Chapter 2

Finite Difference Calculus

In this chapter we review the calculus of finite differences. The topic is classic and covered in
many places. The Taylor series is fundamental to most analysis. A good reference for beginners is
Hornbeck [45].

2.1 1-D Differences on a Uniform Mesh

Our objective is to develop differentiation formulas which deal only with functions U which are
sampled at discrete grid points X;: U(X;) = U;. The sampling grid is assumed to lay out in the
natural way, ordered with X, left to right as below.

1—1 1 1+1 1+ 2 t+3

Assuming equal mesh spacing h = X; 1 — X; for all ¢, we have the Taylor series:

au; | W2 8°U;

T oYi 3
Uis1 = Ui + hopt + 5o =5 + O(h?) (2.1)
oU;  Up— Ui kU 2
or h 21 §z2 +OK)

AU;
- &b + O(h) (2.2)

h

where the leading error is “of order h (which can be made arbitrarily small with mesh refinement.)”
For 33—2;]571, we write another Taylor series

oU;  (2h)? 8%U; N (2h)3 8%U;

o= 4+ 9p—2 .
Uitz = Ui +2h Oz T Ox? 3! 9z8 (23)
Adding these such that %%i cancels gives:
O?U;  Uio —2U; ; 3U; 2y;
— Z+2 Ul‘f'l + UZ _ ha UZ + — A UZ + O(h) (2.4)

12 h? dz® T h?
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Generally, approximations to higher derivatives are obtained by adding one or more points; each

additional point permits an O(h) expression to the next derivative. The notation for the result is
o"U; AU
o™  hn

+O(h) (2.5)

with A™U; indicating a difference expression among U; — U;y,. These are called the Forward
Differences and are tabulated in tTable 2.1 below. They have the recursive property

A™U; = A(A™LUy) (2.6)
The core operator A indicates the “first forward difference”.

Backward Differences are defined in the analogous way:

oU;  h? 9%U;
Ui—l—Ui_ha +2'82+... (2.7)
(9”Ui . V"Ui
=L o) (2.8)
VUi = v (V") (2.9)

These are tabulated in Table 2.2.

Both of these approximations are first-order in the mesh spacing h. Higher order approximations
are generated by involving more points.

ou;,  K2O*U; KR O,
Uiy1 = U+ha +§'—82+§I%‘+“. (2.10)

Ui 2221‘ 2h33‘
oU; | (2h)*8°U; | (2h)* 6°U,

e 2.1
Uirz Oz 21 9z 3! ozd (2.11)
Combining equations 2.10 and 2.11 with weights 1 and A, we get
oU;
Uip1 + AU = 1+ AU; + (1+24) 97
h? 82U; h3 83U;
+ (1+44)— 5T B 2 +(1+84)— 31 543 (2.12)

We want the first derivative in terms of U;, U;;1, and Uj4o. If we choose A such that (1+4A) =0,
the second derivative term will vanish and the third derivative term will be the leading error term.

3

Ui _ [AUips + Uit — (1+ A)U;] - (1 +44) 828 — (1+84)8 50 +

= 1
oz (1+24)h (2.13)
1+4A=0; A=-1/4 (2.14)
U; _ ~Uips +4Ui1 —3U; B2 U, 3
5 = 5h ~ 31555 TOW) (2.15)

The leading error is O(h?). This is the second-order correct, forward difference approximation to
the first derivative. Higher derivatives at this accuracy can be obtained by adding extra points,
as in the O(h) formulas. Tables 2.3 and 2.4 below record these and their backward difference
counterparts.
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The obvious supplement to these one-sided differences are the Central Difference approxima-
tions. Assuming a uniform mesh, these combine the forward and backward formulas such that the
leading errors cancel. The result is an extra order of accuracy for the same number of points. For
example:

oU; AU, h &,

_n 2
e A o1 B2 + O(h%) (2.16)

an _ VUl h 82Uz- 9
g = h Tage 1O (2.17)

Combining these,
oU; . vU; + AU; 9

9 o + O(h?) (2.18)
wvU; + AU; = Uiy1 - U1 = oU; (2.19)

The symbol § in this context indicates the central difference operator; and the centered approxi-

mation to the first derivative is
ou; U,

oz 2h
This is accurate to second order in h. Higher derivatives can be obtained by adding more points,
symmetrically. The O(h?) centered differences are summarized in Tables 2.5 and 2.6 below.

+ O(h?) (2.20)

Summary - Uniform Mesh

The Taylor Series provides difference formulas and error estimates for derivatives of arbitrary order
and precision. The procedure is systematic and, as is shown in the next sections, easily generalized
to nonuniform meshes and to multiple dimensions. The 1-D results on a uniform mesh may be
summarized as:

Forward difference

a'U;  A"U;
de» —  hn +O(h)
Backward difference
dnUi N ani
dz» A7 +0(h)
Centered difference
d"U; o"U;

+ O(h?)

dz® (1 or 2)h"

All of these have N+1 points with nonzero weights. The centered formulas provide an extra order
of accuracy for the same number of points.

To attain higher-order accuracy, more points need to be added. In the uncentered cases, we
have

n'? derivative + O(h%) = n+2 pts.
n'? derivative + O(h%) = n+3 pts.
n'" derivative + O(h*) = n+4pts.
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Table 2.1: Forward difference representations, O(h). [45].
fi | fix1 | fiv2 | firs | fita
hf'(z) | -1 1
RfMxy | 1] =2 ] 1
R3f"M(x;) | -1 3 -3 1
REf ()| 1| 4] 6 | -4 ] 1

Table 2.2: Backward difference representations, O(h). [45].

fica | fimg | fime | fir | fi

hf'(z;) -1]1
R2 f"(z;) 1 | -2]1
137 () 1] 3 | 3|1
RAf(x) | 1 -4 6 | -4 1

Table 2.3: Forward difference representations, O(h?). [45].
fi | fixr | fivo | firs | fiva | fits
2hf'(z;) | =3 | 4 | -1
R2fMz;) | 2 | =5 | 4 | -1
2R3 fM(x;) | =5 | 18 | —24 | 14 | -3
RAf9(x;) | 3 | —14] 26 | =24 | 11 | -2

Table 2.4: Backward difference representations, O(h2). [45].

fies | fica | iz | fia | fim1 | Ji

th’(.’)fi) 1 —4 3

h2 f"(x;) -1 4 | -5 |2

2h3 " (z;) 3 | ~-14] 24 | -18| 5
RAf(z;) | =2 | 11 | —24| 26 | —-14 | 3

Table 2.5: Central difference representations, O(h?). [45].
fima | fic1 | fi | fiv1 | fite

2hfl(iL‘i) -1 0 1

h2 " (x;) 1 | -2 1

2R3 fM(z;) | —1 | 2 0| -2 1

R f4(x;) 1 -4 16 | -4 1
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Table 2.6: Central difference representations, O(h*). [45]
fies | fico | fir | fi | forr | fino | figs

12k f! (5) 1 [ -81 0 g8 | -1
12h2 f(;) -11] 16 |-30| 16 | -1
8h3fMz;) | 1 | -8 [ 13| 0 [-13] 8 | -1

6hf4x) | -1 ] 12 [ -39 56 | -39 12 | —1

and so on; whereas for the centered cases, we have extra accuracy for the same number of points:

nit derivative + O(h') = n+3 pts.
n'h derivative + O(h®) = n+5 pts.
n'h derivative + O(h®) = n+7 pts.

For the same number of points, the centered formulas always stay one order ahead of the uncentered
formulas. Points are added alternately at the center of the formula, or in symmetric pairs.

These rules apply equally well to 1-D differences on nonuniform meshes (see below), with the
exception that the special accuracy of Centered Differences is lost.

2.2 Use of the Error Term

The leading error terms are important; since they may interact, they should be kept in detail in
all derivations. For example, we may construct a higher-order approximation from two lower-order

approximations as follows:
ou; _ AU; h 8%U;

_h 2
Ep 5 5 B2 + O(h®) (2.21)
Substitute a difference formula for the leading error term %ﬁ
o’U; AU
2 2 +O(h) (2.22)
This will push the error term to O(h) - O(h):
8Ui _ AUZ' h AQUi 2
% - & 5l 72 + O(h)] + O(h?)
AU 1A% 9
= 7 "3 + O(h*)
ou;  [-3U; +4U; 1 — Uyyo) 2
9 o + O(h*) (2.24)

This is the same as in the forward difference Tables derived directly from Taylor series. This
procedure has obvious generality; it will produce a difference expression whose order is the product
of its two parts.
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2.3 1-D Differences on Nonuniform Meshes

The Taylor Series procedure outlined above is not restricted to uniform meshes. Consider the
following 5-point grid:

h ah Bh vh

1—1 1 1+1 1+ 2 1+ 3

Suppose we wish to find difference formulas for derivatives at node i. We proceed to express all
the other nodal values in Taylor series about i:

Ui 1 -1 1
Ui—H - U 1 _hLdUi o + h_2d2Ui a2
Uita R | 1! dz a+f 2! dx? (a+ B)?
Uits 1 a+ B+ (a+ B +7)?
—1 1
h3 d3U; a3 Rt dAU; ot
TR s [THE) @+pr (T @D
(a+B+7)° (a+B+7)*

Now form a weighted sum of the four equations; let the weights be (1,A,B,C) (the first one is
arbitrary since we can always multiply the result by a constant). The result:

Ui—1+ AU;j11 + BU;jy2o+CUjps = U1+ A+B+C) (2.26)

+ hcfizi(—1+aA+(a+ﬂ)B+(a+ﬁ+’y)C)

h? d?U;
2 dag2
h3 d3U;
3! dg3
h dAU;
41 dzt

+ (14+c?A+ (a+B)?B+ (a+ B8 +7)%C)

+ (-1+ A+ (a+ BB+ (a+B+9)30)

+ (1+a*A+ (a+p)*B+(a+B8+7)10)

Now we have at our disposal the three parameters (A,B,C). Suppose we want a difference formula

for %’l which only involves w;_1, u;, u;+1. Clearly then, B and C must be zero; and if we select A
such that the coefficient of ‘%U} vanishes, then we will create an O(h?) approximation for %:
1
1+0’4 = 0=24 = - (2.27)
@
and thus
dU; h3 d3U;
i— AU; 11 - U;(1 = Ly — (- 3 .
Ui—1 + AUijp1 - Ui (1 + A) hdac( 1+aA)+3! dm3( 1+a’A) + (2.28)
o du, U. A A 243 SA
; i— i+1 — Ui(1 h* d°U; -1
i Ui+ AU U1+ 4) Ui @ )+ ... (2.29)

dz h{aA —1) 3 dad tad-1



2.4. POLYNOMIAL FIT 17

Substituting for A we get
dU; —agUi_l + Ui(a2 — 1) + Ui B fljngi

dr h(a+ 1)a 3 dg?

(2.30)

It is readily checked that when o = 1 we obtain the familiar central difference formula.

If we wish to achieve higher accuracy, we must involve another point. Retaining B # 0, for
example, we may set the coefficients of the second and third derivatives equal to zero in 2.27:

1+ o4 + (a+pPB=0=4 = —0tath

2.31
5 (2:31)
1+ o)
14+ A+ (a+p)PB=0=>B = — 2.32
(a+5) (@t B)F (2.32)
The resulting difference formula will have a leading error term
R3d'U; |1+ oA ‘B
d'U; |1+ a*A+ (a+ B) (2.33)

4 dgt |-1+aA+ (a+pB)B

The above procedure may be expressed in more generality as follows. Suppose we want expres-
sions for derivatives at some grid point. Without loss of generality we take this (temporarily) to
be the origin of the coordinate system. Then denoting by u; the difference of U; - Uy, the Taylor
series is

- 1dUy ,
g il . 2.34
. nz;l n! dgn U (2:34)
If we invent weights W;, then
1 d*Uy n 2. 1 d"Uy
;Wil‘i = nzzjlﬁ o ;Wz% = ;E—dxn Wp (2.35)

where the index i runs over all grid points, and wj, is the n** moment of the weights about the
origin:
wy = Y Wiz} (2.36)
i
A first order derivative difference expression for ‘ZVTI{,Q can thus be obtained by setting the first N —1
moments of W equal to zero, which can be achieved with exactly N nonzero weights. Recalling

that y; = U; - Uy, this yields N 4+ 1 node points in the expression for the Nth derivative. Higher
order expressions can be obtained by making wyx 1 and progressively higher moments equal to zero.

2.4 Alternative to Taylor Series: Polynomial Fit

A different procedure is to fit a polynomial or other interpolant to discrete samples; and differentiate
the result. For example, consider the 3-point mesh shown below.

h ah

1—1 1 1+1
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We will fit a second-order polynomial U(z) to samples of U at the three mesh points:

U = ar®+bz+c (2.37)
U1 = ah®>+b(=h)+c (2.38)
U = c (2.39)
U1 = a(ah)? +b(ah) +c (2.40)

The fit is obtained by solving for the three coefficients

2 -h 1 a Ui 1
0 0 1 b v ={ U (2.41)
(ah)? (ah) 1 Uis1

Inverting this gives
(a[Ui—1 — Ui] + [Uip1 — Ui])

a (a? + a)h?
b = (—QZ[Ui_l - Ui] + [Ui+1 — UZ]) (2.42)
c (a? + a)h
Ui
and the polynomial is differentiated to provide the difference formulas at any point z:
a—U =2ax+b (2.43)
oz

82U — 95 =9 Uit1 —Ui(1 + a) + alU; 1
ox?2 T a(a + 1)h?
These results are identical to those obtained from Taylor Series estimates at the three grid points.

(Student should verify this.) This procedure has the advantage of estimating derivatives everywhere,
not just at the mesh points; but it lacks the truncation error estimate.

(2.44)

2.5 Difference Formulas with Cross-Derivatives

Generally, the 1-D formulas can be used in higher dimensions (although there are other options).
The special case is the mixed derivative with respect to 2 or more dimensions. There are two
approaches. First, we can operate with the 2-D Taylor series:

Ule + Az,y+ Ay) = Ulsy + (Axa% + Aya%)mm,y
+ %(Am% + Ay%)2U|$,y
+ —?%(Ax(% + Ay%)BU oyt (2.45)
where 9 9 o2 o 5
(Ama + Ay-a—y)2 = Am25x—2 +2AzAy 500y + Agf@ (2.46)

and so on. From here, the procedure is generally the same as in 1-D case: write Taylor series for
all points in terms of U, 9U, ... at point where OU is wanted; mix together to get desired accuracy.
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The alternative approach is to operate with the 1-D formula already in hand. For example: on
an (z,7) mesh with uniform mesh spacing (h, k):

UZ'+1—U2‘_1 _ UZ‘+1—UZ‘_1
82U _ i(a_U) ~ [ 2k L—l—l [ 2k ]i—l (2 47)
Oxdy Ox Oy’ 2h '

This should be intuitively correct to second order, since centered differences are being invoked. But
so far we lack the leading error term. We can get this from the 1-D formula,

U, Up1-U_, KU

% = o T easht (2.48)
Differentiating this,
o) (6U)’ _ W ivrg — G lio1g RO ] (2.49)
Oy Oz 2h 6 8230y g T '
By the same formula:
o, U1 —Ujr k2 83U
Oy i = 2k 6 oy3 i+ (2:50)
Ly‘ _ 1 (Uz+1,j+1 - Uz‘+1,j—1) _ (Ui—l,j+1 — Ui,
oydz™ 2k 2k 2k )
1 k2 |0%U B’U h? 80U
- ﬁ? [a 3 IH—I,] a .3 |’L 1,]] - 6 8m38y|z,3 (251)

There is an apparent asymmetry in the error terms. Also, the %2 would in general be a fatal
problem, reducing the accuracy to first-order. But

3 3
[%_;fa[\m,j - %T[é”i—l,j] . (83U)
2h T Oz OyB

+ O(h?) (2.52)

So the leading error terms are
k2 9*U h? 0*U
6 0zdy3 6 Oyox®
Now we have symmetry, as expected from the form of the difference expression. And the accuracy
is second-order in h and k, independently.

(2.53)
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