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1 Introduction

Starting with the famous book “What is Mathematics” by Courant and
Robbins the following problem has been popularized under the name of
Steiner:

For a given finite set of points in a metric space find a network
which connects all points of the set with minimal length.

Such a network must be a tree, which is called a Steiner Minimal Tree
(SMT). It may contain vertices other than the points which are to be con-
nected. Such points are called Steiner points.'

Given a set of points, it is a priori unclear how many Steiner points one has
to add in order to construct an SMT, but one can prove that we need not
more than n — 2, whereby n is the number of given points.

A classical survey of Steiner’s Problem in the Euclidean plane was presented
by Gilbert and Pollak in 1968 [28] and christened “Steiner Minimal Tree” for
the shortest interconnecting network and * Steiner points” for the additional
vertices.

Without loss of generality, the following is true for any SMT for a finite set
N of points in the Euclidean plane:

1. The degree of each vertex is at most three;

2. The degree of each Steiner point equals three; and two edges which
are incident to a Steiner point meet at as angle of 120°

3. There are at most |[N| — 2 Steiner points.

Moreover, in the paper by Gilbert and Pollak, there are a lot of interesting
conjectures, stimulating the research in this field in the next years.

It is well-known that solutions of Steiner’s problem depend essentially
on the way in which the distances in space are determined. In recent years
it turned out that in engineering design it is interesting to consider Steiner’s
Problem and similar problems in several two-dimensional Banach spaces and
some specific higher-dimesnional cases. Over the years Steiner’s Problem

"The history of Steiner’s Problem started with P.Fermat [22] early in the 17th century
and C.F.GauB} [27] in 1836. At first perhaps with the famous book What is Mathematics
by R.Courant and H.Robbins in 1941, this problem became popularized under the name
of Steiner.
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has taken on an increasingly important role, it is one of the most famous
combinatorial-geometrical problems. Consequently, in the last three decades
the investigations and, naturally, the publications about Steiner’s Problem
have increased rapidly. Surveys are given by Cieslik [10], Hwang, Richards,
Winter [32] and Ivanov, Tuzhilin [33]. However, all investigations showed
the great complexity of the problem, as well in the sense of structural as in
the sense of computational complexity. In other terms:

Observation I.
In general, methods to find an SMT are hard in the sense of compu-
tational complexity or still unknown. In any case we need a subtile
description of the geometry of the space.

On the other hand, a Minimum Spanning Tree* (MST) can be found easily
by simple and general applicable methods.

Observation II.
It is easy to find an MST by an algorithm which is simple to realize
and running fast in all metric space.

Hence, it is of interest to know what the error is if we construct an MST
instead of an SMT. In this sense, we define the Steiner ratio for a space to
be the infimum over all finite sets of points of the length of an SMT divided
by the length of an MST:

L(SMT for N)
L(MST for N)

This quantity is a parameter of the considered space and describes the per-
formance ratio of the the approximation for Steiner’s Problem by a Minimum
Spanning Tree.

m = inf { : N a finite set in the space} :

This present paper concentrates on investigating the Steiner ratio. The
goal is to determine or at least to estimate the Steiner ratio for many different
spaces.

2 Banach-Minkowski Spaces

Obviously, Steiner’s Problem depends essentially on the way how the dis-
tances in the plane are determined. In the present paper we consider finite-
dimensional Banach spaces. These are defined in the following way: Ag4

This is a shortest tree interconnecting a finite set of points without Steiner points.
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denotes the d-dimensional affine space with origin 0. That means; Aq is
a set of points and these points act over a d-dimensional linear space. We
identify each point with its vector with respect to the origin. In other words,
elements of A4 will be called either points when considerations have a geo-
metrical character, or vectors when algebraic operations are applied. In this
sense the zero-element o of the linear space is the origin of the affine space.
The dimension of an affine space is given by the dimension of its linear
space. A two-dimensional affine space is called a plane. A non-empty sub-
set of a affine space which is itself an affine space is called an affine subspace.

The idea of normed spaces is based on the assumption that to each
vector of a space can be assigned its “length” or norm, which satisfies some
“natural” conditions.

A convex and compact body B of the d-dimensional affine space A4 centered
in the origin o is called a unit ball, and induces a norm ||.|| = |I.||g in the
corresponding linear space by the so-called Minkowski functional:

|lv||g = inf{t > 0: v € tB} for any v in Az \ {0}, and
llollz = 0.

On the other hand, let [|.|]| be a norm in A4, which means:
[|.]] : Ag = R is a real-valued function satisfying

(i) positivity: |[v]| = 0 forany v in Ag;

(ii) identity: ||v|| = 0if and only if v = ¢;

(iii) homogenity: ||tv|| = |¢] - ||v|| for any v in A4 and any real ¢;
and
(iv) triangle inequality: |jv +v'|| < [lv]| +[¢/]| for any v, 7" in Aqg.

Then B = {v € Ag : ||v|| £ 1} is a unit ball in the above sense. It is not
hard to see that the correspondences between unit balls B and norms ||.||
are unique. That means that a norm is completely determined by its unit
ball and vice versa. Consequently, a Banach-Minkowski space is uniquely
defined by an affine space Az and a unit ball B. This Banach-Minkowski
space is abbreviated as Mg{B). In each case we also have the induced norm
{l.]lz in the space.
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A Banach-Minkowski space Mg(B) is a complete metric linear space if we
define the metric by

p(v,v") = |lv = |5 (1)
Usually, a (finitely- or infinitely-dimensional) linear space which is complete

with regard to its given norm is called a Banach space. Essentially, every
Banach-Minkowski space is a finite-dimensional Banach space and vice versa.

All norms in a d-dimensional affine space induce the same topology, the
well-known topology with coordinate-wise convergence.” In other words:
On a finite dimensional linear space all norms are topologically equivalent,
i.e. there are positive constants ¢; and ¢z such that

e[l I < ez -1 (2)

for the two norms |.|| and {|[.|||.
Conversely, there is exactly one topology that generates a finite-dimensional

linear space to a metric linear space satisfying the separating property by
Hausdorff.

Let My(B) and M4(B’) be Banach-Minkowski spaces.
My(B) is said to be isometric to Mg(B') if there is a mapping ® : Az — Ag
(called an isometry) which preserves the distances:

[18(v) — 2(v)||pr = |lv —¥'li5 (3)

for all »,v' in Ag.

A well-known fact given by Mazur and Ulam says that each isometry map-
ping a Banach-Minkowski space onto another, such that it maps o on o, is
a linear operator. Hence, Mg{B) is isometric to Ma(B') if and only if there
is an affine map & : Ag » Ay with 8B = B’. Also the affine map ® is the
isometry itself.

Steiner’s Problem looks for a shortest network and in particular for a
shortest length of a curve € joining two points. For our purpose, we regard
a geodesic curve as any curve of shortest length.

If we parametrize the curve C by a differentiable map = : [0,1] — R? we
define

i
length of C = / 11511 d. (4)
0

3This is the topology derived from the Euclidean metric.
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It is not hard to see that among all differentiable curves C from the point v
to the point v’ the segment

v ={tv+ (1 -t} :0<t <1} (5)

1
minimizes the length of C.
A unit ball B in an affine space is called strictly convex if one of the
following pairwise equivalent properties is fulfilled:

e For any two different points v and +' on the boundary of B, each point
w=tv+ (1 —t',0<t <1, lies in intB.

¢ No segment is a subset of bdB.

e |lv+'||B =\lvlls +||v'|ip for two vectors v and @' implies that v and
v’ are linearly dependent.

One property more we have in

Lemma 2.1 All segments in a Banach-Minkowski space are shortest curves

(in the sense of inner geometry). They are the unique shortest curves if and
only if the unit ball is strictly convex.

Hence, we can define the metric in a Banach-Minkowski space My(B) by

2-|lv—||pe
v,0') = 6

where ww’ is the Euclidean diameter of B parallel to the line through » and
v' and ||.||g« denotes the Euclidean norm.

A function F defined on a convex subset of the affine space is called a
convex function if for any two points v and v' and each real number ¢ with
0 <t <1, the following is true

Fltv+ (1= < tF(v) + (1 = t)F(v'). (7

A function F is called a strictly convex function, if the following is true
for any two different points v and v' and each real number ¢ with 0 <t < 1:

Fltv+ (1 =t)) < tF(v) + (L - )F (). (8)

A norm is a convex function. Moreover, the unit ball of a strictly convex
norm is a strictly convex set.
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Lemma 2.2 For a norm ||.|| in a finite-dimensional affine space the follow-
ing holds:
(@) A norm ||.|| in a finite-dimensional affine space is a convex and thus a

continuous function.

(b) A norm ||.{| is a strictly convex function if and only if its unit ball
B={ve A;:||lv|l €1} is a strictly convex set.

The dual norm || - |ips of the norm || - || 5 is defined as
(*u,'w)
llvllps = max ——= 9
155 = 22X Tfwlls ©
and has the unit ball DB, called the dual unit ball, which can be described
as
DB = {w: (v,w) <1 for all v € B}.

(Here, (., .) denotes the standard inner product.) Immediately, we have that
for any two vectors v and w the inequality

{(v,w) < |[vlips - [lwlis; (10)

is true and it is not hard to see that B € B’ holds if and only if DB’ C DB.
An example of non-Euclidean norms dual to each other is

[(t1, - .., ta)l|B = max{|ta], ..., [tal} (11)
and
|{(t1s .- -, ta)llpB = [t} + ... + [tal, (12)
whereby B is a hypercube and DB is a cross-polytope.
Particularly, we consider finite-dimensional spaces with p-norm, defined
in the following way: Let Ag be the d-dimensional affine space. For the
point v = (1, ..., £4) we define the norm by

d 1/p
o]l = (Z |$s'l”)
i=1

where 1 < p < oo is a real number. If p runs to infinity we get the so-called
Maximum norm

[Vlloo = max{|z;|: 0 << < d}
In each case we obtain a Banach-Minkowski space written by Eg.
L§ and f.‘.fo normed by a cross-polytope and a cube, respectively. For 1 < p <

oo the space Eg is strictly convex. The spaces ;Cg and £§ with 1/p+1/¢=1
are dual.
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3 Steiner’s Problem and the Steiner ratio

A (finite) graph G = (V, E) with the set V of vertices and the set E of edges
is embedded in the Banach-Minkowski space My(B) in the sense that

e V is a finite set of points in the space;

e Each edge v’ € E is a segment {tv+ (1 —t)v' : 0 <t < 1}, v,0' €V
and

® The length of G is defined by

L(G) =Lp(G) = ) Iv—7|l5.

w'eE

Now, Steiner’s Problem of Minimal Trees is the following:
Given: A finite set N of points in the Banach-Minkowski space M4(B).

Find: A connected graph G = (V, E) embedded in the space such that
-NCV and
- Lp(@G) is minimal as possible.

A solution of Steiner’s Problem is called a Steiner Minimal Tree (SMT)
for N in the space Ma(B)." The vertices in the set V\ N are called Steiner
points. We may assume that for any SMT T = (V, E) for N the following
holds: The degree of each Steiner point is at least three and

[VAN| < |N|-2. (13)

If we don’t allow Steiner points, that is if we connect certain pairs of given
points only, then we refer to a Minimum Spanning Tree (MST). Starting
with Boruvka in 1926 and Kruskal in 1956, Minimum Spanning Trees have
a well-documented history [29] and effective constructions [3].

A minimum spanning tree in a graph G = (N, E) with a positive length-
function f : E — IR,can be found with the help of Kruskal’s [34] well-known
method:

1. Start with the forest T' = (N, #);

*That for any finite set of points there an SMT always exists is not obvious. Particu-
larly, it is proved in [10].
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2. Sequentially choose the shortest edge that does not form a circle with
already chosen edges;

3. Stop when all vertices are connected, that is when |N| — 1 edges have
been chosen.

Then an MST for a finite set N of points in My(B) can be found obtaining
the graph G = (N, (‘g]) with thelength-function f(w') = |lv —¥'||B.

Let N be a finite set of points in Mz(B). We saw that it is easy to find
an MST for N; this is valid in the sense of the combinatorial structure as
well as in the sense of computational complexity. On the other hand, meth-
ods to find an SMT for N are still unknown or at least hard in the sense of
computational complexity. More exactly:

space complexity source
Euclidean plane A P-hard [24]
Rectilinear plane £ AN'P-hard [25]

Ly-planes algorithm needs exponential time [13]
Banach plane algorithm needs exponential time [9]

For higher-dimensional spaces the problems are not easier than in the planes.
For a complete discussion of these difficulties see [10] and [32].

Moreover, to solve Steiner’s Problem we need facts about the geometry of
the space. On the other hand, for an MST we only use the mutual distances
between the points.

Consequently, we are interested in the value

mg(B) := inf {LH(SMT for.lV) N C M4(B) is a finite set} , (14)

Lp(MST for N) "~ ~

which is called the Steiner ratio of the space My(B).
The quantity ma(B)- L(MST for N) would be a convenient lower bound for
the length of an SMT for N in the space My(B); that means, roughly speak-
ing, mq4(B) says how much the total length of an MST can be decreased by
allowing Steiner points.

For the space Eﬁ the Steiner ratio will be briefly written by m(d, p).



64 D. Cieslik

4 Basic properties for the Steiner ratio

It is obvious that 0 < mg4(B) < 1 for the Steiner ratio mg(B) of each Banach-
Minkowskispace My(B). Of course, if d = 1 then the MST and the SMT
are identical, and it is m1(B) = 1. Moreover,

Theorem 4.1 (E.F.Moore in [28]) For the Steiner ratio of every Banach-
Minkowski Space

mg(B)> - =0.5

b =

holds.

In the d-dimensional affine space Ag, the unit ball B(1) is the convex
hull of

N = {%(0,..,0,1,0,...,0) : the i’th component is equal to 1, =1,...,d}.

(15)

The set N contains 2d points. The rectilinear distance of any two different

points in N equals 2. Hence, an MST for N has the length 2(2d — 1).

Conversely, an SMT® for N with the Steiner point 0 = (0,...,0) has the
length 2d. This implies the first fact of

Theorem 4.2 For the Steiner ratio of spaces with rectilinear norm the fol-
lowing are true.

(a) Inthe case of d dimensions we have
m{d,1) < ——. (16)

(b) (Hwang [31]) In two dimensions in (16) equality holds:

m(2,1) = % (17)

Graham and Hwang [30] conjectured that in (16) always equality holds,
which is true in the planar case, (17), but the methods by Hwang do not
seem to be applicable to proving the conjecture in the higher dimensional
case.

Comparing the last two theorems, we observe the following:

>that this tree is indeed an SMT is not simple to see!
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Corollary 4.3 The lower bound 1/2 is the best possible for the Steiner ratio
over the class of all Banach-Minkowski spaces.

Let My(B) be a d-dimensional Banach-Minkowski space, and let Ag
be a d'-dimensional affine subspace (d' < d) with 0 € Ay. Clearly, the
intersection B N Ag can be considered as the unit ball of the space Ag.
This means that Mg (BN Ag) is a (Banach-Minkowski) subspace of M4(B).
Let v and v’ be two different points in Ag. Then the line through v and v’
lies completely in Ag, and in view of 2.1 and (6) we see that the distance
between the points v and ¢’ is preserved:

llv — |l = [lv = /|| Bra,- (18)

Then we have

Theorem 4.4 Let My(B') be a (Banach-Minkowski) subspace of My(B).
Then ma(B') > ma(B).

An interesting problem, but which seems as very difficult, is to determine
the range of the Steiner ratio for d-dimensional Banach-Minkowski spaces,
depending on the value d. More exactly, determine the best possible reals
¢g and Cy such that

ca < ma(B) < Cq, (19)

for all unit balls B of Ay.
The quantity Cj is defined as the upper bound of all numbers m4(B) ranging
over all unit balls B of Ag:

Ca = sup{ma(B) : B € By} (20)

The sequence {Cj3}d=1,,.., starting with €} = 1 is a decreasing and bounded,
consequently a convergent one. Is it true that Cqg = m(d,2)ford =2,3,...?
On the other hand,

cq = inf{my4(B) : B € By}. (21)

is of interest. Does the equality ¢g = m(d, 1) for d = 2,3, ... hold?

S The Steiner ratio of the Euclidean plane

Original, Steiner’s Problem was considered in the Euclidean plane. Even
here, we find that the complexity of computing an SMT is NP-hard. The
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complexity of computing SMT’s in higher-dimensional spaces is demonstra-
bly even more difficult, since here is no inherent combinatorial structure
present in the problem, compare [40].

A long-standing conjecture, given by Gilbert and Pollak in 1968, said
that m(2,2) = v/3/2. Many persons have tried to show this; successively
establishing that v/3/2 does indeed hold for sets with a small number of
points: Pollak [36] and Du, Yao, Hwang [15] have shown that the conjecture
is valid for sets N consisting of n = 4 points; Du, Hwang, Yao [17] stated
this result to the case n = 5, and Rubinstein, Thomas [37] have done the
same for the case n = 6.

On the other hand, many attempts have been made to estimate the Steiner
ratio for the Euclidean plane from below:

m(2,2) > 1/v/3 =0.57735... Graham, Hwang [30]
m(2,2) > /2v3+2— (7+2v3) =0.74309... Chung, Hwang [5]
m(2,2) > 4/5 =028 Du, Hwang [16]
m(2,2) >0.82416... Chung, Graham [6]

Finally, Du and Hwang created a lot of new methods and succeeded in
proving the Gilbert-Pollak conjecture completely:

Theorem 5.1 (Du, Hwang [18], [19]) The Steiner Ratio of the Euclidean
plane equals
V3

m(2,2) = - = 0.86602....

Now, we are interested in the sets of points which achieve the Steiner
ratio. Clearly, when N contains the nodes of an equilateral triangle we have
L(SMT for N) /3
g Y el i Ly S PR A 2.2). 22
I(MSTfor V) ~ 2~ %2 (%)
In a first view, it seems that no other finite set of points has this property.
Probably, this is true, but Du and Smith [21] had an surprising idea: Let’s
look at some special set configurations created by joining equilateral trian-
gles at a common side. This is actually called a 2-sausage, more formally:

1. Start with a unit circle;

2. Successively add unit circles so that the n’th circle you add is always
touching the min{2,n — 1} most recently added circles.

This procedure uniquely® defines an infinite sequence of interior-disjoint

Sup to congruence
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numbered circles. The centers of these circles form a discrete point set,
which is called the (infinity) 2-sausage. The first n points of the 2-sausage
will be called the “n-point 2-sausage” N(n,2) or “flat-sausage” for simplic-
1ty.

V\)’/hat is remarkable about the sausages? At first their regularity and then
the fact that the ratio between the length of an SMT and the length of an
MST for N(2n,2) decreases with increasing number n. Moreover,

Theorem 5.2 (Du, Smith [21])

L(SMT for N(2n,2)) 3 _
A TOMST for N@nym)) ~ 2 - B2

6 The Steiner ratio of £,-planes

If we have an analytic formula, which decribes the norm, we have also the
possibility to estimate the Steiner ratio with direct calculations. In this sec-
tion we will determine upper and lower bounds for the Steiner ratio m(2, p)
of two-dimensional £,-spaces.

Du and Liu determined an upper bound for the Steiner ratio using direct
calculations of the ratio between the length of SMT’s and of MST’s for sets
with three elements:

Theorem 6.1 (Du, Liu [35]) The following is true for the Steiner ratio of
the Ly-planes Mao(B(p)):

(27 — 1)1/P 4 (29 - 1)1/a

<
m{2,p) < 1 :

(23)
where q is the conjugated number to p; that means % + % =1

Corollary 6.2 Forl <p < oo it holds

m{2,p) < m(2,2) = ? = 0.866025....

Furthermore, equality holds if and only if p = 2.

The proof of 6.1 uses a specific triangle. Now, we will use a triangle
which has a side parallel to the line {(z,z) : ¢ € R}. Let 1 < p <
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and © = (0,1), v = (1,0) and w = (zp,zp). We want that the triangle
spanned by u,» and w is equilateral and, additionally, z, lies between 1
and 2. Considering this triangle Albrecht [1] gives the following new upper
bounds for m(2,p) for specific values p:

p q Theorem 6.1 new with p new with q
1.1 11 0.782399... 0.775933. .. 0.775933...
12 6 0.809264... 0.797975... 0.797975. ..
1.3 4.3... 0.829043... 0.816708. . . 0.816708. . .
14 35 0.842759. .. 0.832320... 0.832320. ..
1.5 3 0.852049. .. 0.844625. .. 0.844625. ..
1.6 2.6... 0.858207... 0.853640. .. 0.853640. ..
1.7 2.428571... 0.862145... 0.859755... 0.859755. ..
1.8 2.25 0.864491... 0.863518. . . 0.863518. . .
19 2.1... 0.865681. . . 0.865460. .. 0.865460. . .
2.0 2 0.866025... 0.866025. . . 0.866025. ..
It is not hard to see, that considering sets with three points only creates

estimates for the Steiner ratio which are at least 3/4, compare [28]. Using
sets with four points gives

Theorem 6.3 (Albrecht [1]) The Steiner ratio of f.f, is essentially less than
Sifp<l2orif p>6.

How can we find a lower estimate for the Steiner ratio of the planes?

Here,

1.

we use two facts:

The values for £} and £} are exactly known: m(2,1) = 2/3 and

m(2,2) = /3/2.

. We introduce a distance function between classes of Banach-Minkowski

spaces in the following way: Let By denote the class of all unit balls
in Ag4, and let [By] be the space of classes of isometrics for B;. Then
the Banach-Mazur distance abst is a metric on [By] defined as

abst([B),[B']) = Ininf{h > 1:there is an isometry A such that
B C AB C hB}

for[B], [B'] in [B4]. The space {[B,], abst) is a compact metric space,
with diameter = In %, compare [42].
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With these facts in mind we find

Theorem 6.4 (C. [8], [10]) The following are true for the Steiner ratio of
the Lp-planes:

21/
32& = . In 135 < 2'

We can find bounds for m(2,p), » > 2, if we replace p by p/(p — 1) on the
right side.

7 The Steiner ratio of Banach-Minkowski planes

For many specific planes the Steiner ratio is known or well estimated. In the
section before we find the values for £-planes, including the exact value for
the Euclidean plane and the plane with rectilinear norm. Additionally, it
is an interesting question to consider planes which are normed by a regular
polygon with an even number of corners.

We defined the so-called A—geometry Ma(B™) in the following way: The
unit ball BW is a regular 2\-gon with the z-axis being a diagonal direction.
Particularly, it holds

i

Ma(B@) Vi, (24)
My(B(®)y = [2 (25)

We have the

Theorem 7.1 (Sarrafzadeh, Wong [38]) For the Steiner ratio of the planes
with A-geometry it holds that

N
ma(BMy > L= R (26)

It follows from the last theorem that ma(B®)) > 3/4. B®) isan affinely
regular hexagon. In view of an isometry, we may assume that

B® = conv{(1,1),(-1,-1),(1,0),(~1,0),(0,1),(0,-1)},  (27)
which implies that

l(z1, 22)l| gy = max{|z1], |22, |€1 — 22[}. (28)
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Then it is easy to see that the set N = {(1,1), (—1,0), (0, —1)} has an MST
of the length 4 and an SMT of the length at most 3. Hence, the Steiner
Ratio is not greater than 3/4, and we have

Theorem 7.2 (Du et.al. [20]) Let B be an affinely regular hexagon in the
plane. Then

ma(B) = % = (0.75.

What is known about the Steiner ratio of two-dimensional Banach spaces
in general? A sharp lower bound for the Steiner ratio of any Banach-
Minkowski plane we have in

Theorem 7.3 (Gao, Du, Graham [23]) For the Steiner ratio of Banach-

Minkowski planes the following is true:
2
ma (B) = ‘é

If there is a natural number n such that the bound 2/3 is adopted by a set
of n points, then n =4, and B is a parallelogram.

This bound is the best possible one, since the plane with rectilinear norm
has Steiner ratio 2/3. Such a nice result for an upper bound is unknown,

but we have

Theorem 7.4 (Du et.al. [20]) For any unit ball B in the plane the following

is true:
13—-1
ma(B) < \/_3 =0.8685.... (29)
Is it true that /3
mg(B) < ~—2§ = (.86602..., (30)

which is the Steiner ratio of the Euclidean plane?

8 The Steiner ratio of Cg

In this section we will determine upper bounds for the Steiner ratio m(3, p) of
three-dimensional £,-spaces. Our goal is to estimate the quantities m(3, p)
with help of investigations for configurations of points in a regular situation
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in the space ﬁf;. To do this we start with the consideration of tetrahedrons:
Let 1 < p < oo and consider the four points

v = (1,0,0),
v = (0,1,0),
v3 = (0,0,1) and
vy = (1,1,1)

which build an equilateral set. Hence,

Theorem 8.1 (Albrecht [1]) Let 1 < p < oo and let g be conjugatedto p.
Then we have for the Steiner ratio of Ef,

“ : i
1(2 lfp+(2q—1)1/q) Coif 1<p< gl

(%)lq : otherwise

m(3,p) < {

Another way: We consider a cross-polytope created by the set of nodes
N = {v1,...,vg} whereby

vy = (1,0,0),

va = (0! 1!0):

M = [0, 0, 1),

vg = (-1,0,0),

vs = (0,—-1,0) and
v = (0,0,-1).

The points »; and vj, ¢ # j, have the distance

ol 2 : if |i—j|=3
plvi, vj) = 2/ <2 : otherwise

and consequently an MST for N has the length
L,(MST for N) =5.21/P, (31)

On the other hand, using the fact that it holds p(v;,0) = 1fori=1,...,6,
there is a tree for N U {o} of the length 6. Hence,
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Theorem 8.2 For the Steiner ratio of a three-dimensional Lp-space it holds

6 [1\!/P
m(3,p) < 5 ('2') .

Now, we will consider a cross-polytope in another way which gives better
bounds for the Steiner ratio if p > 2.

At first we assume that p % oo and consider the set N = {vy,...,vg} of
given points with

M = (.”L‘u,mu -1,1 —:Bn),
vg = {(z0,70,2— o),

vg = (1,0,1),

vy = (0!0!0)1

vg = {0,1,1) and

ve = (x0—1,20,1— x0),

whereby g denotes the unique zero of the function f with
flz)=2P4+2(z—-1)" -2 (32)
over the range (1,2). Here,

Theorem 8.3 (Albrecht [1]) Let 1 < p < 00, }/p+1/q =1 and let z¢ be

the unique determined zero of the function f defined in (32) over the range
(1,2). Then the Steiner ratio of .Cg can be estimated by

1/p 1/p
1 1k i b 3 p i 553
m(3 p) < 5 ((2q B 1) L w (5) + (E) EG) ' 1<p< 1053?—-]0g2
e i/p
1(3 5 log 3
E(E) (o+2) @  Eipm <p<o

9 The Steiner ratio of Euclidean spaces

In the d-dimensional Euclidean space, we consider the set N of d + 1 nodes
of a regular simplex with exclusively edges of unit length. Then an MST for
N has the length d. It is easy to compute that the sphere that circumscribes
N has the radius R(N) = 1/d/(2d + 2). With the center of this sphere as
Steiner point, we find a tree T interconnecting N with the length Lp(3)(T) =
(d+ 1)R(N). Hence, we find the following nontrivial upper bound:

"But between p = 2 and p & 2.0619508 the bound will be greater than the bounds
given before.
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Theorem 9.1 The Steiner ratio of the d-dimensional Euclidean space can
be bounded as follows:
1 1

<=+ —.
m(d,2) < 2 + 2d (33)
In the proof we used a Steiner point of degree d + 1, but it is well-
known that all Steiner points in an SMT in Euclidean space are of degree
3. Consequently, the tree T described above is not an SMT for N, if d > 2.
Better estimates for m(d,2), we find in

Theorem 9.2 (Chung, Gilbert [4], Smith [39] and Du, Smith [21]) The
Steiner ratio of the d-dimensional Euclidean space is bounded as follows:

dimension upper bound upper bound  upper bound
by Chung, Gilbert by Smith by Du, Smith
=2 0.86602 . . .
=3 0.81305... 0.81119... 0.784109. ..
=4 0.78374 . .. 0.76871 ... 0.74398 . ..
=5 0.76456 . .. 0.74574 . . . 0.72181. ..
=6 0.75142.. .. 0.73199... 0.70853 . ..
=7 0.74126. .. 0.72247. .. 0.70012. ..
=8 0.73376 . .. 0.71550. . . 0.69455 ...
=9 0.72743 ... 0.71112... 0.69076. ..
=10 0.72250... 0.68812. ..
=11 0.71811... 0.68624 . ..
=20 0.69839. ..
=40 0.68499. ..

=80 0.67775 ...
=160 0.67392...
— 00 0.66984 . ..

The first column was computed by Chung and Gilbert considering reg-
ular simplices. Here, Du and Smith [21] showed that the regular d-simplex
cannot achieve the Steiner ratio if & > 2. That means that these bounds
cannot be the Steiner ratio of the space when d > 2.

The second column given by Smith investigates regular octahedra, respec-
tively cross polytopes. Note, that it is not easy to compute an SMT for the
nodes of an octahedra.

The third column used the ratio of sausages, whereby a sausage is con-
structed by
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1. Start with a ball (of unit diameter) in £g;

2. Successively add balls so that the n’th ball you add is always touching
the min{d, n — 1} most recently added balls.

This procedure uniquely® defines an infinite sequence of interior-disjoint
numbered balls. The centers of these balls form a discrete point set, which is
called the (infinity) d-sausage N{oo,d). The first n points of the d-sausage
will be called the “n-point d-sausage” N(n,d). Note, that N{d+ 1,d) is a
d-simplex if d > 3.

Du and Smith [21] present many properties of the d-sausage, in particular,

that
L(SMT for N(o0,d))

L(MST for N(o9,d)) L

is a strictly decreasing function of the dimension d.” Hence, u(d), d = 2,3, ...
is a convergent sequence, but the limit is still unknown.

It seems that probably there does not exist a finite set of points in the d-
dimensional Euclidean space, d > 3, which achieves the Steiner ratio m/(d, 2).
But, if such set in spite of it exists, then it must contain exponentially many
points. More exactly: Smith and McGregor Smith [41] investigate sausages
in the three-dimensional Euclidean space to determine the Steiner Ratio and
following they conjectured that for the Steiner Ratio of the three-dimensional
Euclidean space

uw(d) 1=

m(3.9) J283 3v21 911~ +/21v2

700 700 140
— 0.78419...

holds.
Moreover, Du and Smith used the theory of packings to get the following

8up to congruence
Here, we use a generalization of Steiner’s Problem to sets of infinetly many points.
This is simple to understand. For a finite number of points it is shown that

L{SMT for N(2d + 1,d)) _ L(SMT for N(d + 1,d))
L(MST for N(2d + 1,d)) — L(MST for N(d + 1,d))’

which is a finite version of

L(SMT for N(co,d)) _ L(SMT for N(d + 1,d))
L{MST for N{co,d)) ~ L(MST for N(d+ 1,d))’

for d > 1.
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Theorem 9.3 (Du, Smith [21]) Let N be a finite set of n points in the d-
dimensional Euclidean space Ma(B(2}), d > 3, which achieves the Steiner
ratio mg(B(2)) of the space. Then

n> E f(g,d)] =

2[&_2 (?7/2)
Iy 2(6)

where
f(0,d) =
and

Ia(2) = f:(sinu)m du.

9.3 implies that the number n grows at least exponentially in the dimen-
sion d. Some numbers are computed:

d= = is at least
49 49
50 53
100 2218
200 3481911
500 106
1000 5-10%

10 The Steiner ratio of L%

For our investigations we have the following facts: Let 1 < p < oc and d > 3.
Then there are in .Cf, at least d+ 1 equidistant points. This can be seen with
the following considerations: For ¢ =1,...,d let

v = (Zig, - Ti,d)
with
N S TR
71 0 : otherwise.
These are d points with |jv; — vj]| = 2'/P forall 1 <i < j < d.

For the point v = (z, ..., ) it holds ||v —v|| = ||lv —v;|| forall 1 <4,5 < d.
To create ||v — v]| = 21/? the value z has to fulfill the equation

((@=Dlzf” + |1 - 2?)/? = 21/7.
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This we can realize by the fact that the function f : [0,1] = R with
flz) = ((d - DzP + (1~ 2)")V/P ~ 21/7
has exactly one zero in [0,1].

Theorem 10.1 (Albrecht [1], [2]) Let 1 < p < 0o and d> 3. Then

d+1 (d\'/?
o T2 s .
md,) < 8- (5)

Moreover, when we use an idea by Liu and Du [35] for the planar case
extending to an approach using equilateral sets and a “center” we find:

Theorem 10.2 (Albrecht [1], [2]) Let 1 < p < co. Then

d+1 (1\Vr
m{d,p) < g (5) .

This bound is not sharp, since the estimation of the distance of the points
to the center is to inefficient, at least for small dimensions. On the other
hand, we only use one additional point, and it is to assume that more than
one of such points decrease the length.

Now, we compare the bounds given in 10.1 and 10.2. Obviously,

d+1 (d)”” L d+1 (1)”?
2d 2 - d 2
holds if and only if
d < 2°,
Hence,

Corollary 10.3 Looking for the Steiner ratio of high dimensional Lp-spaces
we have only to consider the bound given in 10.2.

11 When the dimension runs to infinity

What do we know of the development of the Steiner ratio of Banach-Min-
kowski spaces if the dimension d runs to infinity? First, we consider the
spaces L‘.f,, namely

m{p) = dlLrgo m(d, p). (35)

We know the following values and estimates for m(p):
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p= lower bound exact value upper bound source
1 3=05 4.2
2 % = 0,57785... 0.66984... 9.2
00 % =05 calculation
P 1 1 1/p
arbitrary 3=035 (5) 10.2

Moreover, combining all facts, we have

Theorem 11.1 Ler m(p) = limg,oo m{d,p). Then it holds

5 <m(p) < min{(%)up ,m(z)}

for any reall < p < 0o, and

m(1) = m(c0) = .

Above we discussed the limiting process for the class of all Banach-
Minkowski spaces considering the sequence {Ca}4=1,2,... whereby

Cq = sup{my(B) : B € B,}.

Moreover, we find that our conjectures from the end of section 4 are true
if we go to infinity.

Theorem 11.2 (C. [12])

B Bo= B8, sy

whereby
0.57735... < lim m(d,2) < 066984...;
d—yoo

and

;i}ngc Ca= dlinc}o m(d, 1) = 0.5.
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