Chapter 2

MOTIVATING SCENARIOS

In this chapter, we try to set the stage for our exploration of trusted com-
puting platforms. In Section 2.1, we consider the adversary, what abilities and
access he or she has, and what defensive properties a trusted computing platform
might provide. In Section 2.2, we examine some basic usage scenarios in which
these properties of a TCP can help secure distributed computations. Section 2.3
presents some example real-world applications that instantiate these scenarios.
Section 2.4 describes some basic ways a TCP can be positioned within a dis-
tributed application, and whose interests it can protect; Section 2.5 provides
some real-world examples. Finally, although this book is not about ideology,
the idealogical debate about the potential of industrial trusted computing efforts
is part of the picture; Section 2.6 surveys these issues.

2.1 Properties

In its classic conception, a trusted computing platform such as a secure
coprocessor is an armored box that does two things:

s [t protects some designated data storage area against an adversary with
certain types of direct physical access.

m [t endows code executing on the platform with the ability to prove that it is
running within an appropriate untampered environment.

What types of attacks the platform defends against, and exactly how code does
this attestation, are issues for the platform architect.

In an informal mental model of a distributed computing application, we map
computation and data to platforms distributed throughout physical space. Users
(including potential adversaries) are also distributed throughout this space. Co-
location of a user and a platform gives that user certain types of access to

10 TRUSTED COMPUTING PLATFORMS

that platform: through “ordinary” usage methods as well as malicious attack
methods (although the distinction between the two can sometimes reduce to how
well the designer anticipated things). A user can also reach a platform over a
network connection. However, in our mental model, direct co-location differs
qualitatively. To illicitly read a stored secret over the network, a user must find
some overlooked design or implementation flaw in the API. In contrast, when
the user is in front of the machine, he or she could just remove the hard disk.

Not every user can reach every location. The physical organization of space
can prevent certain types of access. For example, an enterprise might keep
critical servers behind a locked door. Sysadmins would be the only users with
“ordinary” access to this location, although cleaning staff might also have “or-
dinary” access unanticipated by the designers. Other users who wanted access
to this location would have to take some type of action—such as picking locks
or bribing the sysadmins—to circumvent the physical barriers.

The potential co-location of a user and a platform thus increases the potential
actions a user can take with that platform, and thus increases the potential
malicious actions a malicious user can take. The use of a trusted platform
reduces the potential of these actions. It is tempting to compare a trusted
platform to a virtual locked room: we move part of the computation away from
the user and into a virtual safe place. However, we must be careful to make
some distinctions. Some trusted computing platforms might be more secure
than a machine in a locked room, since many locks are easily picked. (As
Bennet Yee has observed, learning lockpicking was standard practice in the
CMU Computer Science Ph.D. program.) On the other hand, some trusted
computing platforms may be less secure than high-security areas at national
labs. A more fundamental problem with the locked room metaphor is that, in
the physical world, locked rooms exist before the computation starts, and are
maintained by parties that exist before computation starts. For example, a bank
will set up an e-commerce server in a locked room before users connect to it,
and it is the bank that sets it up and takes care of it. The trusted computing
platform’s “locked room” can be more subtle (as we shall discuss).

2.2 Basic Usage

This discussion leaves us with the working definition: a TCP moves part
of the computation space co-located with the user into a virtual locked room,
not necessarily under any party’s control. In more concrete terms, this tool has
many potential uses, depending on what we put in this separate environment.
At an initial glance, we can look on these as a simple 2x2 taxonomy: secrecy
and/or authenticity, for data and/or code.

Since we initially introduced this locked room as a data storage area, the first
thing we might think of doing is putting data there. This gives secrecy of data.
If there is data we do not want the adversary to see, we can shelter it in the

Motivating Scenarios 11

TCP. Of course, for this protection to be meaningful, we also need to look at
how the data got there, and who uses it: the implicit assumption here is that the
code the TCP runs when it interacts with this secure storage is also trustworthy;
adversarial attempts to alter it will also result in destruction of the data.

In Chapter 1, we discussed the difference between the terms “trustworthy”
and “trustable”. Just because the code in the TCP might be trustworthy, why
should arelying party trustit? Given the above implicitassumption—tampering
code destroys the protected data—we can address this problem by letting the
code prove itself via use of a key sheltered in the protected area, thus giving us
authenticity of code.

In perhaps the most straightforward approach, the TCP would itself generate
an RSA key pair, save the private key in the protected memory, and release
the public key to a party who could sign a believable certificate attesting to the
fact that the sole entity who knows the corresponding private key is that TCP,
in an untampered state. This approach is straightforward, in that it reduces
the assumptions that the relying party needs to accept. If the TCP fails to be
trustworthy or the cryptosystem breaks, then hope is lost. Otherwise, the relying
party needs only needs to accept that the CA made a correct assertion.

Another public key approach involves having an external party generate the
key pair and inject the private key, and perhaps escrow it as well. Symmetric
key approaches can also work, although the logic can be more complex. For
example, if the TCP uses a symmetric key as the basis for an HMAC to prove
itself, the relying party must also know the symmetric key, which then requires
reasoning about the set of parties who know the key, since this set is no longer
a singleton.

Once we have set up the basis for untampered computation within the TCP to
authenticate itself to an outside party—because, under our model, attack would
have destroyed the keys—we can use this ability to let the computation attest
to other things, such as data stored within the TCP. This gives us authenticity
of data. We can transform a TCP’s ability to hide data from the adversary into
an ability to retain and transmit data whose values may be public—but whose
authenticity is critical.

Above, we discussed secrecy of data. However, in some sense, code is data.
If the hardware architecture permits, the TCP can execute code stored in the
protected storage area, thus giving us secrecy of code. Carrying this out in
practice can be fairly tricky; often, designers end up storing encrypted code in
a non-protected area, and using keys in the protected area to decrypt and check
integrity. (Chapter 6 will discuss this further.) An even simpler approach in this
vein is to consider the main program public, but (in the spirit of Kerckhoff’s
law) isolate a few key parameters and shelter them in the protected storage.

However, looking at the potential taxonomy simply in terms of a 2x2 ma-
trix overlooks the fact that a TCP does not just have to be passive receptacle

12 TRUSTED COMPUTING PLATFORMS

that holds code and data, protected against certain types of adversarial attack.
Rather, the TCP houses computation, and as a consequence of this protected en-
vironment and storage, we can consider the TCP as a computational entity, with
state and potentially aware of real time. This entity adds a new column to our
matrix: rather than just secrecy and authenticity, we can also consider guard-
ing. Whether a local user can interact with the stored data depends on whether
the computational guard lets him or her; whether a local user can invoke other
computational methods depends on whether the guard says it is permissible.

2.3 Examples of Basic Usage

Secrecy of Data. An axiom of most cryptographic protocols is that only the
appropriate parties know any given private or secret key. Consequently, a natural
use of TCPs is to protect cryptographic keys. A local user Bob would rather not
have his key accessible by a rogue officemate; an e-commerce merchant Alice
would rather not have her SSL private key accessible by an external hacker or
a rogue insider.

Authenticity of Code. Let’s continue the SSL server example. Bob might
point his browser to Alice’s SSL server because he wants to use some service
that Alice advertises. The fact that the server at the other end of the Internet
tunnel proved knowledge of a private key does not mean that this server will
actually provide that service. For example, Bob may wish to whisper his private
health information so Alice’s server can calculate what insurance premium to
charge him; he would rather Alice just know the premium, rather than the
health information. For another example, perhaps Alice instead is a healthcare
provider offering an online collection of health information. Bob might wish to
ask Alice for a record pertaining to some sensitive disease, and he would rather
no one—not even Alice—know which topic he requested.

In both these cases, Bob wants to know more than just that the server on the
end of the tunnel knows the private key—he also wants to know that the server
application that wielded this data and provides this service actually abides by
these privacy rules.

Authenticity of Data. Suppose instead that Alice participates in a distributed
computation in which she needs to store a critical value on her own machine.
For example, we can think of an “e-wallet” where the value is the amount cash
the wallet holds, or a game in which the value is the number of points that Alice
has earned. We might even think more generally: perhaps this value is the audit
log of activity (potentially from hackers) on Alice’s machine.

In all these situations, the value itself might reasonably be released to Alice
and to remote parties (under the appropriate circumstances). However, in these
situations, parties exist who might have access to this value, and might have

Motivating Scenarios 13

motivation to alter it. Alice may very well have motivation to increase her wallet
and point score; an attacker who’s compromised Alice’s machine might very
well want to suppress or alter the audit log. The remote party wants assurance
that the reported value is accurate and current.

Secrecy of Code. Despite textbook admonitions against “security through
obscurity,” scenarios still arise in the real world where the internal details of a
program are still considered proprietary. For example, credit card companies
use various advanced data mining approaches to try to identify fraudulent ac-
count activity and predict which accounts will default, and regard the algorithm
details as closely held secrets. Similarly, insurance companies may regard as
proprietary the details of how they calculate premiums based on the information
the applicant provided.

If Alice is such a party, then she would not want to farm her code out to
Bob’s site unless Bob could somehow assure her that the details of the code
would not leak out. In this case, the TCP enables an application that otherwise
might not be reasonable.

Guarded Data. In the e-wallet case above, Alice’s TCP holds a register indi-
cating how much money Alice’s wallet holds. Consider how this value should
change: it should only increase when the e-wallet of some Bob is transferring
that amount to it; it should only decrease when Alice’s e-wallet is transferring
that amount to the e-wallet of some Bob. In both these situations, the exchange
needs to be fully transactional: succeeding completely or failing completely,
despite potential network and machine failures.

In this case, the relying party needs to do more than just trust that the value
allegedly reported by Alice’s e-wallet was in fact reported by Alice’s e-wallet.
Rather, the relying party also needs to be able to trust that this value (and the
values in all the other e-wallets) has only changed in accordance with these
transactional rules. By providing an authenticated shelter for code interacting
with protected data, a TCP can address this problem.

For another case, consider an electronic object, such as a book or a movie,
whose usage is governed by specific licensing rules. For example, the book
may be viewed arbitrarily, but only on that one machine; the movie might have
the additional restrictions of being viewed only N complete times, and only
at ordinary speed. In both cases, a TCP could store the protected data (or the
unique keys necessary to decrypt it), as well as house a program that uses its
knowledge of state and time to govern the release of the protected object.

Of course, for this technology to be effective against moderately dedicated
attackers, either the TCP needs to have an untappable I/O channel to release the
material, or the material that is released during ordinary use must be somehow

14 TRUSTED COMPUTING PLATFORMS

inappropriate for making a good pirated copy. (For one examples, we could
use the TCP to insert watermarks and fingerprints into the displayed content.)

The notion of a protected database of sensitive information—where stake-
holder policy dictates that accesses be authorized, specific, and rare—satisfies
this latter condition. One example of such a database might be archives of
network traffic, saved for later use in forensic investigation.

Guarded Code. As a natural extension to the above DRM example, we could
change the book to a program—since the assumption that the adversary would
not reverse-engineer the program solely from the I/O behavior observed during
normal use is far more reasonable. In this case, the guard would prevent the
program from operating—or migrating out of the TCP—unless these actions
comply with the license restrictions. For the case in which the TCP is too
limited in computational power to accommodate the program it is intended to
protect, researchers have proposed partitioned computation: isolating a critical
piece of the program that is hard to reverse-engineer, and protecting that piece
inside the TCP.

A more trivial example would be a cryptographic accelerator: we do not
want the TCP to just store the keys; we also want it to use the keys only when
properly authorized, and only for the intended purpose. (As recent research
shows, doing this effectively in practice, for current cryptographic hardware
supporting current commodity PCs, is rather tricky.)

2.4 Position and Interests

Putting trusted computing protections in place for something that occurs only
in one place involving one party does not achieve much. Arguably, TCPs only
make sense in the context of a larger system, distributed in space and involving
several parties. In the current Internet model, the initial way we think of such
a system is as a local client interacting with a remote server. Typically, these
terms connote several asymmetries: the client is a single user but the server
is a large organization; the client is a small consumer but the server is a large
content provider; the client handles rather little traffic, but the server handles
much; the client has a small budget for equipment, but the server has a large
one.

TCPs need to exist in a physical location, and to provide a virtual island there
representing the interests of a party at another location. Initially, then, we can
position a TCP in two settings:

m at the client, protecting the interests of the server,
m or at the server, protecting the interests of the clients.

However, like most things initial, this initial view misses some subtleties.

Motivating Scenarios 15

= Sometimes, a TCP at Alice’s site can advance her own interests, much as a
bank vault helps a bank. The TCP can help her protect her own computa-
tion against adversaries and insider attack. In e-commerce scenarios, this
protection can even give her a competitive advantage.

® The client-server model may indeed describe much distributed computation.
However, it does not describe all of it: for example, some systems consist
instead of a community of peers.

= Naively, we think of a TCP as protecting some party’s interests. However,
the number of such parties does not necessarily have to be one.

m Naively, we also think of a TCP providing a protected space that extends the
computational space controlled by some remote party. However, the number
of parties who “control” the TCP’s protected space does not necessarily have
to be nonzero. E.g., if Alice is to reasonably gain a competitive advantage
by putting some of here computation into a locked box, then the locked box
must be subsequently under no one’s control.

2.5 Examples of Positioning

Client-side. The standard DRM examples sketched above constitute the clas-
sic scenario where the TCP lives at the client side and protects the interests of
a remote server (in this case, the content provider). The operator of the local
machine would benefit from subverting the protections, in order to be able to
copy the material or watch the movie after the rental period has expired. Sym-
metrically, the remote content provider would (presumably) suffer from this
action, due to lost revenue.

Server-side. Above, we also sketched examples where the TCP lived at the
server side:

= enforcing that access to archived sensitive data follows the policy agreed to
before the archiving started; or

m providing a Web site where clients can request sensitive information, without
the server learning what was requested.

These cases invert the classic DRM scenario. The TCP now lives at the server
side and protects the client’s interests by restricting what the server can do.

Protecting own interests. This privacy-enhanced directory application also
inverts the standard model, in that the TCP at the server side also arguably
advances the server’s interests as well: the increased assurance of privacy may
draw more clients (and perhaps insulate the server operator against evidence

16 TRUSTED COMPUTING PLATFORMS

discovery requests). Another example would be an e-commerce site that pro-
vides gaming services to its clients, and uses a TCP to give the clients assurance
that the gaming operations are conducted fairly. By using the TCP to provide
a space for fair play, the server operator advances her own interests: because
more clients may patronize a site that has higher assurance of fairness.

We can also find examples of this scenario at the client. Consider the problem
of an enterprise whose users have certified key pairs, but insist on using them
from various public access machines, exposed to potential compromise. In one
family of solutions, user private keys live in some protected place (such as at a
remote server, perhaps encrypted). When Alice wishes to use her private key
from a public machine, she initiates a protocol that either downloads the key, or
(in one subfamily) has the machine generates a new key pair, which the remote
server certifies.

In these settings, Alice is at risk: an adversary who has compromised this
public machine can now access the private key that now lives there. However,
suppose this machine used one of the newer TCP approaches that attempt to
secure an entire desktop. We could then amend the key protocol to have the re-
mote server verify the integrity of the client machine before transferring Alice’s
credential—which helps Alice. Thus, by using a TCP at the client to restrict
the client’s abilities, we advance the interests of the client.

Multiple parties. As we observed, the parties and protected interests involved
can be more complex than just client and server. Let’s return the health-
insurance example. Both the client and the insurance provider wish to see
that an accurate premium is calculated; the client further wishes to see that
the private health information he provided remains private. Using a TCP at
the insurance provider thus advances the interests of multiple parties: both the
client and the server. We can take this one step further by adding an insurance
broker who represents several providers. In this case, any particular provider
might farm out her premium-calculation algorithm to the broker, but only if the
broker can provide assurances that the details of the algorithm remain secret.
So, a TCP at the broker now advances the privacy interests of both the con-
sumer and the external provider, the accuracy interests of all three parties, and
the competitive advantage of the broker.

For another example, consider the challenges involved in carrying out an
online auction. Efficiency might argue for having each participant send in an
encoding of his or her bidding strategy, and then having a trusted auctioneer
play the strategies against each other and announce the winner. However, this
approach raises some security issues. Will the auctioneer fairly play the strate-
gies against each other? Will the auctioneer reveal private details of individual
strategies? Will the auctioneer abide by any special rules advertised for the auc-

Motivating Scenarios 17

tion? Can any given third party verify that the announced results of an auction
are legitimate?

We could address these issues by giving the auctioneer a TCP, to house the
auction software, securely catch strategies, and sign receipts attesting to the
input, output, and auction computation. The TCP here protects the interests of
each of the participants against insider attack at the auction site and (depending
on how the input strategies are packaged) against fraudulent participant claims
about their strategies.

Community of peers. Consider the e-wallet example from earlier. If Bob can
manage to increase the value of cash his e-wallet stores without going through
the proper protocol, then he essentially can mint money—which decreases the
value of everyone’s money. In this case, the TCP at a client is protecting the
interests of an entire community of peer clients.

Of course, the classic instantiation of such community-oriented systems is
peer-to-peer computation: where individual clients also provide services to
other clients, and (often) no centralized servers exist. Investigating the embed-
ding of TCPs in P2P computation is an area of ongoing research. For example,
in distributed storage applications that seek to hide the location and nature of
stored items, using TCPs at the peers can provide an extra level of protection
against adversaries. For another example, the SEmi-trusted Mediator (SEM)
approach to PKI breaks user private keys into two pieces (using mediated RSA),
and stores on piece at a trusted server, who (allegedly) only uses it under the
right circumstances. We could gain scalability and fault tolerance by by replac-
ing the server with a P2P network; using TCPs at the peers would give us some
assurance that the key-half holders are following the appropriate rules.

No one in control. As we discussed above, in a naive conception, the TCP
provides an island that extends the controlled computational space of some
remote party. However, note that a large number of the above applications
depend on the fact that, once the computational entity in the TCP is set up,
no one has control over it, not even the parties whose interests are protected.
For example, in the private information server, neither the server operator nor
the remote client should be able to undermine the algorithm; in the auction
case, no party should be able to change or spy on the auction computation;
in the insurance broker case, the insurance provider can provide a premium
calculation algorithm that spits out a number, but should not be able to replace
that with on that prints out the applicant’s answers.

How to build a TCP that allows for this sort of uncontrolled operation—while
also allowing for code update and maintenance—provides many challenging
questions for TCP architecture.

18 TRUSTED COMPUTING PLATFORMS

2.6 The Idealogical Debate

The technology of trusted computing tends to focus on secrecy (“the adver-
sary cannot see inside this box™) and control (“the adversary cannot change what
this box is doing”). Many commercial application scenarios suggested for this
technology tend to identify the end user as the adversary, and hint at perhaps
stopping certain practices—such as freely exchanging downloaded music, or
running a completely open-source platform—that many in our community hold
dear.

Perhaps because of these reasons, the topic of trusted computing has engen
dered an idealogical debate. On the one side, respected researchers such as Ros
Anderson [Anda] and activist groups such as the Electronic Frontier Founda
tion [Sch03b, Sch03a] articulate their view of why this technology is dangerous
researchers on the other side of the issue dispute these claims [Saf02b, Saf02a
for example].

Any treatment of TCPs cannot be complete without acknowledging this de-
bate. In this book, we try to focus more on the history and evolution of the
technology itself, while also occasionally trying show by example that TCP
applications can actually be used to empower individuals against large wielders
of power.

2.7 Further Reading

We’ll consider many of these applications further in Chapter 4, Chapter 9,
and Chapter 11.

2 Springer
http://www.springer.com/978-0-387-23916-3

Trusted Computing Platforms
Design and Applications
Smith, 5.

2005, XX, 239 p., Hardcowver
ISBN: @78-0-387-23916-3

