
Chapter 2 

Finite Difference Calculus 

In this chapter we review the calculus of finite differences. The topic is classic and covered in 
many places. The Taylor series is fundamental to most analysis. A good reference for beginners is 
Hornbeck [45]. 

2.1 1-D Differences on a Uniform Mesh 

Our objective is to develop differentiation formulas which deal only with functions U which are 
sampled at discrete grid points Xi: U(Xi) - Ui. The sampling grid is assumed to lay out in the 
natural way, ordered with X, left to right as below. 

Assuming equal mesh spacing h - Xi+l - Xi for all i, we have the Taylor series: 

where the leading error is "of order h (which can be made arbitrarily small with mesh refinement.)" 
For e, we write another Taylor series 

Adding these such that 9 cancels gives: 
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Generally, approximations to higher derivatives are obtained by adding one or more points; each 
additional point permits an O(h) expression to the next derivative. The notation for the result is 

with AnUi indicating a difference expression among Ui +- Ui+,. These are called the Forward 
Diferences and are tabulated in tTable 2.1 below. They have the recursive property 

The core operator A indicates the "first forward difference7'. 

Backward Digerences are defined in the analogous way: 

onui = o(on-lui) 
These are tabulated in Table 2.2. 

Both of these approximations are first-order in the mesh spacing h. Higher order approximations 
are generated by involving more points. 

Combining equations 2.10 and 2.11 with weights 1 and A, we get 

We want the first derivative in terms of Ui, Ui+1, and Ui+2. If we choose A such that (1 + 4A) = 0, 
the second derivative term will vanish and the third derivative term will be the leading error term. 

The leading error is O(h2). This is the second-order correct, forward difference approximation to 
the first derivative. Higher derivatives at this accuracy can be obtained by adding extra points, 
as in the O(h) formulas. Tables 2.3 and 2.4 below record these and their backward difference 
counterparts. 
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The obvious supplement to these one-sided differences are the Central Difference approxima- 
tions. Assuming a uniform mesh, these combine the forward and backward formulas such that the 
leading errors cancel. The result is an extra order of accuracy for the same number of points. For 
example: 

Combining these, 

o U i  + AUi = - Ui-l = sUi (2.19) 

The symbol 6 in this context indicates the central difference operator; and the centered approxi- 
mation to the first derivative is 

8ui sUi -- - - + 0(h2)  
ax 2h  

This is accurate to second order in h. Higher derivatives can be obtained by adding more points, 
symmetrically. The O(h2) centered differences are summarized in Tables 2.5 and 2.6 below. 

Summary - Uniform Mesh 

The Taylor Series provides difference formulas and error estimates for derivatives of arbitrary order 
and precision. The procedure is systematic and, as is shown in the next sections, easily generalized 
to nonuniform meshes and to multiple dimensions. The 1-D results on a uniform mesh may be 
summarized as: 

Forward difference 

Backward difference 

Centered difference 

All of these have N+l  points with nonzero weights. The centered formulas provide an extra order 
of accuracy for the same number of points. 

To attain higher-order accuracy, more points need to be added. In the uncentered cases, we 
have 

nth derivative + O ( h 2 )  n + 2 pts. 
nth derivative + O ( h 3 )  +- n + 3 pts. 
nth derivative + O ( h 4 )  +- n + 4 pts. 
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Table 2.1: Forward difference representations, O(h). [45]. 

Table 2 .2: Backward difference representations, O(h) 

Table 2.3: Forward difference representations, O(h2). [45]. 

Table 2.4: Backward difference representations, O(h2).  [45]. 

Table 2.5: Central difference representations, O(h2).  1451. 
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Table 2.6: Central difference re~resentations. O(h4'1. 1451 

and so on; whereas for the centered cases, we have extra accuracy for the same number of points: 

nthderivative + O(h4)  +- n + 3 p t s .  
nth derivative + O(h6)  n + 5 pts. 
nth derivative. + O(h8)  =+ n + 7 pts. 

For the same number of points, the centered formulas always stay one order ahead of the uncentered 
formulas. Points are added alternately at the center of the formula, or in symmetric pairs. 

These rules apply equally well to 1-D differences on nonuniform meshes (see below), with the 
exception that the special accuracy of Centered Differences is lost. 

2.2 Use of the Error Term 

The leading error terms are important; since they may interact, they should be kept in detail in 
all derivations. For example, we may construct a higher-order approximation from two lower-order 
approximations as follows: 

aUi AUi h d2ui -- - - - -- 
a x  h 2 ax2 + 0 ( h 2 )  

Substitute a difference formula for the leading error term $ 

This will push the error term to O(h)  . O(h):  

aui - - - 
AUi h A2ui -- 

ax h ,[T + O(h) l+ O(h2)  

- - AUi 1 a 2 u i  - - -- 
h 2 h  

+ 0 ( h 2 )  

( u i + l - u i )  l (u i+2-2Ui+l+ui )  
= [  h - - 

2 h 1 + 0 ( h 2 >  
(2.23) 

aui - - - [-3Ui + 4Ui+l - Ui+2] 
2h 

+ 0 ( h 2 )  (2.24) 
a x  

This is the same as in the forward difference Tables derived directly from Taylor series. This 
procedure has obvious generality; it will produce a difference expression whose order is the product 
of its two parts. 
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2.3 1-D Differences on Nonuniform Meshes 

The Taylor Series procedure outlined above is not restricted to uniform meshes. Consider the 
following 5-point grid: 

Suppose we wish to find difference formulas for derivatives at node i. We proceed to express all 
the other nodal values in Taylor series about i: 

Now form a weighted sum of the four equations; let the weights be (l,A,B,C) (the first one is 
arbitrary since we can always multiply the result by a constant). The result: 

Now we have at our disposal the three parameters (A,B,C). Suppose we want a difference formula 
for 2 which only involves ui-1, ui, ui+l. Clearly then, B and C must be zero; and if we select A 
such that the coefficient of 9 vanishes, then we will create an O(h2) approximation for %: 

and thus 



2.4. POLYNOMIAL FIT 

Substituting for A we get 

It is readily checked that when a = 1 we obtain the familiar central difference formula. 

If we wish to achieve higher accuracy, we must involve another point. Retaining B # 0, for 
example, we may set the coefficients of the second and third derivatives equal to zero in 2.27: 

The resulting difference formula will have a leading error term 

The above procedure may be expressed in more generality as follows. Suppose we want expres- 
sions for derivatives at some grid point. Without loss of generality we take this (temporarily) to 
be the origin of the coordinate system. Then denoting by pi the difference of Ui - Uo, the Taylor 
series is 

If we invent weights Wi, then 

where the index i runs over all grid points, and wn is the nth moment of the weights about the 
origin: 

A first order derivative difference expression for 9 can thus be obtained by setting the first N - 1 
moments of W equal to zero, which can be achieved with exactly N nonzero weights. Recalling 
that pi = Ui - Uo, this yields N + 1 node points in the expression for the N~~ derivative. Higher 
order expressions can be obtained by making w ~ + l  and progressively higher moments equal to zero. 

2.4 Alternative to Taylor Series: Polynomial Fit 

A different procedure is to fit a polynomial or other interpolant to discrete samples; and differentiate 
the result. For example, consider the 3-point mesh shown below. 
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We will fit a second-order polynomial 6 ( x )  to samples of U at the three mesh points: 

The fit is obtained by solving for the three coefficients 

Inverting this gives 
(a[&-1 - Ui] + [Ui+l - Ui]) 

(a2 + a) h2 1 

and the polynomial is differentiated to provide the difference formulas at any point x: 

These results are identical to those obtained from Taylor Series estimates at the three grid points. 
(Student should verify this.) This procedure has the advantage of estimating derivatives everywhere, 
not just at the mesh points; but it lacks the truncation error estimate. 

2.5 Difference Formulas with Cross-Derivatives 

Generally, the l-D formulas can be used in higher dimensions (although there are other options). 
The special case is the mixed derivative with respect to 2 or more dimensions. There are two 
approaches. First, we can operate with the 2-D Taylor series: 

a a 
U(x + Ax, y + Ay) = UIX,, + (Ax- + A Y - ) ~ ~ X , Y  

dx ay 

where 

and so on. From here, the procedure is generally the same as in l-D case: write Taylor series for 
all points in terms of U, dU, . . . at point where dU is wanted; mix together to get desired accuracy. 
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The alternative approach is to operate with the 1-D formula already in hand. For example: on 
an (i, j) mesh with uniform mesh spacing (h, k): 

[Uj+~~~uj - l ]  - [Uj t l -Uj- l  a2u a a u  
-- - -(-) E 

i+l 21; li-1 

axay a x  ay 2h 

This should be intuitively correct to second order, since centered differences are being invoked. But 
so far we lack the leading error term. We can get this from the 1-D formula, 

Differentiating this, 

By the same formula: 
dU Uj+l - Uj-l - 1 .  - - -- k2 a3u 
ay - 2k 6 ay3 1j + . . . 

There is an apparent asymmetry in the error terms. Also, the would in general be a fatal 
problem, reducing the accuracy to first-order. But 

So the leadiner error terms are 

Now we have symmetry, as expected from the form of the difference expression. And the accuracy 
is second-order in h and k, independently. 
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