A NOTE ON ESWARAN AND TARJAN’S
ALGORITHM FOR THE STRONG
CONNECTIVITY AUGMENTATION PROBLEM

S. Raghavan
The Robert H. Smith School of Business
University of Maryland, College Park

Abstract In a seminal paper Eswaran and Tarjan [1] introduced several augmentation
problems and presented linear time algorithms for them. This paper points out
an error in Eswaran and Tarjan’s algorithm for the strong connectivity augmen-
tation problem. Consequently, the application of their algorithm can result in
a network that is not strongly connected. Luckily, the error can be fixed fairly
easily, and this note points out the remedy yielding a “corrected” linear time
algorithm for the strong connectivity augmentation problem.

1. Introduction

Approximately 30 years ago Eswaran and Tarjan introduced the strong con-
nectivity augmentation problem that can be described as follows. Let D =
(N, A) be a directed graph with node set N and arc set A. The strong connec-
tivity augmentation problem is the problem of finding a minimum cardinality
set of arcs A*YY such that D = (N, A U AAYY) is strongly connected.

Eswaran and Tarjan also describe an elegant linear time algorithm for the
problem. Their algorithm consists of three steps. It first condenses the directed
graph by shrinking every strongly connected component of the directed graph
to obtain an acyclic digraph. A node with no incoming arc in this acyclic graph
is called a source, and a node with no outgoing arc in this acyclic graph is called
a sink. The second step of their algorithm constructs a particular ordering of
sources and sinks with a desired set of properties. Their third step then adds
arcs to strongly connect this acyclic digraph. (They show that it suffices to
solve the augmentation problem on the condensed graph.) The correctness of
their procedure relies on the second step of their algorithm, where an ordering
of sources and sinks with a set of desired properties is constructed.

In this note we point out an error in Eswaran and Tarjan’s strong connectivity
augmentation algorithm. Specifically, we show that the algorithm described in

20

their paper does not provide an ordering of sources and sinks with the desired
set of properties. Consequently, the application of their augmentation algo-
rithm (as will be shown with a counterexample) can lead to a directed graph
that is not strongly connected. We also provide a corrected procedure for the
second step of their algorithm that runs in linear time.

2. The Algorithm and the Error

We now review Eswaran and Tarjan’s algorithm and elaborate on the error
within it. We note that our notation differs slightly from Eswaran and Tarjan.

Given a directed graph D = (N, A) the first step of their procedure is to
create its condensation DS = (NSCC ASCC)| obtained by shrinking every
strongly connected component of D. D5¢C contains one node for every strong
component of D, and there is an arc (3, j) in D3¢C if there is an arc in D from
any node in the strong component corresponding to node i € D3C to any node
in the strong component corresponding to node j € DSC. For notational con-
venience they define the two mappings « and 3 as follows. For every v € N,
let a(v) be the node in D3¢ corresponding to the strong component in D that
contains node v. For every v € NS, 3(v) defines any node in the strongly
connected component of D corresponding to node v. Eswaran and Tarjan show
the following lemma, proving that it suffices to solve the augmentation prob-
lem on DS¢C,

LEMMA 1 Let X be an augmenting set of arcs which strongly connects D.
Then o(X) = {(a(v),a(w))|(v,w) € X,a(v) # a(w)} is a set of arcs
which strongly connects D5C. Conversely, let Y be an augmenting set of arcs
which strongly connects D5C. Then 3(Y) = {(B(z), B(y))|(z,y) € Y} isa
set of arcs which strongly connects D.

In the acyclic digraph D5°C, a source is defined to be a node with outgoing
but no incoming arcs, a sink is defined to be a node with incoming but no
outgoing arcs, and an isolated node is defined to be a node with no incoming
and no outgoing arcs. Let s,¢ and ¢ denote the number of source nodes, sink
nodes, and isolated nodes respectively in D3¢, and assume without loss of
generality s < .

The second step of the algorithm finds an index p and an ordering v(1), ...,
v(s) of sources of D3 w(1),...,w(t) of sinks of DSCC with the following
properties:

1 there is a path from v(7) to w(z) for 1 < ¢ < p;

2 for each source v(7), p+ 1 < i < s there is a path from v(¢) to some
w(j), 1 <j < p;and

21

3 for each sink w(j), p +1 < j < t, there is a path from some v(%),
1 <1< p, tow(y).

Let z(1),...,z(q) denote the set of isolated nodes of DS°C. They show that
a minimal augmentation of DSC is obtained from the arc set.!

AN = {(w(i),v(i +1))[1 < i < pyU{(w(@),v(@))lp+1 < i < s}
[(w(p),v(1)) ifg=0ands =t
(w(p), w(s + 1)) U{(w(@),wiE+1))|s+1<i<t}
U U(w(t),v(1)) ifg=0ands <t
(w(p),w(s + 1)) U{(w(@),w(i+1))ls+1<i<t}
U(w(®), (1)) U{(2(@), 2(i +)1 < i < g}
L U(z(g),v(1)) otherwise.

Eswaran and Tarjan show that max(s,t) + ¢ is a lower bound on the num-
ber of arcs needed to augment DSCC so that it is strongly connected.? Note
that the augmenting set AASC contains ¢ + ¢ arcs. To see that the addition
of these arcs strongly connects DSCC observe that by construction the nodes
v(1),...,v(p),w(l),...,w(p), w(s + 1),...,w(t),z(1),...,z(q) are on a
directed cycle (denoted by C) and thus strongly connected. For v(p + 1), ...,
v(s), w(p + 1),...,w(s), the correctness of their procedure relies on Proper-
ties (2) and (3). Due to Property (2) there is a path from each v(3), p + 1 <
i < s, to some node w(j), 1 < j < p, and thus by construction to every node
in the cycle C. From Property (3), and the addition of the arcs (w(%),v(%)),
forp+ 1 < ¢ < s, there is a path from every node in the cycle C to each
v(i), p+ 1 < ¢ < s. A similar argument shows that there is a directed path
from the nodes in the cycle to each w(i), p + 1 < i < s, and from each w(3),
p+ 1 < i < sto the nodes in the cycle C.

The Eswaran and Tarjan paper provides the algorithm ST shown in Fig-
ure 1. We note that for any ordering of sources and sinks satisfying Proper-
ties (1)—(3), arbitrarily permuting the ordering of sources v(p + 1),...,v(s),

sinks w(p + 1),...,w(t), and isolated nodes z(1), ..., z(q) results in an or-
dering that continues to satisfy Properties (1)-(3). Consequently the algo-
rithm focuses on obtaining p and the ordering v(1),...,v(p) of sources and

w(l),...,w(p) of sinks satisfying Property (1), while ensuring that the re-
maining sources and sinks satisfy the desired Properties (2) and (3). The au-
thors state that it is obvious that the algorithm ST finds a sequence of sources

There is a typographical error in the first line of the equation shown on page 657 of [1] that is corrected
here.

2Since there are s + ¢ nodes with no incoming arcs, at least s +- g arcs are needed to augment DSCC o
that it is strongly connected. Similarly, as there are ¢ + ¢ nodes with no outgoing arcs, at least t + q arcs
are needed to augment DSCC g0 that it is strongly connected.

22

1. algorithm ST: begin

2. procedure SEARCH(z);

3. if is unmarked then

4. begin

5. if x is a sink and (w = 0) then w := x;
6. mark x;

7. for each y such that (z,y) is an edge do SEARCH(y);
8. end SEARCH

9. initialize all nodes to be unmarked;

10. 1 :=0;

11. while some sink is unmarked do begin
12. choose some unmarked source v;
13. w = 0;

14. SEARCH(v);

15. if w # 0 then begin

16. =14+ 1;

17. v(i) = v;

18. w(i) == w;

19. end end

20. p =t

21. end ST;

Figure 1. Eswaran and Tarjan’s algorithm to find an ordering of sources and sinks that satisfies
Properties (1)-(3).

and sinks satisfying Properties (1)-(3). We now show that this statement is not
true, and the algorithm can produce an ordering of sources and sinks that does
not satisfy Property (2). For convenience, we also display in Figure 2 Eswaran
and Tarjan’s algorithm for the strong connectivity augmentation problem.
Consider the example shown in Figure 3. The acyclic digraph shown in
Figure 3(a) has two sources nodes a and ¢, and two sinks nodes b and d. There
is a directed path from source node a to sink node b and the first arc on this
path is (a, k). There is also a directed path from source node a to sink node d
and the first arc on this path is (a, [). There is a directed path from source node
c to sink node d, and the paths from a to d and c to d are identical from node m
onwards. Suppose the search starts from a (i.e., a is the first unmarked source
selected in line 12), and suppose that in line 7 of the algorithm arc (a, k) is
considered before arc (a,l). Then the procedure will first find sink b and set

23

algorithm STRONGCONNECT: begin

SC1: Use depth-first search to form the condensation DSCC of D,
identifying the sources, sinks, and isolated nodes of D3¢,

SC2: Apply algorithm ST to D5¢C to find a set of sources and sinks
satisfying (1)-(3);

SC3: Construct the corresponding augmenting set of arcs A*SC;

SC4: Convert A€ into an augmenting set of arcs AAYC for D, using
Lemma 1;

end STRONGCONNECT;

Figure 2. Eswaran and Tarjan’s algorithm to solve the strong connectivity augmentation
problem.

(@) (b)

Figure 3. Counterexample that shows algorithm ST does not find an ordering of sources and
sinks that satisfies Property (2). (a) Running algorithm ST gives p = 1, v(1) = a, w(1) = b,
v(2) = ¢, w(2) = d. (b) Augmenting by adding arcs (w(1),v(1)) = (b, a) and (w(2), v(2)) =
(d, c) results in a digraph that is not strongly connected.

w := b (in line 5). It will then continue the search from a considering arc
(a,1) in line 7 of the algorithm. This will result in traversing the path from a
to d and marking nodes m and d. It will then set v(1) := ¢ and w(1) := b in
lines 17 and 18. Since all sinks are marked the procedure stops. Eswaran and
Tarjan’s procedure will also set p := 1, v(2) := ¢ and w(2) := d. Observe
now that there is no path from c to node b, and thus this ordering does not
satisfy Property (2). The augmentation procedure adds the arcs (w(1),v(1)) =
(b,a) and (w(2),v(2)) = (d, ¢). The resulting digraph shown in Figure 3(b) is
obviously not strongly connected.

24

3. The Correction

As the example indicates algorithm ST fails to find an ordering that satisfies
Property (2). The problem within the algorithm is that the search continues
from a source that has found an unmarked sink. This search may mark un-
marked sinks (and thus these sinks would be ordered with an index of p + 1
or greater) that are the only sinks an unmarked source has a directed path to,
leading to a violation of Property (2).

We now show how to rectify the problem by modifying algorithm ST so that
it obtains an ordering of sources and sinks that satisfies Properties (1)~(3). The
corrected algorithm is called STCORRECT and is displayed in Figure 4. It is
identical to ST except for the following modest changes. A boolean variable
sinknotfound is added that is true if the search from a source node has not yet
encountered an unmarked sink. Further, in line 11 the search continues until all
sources are marked (as opposed to ST where the search continues until all sinks
are marked). At the start of a search from an unmarked source sinknotfound is
set to true (line 13a). Within the procedure SEARCH, if an unmarked sink is
found then w := x, and the boolean variable sinknotfound is set to false (lines
5, 5a, 5b). This has the effect of stopping the search (in line 7a) as soon as an
unmarked sink is found in a search from an unmarked source node. We now
prove the correctness of algorithm STCORRECT.

THEOREM 1 The algorithm STCORRECT finds an ordering of sources and
sinks satisfying Properties (1)—(3) in O(|A|) time.

Proof:

Observe that in line 7 an arc is examined no more than once proving that the
algorithm runs in time proportional to the number of arcs in the acyclic digraph.
We now show a very useful property of algorithm STCORRECT that will be
invaluable in our proof.

LEMMA 2 All nodes marked by STCORRECT have a directed path to some
sink node in w(l),...,w(p).

Proof:

We show this by induction. Since the digraph is acyclic, the first time STCOR-
RECT searches from an unmarked source it marks all nodes on a unique path to
an unmarked sink node. At that point the search initiated from the unmarked
source stops, and the unmarked source is set to v(1) and the unmarked sink
just found is set to w(1). Observe that all marked nodes have a directed path
to w(1). Consider what happens at any later point in the algorithm when the
search is initiated from an unmarked source. The search marks nodes along a
path until it encounters a marked node « (in which case we do not search from =
but the search from the unmarked source continues) or encounters an unmarked

9.
10.
11.
12.
13.
13a.
14.
15.
16.
17.
18.
19.
20.

algorithm STCORRECT: begin
procedure SEARCH(z);
if z is unmarked then
begin
if x is a sink then begin
W=
sinknotfound.=false;
end;
mark x;
for each y such that (x, y) is an arc do
if (sinknotfound) do SEARCH(y);
end SEARCH
initialize all nodes to be unmarked;
i := 0
while some source is unmarked do begin
choose some unmarked source v;
w = 0;
sinknotfound:=true;
SEARCH(v);
if w # 0 then begin
t:=141;
v(i) == v,
w(i) == w;
end end
pi=1

21. end STCORRECT;

25

Figure 4. A “corrected” linear time algorithm to find an ordering of sources and sinks that

satisfies Properties

(D=3)-

26

sink (in which case the search stops). Assume the inductive argument is true
at the conclusion of the search from the previous unmarked source in the algo-
rithm. By induction the marked node x has a path to a sink in w(1), ..., w(p),
thus all nodes in the path to z have a path to a sink in w(1),...,w(p). In the
case the procedure encounters an unmarked sink all nodes on the path to the
unmarked sink are marked in the search from the unmarked source, and since
the unmarked source and sink are now marked and added as v(7) and w(i),
with ¢ < p, the marked nodes on the path from v(¢) to w(7) have a path to a
sink in w(1),...,w(p). O

Consider the search from any unmarked source. The search successfully
finds a directed path from the unmarked source to an unmarked sink (and these
are added as v(4¢) and w(4) with ¢ < p), or it fails to find a path to an un-
marked sink (in which case the source has an index ¢ > p). Failure occurs only
if there is a marked node on every path from the unmarked source to every
unmarked sink. By Lemma 2 these marked nodes have a path to some sink
in w(1),...,w(p), proving that the ordering STCORRECT provides satisfies
Property (2).

Suppose the ordering STCORRECT provides does not satisfy Property (3).
Then there is an unmarked sink node with no directed path from any source
in v(1),...,v(p). The unmarked sink node must then have a path from some
source v(j), for p+1 < j < s. Consider this path, and consider the last marked
node y on this path to the unmarked sink. Node y could not have been marked
by any source v(i), with p + 1 < ¢ < s. If it had been, then the search from
v(4) would have found the unmarked sink and both the source v(i) and the
unmarked sink would have been added to the ordering with an index less than
or equal to p. But that means that ¥ must have been marked in the search from

one of the sources in v(1),...,v(p). Consequently, there is a directed path
from a source in v(1), ..., v(p) to the unmarked sink yielding a contradiction
to our assumption. O
References

[1] K. P. ESWARAN AND R. E. TARJAN, Augmentation problems, SIAM Journal on
Computing, 5 (1976), pp. 653-665.

2 Springer
http://www.springer.com/978-0-387-23528-8

The Next Wave in Computing, Optimization, and
Decision Technologies

Golden, B.L.; Raghavan, 5.; Wasil, E.A. (Eds.)
2005, X, 396 p., Hardcover

ISBN: @78-0-387-23528-8

