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Abstract In this paper we consider the family of sets verifying the uniform cusp 
property introduced in [2] and extended in [4] to cusp functions only 
continuous a t  the origin. In the latter case we show that to any ex- 
tended cusp function, we can associate a continuous, non-negative, and 
monotone strictly increasing cusp function of the type introduced in [2]. 
We construct an example of a bounded set in R~ with a CUSP function 
of the form cJOIa, 0 < CY < 1, for which its boundary integral is infinite 
and the Hausdorff dimension of its boundary is exactly N - a. We then 
give compactness theorems for the family of subsets of a bounded open 
holdall verifying a uniform cusp property with a uniform bound on ei- 
ther the De Georgi [6] or the y-density perimeter of Bucur and Zol&o 
[I]. We also give their uniform local Co-graph  versions following [4]. 
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This class forms a much larger family than the one of subsets verifying 
a uniform cone property. 
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Introduction 

In this paper we consider the family of sets verifying the uniform 
cusp property introduced in [2] and extended in [4] to cusp functions 
only continuous at the origin. In the latter case we show that to any 
extended cusp function, we can associate a continuous, non-negative, 
and monotone strictly increasing cusp function of the type originally 
introduced in [2]. Unlike sets verifying a uniform cone property, such 
sets do not necessarily have a locally finite boundary integral. This fact 
is illustrated by constructing an example of a bounded subset of RN 
with cusp function c181", 0 < a < 1, for which the boundary integral is 
infinite and the Hausdorff dimension of its boundary is exactly N - a. 

Even without a uniform bound on the perimeter a general compact- 
ness theorem was given in [4] for a family of subsets of a bounded hold-all 
verifying a uniform cusp property with a cusp function only continuous 
at the origin. In this paper we give compactness theorems for the family 
of subsets of a bounded open holdall verifying a uniform cusp prop- 
erty with a uniform bound on either the De Georgi [6] or the y-density 
perimeter of Bucur and Zol6sio [I]. We also give in § 4.3 their uniform 
local Co-graph versions following [4]. This class of subsets forms a much 
larger family than the one of subsets verifying a uniform cone property. 

1. Preliminaries: Topologies on Families of Sets 

We first introduce some notation. Given an integer N 2 1, m~ and 
HN-l will denote the N-dimensional Lebesgue and ( N  - 1)-dimensional 
Hausdorff measures. The inner product and the norm in RN will be 
written x . y and 1x1. The complement {x E RN : x 4 R) and the 
boundary 2 n CR of a subset R of RN will be respectively denoted by 
CR or RN\R  and by dR or r. The distance function dA(x) from a point 
x to a subset A # 0 of RN is defined as inf{ly - X I  : y E A). 

Recall a few results on metric topologies defined on spaces of equiv- 
alence classes of sets constructed from the characteristic function, the 
distance or the oriented distance functions to a set. Given R c RN, 
F # 0, the oriented distance function is defined as 
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It is Lipschitz continuous of constant 1, and V b n  exists and lVbnl < 1 
almost everywhere in R N .  Thus bn E w,b;P(RN) for all p,  1 < p < co. 
Recall that b; = dn ,  b; = dCn, and 1 bn 1 = d r ,  and that Xint 0 = IVdCn 1 ,  
xintc0 = I V d n ( ,  and Xr = 1 - lVdrl  a.e. in R N ,  where X A  denotes the 
characteristic function of a subset A of R N .  Given a nonempty subset 
D of RN, the family C6(D) = {bn : 0 C and I? # 0) is closed in 
WIJ'(D). The following theorem is central. It shows that convergence 
and compactness in the metric on C6(D) associated with WIJ'(~) will 
imply the same properties in the other topologies introduced in [2]. 

THEOREM 1 Let D C RN be bounded open and 1 5 p < co. The maps 

are continuous. 

Proof. - They are well-defined from [2] (Chapter 5, Theorem 2.1 (iii), 
p. 207) for the map (2) and [2] (Chapter 5, Thm 2.2 (iv)-(v), p. 210) 
for the map (3). They are continuous from [2] (Chapter 5, Thm 5.1). 

2. Extension of the Uniform Cusp Property 

The uniform cusp property introduced in [2] (Chapter 5, 5 11) was 
specified by a continuous function h : [0, p[+ R such that 

Recall that with h of the form h(0) = X (O/p)", 0 < a < 1, we recover 
the uniform cusp property for 0 < a < I and the uniform cone property 
for a = 1, p = X tanw and h(8) = O/ tanw which corresponds to an 
open cone in 0 of aperture w, height A, and axis eN. 

The uniform cusp property was extended in [4] to the family of cusp 
functions h in the larger space 

7-l {h : [O, co[+ R : h(0) = 0 and h is continuous in 0) ( 5 )  

by associating with h E X,  p > 0, and X the axi-symmetrical region 

around the axis e N  = (0,. . . ,0 ,1)  in R N .  Given X > 0, p > 0, h E X,  
and a direction d E RN, \dl = 1, the rotated region from direction eN to 
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d is defined as 

where Hd = {d)' is the hyperplane through 0 orthogonal to the direction 
d. Finally, the translation of C(X, h, p, d) to the point x will be denoted 

LEMMA 2 ([4],[5]) For all X > 0, p > 0, h E 31, and x E R ~ ,  the 
regions C(X, h, p) and C,(X, h, p, d) are nonempty and open. Moreover 
the segment (x, x + Ad) is contained in C,(X, h, p, d). 

The function h is referred to as a cusp function and the space 31 as 
the space of cusp functions. The definition of the uniform cusp property 
in [2] (Chapter 5, 5 11) can now be extended to the larger class 31. 

DEFINITION 3 Let R be a subset of RN such that dR # 0. 
(i) R satisfies the local uniform cusp property if 

Vx E d o ,  3h E 31, 3X > 0, 3p > 0, 3r > 0, 3d E RN, Id( = 1, 

such that Vy E B(x, r )  n n, Cy(X, h, p, d) c int 0 .  

(ii) Given h E 31, R satisfies the h-local uniform cusp property if 

Vz E dfl, 3X > 0, 3p > 0, 3r > 0, 3d E RN, /dl = 1, 

such that Vy E B(x,  r )  n n, Cu(X, h, p, d) c int R. 

(iii) R satisfies the uniform cusp property for ( r ,  A,  h, p) if 

3h E 31, 3X > 0, 3p > 0, 3r > 0, Vx E d o ,  3d E RN, Id1 = 1, 

such that Vy E B(x,  r )  n n, Cy(X, h, p, d) c int R. 

The three cases of Definition 3 only differ when dR is not compact. 

THEOREM 4 ([4]) If dR is compact, then the three uniform cusp prop- 
erties of Definition 3 coincide. 

In fact, when a local uniform cusp property is verified for some cusp 
function h E 31, it is verified for another cusp function which is contin- 
uous, non-negative, and monotone strictly increasing as in (4) .  

THEOREM 5 Assume that R satisfies the local uniform cusp property in 
x E dR for some (r ,  A,  h, p), h E 31. Then there exist (r ' ,  A', h', p'), 
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with h' E 3-1 continuous, non-negative, monotone strictly increasing, and 
A' = hl(p'), such that R satisfies the local uniform cusp property in 
x E dR for (r ,  A', h', p'). 

Proof. - By continuity of h E 3-1 in 0, 

At each step n 2 0 construct the continuous monotone strictly increasing 
and non-negative function k, : [O, 00] -+ R defined as follows 

By continuity of h at the origin and the fact that h(0) = 0, 0, -+ 0 
and k,(O) -+ 0. By construction, 0 5 lh(0)I < kn+l(0) < k,(O) in 

< A/2n+1. 10, 001, kn+1(8) = kn(0) in [8n+1, 001, and Ilkn+l - knll~[0,8,+~] - 
Therefore there exists a continuous non-negative and monotone strictly 
increasing function k t C[O, 801 such that k, -+ k in C[O, 00], k(0) = 0, 
and Ih(0)l 5 k(0) < A in [O, 801. Finally, if k(Oo) = A ,  choose p' such that 
k(pl) = A, A' = A,  and h' = k. If k(Oo) < A ,  choose p' = 00, A' = k(Oo), 
and h' = k. From the construction, p' 5 p, A' < A ,  h' 2 h, and hence 
C(A', h', p') c C(A, h, p). Therefore the local uniform cusp property of 
Definition 3 is verified with a non-negative, continuous, and monotone 
strictly increasing cusp function of the form (4). 0 

We now turn to the compactness theorem. Given a bounded open 
subset D of RN, p > 0, A > 0, r > 0, and h E 3-1, consider the family 

R satisfies the uniform cusp 
L(D,  A,  h, p, r )  

{R C 
: 

property for ( A ,  h, p, r )  

The compactness Theorem 11.1 ([2], Chapter 5 )  readily extends to X. 

THEOREM 6 ([4]) Let D be a nonempty bounded open subset of RN and 
1 5 p < co. For p > 0, A > 0, and h t 3-1 the family 

is compact in c(D) and w'J'(D). AS a consequence the families 
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are compact i n  c(D) and WIJ'(~), and the following families are com- 
pact in  LP(D) 

3. Extended Uniform Cusp Property and 
Boundary Integral (Perimeter) 

Domains R which are locally Lipschitzian epigraphs or, equivalently, 
satisfy the local uniform cone property enjoy the additional property 
that the ( N  - 1)-Hausdorff measure of their boundary dS2 is locally 
finite. In general, this is no longer true for domains which are locally 
Holderian epigraphs of exponent a, 0 < a < 1, but we have an upper 
bound on the Hausdorff dimension of dR. We first recall a definition. 

DEFINITION 7 Let R C RN be such that dR # 0. The set R is said to 
be locally a ~ ' > ~ - e ~ i g r a ~ h ,  0 5 ! 5 1, if for each x E dR there exist 

(a) an open neighborhood U(x) of x; 

(b) a direction e ~ ( x )  E R N 7  / ~ N ( x ) (  = 1; 

(c) a bounded open neighborhood VH(x)  of 0 i n  the hyperplane 
H(x)  = {eN(x)} '  through 0 such that 

where pH(,) is the orthogonal projection onto H(x);  and 

(d) a ~ ' j ' - m a ~ ~ i n ~  a,: VH(%) -+ R such that 

~ ( x )  n intR = ~ ( x )  n x + (' + CNeN (x) : 
c' E V ~ ( z )  

C N  > ax(<') 

THEOREM 8 If R in  R N  satisfies the uniform cusp property associated 
with the function h(0) = 0", 0 < a < 1 ,  then the Hausdorf dimension 
of dR is less or equal to N - a .  

Proof. - From Theorem 3.3 (i) in [4], 0 is locally a Co)"-epigraph and, a 
fortiori, a Co-epigraph. Let r > 0, p > 0, and A > 0 be the parameters, 
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eN(x) = d, the direction and H(x )  the hyperplane through 0 orthogonal 
to d, associated with the point x E dR. Then there exists 7, 

which is the largest radius such that 

The neighborhoods of Definition 3.2 in [4] or Definition 5.2 in Chapter 2 
of [2] that specify the local graph a, : VH(,) + R can be chosen as 

where BH(,) (0, F) is the open ball of radius p in the hyperplane H(x ) .  
For each <' E VH(x), there exists a unique yo E dR n U(x) such that 
pH(,) (yI/ - x) = (I and the function 

is well-defined, bounded, 

uniformly continuous in VH(,), and 

Since dR is compact there exists a finite number of points {xi E dR : 
1 5 i 5 rn) such that dR c U ~ ~ U ( X ~ ) .  Given E < /7, p as chosen in 
(12), let No(&) be the number of hypercubes of dimension N and side 
E required to cover dR and let be the number of hypercubes of 
dimension N and side E required to cover dR n U(xi). 

We have the following estimate 

Indeed the neighborhood 

can be covered by [rX/&IN-' ( N  - 1)-dimensional hypercubes of side E. 

On each ( N  - 1)-dimensional hypercube of side E the variation between 
the minimum and the maximum of the function a, is bounded by 
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So the number of N-dimensional hypercubes of side E necessary to cover 
the hypersurface above each ( N  - 1)-dimensional hypercube of side E is 

Finally 

As a result for all ,L? > N - a 

This means that, by definition, the Hausdorff dimension of dR is less or 
equal to N - a. 

It is possible to construct examples of sets verifying the uniform cusp 
property for which the Hausdorff dimension of the boundary is strictly 
greater than N - 1 and hence H N F l ( d 0 )  = +oo. 

E X A M P L E  9 This following two-dimensional example of an open domain 
satisfying the uniform cusp condition for the function h(0)  = 0", 0 < 
a < 1, can easily be generalized to  an N-dimensional example. Consider 
the open domain fl in R~ 

R S { ( x , y )  : - 1 < ~ < O a n d O < y < 2 )  

n { ( x ,  y )  : 0 < x < 1 and f ( x )  < y < 2 )  

n { ( x , y )  : 1 4 x < 2  a n d O < y < 2 )  

where f : [O,  11 -+ R is defined as follows 

f ( x )  g d c ( x ) " ,  0 5 2 5 1, 

and C is the Cantor set on the interval [0, 11. This function is equal to 0 
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Figure 1. 
h(0) = 8". 

domain R 

-1 0 1 2 

Domain R for N = 2,  0 < cu < 1, ez = (0, I ) ,  p = 116, X = (1/6)", 

Figure 2. f (z) = d ~ ( z ) l / ~  constructed on the Cantor set C for 2k + 1 = 3. 

on C .  Any point i n  [0, l]\C belongs to one of the intervals of length 3-k,  
Ic 2 I ,  which has been deleted from [ O , 1 ]  in  the sequential construction 
of the Cantor set. Therefore the distance function d c ( x )  is equal to the 
distance function to the two end points of that interval. In  view of this 
special structure it  can be shown that 

Denote by the piece of the boundary dR specified by the function f = 

dc.  On r the uniform cusp condition is verified with p = 116, X = 
(116)") and h ( 0 )  = 0". Clearly the number No(&) of hypercubes of 
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dimension N and side E required to  cover 80 i s  greater than  the number  
Nr(&) of hypercubes of d imension N and side E required to cover I'. T h e  
construction of the Cantor  set i s  done by sequentially deleting intervals. 
A t  step k = 0 the interval (113,213) of width 3-I i s  removed. A t  step 
k a total of 2k intervals of width 3-(k+1) are removed. T h u s  if we pick 
E = 3-(k+1) the interval [ O , 1 ]  can be covered with exactly 3(k+1) intervals. 
Here we are interested in finding a lower bound to  the total number  of 
of squares of side E necessary to  cover F. For this purpose we only keep 
the 2k intervals removed at step k .  Vertically it takes 

2-13-(k++1) (2-13-(k+l)) a [' ( k )  '"1 ' 3-(k+l) - 1 

T h e n  we have for P 2 0 

T h e  second t e r m  goes to  zero as k goes to  infinity.  T h e  first t e r m  goes 
to  infinity as k goes to  infinity if 3-(a+8)2 > 1, that  i s ,  0 < a + P < 
ln 21 In 3. Under this condition, H 1 + ~ ( d R )  = H1+4(l?) = +oo for all 
0 < a < ln2/ ln 3 and all 0 5 P < ln2/ ln3 - a. Therefore given 
0 < a < In2/1n3 

and the Hausdorfl  d imension of dR i s  strictly greater than  1 

Given 0 < a < 1, it is possible to construct an optimal example of a set 
verifying the uniform cusp property for which the Hausdorff dimension 
of the boundary is exactly N - a and hence HN-1 (dR) = +m. 

EXAMPLE 10 Optimal example of a set that verifies the uniform cusp 
property with h(8) = /81", 0 < a < 1, and whose boundary has Haus- 
dorff dimension exactly equal to N - a. 

For that purpose, we need a generalization of the Cantor  set. Denote  
by C1 the Cantor  set. Recall that each x, 0 5 x 5 1, can be wri t ten  
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uniquely (if we make  a certain convention) as 

where a j ( 3 , x )  can be regarded as the j t h  digit of x wri t ten  in basis 3. 
From this define the Cantor  set i s  characterized as follows 

Similarly for a n  arbitrary integer k 2 1, each x E [ O , l ]  can be uniquely 
writ ten i n  the form 

CC) 

x = C  
a j ( 2 k  + 1 ,  X )  

j=1 ( 2 k  + l ) j  

and we can define the set  Ck as 

I n  a certain sense, if k l  > k Z ,  Ck, contains more points than  Ck , .  W e  
now use  these sets to  construct the family of set D k  as follows 

and for k > 1 
X E D k  2 k S 1 ( ~  - 2 k )  E Ck. 

Note  that,  if k l  # k 2 ,  D k l  n D k z  = 0 since the Dl,  's  only contain points 
from the interval [I  - 2k-1,  1 - 2 k ] .  Consider n o w  the following set 

and go back to  Example 9 with the function f i s  replaced by the function 

f ( s )  d" dD(X)" .  

Again i t  can be shown that 

No te  that o n  the  interval [I  - 2k-1,  1 - 2" we have d D ( x ) "  = d D , ( x ) " .  
Denote by r the piece of boundary dR specified by the function f = do 

and rk the part of boundary dR specified by the  function f = d D  = do, 
o n  the  interval [I - 2k-1,  1 - 2 k ] .  Once again o n  F the  un i form CUSP 

property i s  verified with p = 116, X = ( 1 / 6 ) " ,  and h ( 6 )  = 6". 
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Clearly the number  N n ( & )  of hypercubes of d imension N and side E 

required to  cover 6'0 is  greater than  the number  Nr, ( E )  of hypercubes of 
d imension N and side E required to  cover rk .  T h e  construction of the 
set Ck i s  also done sequentially by deleting intervals. A t  step j = 0 the  
i n t e r v a l l k l ( 2 k  + I ) ,  ( k  + 1 ) / ( 2 k  + I ) [  of width ( 2 k f l ) - '  i s  removed. A t  
step j a total of 23 intervals of width ( 2 j  + 1 ) - ( j S 1 )  are removed. If we 
consider the intervals that remain at step j ,  a total of 2j+' nonempty  
disjoint intervals of width (&)j+' remain in the set  Ck.  Each  of these 

intervals contains a gap of length (&)j+'& created at  step j + 1. 
If we construct the set Dk in the same way, at step j a total of 2J 

nonempty  disjoint intervals of width ( & ) j + ' $  remain in the set Dk .  
Each of these intervals contains a gap of length (&)j+'&. Pick 

and look for a lower bound o n  the number  of squares of side E necessary 
t o  cover r k .  For this purpose, only consider the 2j+' nonempty  disjoint 
intervals remaining at  step j .  A s  they  each contain a gap of length 

vertically i t  takes 

&-cubes. T h e n  we have for ,!? > 0 
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and hence 

The second term goes to zero as j goes to infinity. The first term goes 
to infinity as j goes to infinity if ( & ) 0 + ~ 2  > 1 for any integer k ,  that 
is, i f  

log 2  
O < a + P <  

log ( (2k  + l ) / k )  ' 
A s  k  can be chosen arbitrarily large, the former inequality reduces to 
0 < a + ,B < 1. Under this condition there exists an integer k  for which 
H l + ~ ( d R )  = H1+p(rk )  = +oo for all 0 < a < 1  and all 0  5 ,L? < 1 - a. 
Therefore, given 0 < a < 1  VP, 0 5 ,8 < 1 - a, Hl+p(dR) = +m.. This 
implies that the Hausdorfl dimension of d R  is greater than or equal to 
2  - a which is the upper bound we obtained i n  Theorem 8. 

4. Compactness under the Uniform Cusp 
Property and a Bound on the Perimeter 

4.1 De Giorgi Perimeter of Caccioppoli Sets 

One of the classical notions of perimeter is the one introduced in the 
context of the problem of minimal surfaces for Caccioppoli sets. 

DEFINITION 11 Let R be a measurable subset of R N .  Given an open set 
D  i n  RN, R  is said to have finite perimeter with respect to D  if Xn E 
B V ( D ) .  This perimeter denoted by P D ( R )  is given by the expression 

where B V ( D )  is the space of functions of total bounded variation and 
M ' ( D )  is the space of bounded measures on D.  

Given a bounded open subset D  of R ~ ,  p > 0, X > 0, r > 0, c > 0, and 
h E X, consider the family 

R  satisfies the uniform cusp 

(17) 
and PD ( R )  5 c 
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The compactness Theorem 6 readily extends to this new family. 

THEOREM 1 2  Let  D be a n o n e m p t y  bounded open subset of R~ and 
1 5 p < oo. For p > 0, A > 0, c > 0, and h E 7L and assume  that  
L(D, A, h, p, r, c) i s  n o t  empty .  T h e n  the family 

i s  compact in c(D) and w'J'(D). A s  a consequence the families 

are compact in c(D) and WIJ'(D), and the following families are com- 
pact i n  Lp(D) 

Proof. - From Theorem 6 there exist fl in L(D, A ,  h, p, r )  and a sequence 
{a,) in L(D, A ,  h, p, r, c) such that ban -+ bR in W1sp(D) and PD(Rn) < 
c. In particular, from Theorem 1, Xnn -+ xn in L1(D). But, in view 
of the uniform bound PD(Rn) < c on the 0,'s (cf. [6]), there exist a 
subsequence { x n n k  } such that Xnnk -+ Xn, in L' (D) for some R' for 
which PD(R1) < c. But, as a subsequence of {R,}, 

bank -+ bn in w'J'(D) and Xnnk -+ Xn in L'(D) 

Hence Xnl = X n ,  PD (R) = PD(R1) 5 c, and R E L(D, A ,  h, p, r, c). This 
concludes the proof. 

4.2 Finite y-density Perimeter 

The y-density perimeter introduced by Bucur and Zol6sio [I] is a 
relaxation of the (N - 1)-dimensional upper Minkowski  content which 
leads to the compactness Theorem 14. We recall the definition and quote 
the compactness for the W1)P-topology under a uniform bound on the 
y-density perimeter as revisited in [3]. 

DEFINITION 13 Let  y > 0 be a fixed real and R a subset of R~ with 
n o n e m p t y  boundary I?. Consider the quotient  

def 
p,(r) = sup m ~ ( U k ( r ) )  

O<k<y 2k  ' 
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Whenever Py(r) is finite, we say that R has a finite y-density perimeter. 

It was shown in [l] that, when Py(l?) is finite, mN(l?) = 0. The compact- 
ness result of [I] can be revisited and established in the ~ ' > p - t o ~ o l o ~ ~  
from which convergence in all other topologies of Theorem 1 follows. 

THEOREM 14 ([3]) Let D # 0 be a bounded open subset of RN and 
{R,), I?, # 0, be a sequence of subsets of D. Assume that 

37 > 0 and c > 0 such that Vn, Py(rn) 5 C. (19) 

Then there exist a subsequence {a,,) and R, r # 0, of such that 

P,(r) 5 lim inf Py(rn) 5 c 
n+w (20) 

VP, 1 5 P < m, bonk -+ bn i n  w'~~(u-,(D)) -strong. (21) 

The proof of the next result combines Theorem 6 which says that the 
family L(D, A, h,  p, r )  is compact with Theorem 14 which says that the 
family of sets verifying (19) is compact in w'>~(D).  The intersection of 
the two families of oriented distance functions is compact in WIJ'(D). 

THEOREM 15 For fixed y > 0, Theorem 12 remains true when PD(R) 
is replaced by the y-density perimeter P,(r). 

4.3 Compactness via Local C"-graphs 

It was shown in [4] (Thm 3.3 and 3.4) that the uniform cusp property 
is equivalent to conditions on the local Co-graphs. Thus by adding a 
condition either on the De Giorgi or the perimeter y-density perimeter 
in Theorem 4.1 of [4] we get the analogues of the above Theorems 12 and 
15. Recall the definition of the orthogonal subgroup of N x N matrices 

where *A is the transposed matrix of A. A direction can be specified 
either by a matrix (of rotation) A E O(N) or the corresponding unit 
vector d = AeN E R ~ .  

THEOREM 16 Let p > 0 be given and assume that U is a bounded neigh- 
borhood of 0 such that 

Let R > 0 be such that B(0,2R) c U. Given a bounded nonempty 
subset D of R ~ ,  consider a family L(D,p ,  U )  of subsets R of D with 
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the following properties: for each R  E L ( D ,  p,  U )  and each x  E dR, 
there exist A R ( x )  E O(N) and a ~ ' - m a ~ ~ i n ~  a: : v"(x) -+ R, where 

def Q ~ " ( x )  = A (z)V and 24" ( Z ) % ~ X  + An ( x ) ~ ,  such that 

( i )  Assume that there exists h E ?L and c > 0  such that 

where ii: = a: o A" ( x )  : V -+ R. Each R  of L ( D ,  p, U )  satisfies 
the uniform cusp property for the parameters ( r R ,  A", pR,  h R )  = 
(R ,  R, p,  h ) .  Hence (from Theorem 12)  the family 

B ( D ,  p,  U ,  c )F{b"  : VR E L ( D ,  p, U )  and PD(R)  5 c)  

is compact i n  C ( D )  and W I J ' ( ~ ) ,  1 5 p < m. 

(ii) Given y > 0, the results of part (i) remain true with PD(R)  5 c 
i n  place of P y ( r )  5 C. 
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