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Abstract In this paper, we partially review probabilistic and time series models in finance.
Both discrete and continuous-time models are described. The characterization
of the No-Arbitrage paradigm is extensively studied in several financial market
contexts. As the probabilistic models become more and more complex to be
realistic, the Econometrics needed to estimate them are more difficult. Conse-
quently, there is still much research to be done on the link between probabilistic
and time series models.
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2.1 Introduction

Uncertainty plays a central role in financial theory and its empirical imple-
mentation. The objective of this paper is to review the connection between the
theory and the empirical analysis in the area of Finance. It is obvious that the
scope of the subject is too wide and, consequently, we will not be able to cover
all contributions in the area. Therefore, in the framework of probabilistic mod-
els, we focus on those pricing models reflecting the absence of arbitrage and
free-lunch. The problem of valuation and hedging of contingent claims (risks)
presents important difficulties when markets imperfections are met. The char-
acterization of No-Arbitrage (NA) is extensively studied in section 2. Pricing
of contingent claims when markets are subject to portfolio constraints, trans-
actions costs and taxes as well as new results for nonlinear pricing along with
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a universal framework for pricing financial and insurance risks are reviewed in
this section.

Section 3 reviews the main time series models devoted to the analysis of
financial returns. We start describing models for the conditional mean usually
fitted to test whether financial prices are predictable. In this sense, it is gener-
ally accepted that asset returns are close to be martingale difference processes.
However, they are not independent because of the often observed dependence
of some transformations related with second moments. Consequently, we then
describe models to represent the dynamic evolution of conditional variances
and covariances of high frequency returns. Finally, section 3 reviews the mod-
els recently proposed to represent the main empirical properties of ultra high
frequency (intra-daily) returns.

In section 4, we focus on the link between probabilistic models and Finan-
cial Econometrics. We show that the estimation of realistic financial models
for asset prices are, in general, difficult and much research remains to be done
in this area. In particular, in this section, we describe the empirical implemen-
tation of the CAPM as well as the estimation procedures of the term structure,
the VaR and continuous time diffusions.

The paper finishes in section 5 with a summary of the main conclusions.

2.2 Probabilistic models for finance

A classical problem in mathematical finance is the pricing of financial as-
sets. The usual solution of this problem involves the so-called Fundamental
Theorem of Asset Pricing. This result ensures that the assumption of NA is
essentially equivalent to the existence of an equivalent martingale measure, in
a perfect financial market. The NA assumption amounts to saying that there is
no plan yielding some profit without a countervailing threat of loss. It prevents
the existence of zero cost portfolios with positive return. The problem of fair
pricing of financial assets is then reduced to taking their expected values with
respect to equivalent martingale measures. Initial results on the Fundamental
Theorem of Asset Pricing hold in the case of finite number of assets and a finite
discrete time models; see Harrison and Kreps (1979) and Harrison and Pliska
(1981).

Various generalizations are now available in the literature. For discrete in-
finite or continuous time, the notion of “no free lunch” or “no free lunch with
bounded (vanishing) risk” is needed, which is a slightly stronger version of
the non-arbitrage condition; see, for example, Dalang et al. (1989), Back and
Pliska (1991) and Schachermayer (1992). In these generalizations, securities
markets are assumed to be frictionless, i.e. without considering transaction
costs. For discrete infinite case see Schachermayer (1994). For continuous
time models see Delbaen (1992) or Delbaen and Schachermayer (1994, 1998);
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see also Duffie and Huang (1986), Striker (1990) and Kabanov and Kramkov
(1994).

2.2.1 The Fundamental Theorem of Asset Pricing
The mathematical translation of this concept uses martingale theory and

stochastic analysis. Under the assumption that the price process
reflect economically meaningful ideas and does not generate arbi-

trage profits, the Fundamental Theorem of Asset Pricing allows the probability
P on the underlying probability space F, P) to be replaced by an equiva-
lent measure Q such that becomes a (local) martingale under the new
measure. The information structure is given by a filtration  Following
Delbaen and Schachermayer (1994, 1998), there should be no trading strat-
egy H for the process S, such that the final payoff described by the stochastic
integral  is a nonnegative function, strictly positive with positive prob-
ability.

A buy-and-hold strategy can be described, from the mathematical point of
view, as an integrand of the form where are stop-
ping times and is The interpretation of this integrands
is clear: when time comes up, buy units of the financial asset,
keep them until time and sell. Stopping times are interpreted as signals
coming from available information and this is one reason why, in mathemat-
ical finance, the filtration and further concepts such as predictable processes,
are so relevant. Even if the process S is not a semi-martingale, the stochastic
integral (H.S) for a buy-and-hold strategy H can be defined as the process

A linear combination of buy-and-hold
strategies is called a simple integrand. In the general case simple integrands
are not sufficient to characterize these processes that admit an equivalent mar-
tingale measure. On the other hand the use of general integrands leads the
problem of the existence of (H.S). The so called admissible integrands avoid
all of these pathologies.

Formally, if S denotes an semi-martingale, defined on the filtered
probability space an predictable process H is
called if it is S-integrable, if if the stochastic integral
satisfies and if the exists a.s.  If H is admissible
for some then is simply call admissible.

In order to characterize mathematically the NA and the No Free Lunch
(NFL) properties, we need to consider the following vector spaces. Let us
denote by the vector space of all real-valued measurable functions defined
on Endowed with the topology of convergence in probability, this space be-
comes a Fréchet space (i.e. a complete and metrisable vector space). de-
notes the subspace of of all bounded functions. It is remarkable that the two
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spaces and are, among the spaces, the only two spaces that remain
the same when the original probability measure is replaced by an equivalent
one. Let us to introduce the following sets:

In all papers dealing with the Fundamental Theorem of Asset Pricing (with
simple integrands), the assumption of NA or NFL essentially amounts to say-
ing that the set does not contain any non-negative random variable except
the null one.

Formally, we say that the process S satisfies the NA property if:

which is equivalent to the expression

The process S satisfies the NFL property if

where the bar denotes closure in the norm topology of
The NFL is an old expression used in the early days of the finance literature.

The NA postulates that the set of random variables which can be achieved by
a zero cost portfolio does not include any positive random variable. The NFL
condition, postulates the same on the topological closure of the previous set.
The following technical definition is due to Kreps (1981). Let S be a bounded
process and let us denote by the set of all outcomes with respect to bounded
simple integrands. is defined in the same way

Then, an adapted process S satisfies the NFL property, as above, if the cor-
responding set of outcomes does not contain any non-negative random variable
except the null, where the tilde denotes weak closure. Deal-
ing with the weak closure it may happen that an element of this set can only be
obtained by an unbounded generalized sequence. Unfortunately the economic
interpretation of this unbounded objects is unclear. However requirements of
NA and NFL in expressions (1) and (2) are very strong. We assume that S is a
semi-martingale and there is an equivalent martingale measure for the process
S. On the other hand we need a definition for the set of outcomes with respect
to general admissible integrands. The following theorem from Delbaen and
Schachermayer (1998), characterizes the NFL concept through a boundedness
property in
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THEOREM 1 The process S satisfies the property NFL (2) if and only if it
satisfies

1 the NA property (1) and

2 is bounded in the space

They remark that the boundedness of the set has the following economic
interpretation: for outcomes that have a maximal loss bounded by 1, the profit
is bounded in probability, this means that the probability of making a big profit
can be estimated from above, uniformly over all such outcomes.

For further characterization of the NFL property and related results for lo-
cally bounded semi-martingales S, see Delbaen and Schachermayer (1994,
1998).

A recent projective system approach to the martingale characterization of
the absence of arbitrage is provided by Balbás et al. (2002). The equivalence
between the absence of arbitrage and the existence of an equivalent martingale
measure fails when an infinite number of trading dates is considered. Thus,
enlarging the set of states of nature and the probability measure through a pro-
jective system of perfect measure space, the authors characterize the absence
of arbitrage when the time set is countable.

The martingale characterization can be extended in the context of imperfect
financial models, mainly financial models with proportional transaction costs,
short sale constraints, convex cone constraints, etc.

We can observe three main lines of research generalizing these initial results.
The first one applies in the context of imperfect financial markets for a model
with transaction costs. The second line of research expands the restricted fea-
sible portfolio case, usually cone constraints. The third research direction and
the most recent one is based on the assumption that the price is non-linear with
respect to the portfolio. Then the subaditivity property is needed and the Cho-
quet integral is a powerful tool to be used in this context. The asset pricing
problem is then solved as a Choquet integral of the future returns with respect
to a new capacity introduced by Chateaunef et al. (1994,1996).

Currently there is a pressing need for a universal framework for the determi-
nation of the fair value of financial and insurance risks. In the financial services
industry, this pressing need is evidenced by the recent Basel Accords on regu-
latory risk management that require fair value, analogous to market prices, to
be applied to all assets or losses, whether traded or not. More recently Wang
(2000, 2001) presents a universal framework for pricing financial and insur-
ance risks.
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2.2.2 Asset Pricing in Imperfect Financial Markets

In the classical setting, the financial market is modeled in a “frictionless”
way which is a clear idealization of the real world. Therefore models with
transaction costs have been increasingly studied in the literature; see Davis
and Norman (1990) or Striker (1990). Jouini and Kallal (1995a) characterize
the assumption of NFL in a model with transaction costs and give fair pricing
intervals for contingent claims in such a model. As for other imperfection,
Jouini and Kallal (1995b, 1999) consider the case of short sale constraints
or shortselling costs with possibly different rates for borrowing and lending
rates. The problem of hedging contingent claims, in continuous time, is study
by Cvitanic and Karatzas (1996). They propose a diffusion model (with one
bond and one risky asset) with proportional transaction costs, and give a dual
formulation for the so-called super-replication price of a contingent claim (i.e.
the minimum initial wealth needed to hedge the contingent claim, or in other
words, to obtain, through the investment opportunities available on the market,
at least the contingent claim). Delbaen et al. (1998) generalize this result
to the multivariate case, in discrete as well as in continuous time, and with a
semi-martingale price process. In these models too, typically there is a “bond”
which serves as numeraire asset. The usual assumption is that, at final date T,
all the positions in the other traded assets are liquidated, i.e., converted into
units of the bond.

More recently, Jouini and Napp (2002) generalize existing results in the fol-
lowing ways: first, they do not assume that there exists a numéraire available
to investors and allowing them to transfer money from one date to another; this
enables to consider any type of friction on the numéraire-like no borrowing,
different borrowing and lending rates, bonds with default risk, etc. These set-
ting also take into account the fact that all investors are not equal with regard
to borrowing and lending, namely some investors may enjoy special borrowing
facilities while others may not; second, they are led to introduce a new notion
of NFL, which is the classical concept in finite time but does not exclude a
free lunch at infinite and is therefore may be more economically meaningful;
last, they characterize the NFL assumption for very general investments, which
enables to consider investment opportunities that are not necessary related to
a market model and, to generalize the results obtained for imperfect markets
and to obtain them all in a unified way. Technically, all investment opportu-
nities are described in terms of cash flow. Therefore, separation techniques in
more complex spaces to obtain the Fundamental Theorem of Asset Pricing are
needed. Let consider their main Assumption A.

DEFINITION 2 An investment is an  process
null outside a finite number of dates, i.e. there exists such that

for all and such that is in for all
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DEFINITION 3 (ASSUMPTION A) There exists a sequence
such that for all for all in of positive probability, there exists
H in the convex cone of investment opportunities J, of the form out-
side for all for all and there exists

Roughly, Assumption A corresponds to the possibility of transferring “some
money” from any date and event to some particular date. This assumption is
not too restrictive: it is satisfied if we can buy at every date and event a bond
with a given maturity even if this bond is defaultable and even if there is no
secondary market for that bond (i.e. we have to wait until maturity in order to
recover any money with a positive probability, which may be different from 1);
this includes market models with frictions on the numeraire like no borrowing,
different borrowing and lending rates, bonds with default risk, different bor-
rowing facilities among the investors. More generally, it is satisfied if there is
at least one asset whose price cannot be negative (which is usually the case for
stocks or for options, defaultable bonds,etc.).

Then a characterization of the NA property in a model with flows is given
by Jouini and Napp (2002) in the following theorem.

THEOREM 4 Let J denote a convex cone of investments satisfying Assump-
tion A. There is NFL for J if and only if there exists a process
satisfying for all in T, for some M in ,and such that

for all
Moreover, the process can be taken
In other words, there is NFL for a convex cone of available investments

satisfying Assumption A if and only if a given convex set of “admissible” dis-
count processes is non-void. The theorem ensures the existence of a “discount
process” such that, using this process as deflator, all available investments have
non-positive present value; this means that there exists a term structure such
that the market consisting of the primitive investment opportunities and of the
additional borrowing and lending facilities is still “arbitrage-free”. Besides,
the existence of such a discount process prevents from any arbitrage opportu-
nity. Notice that Assumption A is not needed to obtain this result if the set of
investment opportunities is related to a countable set of dates.

Since most market models with frictions can fit in the model with flows for
a specific convex cone of available investments, the model in Jouini and Napp
(2002) provides a unified framework for the study of the characterization of
the absence of FL in such imperfect market models. However this model with
flows does not stand for economies with fixed transaction costs, since the set
of available investments is not a cone.

Kabanov (1999, 2001) develops a mathematical theory of currency markets
with transaction costs based on ideas of convex geometry. He proposed an
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appealing framework to model financial markets in a numeraire-free way for
both frictionless markets and markets with transaction costs. This approach
turns out to be conceptually interesting, even in the frictionless case, as it al-
lows for a new look on the wealth processes, arising in financial modelling,
without explicitly using stochastic integration: expressing portfolios in terms
of the number of physical units of the assets, as opposed to the values of the
assets in terms of some numéraire, opens new perspectives. Basically, the
financial market is modelled by a dxd matrix-valued stochastic process spec-
ifying the mutual bid and ask prices between d-assets. The terms of trade at
time are modeled via an non-negative matrix -valued map

denoting the bid and ask prices for the exchange between the as-
The entry of denotes the number of units of asset from which an

agent can trade in one unit of asset in terms of the asset bid-ask processes
are defined as adapted processes taking values in the set of bid-ask-matrices.

a.s. for all and in the frictionless case.
Kabanov et al. (2001) introduce the bid-ask process in a somewhat indirect

way. They start with a price process which models the prices
of the assets without transaction cost in terms of some numeraire (it may
be a traded asset or not). One then defines a non-negative  -matrix

of transaction cost non-negative coefficients modelling the
proportionally factor one has to pay in transaction costs, when exchanging the

into the asset. Then the bid-ask process is obtained as

where 1 denotes the unit matrix (not to be confused with the identity ma-
trix).

Schachermayer (2002) presents a direct modelization of the bid-ask process
without first defining and It seems more natural, from

an economic point of view, as in a market with friction an agent is certainly
faced with a bid-and an ask-price. But these prices are not necessarily decom-
posed into a “frictionless” price and additional transaction costs.

The notion of consistent price system (resp. strictly consistent) introduced
by Kabanov and his co-authors extends the notion of equivalent martingale
measures. Similar notions are in Schachermaver (2002).

DEFINITION 5 An adapted  valued-process is called a con-
sistent (resp. strictly consistent) price process for the bid-ask process if Z
is a martingale under P, and lies in (resp. in the relative
interior of a.s., for each t=0,...,T,.

sets.
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for is the polar
of. and is the solvency cone, i.e., the convex cone in spanned
by the unit vectors and the vectors

The cone has a nice economic interpretation, eluded by the term
“consistent price system”. A vector is in if it defines a friction-
less pricing system for the assets 1,…,d which is consistent with the bid-ask-
matrix in the following sense: if the price of asset (denoted in terms of
some numéraire) equals then the friction-less exchange rates,denoted by

clearly equal

>From the economical point of view, a consistent price system
is strictly consistent if, for all the exchange rate is in
the relative interior of the bid-ask spread

The main theorem in Kabanov et al. (2001) is the following version of the
Fundamental Theorem of Asset Pricing: under an additional assumption, a bid-
ask process satisfies the strict NA condition, if there is a strictly consistent
price system Z for The additional assumption is called “efficient friction”
and requires that a.s., for all It was asked by these
authors whether this additional assumption can be dropped. Schachermayer
(2002) gives an example of a bid-ask process with and T = 2,
showing that, in general, the answer to this question is no. In the same paper a
slight strengthening of the notion strict NA, called the robust no arbitrage
is introduced. A subsequent Fundamental Theorem of Asset Pricing as a main
result is then formulated.

2.2.3 Asset Pricing with Cone Constraints
Pham and Touzi (1999) addresses the problem of characterization of NA in

the presence of frictions in a discrete-time financial market model. They ex-
tend the Fundamental Theorem of Asset Pricing with cone constraints on the
trading strategies under a nondegeneracy assumption. In the presence of trans-
action costs and under a nondegeneracy condition on the risky assets price
process, they also prove that the NFL and the NA conditions are locally equiv-
alent i.e. when trading is restricted to some period Their main result
states the equivalence of the no local arbitrage condition and the existence of an
equivalent probability measure satisfying a further generalization of the mar-
tingale property. They do not provide a multiperiod version of this result. For
a more general setting of convex constraints see Brannath (1997).



36 RECENTS ADVANCES IN APPLIED PROBABILITY

2.2.4 Nonlinear Asset Pricing
On financial markets without frictions, no-arbitrage pricing allows to price

non-marketed redundant assets using the equilibrium prices of the marketed
assets. Assets are then valued by a linear function of their payoffs (mathemat-
ical expectation). The equilibrium prices of the marketed assets determine a
set of risk neutral probability distributions such that the equilibrium price of a
redundant asset equals the mathematical expectation of its discounted payoff
with respect these probability distributions. This pricing rule is consistent with
equilibrium in the sense that, introducing a redundant asset at its no-arbitrage
price does not affect the equilibrium allocation; see, for example, Harrison and
Kreps (1979). In markets with frictions, pricing rules may be non-linear. Two
portfolios yielding the same payoffs need not have the same formation cost
(net of transaction cost), but the difference may not imply the existence of a
free lunch because of frictions. Consider for example bid-ask spreads or trans-
action costs. Then clearly prices (as a function of asset payoffs) are non-linear,
since the price an agent has to pay for buying an asset is strictly larger than the
price an agent receives for selling it. Therefore equilibrium asset prices cannot
be represented by the mathematical expectation of their discounted payoff with
respect to a probability measure.

Asset valuation by a Choquet integral is introduced in Chateauneuf et al.
(1996). They introduce a nonlinear valuation formula similar to the usual ex-
pectation with respect to the risk-adjusted probability measure. This formula
expresses the asset’s selling and buying prices set by dealers as the Choquet
integrals of their random payoffs. In this paper bid-ask spreads are consid-
ered. Bid-ask spreads is one of many types of friction prevailing in financial
markets which differs from the traditional formalization of proportional trans-
action costs.

Let consider the following situation pointed out by Chateauneuf et al. (1996):
assumed that a dealer sells an asset Y (defined by its flow of payoffs) at a price

and that she buys it a price such that she makes the positive
profit Then, because cannot
be linear, hence it cannot be calculated as where S is the
set of random states and is some risk-adjusted probability over S. In these
settings, the paper imposes certain axioms on prices (generalizing the usual no-
arbitrage conditions) and deduces from them a result on the structure of prices
(representation as Choquet integral: an expectation with respect to a concave
capacity). Capacities were introduced by Schmeidler (1989) in individual de-
cision theory. Formally, a capacity on a measurable space (S, is a set of
functions satisfying Furthermore is
said to be convex (resp. concave or supermodular) if
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In this context, a convex capacity is interpreted as a representation of risk
(uncertainty) aversion. This characterization of uncertainty aversion has been
used in single-agents models for which convex capacities are representations
of individual behaviors. In contrast, Chateauneuf et al. (1996) use a model for
which agents are price takers and the concave capacity is derived from prices.

Formally, the model uncertainty they consider is described by the measur-
able state space (S, where is a given of events of S. An
asset is defined by the random variable X of its payoffs. Bounded assets are
considered. These assets are sold and bought by a dealer to agents. Hence,
all traded assets have a bid and an ask price fixed by the dealer. These prices
are described by and respectively, i.e., the prices at which the
dealer sells asset Y to agents and buy asset Y from agents. Three axioms on
prices which generalize the usual NA conditions to market with a dealer are
then imposed. The first is the usual NFL. The second one, as is usually done
in pricing models, assumes no transaction costs on riskless assets. The third
axiom replaces the (usually implicit) tight markets condition. Traditionally,
two portfolios yielding the same payoffs must have the same price, implying
that price functional is linear. Taking into account potential reduction of risks
when portfolio X + Y is sold instead of X or Y alone induces the dealer to
sell X + Y at a discount to X and Y.

A typical example where hedging effects occur and X and Y are not comono-
tone (comonotonicity := for all
is the following one from Chateneauf et al. (1996). Suppose that X offers
1000 if even B occurs, 5000 otherwise, Y offers 5000 if B occurs, 1000
otherwise. Clearly X and Y are not comonotone and X (resp Y) is a hedge
against Y (resp. X) since X + Y is riskless: it offers 6000 with certainty.
So, subadditivity for is required. Notice that,
consequently, no discount will be offered by the dealer when X and Y are
comonotone; i.e., if X and Y are comonotone.
Then the third axiom (Comonotonicity Premium) expresses for all

equality holds if X and Y are comonotone. Their
main result is the so-called Choquet Sublinear Pricing Theorem. Under the
three axioms as above this theorem asserts that there exists a unique concave
capacity on the set of states S such that the value of an asset X is defined by

is an additive probability s.t. The price of
X is the Choquet integral of its payoffs: where
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and  is sublinear (i.e. subadditive and positively homogeneous, and indeed
is concave).

Application to pricing “primes” and “scores” are given in the paper of
Chateauneuf et al. (1996).

In these settings De Waegenaere et al. (1996) propose a pricing rule for the
valuation of assets on financial markets with intermediaries. They assume that
the non-linearity arises from the fact that dealers charge a price for their inter-
mediation between buyer and seller. The price of an asset equals the signed
Choquet integral of its discounted payoff with respect to a concave signed ca-
pacity. Furthermore, they show that this pricing rule is consistent with equilib-
rium and equilibria satisfy a notion of constrained Pareto optimality.

On the other hand, a universal framework for pricing financial and insurance
risks has been introduced recently by Wang (2000) who proposes a pricing
method based on the following transformation
where is the standard normal cumulative distribution. The key parameter
is called the market price of risk, reflecting the level of systematic risk. For a
given asset X with the Wang transform will produce
a “risk-adjusted” cumulative probability distribution The mean value
under will define a risk-adjusted “fair value” of X at time T, which
can be further discounted to time zero, using the risk-free interest rate. This
approach is partly inspired in the work of Venter (1991) and Butsic (1999).

2.3 Time series models
In this section, we revise the literature on the time series models usually

fitted to financial data. As this is a very broad area, the focus is only on the
main branches of the literature with special attention to the most recent devel-
opments. Campbell et al. (1997) and Tsay (2002) present excellent textbook
reviews of Financial Econometrics and Bollerslev (2001) and Engel (2001,
2002a) have very interesting discussions on past developments and future per-
spectives in this area.

Traditionally, the two main motivations to use time series models to ana-
lyze financial data are to represent the empirical properties often observed in
real prices and to estimate and test the financial models described in section 2.
In this section, we describe models proposed mainly to represent the empiri-
cal properties of financial prices while section 4 is devoted to the relationship
between time series models and Finance theory.

The empirical properties of financial prices depend crucially on the fre-
quency of observation. We consider three main classes of frequencies. First,
it is possible to observe prices at very high frequencies as, for example, tick
by tick or hourly prices. These observations are called Ultra-high-frequency
(UHF) data by Engle (2000) and they are usually characterized by unequally
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spaced and discrete-value observations. Another important property is the
presence of strong daily patterns with highest volatility at the open and toward
the close of the day. On top of this intraday volatility pattern, UHF returns are
characterized by highly persistent conditionally heteroscedastic components
along with discrete information arrival effects; see Andersen and Bollerslev
(1997a, 1997b, 1998), Müller et al. (1997) and Andersen et al. (2001). Fi-
nally, it is possible to have multiple transactions within a single second.

Prices can also be observed at high frequencies, as for example, daily or
weekly. This frequency is the most extensively analyzed in the empirical liter-
ature. There is a vast number of papers that show that high frequency returns
are nearly non-correlated although they are not independent because there are
non-linear transformations, as squares or absolute values, that have significant
autocorrelations. Furthermore, these autocorrelations are usually small and
decay very slowly towards zero. The significant autocorrelations of squared
returns are often related with the presence of volatility clustering, i.e. periods
of low volatility are usually followed by periods of low volatility and vicev-
ersa. Furthermore, the slow decay is usually interpreted as the presence of
long-memory in the volatility; see Lobato and Savin (1998) and Granger et
al. (2000) and the references therein. On the other hand, high frequency re-
turns are often leptokurtic and, consequently, non-Gaussian. The heavy tails
property of returns can also be related with the dynamic evolution of volatility.

Finally, prices are sometimes observed at very low frequencies as, for exam-
ple, monthly. Tsay (2002) shows that monthly returns still have excess kurtosis
although smaller than in lower frequencies. On the other hand, monthly returns
seem to have more serial correlations than daily returns. Given that low fre-
quencies are not in general of interest for asset pricing models, the focus in this
section is on UHF and high frequency observations.

The rest of the section is organized as follows. Subsections 3.1 to 3.3 deal
with models for high frequency observations. In subsections 3.1 and 3.2, we
describe the models usually fitted to represent expected returns and volatilities
respectively. In subsection 3.3, we consider multivariate models for systems of
returns. Finally, in subsection 3.4, we describe models for UHF data.

2.3.1 Models for the conditional mean

One of the central questions in the Financial Econometrics literature is whe-
ther financial prices are predictable and this is still a topic of controversy; see,
for example, the special issue of the Journal of Empirical Finance, 8 (2001).
In this section we describe univariate models and, consequently, the problem
is whether future prices can be predicted with information contained in their
own past. The main hypothesis that have often been tested are the martingale
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and the random walk hypothesis. The martingale hypothesis can be expressed
as follows:

Therefore, given the prices up to time the price at time is expected
to be equal to the price at time The martingale hypothesis places a re-
striction on expected returns but does not take into account the risk. However,
as said in section 2, once asset returns are properly adjusted for risk, the mar-
tingale hypothesis holds for rationally determined asset prices; see Harrison
and Kreps (1979). It is known that, the risk-adjusted martingale property is the
basis of many financial derivatives as, for example, options and swaps; see, for
example, Merton (1990) and Campbell et al. (1997).

The second hypothesis often tested in the financial literature is whether
prices are generated by a random walk plus drift model given by:

where is an independent process with zero mean and variance and is the
expected price change. In model (5), if the distribution of the errors is, for
example, Gaussian, there is a positive probability that prices can be negative,
violating limited liability. Therefore, it is usual to assume the random walk
model not for prices but for logarithmic prices, i.e.

In model (6) any arbitrary transformation of prices is unforecastable using
any arbitrary transformation of past prices. However, it is usual to assume
that the errors are merely uncorrelated instead of independent allowing, for
example, for the presence of conditional Heteroscedasticity.. As we have men-
tioned before, this is a property often observed in high frequency returns. Con-
sequently, we will focus on tests of the random walk hypothesis where is
uncorrelated.

When testing the null hypothesis that the autocorrelation coefficients of re-
turns, are all zero, it is important to take into account that

is not independent because, usually, is correlated. Therefore, the tradi-
tional tests for uncorrelatedness should be adequately modified; see Romano
and Thombs (1996) and Lobato et al. (2001) among others.

Alternatively, the random walk hypothesis can be tested using the Variance
Ratio (VR) statistic. This test is based on the property that the variance of
random walk increments is a linear function of time interval; see Campbell et
al. (1997) for a detailed description of the VR test.

The implementation of the previous tests to financial prices, seems to sug-
gest that financial asset returns are predictable; see the special issue of the
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Journal of Empirical Finance, 8 (2001) and the references therein. There are
several alternative explanations for this predictability. For example, Campbell
et al. (1997) and Lo and MacKinlay (1990) show that nonsynchronous trading
can introduce negative autocorrelations in returns. The bid-ask spread can also
introduce negative autocorrelations in asset returns; see, among others, Camp-
bell et al. (1997). Other possible explanations are time-varying risk premiums
as in Harvey (2001) and Bekaert et al. (2001), irrational behavior of market
participants in Hong and Stein (1999), Benartzi and Thaler (1995), Barberis et
al. (2001) and Epsein and Zin (2001), market frictions as transaction costs or
agency problems or fluke due to statistical inference.

2.3.2 Models for the conditional variance
Although, it is generally accepted that asset returns appear to be close to

a martingale difference process, there is an overwhelming evidence that they
are not independent due to autocorrelated squares. Assuming that returns have
zero mean and are serially uncorrelated, they can be represented by the follow-
ing model:

where is an independent and identically distributed (i.i.d.) process with zero
mean and unity variance independent of the volatility, There are two main
proposals in the literature to represent the dynamic evolution of General-
ized Autoregressive Conditional Heteroscedasticity (GARCH) and Stochastic
Volatility (SV) models.

GARCH models, originally proposed by Engle (1982) and Bollerslev (1986),
are based on modelling the volatility as the variance of returns conditional on
past observations. There is a pleyade of papers where GARCH models are
investigated from a theoretical point of view or are applied to the empirical
analysis of financial time series. The main properties of GARCH models have
been reviewed, among others, by Bollerslev et al. (1995) and Carnero et al.
(2001a). Although the original motivation of GARCH models was mainly
empirical, Nelson (1992) shows that even when mispecified, ARCH models
may serve as consistent filters for the continuous–time stochastic volatility dif-
fusions often employed in the asset pricing literature. Furthermore, Nelson
(1990, 1994) and Nelson and Foster (1994) provide some important links be-
tween GARCH and the corresponding continuous–time models.

The original GARCH model has been extended in a huge number of direc-
tions. Two of the main extensions from the empirical point of view, are models
to represent the asymmetric response of volatility to positive and negative re-
turns and to represent the effect of the volatility on the return of a stock. The
first effect is known as leverage effect and was introduced by Black (1986).
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The first model proposed to represent the leverage effect was the Exponential
GARCH (EGARCH) model of Nelson (1991). Later, Hentschel (1995), Duan
(1997) and He and Terasvirta (1999) have proposed models general enough
to unify many of the main previous ARCH-type models. With respect to the
effect of volatility on the expected return, Engle et al. (1987) introduced the
GARCH in mean (GARCH-M) model given by

The parameter c is known as the risk premium parameter. Returns generated
by the GARCH-M model are autocorrelated because of the autocorrelations of
the volatility,

There are many other generalizations of the original GARCH model. For
example, Zakodian (1994) allows for regime switching where volatility per-
sistence can take different values depending on whether returns are in a high
or a low volatility regime. To represent the long memory property of squared
returns, Baillie et al. (1996) introduce the Fractionally Integrated GARCH
(FIGARCH) model. Although the FIGARCH model has been fitted in several
empirical applications, it is not stationary in covariance and, consequently, the
properties of the corresponding estimators and tests are generally unknown.
Finally, Engle and Lee (1999) have proposed a GARCH model with two com-
ponents in volatility: one which is nearly nonstationary and another that is
much less persistent.

All GARCH models have the attractive that can be easily estimated by Max-
imum Likelihood techniques. However, Terasvirta (1996) and Carnero et al.
(2001b) show that the basic GARCH(1.1) model is not flexible enough to rep-
resent adequately the properties often observed in real time series of returns.

Alternatively, the volatility, can be modelled using SV models that in-
troduce an additional noise in its equation. Therefore, the volatility is a latent
variable composed of a predictable component, that depends on past returns,
plus an unexpected component. SV models were originally proposed by Taylor
(1986) and their properties have been reviewed by Taylor (1994), Ghysels et
al. (1996) and Shephard (1996). The introduction of the unobserved compo-
nent in the representation of the volatility, gives more flexibility to SV models
to represent the empirical properties often observed in real time series of re-
turns; see Carnero et al. (2001b). However, the estimation of these models
present some added difficulties over the estimation of GARCH models. The
likelihood function has not a close form and, consequently, most estimation
methods proposed in the literature are based on numerical approximations of
the likelihood or on transformations of the observations. Although, there is
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not still a consensus about which are the most adequate methods to estimate
SV models, recently there has been important progress towards methods that
are computationally feasible and, at the same time, have properties similar to
the Maximum Likelihood estimators; see Broto and Ruiz (2002) for a detailed
description of estimation methods for SV models.

Recently, Chib et al. (2002) have proposed the following SV model where
returns can contain a jump component to allow for large, transient movements,

where and are covariates and denotes the level effect. The covariate
is a non-negative process as, for example, lagged interest rates; see Ander-

sen and Lund (1997). The noises and are mutually independent Student-
t and Gaussian white noise processes respectively, both with zero mean and
variances one and Finally, with respect to the jump component, is a
Bernoulli random variable that takes value one with probability and is
the size of the jump distributed as They ar-
gue that model (9) without the jump component can be thought of as an Euler
discretization of a Student-t Lévy process with additional stochastic volatil-
ity effects. This process has been used in the continuous time options and
risk assessment literature; see, for example, Barndorff-Nielsen and Shephard
(2002b), Eberlein (2002) and Eberlein and Prause (2002). On the other hand,
models with jumps have also been frequently applied in continuous time mod-
els of financial asset pricing; see, for example, Merton (1976), Ball and Torous
(1985), Bates (1996), Duffie et al. (2000) and Barndorff-Nielsen and Shephard
(2001). From the point of view of the Financial Econometrics literature, SV
models with jumps have been previously considered by Chernov et al. (2000),
Barndorff-Nielsen and Shephard (2002a) and Eraker et al. (2003).

As in the case of GARCH models, SV models have also been extended
to represent the asymmetric response of volatility to negative and positive re-
turns and the response of expected returns to volatility by Harvey and Shephard
(1996) and Koopman and Uspensky (2002) respectively. Another extension of
SV models considered in the literature is to allow for long memory in volatility;
see Harvey (1998) and Breidt et al. (1998).

2.3.3 Models for conditional covariances

Multivariate models have been often used to represent financial series of
returns related, for example, with the Asset Pricing Theory (APT), asset al-
location, estimation of time-varying betas or Value at Risk (VaR). However,
although numerous multivariate models for returns have been proposed, there
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is not jet a consensus about which models are better mainly due to a dimension-
ality problem. The literature on multivariate GARCH models is often related
with the lack of parsimony of these models and the constraints needed to guar-
antee that the conditional covariance matrix, is positive definite; see Engle
(2002a,b) who revises the most popular multivariate models proposed in the
context of GARCH. The dimensionality becomes very quickly a problem be-
cause the conditional covariance matrix of a k-dimensional return series has
k(k+1)/2 distinct quantities. To keep the number of parameters low, Boller-
slev (1990) considers a multivariate GARCH model with constant correlations
that always satisfies the positive-definite condition of The constant cor-
relation hypothesis can be tested using the Lagrange multiplier test proposed
by Tse (2000). Because of its computational simplicity, the constant correla-
tion model of Bollerslev (1990) has been widely used in the empirical analysis
of financial data. However, if the correlations evolve over time, this model is
inadequate and can give incorrect inferences. Very recently, there have been
different proposals of multivariate GARCH models with time varying condi-
tional correlations. For example, Tsay (2002) proposes two alternative ways of
dealing with the conditional covariance matrix. The first one consists of model-
ing directly the evolution of the autocorrelation and the second is based on the
Cholesky decomposition of The attractive of the second alternative is that
it does not require any constraint to ensure the positive definiteness of Al-
ternatively, Tse and Tsui (2002) propose a multivariate GARCH (MGARCH)
model with time-varying correlations where the constraints required to ensure
positive definite covariance matrix can be imposed during the optimization
procedure. Finally, Engle (2002b) proposes a nonlinear Dynamic Conditional
Correlation (DCC) model that can be estimated in two steps from univariate
GARCH models. Alternatively, Ledoit et al. (2003a) also propose a two step
estimation procedure of the original unrestricted diagonal-Vech multivariate
GARCH(1,1) model of Bollerslev et al. (1988) given by

In the first step, the parameters are estimated separately by estimating the
two-dimensional or one-dimensional equations in (10). Then, the estimated
matrices are transformed to guarantee positive semi-definiteness.

An extensive and detailed comparison between the alternative models to
represent time-varying correlations is still to be done.

Another completely different approach to simplify the dynamic structure of
a multivariate volatility process is to use factor models. Multivariate factor
models provide a way of dealing with the APT; see, for example, Campbell
et al. (1997) for a very simple exposition. Denoting by the vector of
returns at time it is given by
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where D is a diagonal matrix, B is the matrix of factor loadings and is
a K dimensional vector of factors. The APT says that, as the dimension of

increases (approximating the market), then where is the
riskless interest rate, is a vector of ones and is a vector representing the
factor risk premium associated with the factors often identified as the variances
of the factors. However, the normality assumption in (11) is usually inadequate
for high frequency series of returns. Consequently, this assumption has been
relaxed in the consequent literature. Diebold and Nerlove (1989) and King et
al. (1994) analyze factor models where the factors and idiosyncratic errors
follow their own ARCH process. Sentana and Fiorentini (2001) show that the
identifiability restrictions for conditionally heteroscedastic factor models are
less severe than in static factor models.

In the context of SV models, the first multivariate model was originally
proposed by Harvey et al. (1994) who allow the variances and covariances
to evolve through time with possibly common trends. Later, Ray and Tsay
(2000) used the same model to study common long memory components in
daily stock volatilities of groups of companies. However, the multivariate SV
model of Harvey et al. (1994) restricts the correlations to be constant over
time. Later, Jacquier et al. (1995) propose a factor SV model given by

Kim et al. (1998) generalize model (12) by allowing the idiosyncratic
noises to follow independent univariate SV models. Then, Aguilar and West
(2000) and Pitt and Shephard (1999) implement the model using two alterna-
tive Monte Carlo Markov Chain (MCMC) techniques. Finally, Tsay (2002)
presents a MCMC estimation of the multivariate SV model based on the Cho-
lesky decomposition.

2.3.4 Models for intradaily data

The analysis of UHF data is closely related with what is known as Mar-
ket Microestructure and is one of the most active research areas in Financial
Econometrics. However, traditional econometric tools may not be appropri-
ate as tick by tick observations are not equally spaced and discrete valued. In
this case, it is possible to use market point processes or continuous time meth-
ods in which the sampling frequency is determined by some notion of time
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deformation; see, for example, Andersen (1996). With respect to using UHF
data to estimate the volatility, Andersen and Bollerslev (1998) show that the
precision of volatility forecast is improved if the data are sampled more fre-
quently. However, UFH data are affected by problems as the bid-ask spread or
non-synchronous trading that, as previously mentioned, can generate autocor-
relations in returns. Andersen et al. (2001) develop new robust methods for
inference in the UHF data setting. Their approach is based on an extension of
the Fourier Flexible Form (FFF) regression framework.

Hausman et al. (1992) proposes an ordered probit model to study price
movements in transactions data where the explanatory variables are the dura-
tion between trades, the bid-ask spread, the lagged values of price change and
volume, the return of the S&P500 index and an indicator variable that depends
on the bid and ask prices. Alternatively, Rydberg and Shephard (2003) pro-
pose to decompose the price change into three components: an indicator for
the price change, the direction of the change and the size of the change.

Finally, when analyzing UHF data, it is important to model not only the
trades but also the timing between trades. In this sense, Engle and Russell
(1998) propose the Autoregressive Conditional Duration (ACD) model that
estimates the distribution of the time between events conditional on past in-
formation. Later, Dufour and Engle (2000) show that the more frequent the
transactions, the greater the volatility. Furthermore, they show that transac-
tion arrivals are predictable based on economic variables as the bid-ask spread.
Zhang et al. (2001) extend the ACD model to account for nonlinearity and
structural breaks in the data. Finally, Tsay (2002) introduces the Price Change
and Duration (PCD) model to describe the multivariate dynamics of prices
changes and associate durations.

2.4 Applications of time series to financial models

Summarizing the literature described in sections 2 and 3, it seems rather
clear that there is a gap between the theoretical asset pricing and the Finan-
cial Econometrics literature. First, although continuous time methods and
no-arbitrage arguments are prominent in the asset pricing literature, most in-
fluential contributions have been derived under very restrictive assumptions
about the underlying process. For example, the Black-Scholes option valua-
tion formula assumes constant volatility when, it is generally accepted empir-
ically, that volatility evolves over time. However, recently, some authors have
proposed more realistic continuous time processes with time varying volatili-
ties; see, for example, Hull and White (1987), Heston (1993), Duffie and Kan
(1996) and Dai and Singleton (2000). Engle (2001) suggests that the use of
UHF data potentially could provide information on the more appropriate class
of diffusion models to use for pricing both underlying and derivative assets.
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On the other hand, the Financial Econometrics literature has many challenges
to provide instruments adequate to represent the behavior of asset prices. The
econometrics of, for example, jump diffusion or affine models are difficult.
Bollerslev (2001) points out that recent research on the link between the prob-
ability distributions of actual asset prices and the corresponding risk-neutral
probability distributions implied by derivative prices has just started and that
much research remains to be done. Some relevant references in this sense
are Aït-Sahaila and Lo (2000), Andersen et al. (2002), Chernov and Ghysels
(2000) and Duffie et al. (2000). Also, it is very useful the guest editorial by
Ghysels and Tauchen (2003) and all the papers within the special issue of the
Journal of Econometrics on the intersection between Financial Econometrics
and Financial Engineering.

2.4.1 Estimation of the CAPM
Two classical pricing models arise in the financial literature. Capital Asset

Pricing Model (CAPM) is a set of predictions concerning equilibrium expected
return on assets; see, for example, Sharpe (1964) or Lintner (1965). Classic
CAPM assumes that all investors have the same one-period horizon, and asset
returns have multivariate normal distributions. For a fixed time horizon, let
and be the returns of asset and of the market portfolio M, respectively.
Classic CAPM, sometimes called Sharpe-Lintner CAPM, asserts that

where is the risk-free return and is the beta of asset

Assuming that asset returns are normally distributed and the time horizon is
one period (e.g., one year), a key concept in financial economics is the market

price of risk, given by In asset portfolio management, this is

also called the Sharpe Ratio, after William Sharpe.
In terms of market price of risk, CAPM can be restated as follows:

where is the linear correlation coefficient between and In other
words, the market price of risk for asset is directly proportional to the corre-
lation coefficient between asset and the market portfolio M.

CAPM automatically prices assets in the set of all linear combinations of
basic assets according to this linearity rule, as long as the market portfolio used
in the CAPM is the mean-variance efficient portfolio of risky assets (alternative
termed the Markowitz portfolio). CAPM provides a powerful insight regarding
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the risk-return relationship, where only systematic risk deserves an extra risk
premium in an efficient market. However, CAPM and the concept of “market
price of risk” were developed under the assumption of normal multivariate
distributions for asset returns, and in practice the underwriting beta can be
difficult to estimate.

On the other hand, a common practice pricing non-marketed assets is to
infer the price applying the CAPM formula to this asset as well, by simply
entering the random payoff B corresponding to the non-marketed asset into
the CAPM formula. Technically, the new price has a systematic relationship to
the prices of the basic assets, more precisely, it is the price of the marketed asset
that best approximates the random payoff B in the sense of minimum expected
squared error. Following geometric and statistical considerations, Luenberger
(2002a) proposes a correlation pricing formula similar to the CAPM formula,
which expresses the price of a non-marketed asset in terms of a priced asset
that is the most correlated with the non-marketed asset, rather than in terms
of the marked portfolio. The method has accuracy advantages when values in
the formula must be estimated. Beyond the NA principle, Luenberger (2002b)
derives a pricing method for non-marketed assets determining the price such
that an investor with a specific utility function will elect to include the new
asset in his/her portfolio at the zero level. The idea of zero-level pricing of a
non-marketed payoff is to find the price such that a certain investor will elect
to neither purchase nor short it. At this price the investor is indifferent to the
inclusion of the considered payoff. Conditions ensuring for such a price to be
unique are given in Luenberger (2002b).

Besides CAPM, another major financial pricing paradigm is modern option
pricing theory, first developed by Black and Scholes (1973). Unfortunately,
the Black-Scholes formula only applies to lognormal distributions of market
returns. Options pricing is performed in a world of Q-measure, where the avail-
able data consists of observed market prices for related financial assets. On the
other hand, actuarial pricing takes place in a world of P-measure, where the
available data consists of projected losses, whose amounts and likelihood need
to be converted to a “fair value” price; see Panjer (1998). Because of this dif-
ference in types of data available, modern option pricing is mostly concerned
with the minimal cost of setting up a hedging portfolio, whereas actuarial pric-
ing is based on actuarial present value of costs, with additional adjustments for
correlation risk, parameter uncertainty and cost of capital. In these setting new
research directions are proposed in the recent literature.

The statistical framework for estimation and testing for the classical CAPM
is the Maximum Likelihood (ML) approach; see Campbell et al. (1997), Gib-
bons et al. (1989) and Bollerslev et al. (1988).

Inferences when there are deviations from the assumption that returns are
jointly normal and iid through time have been developed. Tests which accom-
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modate non-normality, heteroscedasticity, and temporal dependence returns
are of interest for two reasons. First, while the normality assumption is suf-
ficient, it is not necessary to derive the CAPM as a theoretical model. Rather,
the normality assumption is adopted for statistical purposes. Without this as-
sumption, the finite sample properties of asset pricing model tests are difficult
to derive. Second, departures of monthly security returns from normality have
been documented. As we have pointed out in this review, there is also abun-
dant evidence of heteroscedasticity and temporal dependence in stock returns.
It is therefore of interest to consider the effects of relaxing these statistical hy-
pothesis. Robust tests of the CAPM can be constructed using a Generalized
Method of Moments (GMM). Within the GMM framework, the distribution
of returns conditional on the market return can be both serially dependent and
conditionally heteroscedastic. The only assumption is that excess asset returns
are stationary and ergodic with finite fourth moments. GMM procedure to es-
timate time-varying term premia and a consumption based asset pricing model
are used in Hansen and Singleton (1982) and Hansen and Scheikman (1995).

Other lines of research are also of interest. One important topic is the ex-
tension of the framework to test conditional versions of the CAPM, in which
the model holds conditional on state variables that describe the state of the
economy. Econometric methods from section 3 are suitable for testing the
conditional CAPM.

Another important subject is Bayesian analysis of mean-variance efficiency
and the CAPM. Bayesian analysis allows the introduction of prior information.
Harvey and Zhou (1990) and Kandel et al. (1995) are examples of work with
this perspective.

There is a controversy about the statistical evidence against the CAPM in
the past 30 years. Some authors argue that the CAPM should be replaced
by multifactor models with several sources of risk; others argue that the evi-
dence against the CAPM is overstated because of mismeasurement of the mar-
ket portfolio, improper neglect of conditional information, data snooping, or
sample-selection bias; and yet others claim that no risk-based model can ex-
plain the anomalies of stock-market behavior. Campbell et al. (1997) explore
multifactor asset pricing models.

2.4.2 Estimation of the term structure

There is a vast literature devoted to the estimation of dynamic models of the
term structure that describe the evolution of yields at all maturities. One of the
main problems in this area is that the theoretical models need to be complex
enough as to represent adequately the empirical complexity often observed.
However, as the complexity of the models increases, their estimation becomes
more difficult.
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Models of the term structure focus mainly on affine models, characterized
originally by Duffie and Kan (1996), that assume that the market price of risk is
a multiple of the interest rate volatility and that the state variables are indepen-
dent. Under these assumptions, ML estimation of the parameters is feasible.
However, many empirical studies have shown that this model has fundamental
limitations; see, for example, Ghysels and Ng (1998) and Dai and Singleton
(2000) between many others. To overcome these limitations, Dai and Single-
ton (2000) propose the multivariate affine term structure models while Ahn et
al. (2002) propose the quadratic term structure models. However, neither of
these models is able to track adequately the dynamic evolution of volatility.
Recently, Ahn et al. (2003) investigates whether an hybrid model between
affine, quadratic and nonlinear models is able to outperform each of the indi-
vidual models. However, they conclude that, in general, this is not the case.
Dai and Singleton (2003) is an excellent review on models of the term struc-
ture described from the point of view of their empirical implementation. They
focus on the fit of the theoretical specifications of dynamic structure models to
the historical shapes of the yield curves.

On the other hand, as we mentioned before, the estimation of these more
complex models becomes difficult as the likelihood does not have, in general,
a close form. One of the most popular methods in this context is the Efficient
Method of Moments (EMM) of Gallant and Tauchen (1996). Duffee and Stan-
ton (2003) estimate a multifactor term structure model with correlated factors,
nonlinear dynamics and flexible price of interest rate risk, using both the EMM
and an approximate Kalman filter. They conclude that the best results are ob-
tained when the latter procedure is used to estimate the model although it is
not asymptotically optimal. However, their results reveal severe biases in the
parameter estimates regardless of the estimation method; see also Duan and
Simonato (1999) and Chen and Scott (2002) for other authors that have also
used the Kalman filter to estimate the term structure.

2.4.3 Estimation of the VaR
Regulators and risk managers are interested in obtaining measures of the

Value at Risk (VaR), defined as the expected loss of a portfolio after a given
period of time (usually 10 days) corresponding to the quantile (usually
1%). This interest has motivate new methods designed to estimate the tails
of the distribution of returns. There are several methods to estimate the VaR.
The early VaR parametric models impose a known theoretical distribution to
price changes. Usually it is assumed that the density function of risk factors
influencing asset returns is a multivariate normal distribution as, for example,
in J.P. Morgan (1996). The most popular parametric methods are variance-
covariance models and Monte Carlo simulation. However, excess kurtosis of
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these factors will cause losses greater than VaR to occur more frequently and
be more extreme than those predicted by the Gaussian distribution. Conse-
quently, several authors propose to use nonparametric (historical simulation)
and semiparametric models that avoid to assume a particular distribution of
price increments although they usually assume independent increments; see,
for example, Danielsson and de Vries (1998). Finally, some authors propose
to use extreme value theory estimation of tail shapes to estimate the VaR; see,
for example, Embrechts et al. (1997) and McNeil and Frey (2000). In relation
with these methods, Pearson and Smithson (2002) describe refinements which
increase computational speed and improve accuracy.

However, as described in previous sections, financial returns are often char-
acterized by volatility clustering and non-Gaussianity. Therefore, several au-
thors have considered extensions of the previous approaches that allow for
time-varying volatilities. The most popular approach is to estimate the VaR
based on Conditional Gaussian GARCH models; see, for example, Christof-
fersen and Diebold (2000) and Christoffersen et al. (2001). Guermat and
Harris (2002) even extend further the GARCH approach to allow for kurtosis
clustering.

Recently, Engle and Manganelli (1999) have proposed a conditional quan-
tile estimation based on the CaViar model given by

Gourieroux and Jasiak (2001) describe several alternative methods to esti-
mate the VaR, focusing on their main advantages and limitations. Tsay (2002)
also describe several of these methods and compare their performance to es-
timate the VaR of daily returns of IBM stocks. In particular, he compares the
RiskMetrics methodology developed by J.P. Morgan, GARCH models, non-
parametric estimation, quantile regression and extreme value, finding substan-
tial differences among the approaches.

Given that, as we have mentioned already, the distribution of high frequency
price increments is non-Gaussian, and even in many cases the conditional
distribution of GARCH models is not Gaussian, many authors suggest us-
ing bootstrap techniques to avoid particular assumptions on the distribution
of factors beyond stationarity of the distribution of returns; see, for example,
Barone-Adessi et al. (1999), Barone-Adessi and Giannopoulos (2001) and
Vlaar (2000). Ruiz and Pascual (2002) review the use of bootstrap methods to
estimate the VaR.

Although there is a huge number of papers devoted to analyze methods to
estimate the VaR as a measure of financial risk, this measure is not without
criticisms; see, for example, Szego (2002) and the papers contained in the
especial number of the Journal of Banking and Finance, 26. There are several
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new measures of risk proposed as remedy for the deficiencies of VaR as, for
example, Conditional VaR (CVaR) and Expected Shortfall.

2.4.4 Estimation of diffusion processes

There are two relatively independent lines in financial modeling: conti-
nuous–time models typically used in theoretical finance and discrete-time mod-
els favored for empirical work. The continuous–time models are dominated by
the diffusion approach. In contrast to stochastic differential equations used in
discrete-time models, stochastic differential equations are widely used to de-
scribe continuous–time models in the theoretical finance literature. The stochas-
tic processes characterized by the stochastic differential equations are Itô pro-
cesses, and continuous–time model assumes that a security price follows
the stochastic differential equation:

where is a standard Wiener process, is called diffusion drift in proba-
bility or instantaneous mean rate of return in finance and is called diffu-
sion variance in probability or instantaneous conditional variance (or volatil-
ity). The celebrated Black-Scholes model corresponds to (16) with constants

and Given that financial time series tend to be highly heteroscedastic,
the general modelization assumes that is random and itself is governed by
another stochastic differential equation.

For continuous–time models, the “no arbitrage” condition, as we have ex-
tensively developed in section 2, can be characterized by a martingale measure,
that is, a probability law under which is a martingale. Prices of options and
derivatives are then the conditional expectation of certain functionals of S un-
der this measure. The calculations and derivations can be manipulated by tools
as the Itô lemma and Girsanov theorem; see Karatzas and Shreve (1991) or the
overviews in Dixit (1993) and Merton (1990).

The log price process after the Itô lemma and from (16)
follows the diffusion model

where the drift for has a term GARCH models are used to represent
statistically the increments of the log price process, so from the diffusion point
of view, (17) is also a natural parametrization of the GARCH drift

While the models are written in continuous–time, the available data are
mostly sampled discretely in time. Ignoring this difference can result in incon-
sistent estimators (see, e.g., Merton (1980)). A number of statistical/econome-
tric methods have been recently developed to estimate the parameters of a
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continuous–time diffusion without requiring that a continuous record of ob-
servations be available.

The methods of moments together with simulation estimations have been
used by Gouriéroux et al. (1993) and Gallant and Tauchen (1996). A forceful
criticism of simulation-based method-of-moments estimation has been that this
method does not provide a representation of the observables in terms of their
own past as do maximum likelihood based on a conditional density and time
series methods such as ARIMA, ARCH and GARCH modeling; see Jacquier
et al. (1994). Gallant and Tauchen (1998) use the notion of reprojection to let
a representation of the observed process in terms of observables that incorpo-
rates the dynamics implied by the possibly nonlinear system under consider-
ation. They propose a methodology for estimation and diagnostic assessment
of several diffusion models of the short rate expressed as a partially observed
system of stochastic differential equations. The theoretical support of the pro-
jection method was provided by Gallant and Long (1997) who showed that it
achieves the same efficiency as ML.

Nonparametric density-matching methods have been applied in Aït-Sahalia
(1996a, 1996b). Discretely observed diffusions have also been fit by estimat-
ing functions; see Kessler and Sørensen (1999) and Kessler (2000). A Monte
Carlo Markov Chain (MCMC) based method is proposed in Eraker (2001).
The method is applied to the estimation of parameters in one-factor interest-
rate models and a two-factor model with a latent stochastic volatility compo-
nent.

Elerian et al. (2001) propose a new method for dealing with the estima-
tion problem of stochastic differential equations that is likelihood based, can
handle nonstationarity, and is not dependent on finding an appropriate auxil-
iary model. As they point out, their idea is simply to treat the values of the
diffusion between any two discrete measurements as missing data and then to
apply tuned MCMC methods based on the Metropolis-Hasting algorithm to
learn about the missing data and the parameters.

As in most contexts, provided one trusts the parametric specification in the
diffusion, ML is the method of choice. The major caveat in the present context
is that the likelihood function for discrete observations generated by the para-
metric stochastic differential equation cannot be determined explicitly for most
models. Since the transition density is generally unknown, one is forced to ap-
proximate it. The simulation-based approach suggested by Pedersen (1995),
has great theoretical appeal but its implementation is computationally costly.
Durham and Gallant (2002) examine a variety of numerical techniques de-
signed to improve the performance of this approach.

If sampling of the process were continuous, the situation would be simpler.
First, the likelihood function for a continuous record can be obtained by means
of a classical absolutely continuous change of measure. Second, when the sam-
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pling interval goes to zero, expansions of the transition function “in small time”
are available in the statistical literature and some calculate expressions for the
transition function in terms of functionals of a Brownian Bridge. Available
methods to compute the likelihood function in the case of discrete-time sam-
pling, involve either solving numerically the Fokker-Plank-Kolmogorov partial
differential equation (see Lo (1988)) or simulating a large number of sample
paths along with the process is sampled very finely (see Pedersen (1995)).
Neither methods produces a closed-form expression to be maximized over the
parameter: the criterion function takes either the form of an implicit solution
to a partial differential equation, that could be approximated by a sum over the
outcome of the simulations. Using Hermite polynomials, Aït-Sahalia (2002)
provides an explicit sequence of closed-form functions. It is shown that it con-
verges to the true (but unknown) likelihood function. It is also documented
that maximizing the sequence results in an estimator that converges to the true
ML estimator and shares its asymptotic properties.

As we have pointed out in section 3, high-frequency financial data are not
only discretely sampled in time but the time separating successive observa-
tions is often random. Aït-Sahalia and Mykland (2003) analyzes the conse-
quences of this dual feature of the data when estimating a continuous–time
model. More precisely, they measure the additional effect of the randomness
of the sampling intervals over and beyond those due to the discreteness of the
data. They also examine the effect of simply ignoring the sampling random-
ness and find that in many situations the randomness of the sampling has larger
impact than the discreteness of the data.

As we have described previously, continuous–time models, dominated by
the diffusion approach, are typically favored in the theoretical finance while
discrete-time models, mainly of the ARCH type, are the focus of empirical
research. Nelson (1990) tried for the first time to reconcile both approaches,
showing that GARCH processes weakly converge to some bivariate diffusions
as the length of the discrete time interval goes to zero. Later, Duan (1997)
proposed an augmented GARCH model and derived its diffusion limit. These
authors link the two types of models by weak convergence. Consequently, it
is rather common to apply the statistical inferences derived under the GARCH
model to its diffusion limit. However, recently Wang (2002), using the Le
Cam’s deficiency distance, shows that the GARCH model and its diffusion
limit are asymptotically equivalent only under deterministic volatility. He con-
cludes that, for modelling stochastic volatility, if a diffusion model is preferred,
it is statistically more efficient to fit data directly to the diffusion model and
carry out the inference.
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2.5 Conclusions
Throughout the paper we have summarized several applications of proba-

bilistic and time series models in finance. We have specially focused on those
pricing models reflecting the absence of arbitrage and free-lunch. Almost all
of them are characterized by the existence of equivalent martingale probability
measures (or risk-neutral measures). Thus the martingale property permits to
price, hedge, speculate or compose efficient portfolios since future prices must
verify the random walk assumption.

However, there are still many open problems that will merit future research.
So, the absence of arbitrage (free-lunch) does not always lead to martingales,
even it one focuses on perfect markets. When dealing with incomplete markets
there are infinitely many risk-neutral measures and it is necessary to establish
coherent criteria in order to choose the adequate one. For imperfect markets
we will never have a unique risk-neutral measure and it is also necessary to find
appropriate instruments in order to relate risk-neutral measures and hedging or
efficient strategies.

Most of the concrete pricing models applied in practice are characterized by
stochastic differential equations reflecting the market dynamic behavior. By
manipulating the stochastic equation it is possible to obtain the partial differ-
ential equation or the risk-neutral measure leading to pricing or hedging rules,
as well as, to those usual topics of asset pricing theory. Time Series and Econo-
metric Models are the key when designing these pricing models and calibrating
or evaluating its empirical possibilities. Furthermore, the growing complexity
of real markets, characterized by more and more connections amongst them
all, higher and higher volatilities, more and more complex risks and securi-
ties, and a increasing number of investors, make it rather necessary to improve
those models usually applied when dealing with pricing issues or interest-rate
linked topics.

Summarizing, probabilistic and time series approaches play a crucial role in
finance, and it is emphasized if one focuses on arbitrage pricing theory. More-
over, the level of development of current markets makes it essential to improve
and enlarge our knowledge about all the involved fields, from theoretical foun-
dations to empirical applications.
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