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It is well documented that the incidence of malignant tumors
increases progressively with age, both in animals and humans 1-3. The
relationship between aging and cancer is not clear. Considerable controversy
surrounds the mechanisms that lead to increased incidence of cancer in the
aged. Three major hypotheses have been proposed to explain the association
of cancer and age.

The first hypothesis holds this association is a consequence of the
duration of carcinogenesis. In other words, the high prevalence of cancer in
older individuals simply reflects a more prolonged exposure to carcinogens 4.
The second hypothesis proposes that age-related progressive changes in the
internal milieu of the organism may provide an increasingly favorable
environment for the induction of new neoplasms and for the growth of
already existent, but latent malignant cells 5-9. These mechanisms may also
include proliferative senescence, as the senescent cells loses their ability to
undergo apoptosis and produce some factors which stimulate epithelial cells
with oncogenic mutations 10. The third hypothesis proposes that the cancer-
prone phenotype of older humans might reflect the combined effects of
cumulative mutational load, increased epigenetic gene silencing, telomere
dysfunction and altered stromal milieu 11. The elucidation of causes of an
age-related increase in cancer incidence may be the key to a strategy for
primary cancer prevention.
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1. AGING AND MULTISTAGE MODEL OF CANCER

The homeostasis of most tissues is maintained thanks to a pool of
stem cells able to reproduce themselves and to differentiate. Cell
differentiation is followed by cell death and aging maybe construed as a
progressive loss of stem cells to differentiation and death 12. Another
possibility involves the immortalization of the stem cell that is associated
with a loss of differentiation and apoptosis. These immortalized stem cells
may give origin to a clonal population with a survival advantage over the
remaining tissues: this process is carcinogenesis 12,13. (Figure 1). Both
differentiation and death, and immortalization are multi-stage processes.
Many steps of carcinogenesis are well-characterized 5,6,14,15 whereas the steps
of aging need better recognition and definition 6,16. Both models of cellular
aging and immortalization involve delayed genomic instability that is a
transmission of genomic aberrations to distant cellular progenies,
accompanied by the occurrence of new aberrations. In one case this process
results in cellular death; in the other, in cellular immortalization, and some
steps may be shared by the two 16.

Carcinogenesis is a multistage process: neoplastic transformation
implies the engagement of a cell through sequential stages, and different
agents may affect the transition between contiguous stages 17,18. Several lines
of evidence support this conclusion 19:

Histopathology of tumors reveals multiple stages of tumor
progression, such as dysplasia and carcinoma in situ
The two-stage model of chemical carcinogenesis in mouse
skin shows that different chemicals affect qualitatively
different stages in the carcinogenic process
The existence of individuals with genetic traits manifested
by an early occurrence of cancer (e.g., familial
retinoblastoma, colon and rectum adenomatosis) suggests
that one of the carcinogenic steps is a germ-line mutation,
but additional somatic effects are required for neoplastic
development
Mathematical models based on age-specific tumor incidence
curves are consistent with the hypothesis that three to seven
independent hits (effects of independent carcinogens) are
required for tumor development
Studies with chemical carcinogens in cell cultures reveal that
different phenotypic properties of a tumor cell are required
for tumor development
Studies with viral and tumor-derived oncogenes in cell
cultures show that neoplastic conversion of normal cells
generally requires multiple cooperating oncogenes.
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Transgenic mice that carry activated proto-oncogenes in
their germ-line develop focal tumors, which are apparently
monoclonal in origin, suggesting that additional somatic
events are required for full malignant progression.

Figure 1. Two strategies of stem cell



20 V. ANISIMOV

The process of neoplastic development is frequently divided into
three operationally defined stages - initiation, promotion and progression.
During the first stage of carcinogenesis (initiation) irreversible changes in the
genotype of the normal target stem cell leading to its immortality take place.
During the initiation the carcinogen or its active metabolite(s) (derived by
simple degradation or by active enzymatic process) interacts with nucleic
acids leading to mutations in oncogenes and in anti-oncogenes. During the
second stage of carcinogenesis (promotion) initiated (latent, immortalized)
cell acquires phenotypic features of transformed (malignant) cell, and under
the exogenous influence, some of which at least are provided by the
neoplastic stroma, tumor progression may occur. A carcinogen affects not
only target cells but also influence a lot of factors in the microenvironment of
the target cell creating the conditions for promotion of immortalized cell
(growth factors, cytokines, immunodepression, biogenic amines, hormonal
and metabolic imbalance). Some carcinogens, such as tobacco smoke may
effect multiple carcinogenic steps.

Unlike initiation, promotion requires prolonged exposure to the
carcinogen and may be reversible to a large extent. The dissection of
carcinogenesis into initiation, promotion, and progression is useful as a
frame of reference. It should not be assumed, however, that only three
carcinogenic stages exist: each stage can be subdivided into multiple
substages. Promotion may involve the activation of several enzymes, such as
protein kinase C and ornithine decarboxylase; enhanced hexose transport;
increased polyamine production, prevention of cell differentiation; and
inhibition of cell-to-cell communication 20-21. It was found that
12-O-tetradecanoylphorbol-13-acetate (TPA), a well-known skin tumor
promoter, causes free radical-mediated DNA alterations, such as sister
chromatid exchanges and expression of proviruses and retroviruses 22.

Discovery of oncogenes and of their function has provided new
insight into the carcinogenic process. One may view carcinogenesis as a
“cascade” phenomenon, resulting in serial activation of multiple cellular
oncogenes and/or inactivation of tumor-suppressing genes (e.g., p53)23.

To overcome the obvious limitations of two (three)-stage model, a
multistage model of carcinogenesis has been conceived, in which the number
of stages is not limited, the stages are envisioned as a continuum, and the
influence of factors other than specific carcinogens may be properly
accounted for in Figure 2 24. The principles of this model are as follows.
First, neoplastic transformation involves the transition of target cells through
multiple stages, the number of which varies for different neoplasms (with
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Figure 2. Integral scheme of carcinogenesis

a minimum of one intermediate stage). Secondly, passage from one stage to
another is a stochastic event, the rate of which depends on the dose of a
carcinogen that affects the cell. Finally, all cells at any stage of
carcinogenesis may enter the next stage independently of each other.

According to this model, the tumor develops only if at least one cell
goes through all the necessary stages, and the clonal growth of this cell
causes clinical cancer, as a critical volume of neoplastic cells accumulates. In
this model, the exact origin of the various stages is ignored and the changes
in cell function during the process of carcinogenesis are not assessed. The
grade of malignancy is considered to increase with every stage. Various
carcinogenic agents (exogenous as well as endogenous) may modulate the
process. In addition, some agents act at early stages of carcinogenesis and
others at later stages 24. Epidemiological data, analyzed within the framework
of a multi-stage model, have helped to estimate the contribution of various
factors to the development of cancer. These factors include the time from the
start of carcinogenic exposure, and the age of onset of exposure.

It is worthy to note that in every tissue the number of events
occurring in the stem cell before its complete transformation is variable and
depends on many factors, in particular the rate of aging of the target tissue
and its regulatory system(s) 6,14. This model is consistent with the analysis of
age-related distribution of tumor incidence in different sites in humans and
laboratory animals 1,3.
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Important differences between early and late-stage carcinogens
should be highlighted, to illustrate potential interactions of aging and
carcinogenesis. Exposure to early stage carcinogens requires a latent period
for the development of cancer. During the latent period the transformed cell
goes through the subsequent carcinogenic stages. Clearly, elimination of
early-stage carcinogens from the environment will not result in immediate
cessation in the incidence of cancer. Carcinogens acting at late stages of
carcinogenesis cause the tumor incidence rate to rise after a relatively short
period of time. The increased rate of tumor incidence will be reversed almost
immediately on cessation of exposure 24.

This risk of cancer after exposure to a carcinogen may be
calculated as: where I is the risk of cancer, t is the time
from initial exposure to the carcinogen, and k is the number of stages that the
target cells have undergone before the exposure to the carcinogen. This
formula is based on the assumption that with aging there is a progressive
accumulation of partially transformed cells primed to the effect of late-stage
carcinogens (Figure 3). Age is considered as a variable because older cells
may already present in advanced carcinogenic stages, are primed to the
effects of environmental carcinogens and consequently may develop cancer
more rapidly and at higher rate when exposed to these substances. A number

Figure 3. The multistage carcinogenesis inducted by single exposure to a
carcinogenicagent at different ages.
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of factors, including genetic predisposition, oxidative stress, and previous
exposure to carcinogens may be responsible of the molecular changes that
prime aging cells to environmental carcinogens.

2. EFECT OF AGING ON THE SUSCEPTIBILITY TO
CARCINOGENESIS IN VIVO

Animal experiments seem to confirm that there are age related
differences in sensitivity to carcinogen in some tissues. Thus, with age,
susceptibility to carcinogens in murine mammary gland, small intestine and
colon, thyroid, ovarian follicular epithelium decreases, in subcutaneous
tissue, cervix uteri and vagina increases and in others (lung, hemopoietic
tissues) it remains stable (Table 1). For details see references 1,5-6). Age-
related differences in cancer susceptibility have been observed after exposure
to the same carcinogens in experimental systems. For example, in female rats
exposed to N-nitrosomethylurea (NMU) in doses 10, 20 or 50 mg/kg at the
age of 3 month developed mammary carcinomas, tumors of the kidney,
ovaries and colon. In contrast to young animals, the rats exposed to the same
doses of the carcinogen at the age of 15 months showed a higher frequency
of tumors of the corpus and cervix uteri, and a lower frequency of mammary
and intestinal adenocarcinomas and tumors of the ovary and kidney 25.
Comparison of the results with the data on DNA alkylation, synthesis and
O6-methylguanine repair obtained on the same model suggests a critical role
of age-related proliferative activity changes occurring in the target tissues in
the mechanism of age in modifying the effect on carcinogenesis. Obviously,
there are no common patterns of age related changes in DNA synthesis and
repair or in proliferative activity of different tissues with age 1,5,6.

There are several possible reasons for this wide variation in experimental
results. These include factors related to the experimental model and factors
related to the tumor-host. Model-related factors involve the characteristics of
different carcinogens (direct or indirect action, chemical structure,
mechanism of action), route of administration, exposure duration, presence
of local and systemic activity, and time of observation. Host-related factors
involve animal species, strain, sex, and age. The effective dose of an indirect
carcinogen, requiring metabolic activation, may vary significantly in old and
young animals, because the activity of the enzymes necessary for carcinogen
activation in the liver and/or target tissue(s) may change with age 5,26,27.
Critical factors that determine the susceptibility of a tissue to carcinogenesis
include DNA synthesis and proliferative activity of that tissue at the time of
carcinogen exposure, and the efficacy of repair of damaged DNA. The
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Abbreviations: AAF- 2-acetylaminofluorene;  BHBNA – N-butyl-N-(4-
hydroxybutyl)nitrosamine; BP–benzo(a)pyrene; DBA – 1,2,5,6-dibenzanthracene; DENA–
N-diethylnitrosamine; DMNA – N-dimethylnitrosamine; DMH- 1,2-dimethylhydrazine;
MAMNA – N-methyl-(acethoxymethyl)nitrosamine; MCA – 20-methylcholanthrene; MNNG
– N-methyl-N’-nitro-N-nitrosoguanidine; NMU – N-nitrosomethylurea; TC – tobacco smoke
condensate; UV- ultra violet irradiation; X-rays - Roentgen
irradiation.

in incidence of tumors or decrease in tumor latency; in incidence of
tumors or increase in tumor latency; = no effect.
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available data concerning age related changes of these parameters have been
discussed elsewhere 1-3,23,28. Obviously, there are no common patterns of age
related changes in DNA synthesis and repair or in proliferative activity of
different tissues with age.

The homeostatic regulation of cell numbers in normal tissues reflects a
precise balance between cell proliferation and cell death. Programmed cell
death (apoptosis) provides a protective mechanism from cancer, by removing
senescent, DNA damaged, or diseased cells that could potentially interfere
with normal function or lead to neoplastic transformation 23, 29. Apoptosis
plays a substantial role in many other aspects of aging and cancer, including
control of the life span of most members of transformed cells, and the rate of
growth of tumors 30. p53 mediated apoptosis was suggested as a safeguard
mechanism to prevent cell proliferation induced by oncogene activation 31.

3. AGING AND SUSCEPTIBILITY TO CARCINOGENESIS
IN VITRO

Some in vitro observations support the suggestion on accumulation
in tissues of premalignant cells. Thus, transformed by 24-hours exposure to
DMBA, foci in murine bladder epithelium have appeared earlier (on the 40th
to the 60th day) and more often (25%) in explants of old (28-30 months)
donors in comparison with 100 days and 0.9% in cultures received from five
to seven month old mice. A spontaneous transformation of bladder
epithelium occurred only in the explants received from old donors 32. The
aging of the tissue donor was associated with increased susceptibility of
primary cultures of rat fibroblasts to transformation induced by SV-40 33.
However rat embryonal fibroblasts were much susceptible to v-scr
transformation than when they were isolated from an adult rat 34. Nettesheim
et al. 35 reported that the sensitivity of trachea epithelium explants of old
animals to chemical carcinogens was lower in comparison to explants from
young animals.

Susceptibility to transformation varies during the different stages of
proliferative senescence depending on the carcinogen. Thus, young cells are
more susceptible to transformation by chemical carcinogens and by low-dose
ionizing radiation, susceptibility to ultraviolet radiation is identical
throughout the life span of human fibroblasts, whereas susceptibility to a
tumor promoter is identical through the cell life span with exception of the
final stage, and susceptibility to SV40 is highest during the final stage 36,37.

Thus, experiments both in vivo and in vitro provide evidence that the
age related factors limiting the susceptibility to carcinogens are tissue
specific l,6. This conclusion may explain, at least in part, both age related
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changes in susceptibility to carcinogenesis in target tissues, and organ and
tissue variability in age distribution of spontaneous tumor incidence. This
conclusion generates a critical question: does the aging accompanied by the
accumulation of premalignant lesions in target tissues?

4. EFFECT OF AGING ON THE SUSCEPTIBILITY TO TUMOR
PROMOTERS IN VIVO

There is evidence of age-related accumulation of cells that
are in the late stage of multi-stage process of carcinogenesis. Numerous
experiments support this model. Thus, single skin application with 7,13-
dimethylbenz[a]anthracene (DMBA) in mice aged 8 and 48 weeks at doses
ranging from 10 to 300 caused increased skin papilloma incidence in
older mice 38. Also, the average diameter of the tumors was larger in the
older animals. Of particular interest are the experiments using skin
transplants. TPA failed to induce tumors in the skin of 2-month-old mice
grafted to animals of different ages, but caused the same tumor incidence in
the skin of 1-year-old donors irrespective of the recipient’s age 39,40. These
results indicate that the age of the target tissue, more than the age of the host,
determines susceptibility to late-stage agents. Delaying wounding 16 weeks
after initiation with a carcinogen led to a more pronounced skin tumor
response compared with delay of only 6 weeks in young mice 41. Delaying
promotion has also been reported to lead to an increased tumor response with
the promoters chrysarobin 42 or mezerein 43. These findings are in agreement
with data on age-related decrease in cellular DNA repair capacity in skin 44,45

and increasing p53 mutation frequency with advancing age in human normal
skin 46 and in basal-cell skin carcinomas 47,48. Post-ultraviolet DNA repair
capacity was found to undergo an age-related decline to which corresponded
age-related increase in post-ultraviolet mutability in cultured primary skin
fibroblasts from normal donors from the first to the tenth decade of life 44. It
was suggested that there was the age-related increase in the number of
telomerase positive basal cells in the skin 49. However in some studies the
papilloma response either decreased with age or was the same as the
response in younger mice 50-52 .

In Tg.AC transgenic (v-Ha-ras) mice, skin tumor incidence and
multiplicity were strongly age-dependent, increasing with increasing age of
the animal when first treated with TPA, or exposed to wounding, or UV-light
53. The authors suggest that natural developmental changes in keratinocytes
are co-opted by the molecular mechanisms that regulate the induction of
transgene expression, thus stimulating tumor formation in older Tg.AC mice.

Age-related accumulation of cells in advanced carcinogenic stages may
also be inferred by other types of experiments. The mouse model of
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hepatocarcinogenesis is very convenient for this purpose because of the
availability of strains of animals with different susceptibility to hepatic
carcinogenesis. In the liver of highly susceptible mice, the concentration of
hepatocytes in advanced stages of carcinogenesis was increased early in life
before the exposure to experimental carcinogens 54. In the liver of F344 rats
the number of spontaneous proliferative foci is proportional to the animal age
55,56. The incidence of proliferative foci and hepatic tumors induced by
phenobarbital, carbon tetrachloride or peroxisome proliferators in rodents is
also a function of age55-57.

Another pertinent model involves induction of lymphomas in mice
receiving transplants of splenic, thymic and lymphoid cells from syngeneic
donors 40. The incidence of neoplasms was related to the age of the donor,
but not to the age of the recipient. Geschickter 58 observed mammary tumor
development in estrogen-treated one and 20 month-old rats with a latency
period of 9.5 and 3.0 months, respectively. The data on age-related
susceptibility to tumor promoters are given in Table 2.
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Single intravenous injection of NMU at doses of 10, 20 or 50
mg/kg was administered to female rats aged 3 or 15 months 25. The NMU
carcinogenic dose dependence in different age groups was considered in the
context of a multi-stage model. It was calculated that the number of events
necessary for complete malignant transformation in 15-month-old rats under
the influence of NMU was lower than in three month-old. In this experiment
as well as in another sets of experiments in rats and in mice it was shown that
tumors developed earlier in older than in younger animals after exposure to
the same doses of NMU 14,59-62. The combined incidences of severe
endometrial hyperplasia and adenocarcinomas tended to increase with the
increase in intervals between a start of promoting estrasiol treatment after N-
nitrosoethylurea initiation in mice 62.

5. EFFECT OF AGING ON TRANSPLANATABLE TUMOR
GROWTH

An important question related to the integrated carcinogenic
model (Figure 2) concerns age-related changes in tissue microenvironment as
these changes may both favor or oppose carcinogenesis in different
circumstances. Should aging alter the environment in which tumor develops,
the growth rate of transplantable tumors may vary with the age of the tumor
recipient 63. These experiments bypass the effect of age on carcinogenesis
itself and explore the role of age-related changes in the organism on the
growth and progression of transformed cells. Evaluation criteria for such
experiments should include: (a) tumor transplantability, (b) rate of tumor
growth, and (c) survival time of tumor bearing animals. The natural history
of spontaneous tumors in humans (the rate of tumor doubling, metastasizing
potential) and on the survival of cancer patients newly diagnosed at different
ages provide information on the effects of age on tumor growth in humans.
Available data both in experimental animals and in humans are contradictory
and support different effects of age on tumor development (Table 3) l,6. In
general, an “age effect” may be recognized both in experimental and in
human malignancies.

Tissue origin (histogenesis) and immunogenicity of tumor are the
principal factors determining age-related differences in tumor growth. There
is increasing evidence that age-related changes in tumor microenvironment
might play also a significant role. In our experiments, lung-affine cells of rat
rhabdomyosarcoma RA-2 were intravenously inoculated into rats of different
ages 64. It was observed that the number of lung tumor colonies was highest
in one month-old and 15 month-old animals and lowest in 3 and 12
month-old animals. A positive correlation was found between the number of
tumor lung colonies and somatomedine (IGF-1) activity in the lung.
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In another experiment, RA-2 cells from a 3-month-old donor were
inoculated into 2-3 or 21-23- month-old recipients and 3 weeks later were
separately taken from “young” and “old” hosts and transplanted into
3-month-old recipients. The number of lung colonies was significantly
decreased in 3-month-old recipients injected with RA-2 cell passed via “old”
host 60. The results obtained suggest the critical role of host and donor
microenvironment in lung colony forming potential of RA-2 cells.

McCullough et al. 65 have observed that transformed rat hepatocytic
cells lines were only weakly tumorigenic following transplantation into the
livers of young adult rats. The tumorigenicity of these cell lines increased
progressively with the age of the tumor recipients. These results suggest
strongly that the tissue microenvironment represents an important
determinant in the age-related tumorigenic potential of transformed cells.

Krtolika and Campisi 66 have shown that senescent stromal
fibroblasts can stimulate the hyperproliferation and malignant progression of
preneoplastic and neoplastic cells in culture. They also tested the ability of
senescent fibroblasts to stimulate epithelial cell growth in vivo by
inoculation of preneoplastic epithelial cells with presenescent or senescent
human fibroblasts into nude mice 67. None of the tumors when injected alone.
Both preneoplastic mouse mammary epithelial cells and preneoplastic human
keratinocytes did not form tumors in the presence of presenescent fibroblasts
but formed large lethal tumors in the presence of senescent fibroblasts. In the
case of human breast cancer cells, senescent fibroblasts markedly stimulated
the rate of tumor growth67.

6. MECHANISMS OF INTERACTION OF AGING AND
CARCINOGENESIS

Cancer is a common denomination given to a number of different
diseases. Common features to all cancers include 23,68

potential immortality of cancer cells due to avoiding apoptosis
ability to invade surrounding tissues due to reduced sensitivity to signals
from neighboring cells aimed to offset proliferation
cell de-differentiation with re-appearance of some embryonal proteins
(e.g. in cytoplasm
growth signals autonomy, which allows cancer cells to proliferate in
absence of outside signals due to only inner growth signals
release of growth factors and promotion of angiogenesis in tissue, which
favor tumor growth and metastasis
increase in metabolism and number of mitochondria in cancer cells
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Gene mutations, as well as changes in regulation of gene
expression, which can produce these typical features, were suggested to be
key genetic events leading to cancer development23,68,69. Down regulation of
apoptosis gene, p53, as well as upregulation of myc and ras genes, which
may favor excessive proliferation, could be examples of such events 69,70.

Both carcinogenesis and aging are associated with genomic
alterations, which may act synergistically in causing cancer 23,68-71. In
particular, three age-related changes in DNA metabolism may favor cell
transformation and cancer growth. These changes are genetic instability,
DNA hypomethylation, and formation of DNA adducts.

Genetic instability involves activation of genes that are normally
suppressed, such as the cellular proto-oncogenes, and/or inactivation of some
tumor suppression genes (p53, Rb, etc.) 23,31. DNA hypomethylation is
characteristic of aging, as well as of transformed cells. Hypomethylation, a
potential mechanism of oncogene activation, may result in spontaneous
deamination of cytosine and consequent base transition, i.e., substitution of
the pair thymine:adenine. Accumulation of inappropriate base pairs may
cause cell transformation by activation of cellular proto-oncogenes 23.
Age-related abnormalities of DNA metabolism may be, to some extent,
tissue- and gene-specific. For example, hypomethylation of the c-myc
proto-oncogene has been found in the hepatocytes, but not in the neurons of
old mice 72,73. Within the same cell, different DNA segments express
different degrees of age-related hypomethylation. The uneven distribution of
hypomethylation may underlie selective overexpression of proto-oncogenes
by senescent cells. For example, the transcription of c-myc is progressively
increased in the liver but not in the brain of rats between the ages of 4-22
months, whereas the transcription of c-sis and c-src does not appear to be
age-related in any tissues 72,73. The different extent of DNA abnormalities
among aging tissues may account in part for the different susceptibility of
these tissues to carcinogens 74,75.

The damage caused by endogenous oxygen radicals has been
proposed as a major contributor to both aging and cancer 76-78. Endogenous
oxidative damage to lipids and proteins increases with age 77,78. It was shown
that oxygen free radicals may induce active mutations of the human c-Ha-ras
proto-oncogene 78. The level of one oxidized nucleoside,
8-hydroxy-2’-deoxyguanosine (oh8dG) in the DNA increased with age in
liver, kidney, and intestine but remained unchanged within brain and testes
of rats, whereas the urinary excretion of the nucleoside decreased with age of
rats 79. A variety of cellular defense systems are involved in protecting
cellular macromolecules against devastating action of oxygen-based radicals.
These systems include antioxidant enzymes (Cu,Zn- superoxide dismutase
(SOD), manganese-containing SOD, catalase, glutathione peroxidase,
glutathione reductase, glucose-6-phosphate dehydrogenase), some vitamins
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ascorbic acid), uric acid and the pineal indole hormone
melatonin 80-83.

There is evidence of an age-related accumulation of spontaneous
mutations in somatic and germ cells 71. Accumulation with age of some
spontaneous mutations or mutations evoked by endogenous mutagens can
induce genome instability and, hence, increase the sensitivity to carcinogens
and/or tumor promoters. It has been shown that clonally expanded mtDNA
mutations accumulate with age in normal human tissues as well as in human
tumors 84,85. The finding that deleted mtDNA accumulated in human muscle
tissue as well as evidence for partially duplicated mtDNA in aged human
tissues 85 suggests the important role of clonal expansion of mutant mtDNA
in the age-related increase of systemic oxidative stress in the whole organism
86. A significant trend toward increasing p53 mutations frequency with
advancing age was found in some normal and malignant tissues 46,47.
Simpson 9 suggested that the aging human body accumulates enough
mutations to account for multistep carcinogenesis by selection of preexisting
mutations. The evidence showed that both genetics of the selected cellular
clone and the epigenetics of the selective environment contribute to tumor
development87.

Thus, the data available show that some changes in structure and
function of DNA are evolving with natural aging. The character of these
changes could vary in different tissues and might cause uneven tissue aging.
Dolle et al. 88 using a lacZ plasmid transgenic mouse model, determined
spectra of spontaneous point mutations in different organs in young and old
mice. While similar at a young age, the mutation spectra among these organs
were significantly different in old age. The authors stressed that the
replicative history per se is not the underlying causal factor of age-related
organ-specific differences in mutations spectra. Rather, differences in organ
function, possibly with association with replicative history, may explain the
divergence in mutation spectra during aging. In turn, this may explain both
age-related increase in spontaneous tumor incidence and age-related changes
in susceptibility to carcinogens in various organs.

Multistage carcinogenesis is accompanied by disturbances in tissue
homeostasis and perturbations in nervous, hormonal, and metabolic factors
that may favor tumor growth and lessen natural antitumor defenses. The
development of these changes depends on the susceptibility of various
systems to a carcinogen and on the dose of the carcinogen. Changes in the
microenvironment may condition key carcinogenic events and determine the
duration of each carcinogenic stage, and sometimes they may even reverse
the process of carcinogenesis. These microenvironmental changes influence
the proliferation rate of transformed cells together, the total duration of
carcinogenesis and, consequently, the latent period of tumor development
(Figure 2).
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Crosstalk between mesenchyme and epithelium has been described
as a known driver of differentiation and development89,90. It was shown that
changes in stromal behavior can promote epithelial transformation 66,89.

Thus, the data available show that some changes in structure and
function of DNA are evolving with natural aging. The character of these
changes could vary in different tissues and might cause uneven tissue aging.
In turn, this may lead to both age-related increases in spontaneous tumor
incidence and age-related changes in susceptibility to carcinogens in various
organs. Table 4 summarizes the data available in literature and obtained in
our experiments on some hormonal metabolic shifts in the organism and
disturbances at tissue and cellular levels observed in natural aging and in
different types of carcinogenesis in vivo. Despite incomplete data, it can be
seen that there is a similarity between the shifts in aging and carcinogenesis.
Carcinogens could be supposed to initiate a normal cell, interacting with its
elements on the molecular level, on the one hand, and to produce diverse
changes in the organism facilitating promotion and progression of tumor
growth, on the other hand.

7. THE ROLE OF THE INSULIN/IGF-1 SIGNALING PATHWAY IN
AGING AND CANCER

The potential link between aging and insulin/IGF-1 signaling has
attracted substantial attention during last years, on the basis of evidence
including age-related increase in incidence of insulin resistance and type 2
diabetes in accelerated aging syndromes and life span extension by caloric
restriction in rodents. Concomitant reduction in plasma insulin and plasma
glucose levels, which implies increased sensitivity to insulin, emerged as a
hallmark of increased longevity 91,92. Hyperglycemia is an important aging
factor involved in generation of advanced glycosylation endproducts (AGEs)
93,94. There are evidence that hyperinsulinemia favors accumulation of
oxidized protein by reducing its degradation as well as facilitates protein
oxidation by increasing steady-state level of oxidative stress 95. Untreated
diabetics with elevated glucose levels suffer many manifestations of
accelerated aging, such as impaired wound healing, obesity, cataracts,
vascular and microvascular damage 8. It was shown that centenarians have a
preserved glucose tolerance and sensitivity to insulin as well as lower degree
of oxidative stress as compared to aged persons 96. It is worthy to note that
hyperinsulinemia is an important factor not only in aging but also in the
development of cancer 8,97,98.

The intensive investigations in C. elegans since 1990’s, which have
identified insulin signaling components including daf-2, age-1 and daf-16 as
the genes whose mutations lead to life span extension shed new light on

33
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molecular mechanisms underlying aging 91,92,99. In D. melanogaster, the
mutation of genes operating in the signal transduction from insulin receptor
to transcription factor daf-16 (age-1, daf-2, CHICO, InR are strongly
associated with longevity 99,100. It was demonstrated that FKHR, FKHRL1
and AFX, which are mammalian homologues of daf-16 forkhead
transcription factor, function downstream of insulin signaling and akt/PKB
under cellular conditions 101,102.

Daf-2 and InR are structural homologues of tyrosine kinase receptors in
vertebrates that include the insulin receptor and the insulin-like growth factor
type 1 receptor (IGF-1R). It was shown that in vertebrates the insulin
receptor regulates energy metabolism whereas IGF-1R promotes growth. At
least three genes Ghr) whose knockout leads to dwarfism
have been identified. The expression of these genes is associated with
reduced levels of IGF-1 and insulin and increased longevity 103,104. In Snell
and Ames dwarf mice, sexual maturation is delayed, and only few males are
fertile, while females are invariably sterile. These mice as well as
knockout mice have significantly reduced glucose levels and fasting insulin
levels, decreased tolerance to glucose and increased sensitivity to insulin
which appears to be combined with reduced ability to release glucose in
response to acute challenge 91.

Recently, strong support for the role of insulin/IGF-1 signaling pathway
in the control of mammalian aging and for the involvement of this pathway
in longevity of IGF-1 deficient mice was provided by Hsieh et al 105,106. It
was shown that in the Snell dwarf mice, GH deficiency would lead to
reduced insulin secretion and alterations in insulin signaling via IRS-1
or IRS-2 and P13K affects genes involved in the control of longevity. The
authors concluded that the Pit1 mutation may result in physiological
homeostasis that favors longevity.

Reduction in both glucose and insulin levels as well as an increase in
the sensitivity to insulin are a well-documented response to caloric restriction
in rodents and monkey 107,108. It is worthy to note that mice have a
major increase in the level of insulin receptors 109, while Ames dwarf mice
have a smaller increase in insulin receptor and substantially increased
amount of insulin receptor substrates IRS-1 and IRS-2 110. The development
of tumors in Ames dwarf mice was postponed and the incidence was reduced
as compared to the control108.

The crucial event of the effect of caloric restriction is low levels of
insulin and IGF-1 and also the increase of insulin sensitivity in rodents 111 as
well as in monkeys 112. Many characteristics of these long-lived mutants and
GH-receptor knockout mice resemble those of normal animals exposed to
caloric restriction. These characteristics include reduced plasma levels of
IGF-1, insulin and glucose, with the consequent reductions in growth and
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body size, delayed puberty, and significantly increased sensitivity to
insulin action.

Holzenberger et al 113 inactivated the Igf1r gene by homologous
recombination in mice. It was shown that mice dead early in life,
whereas heterozygous mice live on average 26% longer than wild-
type littermates. These mice did not develop dwarfism; their energy
metabolism was normal. Food intake physical activity, fertility and
reproduction were also unaffected in mice. These mice and
embryonal fibroblasts derived from them were more resistant to oxidative
stress than controls. The spontaneous tumor incidence in the aging cohort of

mice was similar to that in wild-type controls. At the molecular level,
insulin receptor substrate and the p52 and p66 isoforms of Shc, both main
substrates of IGF-1 receptor, showed decreased tyrosine phosphorylation.

mediated cellular responses to oxidative stress. Two main pathways -
the extracellular-signal related kinase (ERK)/mitogen-activated protein
kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)-Akt
pathway – were downregulated in mice.

The extension of longevity was observed in fat-specific insulin
receptor knockout (FIRKO) mice 114,115. These animals have reduced fat
mass and were protected against age-related obesity and its subsequent
metabolic abnormalities including deterioration in glucose tolerance,
although their food intake was normal. Both male and female FIRKO mice
had increased mean life span (by 18%) with parallel increases in maximum
life span. Extended longevity in FIRKO mice was associated with a higher
age threshold beyond which age-dependent increase in mortality risk became
appreciable and a decreased age-adjusted mortality rate, especially after 36
months of age. In FIRKO mice, the resistance to obesity, despite normal food
intake, suggested that metabolic rate is increased, rather than decreased 115.
The authors believe that decreased fat mass could lead to a decrease in
oxidative stress. Another possibility is that the increased longevity in these
mice is the direct result of altered insulin signaling.

Shimokawa et al. 116 designed a transgenic strain of rats whose GH
gene was suppressed by an anti-sense GH transgene. Male rats homozygous
for the transgene (tg/tg) had a reduced number of pituitary GH cells, a lower
plasma concentration of IGF-1, and a dwarf phenotype. Heterozygous rats
(tg/-) had an intermediate phenotype in plasma IGF-1, food intake, and body
weight between tg/tg and control (-/-) rats. The life span of tg/tg rats was 5 to
10% shorter than -/- rats. In contrast, the life span of tg/- rats was 7 to 10%
longer than -/- rats. It was found that tumors caused earlier death in tg/tg rats;
in contrast, tg/- rats had reduced nonneoplastic diseases and a prolonged life
span. Immunological analysis revealed a smaller population and lower
activity of splenic natural killer cells in homozygous tg/tg rats. These results
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provided evidence that an optimal level of the GH-IGF-1 axis function
needs for longevity in mammals.

Recently it was shown that the incidence of mutations in insulin
regulatory region (IRE) of APO C-III T-455 C directly correlates with
longevity in humans. This is the first evidence showing that mutation located
downstream to daf-16 in insulin signal transduction system is associated with
longevity 117. It is worth noting that centenarians display lower degree of
resistance to insulin and lower degree of oxidative stress as compared with
elderly persons before 90 years 96. The authors suggested that centenarians
may have been selected for appropriate insulin regulation as well as for the
appropriate regulation of tyrosine hydroxylase (TH) gene, whose product is
rate limiting in the synthesis of catecholamines, stress-response mediators. It
was shown that catecholamines may increase free radical production through
induction of the metabolic rate and auto-oxidation in diabetic animals 118.
Recent study on aging parameters of young (up to 39 years) and old (over 70
years) individuals having similar IGF-1 serum levels provides evidence of
important role of this peptide for life potential 119. Roth et al. 120 analyzed
data from the Baltimore Longitudinal Study of Aging and reported that
survival was greater in men who maintained lower insulin level.

Several years ago, it was suggested to use biguanide antidiabetics as a
potential anti-aging treatment 8. The antidiabetic drugs, phenformin (1-
phenylethylbiguanide), buformin (1-butylbiguanide hydrochloride) and
metformin (N,N-dimethylbiguanide) were observed to reduce
hyperglycemia, improve glucose utilization, reduce free fatty acid utilization,
gluconeogenesis, serum lipids, insulin, somatomedin, reduce body weight
and decrease metabolic immunodepression both in humans and rodents
8,121,122.

Buformin supplemented at the concentration of 0.1 mg/ml to nutrient
medium during the larvae stage and over the life span of C. elegans
increased the mean life span of the vorms by 23.4% and the maximum life
span by 26.1% as compared to the controls 123. The treatment with
phenformin or buformin slightly decreased the body weight of rats, in
comparison with the control slow down the age-related switching-off of the
reproductive function in female rats prolonged the mean life span of female
C3H/Sn mice and LIO rats 1,6,124-128. Recently it was found that metformin
significantly increases the life span of rats (G.S. Roth, personal
communication).

Several other effects of treatment with antidiabetic biguamdes
related to reproduction and aging, are known from earlier studies. For
example, it decreased hypothalamic threshold of the sensitivity to feedback
inhibition by estrogens l25-128, which is one of the most important
mechanisms regulating age-related decline and switch-off of the reproductive
function 125-130. Treatment with metformin may improve menstrual regularity,
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leading to spontaneous ovulation, and enhance the induction of ovulation
with clomiphene citrate in women with polycystic ovary syndrome 131. The
treatment with phenformin also decreased hypothalamic threshold sensitivity
to feedback regulation by glucocorticoids and by metabolic stimuli (glucose
and insulin) 8. It was recently shown that elements involved in the
insulin/IGF-1 signaling pathway are regulated at the expression and/or
functional level in the central nervous system. This regulation may play a
role in the brain’s insulin resistance 132, in the control of ovarian follicular
development and ovulation 102, and brain’s control of life span 111,133.
Antidiabetic biguanides also alleviated age-related metabolic
immunodepression 8. These mechanisms can be involved in geroprotective
effect of biguanides. Treatment with chromium picolinate which elevated the
insulin sensitivity in several tissues, including hypothalamus, significantly
increased the mean life span and decreased the development of age-related
pathology in rats 134. We hypothesized that antidiabetic biguanides and
possibly chromium picolinate regulate thyrosine hydroxylase and
insulin/IGF-1 signaling pathway genes both associated with longevity 99,135.
It was shown that the polymorphism at TH-INS locus affects non-insulin
dependent type 2 diabetes 136, and is associated with hypothalamic obesity
137, polycystosis ovary syndrome 138, hypertriglyceridemia and
atherosclerosis 139.

The anticarcinogenic effect of antidiabetic biguanides has been
demonstrated in several models of spontaneous and induced carcinogenesis.
The treatment with phenformin normalized the tolerance to glucose and
serum insulin and IGF-1 level in rats exposed to intravenous injections of N-
nitrosomethylurea (NMU) and inhibited mammary carcinogenesis in these
animals 124, 140. Treatment of rats with 1,2-dimethylhydrazine (DMH) caused
the decrease in the level of biogenic amines, particularly of in the
hypothalamus, the decrease of glucose tolerance and the increase of the
blood level of insulin and triglycerides.
Administration of phenformin restored immunological indices and inhibited
DMH-induced colon carcinogenesis 140, 141. The colon 38 adenocarcinoma
growth was significantly inhibited in liver-specific IGF-1-deficient mice,
whereas injections with recombinant human IGF-1 displayed sufficiently
promoted the tumor growth and metastasing 142.

A decrease of glucose utilization was found in the 3-month-old female
progeny of rats exposed to NMU on the day of pregnancy 124,140.
Postnatal treatment with biguanides started from the age of 2 months
significantly inhibited the development of malignant neurogenic tumors in
rats transplacentally exposed to NMU or NEU 143-I44. In high fat-fed
hamsters, the treatment with N-nitrosobis-(2-oxopropyl)amine was followed
by the development of pancreatic malignancies in 50% of cases, whereas no
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tumors were found in the hamsters treated with the carcinogen and
metformin 145.

Figure 4. Proposed effects of metformin, calorie restriction and genetic modifications on
insulin/IGF-1 signaling pathway in control of aging. The broken arrows on the
figure show the targets for the genetic modifications, calorie restriction and for
metformin in IGF-axis.

Thus, anticarcinogenic effect of antidiabetic biguanides has been
demonstrated in relation to spontaneous carcinogenesis in mice and rats, in
different models of chemical carcinogenesis in mice, rats and hamsters, and
in radiation carcinogenesis model in rats. Phenformin administered orally to
rodents potentiated the antitumor effect of cytostatic drugs on transplantable
tumors 125-127.

The comparative study of 10-years results of metabolic rehabilitation
(included fat and carbohydrate dietary restrictions and treatement with
biguanides) of cancer patients had suggested increase in the survival of
breast and colorectal cancer patients, increase in the length of cancer-free
period, decrease in the incidence of metastasis as compared with control
patients 122.

Although it is known that free radicals are produced during metabolic
reactions, it is largely unknown which factor(s) modulate their production in
vivo. It has been suggested that hyperinsulinemia may have increase free
radicals and therefore promote aging, independent of glycemia8,94,96. Plasma
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levels of lipid hydroperoxides are higher, and antioxidant vitamins are lower
in individuals who are resistant to insulin-stimulated glucose disposal but
otherwise glucose tolerant, nonobese, and normotensive 93,95. There is
substantial evidence supporting the hypothesis that selective resistance to
insulin-stimulated (muscle) glucose disposal consequent hyperinsulinemia
triggers a variety of metabolic effects, likely resulting in accelerated
oxidative stress and aging8,93,95.

The anti-diabetics biguanides inhibit fatty acid oxidation, inhibit
gluconeogenesis in the liver, increase the availability of insulin receptors,
inhibit monoamine oxidase 121, increase sensitivity of hypothalamo-pituitary
complex to negative feedback inhibition, reduce excretion of glucocorticoid
metabolites and dehydroepiandrosterone-sulfate 8. These drugs have been
proposed for the prevention of the age-related increase of cancer and
atherosclerosis, and for retardation of the aging process 8. It has been shown
that administration of antidiabetic biguanides into patients with
hyperlipidemia lowers the level of blood cholesterol, triglycerides, and

It also inhibits the development of atherosclerosis, reduces
hyperinsulinemia in men with coronary artery disease. It increases
hypothalamo-pituitary sensitivity to inhibition by dexamethasone and
estrogens, causes restoration of estrous cycle in persistent-estrous old rats,
improves cellular immunity in atherosclerotic and cancer patients, lowers
blood IGF-1 levels in cancer and atherosclerotic patients with Type IIb
hyperlipoproteinemia, 8. There are data on antioxidative effect of biguanides
133,146 and its neuroprotective activity 147. It was shown that biguanides
inhibits complex I of the respiratory chain in mitochondria that leads to an
activation of physiological intracellular inhibition of mitochondrial
respiration 148. Biguanides stimulate a protein kinase cascade inhibiting an
expression of transcription factor SREBP-1. An interaction of this factor with
cholesterol leads to an increase in transcription of genes coding lipogenesis
enzymes and to suppression of free fat acids oxidation. Thus, stimulation of
uptake of glucose in tissues by biguanides inhibits lipogenesis and activates
oxidation of FFA 149. It was shown also that in vivo biguanides inhibits an
appetite 150,151 and serum levels of leptin and IGF-1 152. It was suggested that
biguanides regulate energy balance of the organism at the fat tissue level 153.
In general, results of bioguanides effects seem very similar to those of calorie
restriction.
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8. CONCLUSION

The incidence of cancer increases with age in humans and in
laboratory animals alike, but patterns of age-related distribution of tumors is
different for different tissues and different tumors. Aging may increase or
decrease the susceptibility of individual tissues to early carcinogens and
usually facilitates promotion and progression of carcinogenesis. Aging may
predispose to cancer by two mechanisms: tissue accumulation of cells in late
stages of carcinogenesis and alterations in internal homeostasis, in particular,
alterations in immune and endocrine system. Increased susceptibility to the
effect of late-stage carcinogens is found both in aged animals and elderly
humans, as predicted by the multistage model of carcinogenesis. Studies in
mammals have led to the suggestion that hyperglycemia and
hyperinsulinemia are important factors both in aging and in the development
of cancer. Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules
that have been linked to longevity include DAF-2 and InR and their
homologues in mammals, and inactivation of the corresponding genes
followed by the increase in life span in nematodes, fruit flies and mice. It is
possible that the life-prolonging effects of caloric restriction are due to
decreasing IGF-1 levels. A search of pharmacological modulators of
insulin/IGF-1 signaling pathway mimetic effects of life span extending
mutations or calorie restriction could be a perspective direction in regulation
of longevity. Some old and new observations suggest that antidiabetic
biguanides could be promising candidates for both the life span extension
and the prevention of cancer.
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