
are covered in Chapter 3, Sections 3-5.

4 ILL-CONDITIONING OF THE INVERSE PROBLEM

In all the approaches described above, the inverse problem is ill-conditioned.
That is, the iterative procedure defined in (2.14)—(2.20) may not converge to
a useful solution without the placement of additional restrictions on the proc-
ess [16].

One way to assess ill-conditioning is to calculate the condition number of
the Jacobian matrix, that is, the ratio of the largest eigenvalue of the system
to the smallest [8]. As the condition number approaches or exceeds the nu-
merical accuracy of the computer to be used, the system of equations is said
to be unstable and the likelihood that the algorithm will converge diminishes.
In effect, the system of equations is rank deficient and the amount of inde-
pendent measurement information is not adequate.

Before discussing some of the standard mathematical approaches to ill-
conditioning, it should be said that certain strategies can mitigate the problem
without applying regularization methods. In general, adding more measure-
ment data will improve the process, but it is not always clear how linearly in-
dependent the new data will be compared to the existing measurement set. In
addition, the cost of adding new receiver channels can be high. Unwanted
source and receiver interactions could be exacerbated by placing more re-
ceivers in an already crowded volume [17], and the added computational
costs may be significant. However, there are important opportunities here.
For instance, in all three tomographic approaches, data are acquired at multi-
ple frequencies. Preliminary eigenvalue studies with the MIS system suggest
that the inclusion of additional multifrequency data reduces the system con-
dition number. Interestingly, depending on the individual system and on the
orientation of sources and receivers, certain data (e.g., signals passing di-
rectly through the tissue versus signals diffracted to the sides) are clearly
more valuable than others [18]. Finally, the problem statement itself can have
a significant effect on the condition number. For instance, in the MIS system
the eigenvalue spectral content is significantly improved when the minimiza-
tion statement (2.15) starts from the log magnitude and phase form of the
electric-field values rather than the more traditional complex form [18]. It
has been shown that the former emphasizes the directly-transmitted data over
the signals received by antennas close to the transmitter, and that the opposite
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is the case for the complex-form algorithm. Attention to features other than
regularization can thus be important.

4.1 Tikhonov Regularization

The most common approach to regularization is the Tikhonov method [16].
This approach begins with the minimization statement given in (2.15) and
adds a weighted penalty term:

G=min“(I)(§)—

2.31)

In this case, the penalized factor is a Euclidean distance term referenced to
&* with p as the weight. Other forms incorporate the first or second deriva-
tive of the property distribution. Now, f(§) and its derivative (&), referred
to by (2.14), are given by

oG od

f(§)=-5-5=2(c1>(§) @ )aeg +2p(6-¢) (2.32)
oD 0d
and Fe)=2%g 5g 2P (233)

where the second-order derivative of @(&) is ignored in determining f*(6).
Combining (2.14) and (2.33) yields

00 J0D 00 "
AE= (ag 3t ) [ag( (é))—p(é—é)} (2.34)
This can be rewritten in matrix form as
[177+p1){ag} =[1"{@,-@(&)} - pfe-&} (2.35)

where [J]=[d®/d&], [I] is the Nx N identity matrix, and & denotes the
property values at iteration i.

The value of € is usually fixed. However, in one variation of this proce-
dure, & is set equal to the parameter distribution at the previous iteration,
&,. This variation is termed the Levenberg-Marquardt algorithm [1, 19, 20].
In this case, (2.35) simplifies to
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[73+2p1]{ag} =[1"]{@,, - (&)} (2.36)

This method is of interest because it removes the penalty term from the gra-
dient (i.e., the right-hand side of the equation).

In general, the convergence characteristics of the two approaches (i.e.,
conventional, as in (2.14)—(2.20), versus with Tikhonov regularization) are
distinct and problem-specific [10, 21].

4.2  Hessian Scaling and Tikhonov Weight

The net effect of the regularization on the Hessian matrix [J™J] is to ensure
its diagonal dominance, which facilitates its LU factorization [8]. However,
determining the optimal weighting factor p is problem-specific and can be
quite difficult [22, 23]. One complication is that the scale of the elements of
the Hessian matrix can vary considerably from one imaging session to the
next. A novel approach was developed by Joachimowicz and colleagues [21],
who set p equal to the trace of the Hessian matrix multiplied by an empiri-
cally determined factor, &, and the relative least-square error at each itera-
tion, €,,:

p=oey trace([JTJ]) (2.37)

Reducing the net regularization parameter as the iterations progress allows
the influence of the less-dominant eigenvalues to be gradually introduced.
That is, with large p at the algorithm’s start, a blurred or smooth image is
initially reconstructed; as p is reduced at each iteration, more detail appears
(but the solution edges toward instability). The trace essentially measures the
scaling effect of the matrix [A] on the vector {®} in (2.12) [8]. Therefore,
the level of regularization can be controlled (to some degree) by the dimen-
sionless quantity p.

One consequence of this approach is that since the Hessian diagonal
terms can vary in magnitude, the influence of the regularization is uneven
across the span of reconstruction parameters. Marquardt [20] introduced a
matrix scaling (previously associated with the Levenberg regularization
technique) that normalizes all Hessian diagonal terms to unity [19, 20]. Mul-
tiplying both sides of (2.18) by a diagonal matrix [G] and inserting the iden-
tity matrix (written as [GG™]) between the Hessian matrix [JTJ] and the
update vector {AE}, we have
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[oifocfagl=[c om0} @3
which can be rewritten as

[GJTJG] {[G‘1 ] {Aé}} =[cr"[{e" - @7} (2.39)

and solved for {{G']{A&}}, which we will call {A}*. (Note that {AE} itself
can be easily recovered from {AEY", as [G] is diagonal.) The nonzero ele-
ments of [G] are chosen as

1
gy = (2.40)
h.

un

where g, and h; are the diagonal elements of [G] and of the Hessian matrix
[J7J], respectively. All diagonal entries of the scaled Hessian matrix
[GITIG] are unity, allowing for the level of regularization to be controlled
by the addition to the diagonal of a single nondimensional quantity (e.g., 4).
This quantity can be empirically chosen so that the algorithm is relatively ro-
bust across a broad span of imaging tasks.

4.3 Miscellaneous Techniques

We have utilized two additional techniques which generally act as forms of
regularization. The first is a spatial filtering approach. When the property
distribution is updated at each iteration, uneven fluctuations in the intermedi-
ate image can occur, especially during the early stages of the process. We
have devised a spatial filter which can be applied through a matrix-vector
multiplication that forms a weighted average of the value at node i with
those of its surrounding neighbors [24]:

_ T
g;mw - qgfld + (1 Tq) 251‘3’1‘1 (241)
Jj=1

Here, g is chosen to be between 0 and 1, T is the number of nodes to be av-
eraged, and the superscripts “old” and “new” refer to the property values be-
fore and after application of the filter, respectively. As ¢ varies from 1 to 0,
the amount of filtering goes from none to full averaging with the T neigh-
boring values.
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Another technique is to reduce the iteration step size [25, 26]. Modifying
(2.14) slightly produces

{€},,, =1} +{ag} (2.42)

where T, which may be varied from 0 to 1, controls the step size.

It has been noted that in Newton iterative techniques, the computed up-
date values can overshoot the desired values by a considerable margin, espe-
cially when the starting property distribution is not chosen carefully [11].
Reducing the step size may slow convergence, but is another useful tool for
stabilizing an inherently unstable process.

S 3D IMAGING

In all of the imaging modalities discussed here, the physics of the electro-
magnetic wave propagation or mechanical vibration are intrinsically three-
dimensional. To achieve 3D images is a sizeable computational task, espe-
cially given limitations on data acquisition and computational resources.
Within each modality, therefore, we performed experiments to assess the im-
age degradation to be expected from using approximate 2D algorithms. Re-
sults varied by modality. In MRE, it was found that a 2D approach was
inadequate, while in MIS it was shown that 3D effects were greatly reduced
by utilizing a low-contrast coupling medium (i.e., choosing a fluid bath with
electrical properties as close as possible to those of the breast [27]).

In all four modalities, the ultimate goal is full 3D imaging. This can be
achieved by incrementally perfecting tools for the 2D and 2.5D (hybrid of 2D
and 3D) cases, and by designing these tools to be generalizable to fully 3D
approaches. For example, the FE methods associated with the forward and
inverse problems outlined in this chapter can be straightforwardly, albeit with
effort, generalized to 3D. The degree to which 3D implementations are being
explored for each modality is briefly discussed in the ensuing modality
chapters.

6 CONCLUSION

This chapter has provided a brief overview of the iterative approach utilized
in some form by all four imaging modalities treated in this book. It has out-
lined the basic notions of the inverse problem and highlighted issues such as
computational cost and ill-conditioning. The dual mesh scheme, adjoint
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method, and regularization strategies have been discussed, along with their
implications for the imaging process. The methods outlined here are, how-
ever, by no means exhaustive or final.

The breast is a particularly intriguing imaging target for all four modali-
ties because of its accessibility and relatively small volume. The complexity
of the data acquisition systems required is not overly burdensome and the re-
sources needed, even for the computationally intensive algorithms outlined
here, are within reach.
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