Chapter 2

Application of Evolutionary
Computation to Bioinformatics

Daniel Ashlock

1. INTRODUCTION

In solving a scientific problem, one of the most helpful possibilities is that you
will see a pattern in your data. It is almost the definition of an interesting scientific
problem that it contains some sort of pattern. The patterns that arise in nature are
often subtle and escape notice until cleverness or hard work un-cover them. The
field of machine learning is a collection of techniques intended to automate the pro-
cess of pattern discovery. A broad survey of machine learning techniques applied
to bioinformatics is given in Pierre Baldi and Soren Brunak (2001). This document
introduces a single, relatively versatile machine learning technique called evolu-
tionary computation. A collection of applications of evolutionary computation to
bioinformatics is given in Fogel and Corne (2003).

Both machine learning and evolutionary computation have applications far
beyond bioinformatics but almost all of the techniques in the domain of machine
learning and evolutionary computation have useful applications within bioinfor-
matics. The introduction to evolutionary computation given here is in the form
of three examples intended to showcase three substantially different applications
of evolutionary computation. The first, while it solves a real problem, is an al-
most trivial instance of evolutionary computation. It seeks a gapless alignment of
315 sequences in a fashion that permits the discovery of a motif associated with
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Table 1
Predictions versus Truth Results for the Most Fit
Finite State Machines Located During the First Set
of Evolutionary Runs.

Training Data Crossvalidation Set
Prediction Prediction
+ - ? + - ?
Good | 666 256 78 Good | 115 106 29
Bad 287 659 54 Bad 9% 125 29

insertion of a mu-transposon. The second example is a more sophisticated but
standard application of evolutionary computation, learning patterns in a collec-
tion of good and bad primers designed as part of a Zea mays genomics project.
Once learned, these patterns are then used to reduce the failure rate of primers
in subsequent work. The third example is a departure from standard evolutionary
algorithms, which fuses evolutionary algorithms with greedy algorithms to create
a new type of evolutionary algorithm called a greedy closure genetic algorithm.
This algorithm is used to create error correcting DNA bar codes for use in pooled
genetic libraries. These bar codes permit the identification of the library, which
contributed a given expressed sequence tag. The error correcting property of the
bar codes permits the identification of the library even when the area containing
the bar code is sequences with some errors.

2. EVOLUTIONARY COMPUTATION

Evolutionary computation has been described as a “Swiss army algorithm”
in comparison to the Swiss Army knife, which typically has a whole collection of
small tools built into it (Fig. 1). This description is both misleading and a good
starting point for discussing the strengths of evolutionary computation. A com-
pletely general-purpose tool would be useless (probably too heavy to lift). The
Swiss army knife is not a multipurpose tool. Careful examination will show the
alert scientist that it is a collection of many tools with fairly specific applications.
Sure, it is possible to use the screwdriver as a hole punch and the large blade may
be useful for both shaving a dowel and trimming a bad spot out of an apple, but
the applications of each tool within the knife are fairly limited. Also, the tools you
are not using tend to get in your way. The purchase on a Swiss army knife is not
as good as the handle on a normal screwdriver. What does this have to do with
evolutionary computation? The basic algorithm for evolutionary computation is
given in Table 1. This algorithm can solve any problem for which the solutions
can be placed in the form of a data structure and for which the quality of the solu-
tions in such data structures can be compared. In spite of this apparent power, the
process of getting a problem transformed into a data structure and then creating a
useful quality comparison can be insuperably difficult. Even if these hurdles can
be overcome, the running time on evolutionary algorithms is typically long and so
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Generate an initial population of solutions.
Repeat
Evaluate your solutions.
With a quality bias, select solutions.
Reproduce and vary the solutions selected.
Place the new solutions in the population.
Until(Satisfied)

FIGURE 1. Basic algorithm for evolutionary computation.

an evolutionary algorithm may be impractical. Let us start with the very simplest
type of evolutionary algorithm, a string evolver.

In a string evolver the population is a population of character strings and the
notion of fitness is that of matching a reference string. Examine the following
population member (character string), aligned with the reference string ‘“Madam,
I’'m Adam.”

Reference: “Madam, I’m Adam.”
Population Member: “Mad*g,hl.m Admm!”

Fitness loci: +++ + + ++++ +

The fitness of the above population member is 10 of a possible 16 because 10 of
its 16 characters match the reference string. Once we have a notion of fitness it
becomes possible to apply the algorithm given in Table 1.

Generating an initial population of character strings is done by filling in char-
acters at random in each member of the population. We pick strings to reproduce by
shuffling the population into groups of four and permitting the best two members of
each group of four to reproduce. Their offspring replace the two worst members of
the group of four. The relatively small size of the groups (four members) represents
a weak bias in favor of fitness; larger groups would yield sharper selection. Repro-
duction is done by first copying the two strings that are reproducing and then per-
forming crossover and mutation on the copies. These words have completely dif-
ferent meanings in the context of evolutionary algorithms than they do in biology.
Crossover consists of exchanging middle segments of the strings; mutation consists
of picking a position in the string and putting in a new random character. An exam-
ple of crossover is shown in Figure 2, an example of mutation is shown in Figure 3.

The process of evolving a copy of a string that you already have in hand is not
an intrinsically interesting one. It does serve as a simple example of evolutionary
computation and serves as a starting point for discussing the design of evolutionary

Fitness:
Parents: “Mad*g,hI.m Admm!” 10
“kadam, I'm Adasl” 13
Children: “Madam, I'm Adam!” 15
“kad*g,hI.m Admsl” 8

FIGURE 2. Depicted above is crossover. Two selected parent strings are copied and characters in
positions 3—14 are swapped. We call 3 and 14 the crossover points and the type of crossover depicted
is called two point crossover.
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Child: “Madam, I'm Adam!” 15
I

Mutated Child: “Ma"am, I'm Adam!” 14

FIGURE 3. Mutation consists of taking one or more character positions and generating new random
characters at those positions. Above is depicted mutation at the third character in a string with a net
decrease in fitness.

algorithms. A trace of the best string found so far in a run of a string evolver is
shown in Figure 4. Notice that the time to the next improvement in fitness is highly
irregular but generally increases with time. Initially, crossover can bring together
correct sub-strings. As evolution proceeds the population in the algorithm becomes
highly inbred and crossover does little. Toward the end of a run, mutation becomes
the sole source of progress as we wait for a fortuitous mutation to fill in the one or
two missing characters not present in the initial population.

The method of picking parents and placing offspring used in the string evolver
example is called single tournament selection with size four. The methods of pro-
ducing variation are called two point crossover and single point mutation. There
is a wealth of possible choices for parent selection, offspring placement, and of
variation producing techniques. Many of these are detailed in Ashlock (2004),
which is available at http.://lwww.math.iastate.edu/danwelll EC

3. FINDING A TRANSPOSON INSERTION MOTIF

In Dietrich, Cui, Packila, Ashlock, Nikolau, and Schnable, (2002), an example
of an application of a string evolver to bioinformatics appears. A collection of 315

Appeared in
Best String Fitness Generation

HadDe Q'/--<jlm’ 3

HadDe, em3m/<I jm- 4 52

HadDe, em3m/<I jm- 5 54

HadDm, ex3m/#I jmj 6 73

HadDm, eI8m/#I jmj 7 86
8

HadDm, eI8m[A]jjmt 118
HadDm, UI8m[Ajjm. 9 135
MadDm, zI8m4AJ1m. 10 154
Madam, zIXm4AJ1lm. 11 163
Madam, InmgAJym. 12 256
Madam, I’mgArHm. 13 327
Madam, I’'m AC ™ m. 14 473
Madam, I’'m APam. 15 512
Madam, I’'m Adam. 16 647

FIGURE 4. A string evolver running. Each time an improvement in the best fitness in the population
occurs, the string receiving that fitness is printed together with the generation number in which it
appeared.
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DNA sequences 129 bases long and centered on a 9 base repeat created during a
transposon insertion were acquired. The conjecture is that there is a motif favored
by the transposon at the site of insertion but this motif is masked by not knowing
which orientation of the sequenced DNA contains the motif. The motif is not tight
enough to permit its discovery by inspection or simple statistical analysis. What is
desired is to recover the correct orientation by aligning all 315 sequences. There is
not sufficient sequence homology at the insertion sites to permit useful alignment
via dynamic programming, the standard alignment technology.

The choice of data structure for attempting to solve this problem is fairly
obvious. It is a character string of 315 zeros and ones that specifies an alignment
of the sequences. A zero means “leave the sequence in it current orientation”
while a 1 means “compute the reverse complement of the sequence.” This yields
a space of 2314 = 3:34 x 1094 possible alignments (the first sequence is never
reversed, selecting one of two possible global alignments). The tricky part of
designing the evolutionary algorithm in this case is the fitness function. It was
decided to minimize the randomness of the alignment of the sequences. In this
case the randomness of an alignment (choice of forward or reverse orientations)
was estimated by computing the squared deviation of the number of bases of each
type at each position from the empirical frequency of those bases in the sequences
being aligned. This measure of non-randomness is given in Equation 1.

129
fay=>y" ( > N - Ex)2>

i=1 \ze(C,G,AT)

The number Nx is the number of bases x at a given position while Ex is the expected
number of bases of that type, i.e. the number of sequences times the fraction of all
bases in the data set of type x.

Using Equation 1 as a fitness function, a string evolver can be used to perform
the alignment. The string is made up of characters each of which specifies the
orientation of one of 314 sequences with the first sequence left in its original
orientation. Such a string evolver that searched the space of alignments was run
100 times. Out of those 100 runs, 88 returned the same alignment and the same
fitness value. This fitness value was the largest found in any of the runs. This makes
it likely we are detecting a true optimal alignment of the 315 sequences.

In order to see if there is a motif at or near the point of insertion, a x2-value
was computed for each position of the alignment. The x>-values are given along
the length of the alignment in Figure 5. The unaligned sequences did not show a
significantly non-random base composition at any point. The aligned sequences
yield a significant deviation from the expected base composition statistics at points
immediately flanking the insertion. Readers interested in the biology that underlies
this example should read Dietrich, Cui, Packila, Ashlock, Nikolau, and Schnable,
(2002).

It is important to consider the question of interaction between the fitness func-
tion and the x>-statistics. In this case the non-randomness of the entire alignment
was maximized. Using 60 bases of flanking sequence on either side of the insertion
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FIGURE 5. _x?-values derived from base composition at each position in an alignment of 315 DNA
sequences of length 129 fanking distinct insertion points of a mu-transposon. The alignment used was
the best found by the evolutionary algorithm.

point reduces the chance that we are creating a motif by fortuitous arrangement of
existing variation in a small region including the point of insertion. The fact that
the x2-values spike in positions immediately flanking the insertion but not in the
remainder of the flanking sequence suggests a motif does exist at the point of in-
sertion. It is also important to note that non-randomness was maximized relative to
the empirical base statistics of the sequences aligned. Using some larger region to
compute expected base frequencies would have made it easier to create a phantom
motif by exploiting and aligning existing random sequence features.

4. PCR PRIMER PICKING

A more complex application of evolutionary computation to bioinformatics
is that of picking PCR primers. At this point the application is complex enough
to raise the issue of representation. The representation used in an instance of
evolutionary computation is the way that candidate solutions to a problem are
coded as data structures and varied during reproduction. The representation used
to align the transposon insertion sites was a character string representation with
two point crossover and single point mutation, exactly the same representation as
was used in the example string evolver. Before picking a representation for primer
picking, we will need a clear specification of the problem.
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Using a standard primer-picking tool (Primer 3 from the NCSA Biology
Workbench), many thousands of primers were designed to amplify sites likely to
contain polymorphisms in Zea mays. Many of these primers amplified their targets
correctly, while others did not. The problem is to distinguish the good primers from
the bad primers given that the original primer picking software thought they were
all good. We are neglecting technician error in performing the PCR reactions and
in scoring the outcomes of the PCR experiments, in effect treating these sources
of errors as “noise”. We thus act as if the scoring of primers as good or bad is
entirely correct. These primers, scored as good and bad, form the training data for
our primer picking system.

The experiment designed to find bad primers used evolutionary computation
as a machine learning system to attempt to detect any patterns that will help us
to tell good primers from bad primers. Note that many of the standard things that
make a primer good, such as correct Tm and the presence of a GC-clamp are
already in every primer because they were put there by the original primer picking
software. This means we will be looking for organism specific patterns that only
affect primers in Zea mays. In subsequent work on Zea mays, multiple primers
will be designed for each target and the good/bad classifier created via machine
learning will pick from among them those primers most likely to work based on
patterns learned from earlier primers.

In the last example there was an obvious representation (a character string
that specified sequence orientations) but the fitness function (minimize overall
randomness of the alignment) was not such a clear choice. In building an evolu-
tionary algorithm to pick primers, it turns out that both the fitness function and
representation are not obvious. We want a classifier that, given a primer, gives a
(often correct) prediction if it is a good or bad primer. Fitness will thus consist of
some abstraction of predicting correctly the good/bad status of the primers in the
training data. In a set of initial experiments simply scoring the number of correct
predictions did not work well.

Given that the problem could be in a motif that is somewhere in the primer,
we need a representation that does not assess bases in a manner based on their
distance from the end of the primer but rather based on the pattern of surrounding
bases. Because of this need to have a non-position-specific assessment we settled
on finite state machines as our representation. A finite state machine can process
a string of bases, waiting for one of a small set of motifs to appear, and then make
a state transition that detects it. The widely used BLAST software incorporates
finite state machines to perform essentially this task. As an additional benefit,
use of finite state machines permitted a unique sort of incremental fitness reward,
described subsequently.

A finite state machine is a collection of states (including a starting state),
together with a collection of data-driven transitions among the states. The output
of a finite state machine is associated with the transitions or the states themselves.
An example of a finite state machine is shown in Figure 6. In this case the output
of the FSM is encoded by noting that, when it is in state five, the last three bases
it encountered formed a stop codon. In order to give an incremental assessment of
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FIGURE 6. A finite state machine that recognizes stop sequences in DNA.

strings of DNA bases we are considering as primers we will make a modification
to this standard sort of finite state machine.

The states of the finite state machines used to classify primers have three
possible types or labels: ? (don’tknow), 4+ (good primer), and —(bad primer). These
state labels are used to permit the finite state machine to function as a classifier.
The fitness of a finite state machine on a training set of primers is computed as
follows. Each PCR primer in a set of training data is run through the finite state
machine. As the machine passes through each state it is given +1 score if the
state label matches the good/bad status of the primer and —1 if it doesn’t match.
No incremental score is awarded for the don’t know states. Fitness is summed
over all primers examined. If we imagine the evolutionary algorithm as searching
a fitness landscape for good classifiers then the use of this sort of incremental
reward scheme acts to smooth the landscape and permit the search to avoid getting
stuck. A more complete discussion of these issues appears in Ashlock, Wittrock,
and Wen, (2002). A finite state machine of the sort used to classify primers is
shown in Figure 7 as both a state transition diagram (picture) and as a table.

Having decided to use finite state machines in our evolutionary computation
system, we still need to select methods for generation of an initial population
and for generating variations during reproduction. The finite state machines are
initialized uniformly at random, filling in both transitions and state labels with
uniformly distributed valid values. As with the string evolver, we will have a
crossover operator and a kind of mutation. Both of these variation operators need
to be re-tooled to contend with the more complex structure of finite state machines.
The crossover operator used works by treating the states, including their label and
outward transitions, as “characters” and then performing crossover on the “string”
of states. Two point crossover of this string of states was used and the designation
of the initial state moves with the first state during crossover. The mutation used
on the finite state machine modifies the choice of initial state 10% of the time,
randomly picks a new destination for one of the transitions 30% of the time, and
modifies the label f+;—; ?g on a state 60% of the time.

One hundred evolutionary runs with distinct random starting populations of
600 machines were performed. The best finite state machine from each simulation
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State | If C | If G | IfA | If T | Type
1 2 2 6 6 ?
2 3 5 5 5 ?
3 6 3 4 4 +
4 4 4 4 2 ?
5 5 5 4 4 -
6 3 3 5 5 -

FIGURE 7. A finite state machine configured for primer classification. Both a pictorial and a tabular
representation are given. The starting state, denoted by the rootless arrow, is state 1 and the states in
the pictorial representation are numbered clockwise from that point.

was saved for evaluation as a classifier and for use in later sets of runs. Each
evolutionary run proceeded for 1000 generations. These evolutionary runs used a
set of 2000 primers, half good and half bad, as their training data. In order to ensure
that the classifers were learning patterns rather than just memorizing the training
data they were cross-validated on a set of 500 primers, also half good and half
bad, that were not part of the training data. In order to use the finite state machines
to predict the good/bad status of a primer, primers are run through the finite state
machines noting how many of each type of state are encountered. A majority vote
is taken on the type of state label encountered. This permits a failure to classify if
a majority of the states are of type ?. Table 1 documents the classification abilities
of the best finite state machine located in the first 100 runs.

The outcomes given here show some patterns are being located but the finite
state machines are not yet classifying well enough to have a substantial impact on
the number of bad primers used. A score of 240 correct, 192 wrong, and 59 unde-
cided is less than one would hope for. Examining the distribution of best finesses
it appeared that a few of the evolutionary runs had discovered interesting patterns
and many had not. In an attempt to consolidate these patterns in a single finite state
machine we performed a second set of evolutionary runs that hybridized the finite
state machines found in the first set of runs. For another instance of hybridization
in the context of evolutionary computation see (Ashlock and Joenks, 1998). The
hybridization runs are identical to the first set except that 100 members of the initial
random population are replaced with the best-of-run finite state machines saved
during the first 100 runs. The other members of these initial populations are still
generated uniformly at random. A second set of hybridizations was performed,
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Table 2
Predictions versus Truth Results for the Most Fit
Finite State Machine Located During the Second Set
of Evolutionary Runs, the First Set of Hybridization.

Training Data Crossvalidation Set
Prediction Prediction
+ - ? + - ?
Good | 626 337 37 Good | 104 137 9
Bad 181 802 17 Bad 79 161 10

using the best-of-run finite state machines from the first set of hybridization runs.
The outcomes for both sets of hybridization runs are given in Tables 2 and 3.

Examining the cross-validation results for the two sets of hybridizations we
see improved performance for the first set of hybridizations and degraded perfor-
mance appearing in the second. This means that, in the second set of hybridization
runs, the finite state machines had gone beyond finding general patterns in the
training data and had begun to find highly specific patterns that were relevant
only to the training data. The prediction scores on the training data show this, as
do histograms of end-of-run best finesses given in Figure 8. The fitness on the
training data climbs impressively from the initial set of runs to the first hybridiza-
tion. It also climbs substantially from the first hybridization to the second. This
second improvement is at the expense of useful performance, as gauged by cross
validation.

The “memorization” of the training data in the second set of hybridization
runs is an instance of a problem that can appear in many machine learning systems:
over-training. If you spend too much time training on a set of data you will become
almost perfectly able to recognize patterns that give you a good score on that
training data. Many of these patterns do not exist outside of the training data. This
phenomenon of over-training means that the use of cross validation on data not
used in training is a critical part of evaluating the success of any machine learning
experiment. The best classifier found in the first set of hybridization runs is good

Table 3
Predictions versus Truth Results for the Most Fit
Finite State Machine Located During the Third Set
of Evolutionary Runs, the Second Set of

Hybridization.
Training Data Crossvalidation Set
Prediction Prediction
+ - ? + — ?
Good | 636 364 O Good | 127 107 16
Bad 171 829 0 Bad 95 132 23
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FIGURE 8. Histograms of the distribution of fitnesses. Top to bottom, for the first set of simulations,
for the first set of hybridizations, and for the second set of hybridizations.
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enough to have an impact on primer location. It makes 265 correct predictions,
216 bad predictions, and cannot decide about 19 of the primers. Since different
runs may have found classifiers that recognize different patterns, it is also possible
that a voting scheme among several classifiers will yield even better performance.
That possibility has not yet been evaluated.

5. DNA BAR CODE LOCATION

Many useful evolutionary algorithms are hybrids. The word “hybrid” is used
in a completely different fashion from its use in the preceding section. In this
case a hybrid algorithm is a combination of evolutionary computation with some
other type of algorithm. In this case we combine evolutionary computation with a
greedy algorithm. We will use this greedy algorithm, under the control of evolved
structures, to locate an error correcting bar code over the DNA alphabet. The errors
corrected will not be biological but rather will permit us to recognize embedded
DNA bar codes in constructs even when a sequencing error has modified them.

Greedy algorithms are familiar to most computational professionals. They
are algorithms that use a greedy rule (e.g. make the best possible next move)
to try to accomplish some goal. A few greedy algorithms, like those for finding
a minimal-weight spanning tree in a weighted network, can be proven to yield
optimal results. Other problems, like graph 14 coloring or the traveling salesman
problem, admit a plethora of greedy algorithms all of which cannot be shown to
yield optimal results. While it would seem that the control and improvement of
greedy algorithms is a natural target for evolutionary computation, relatively few
attempts have been made. It turns out that there are several possible approaches.
The approach explored in the current paper consists of making small modifications
in the order of presentation of potential parts of a growing structure as a means of
deflecting the greedy algorithm’s behavior. The role of evolutionary computation
is to locate modifications of the order of presentation that result in better structures.
The resulting structure is not a standard one for evolutionary computation and the
crossover used is probably macromutational (Peter, 1997) in character. The greedy
algorithm we will use is Conway’s lexicode algorithm.

Algorithm 1 Conway’s Lexicode Algorithm
Input: A minimum distance d and a word length n.
Output: An(n,d) — code.

Algorithm:

Place the DNA words of length n in lexicographical order. Initialize an empty set C
of words. Scanning the ordered collection of DNA words, select a word and place
it in the code if it is distance d or more from each word placed in code so far.

An (n; d)-error correcting code is a collection of n-character strings (in this
case strings of DNA) that have the property that any two of them are at least d
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errors apart. The notion of error must be chosen to fit the problem. In this case,
since sequencing errors can change, remove, or insert an apparent DNA base, the
relevant notion of error is the edit metric. In the edit metric the distance between
two strings of DNA is the minimum number of single base additions, deletions, or
substitutions required to transform one string into the other. The edit distance of
CGATT and GGAT, for example, is two: change the initial C to a G and delete the
terminal T. Since no single edit will transform one of these strings into the other,
their edit distance is exactly 2.

The (n; d)-error correcting codes over the DNA alphabet will be used as error
tolerant bar codes for genetic constructs. In order to correct errors, we note that any
collection of less that 1/2d errors leaves us nearer to the actual bar code used than
any other. Error correction consists of checking what bar code, among those used
in any genetic construct, is closest in edit distance to the one apparently sequenced
at the bar code’s location in the genetic construct.

Examining Algorithm 1, the reader will see that the algorithm extends a
partial code as it goes along. Since the algorithm considers the potential code
words in a fixed order and starts with an empty set of code words the algorithm is
deterministic. Run many times it always produces the same result. In order to get
a different code out of the algorithm we would need to present the words to the
algorithm in a different order. A greedy closure evolutionary algorithm exploits
a restricted method of permuting the order in which the words are considered.
Conway’s lexicode algorithm is modified by specifying a short list of words, called
a seed, that start as members of the code. The seeds used here have three members.
Once a seed is chosen, Conway’s algorithm is used to “close” the partial code
represented by the seed. The words not in the seed are presented in the same order
as in the standard algorithm. Since each word chosen to be in the code prevents
any other word within d edits from being in the code even a small seed can have a
huge impact on the membership and size of the code.

The structure to be evolved by the evolutionary algorithm is the seed. The
fitness of a seed is the size of the resulting error correcting code. Notice that bigger
codes are better because you get more bar codes with the same error correcting
potential.

We have chosen seeds as the data structure to evolve. In order to complete a
representation for the bar code location problem we must also specify the crossover
and mutation operators for the data structure. Crossover of two seeds consists of
copying two parents and then randomly shuffling the words between the copies,
save that any words that appear twice send one copy to each child. Mutation
consists of replacing one word in a seed with a new word generated at random.
All of the variation operators listed here have the potential to create seeds, which
violate the minimum distance for the code. Such seeds are awarded a fitness of
zero and so removed from the population by the selection process. We call these
seeds invalid. For valid seeds, the size of the code resulting from application of
the lexicode algorithm to the seed is the fitness of that seed.

Before we run an evolutionary algorithm to locate bigger error correcting
codes (equivalently: sets of DNA bar codes) it would be a good idea to compute
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Table 4
Size of DNA Edit-Metric Lexicodes Found with the Unmodified Version of
Conway’s Lexicode Algorithm.

Code Size Minimum Distance d

Length n 3 4 5 6 7 8 9
3 4 — - — - — -
4 12 4 - - - —

5 36 8 4 - - - -
6 96 20 4 4 - - -
7 311 57 14 4 4 — -
8 1025 164 34 12 4 4 -
9 3451 481 90 25 10 4 4
10 * 1463 242 57 17 9 4
11 * * 668 133 38 13 4
*Big

- Cmply

the rough size we could expect codes to be. Table 4 gives the sizes of the codes
located by the unmodified version of Conway’s algorithm for several values of the
length n of the bar code and the minimum distance d between any two strings in
the code.

The evolutionary algorithm was run 100 times for 100 generations in for each
of ten different sets of parameters n and d. Results from these runs are given in
Table 5. The greedy fitness evolutionary algorithm outperformed the plain lexicode
algorithm for all parameter sets tested. An example of a (6; 3)-error correcting code
in DNA for the edit metric is given in Table 6.

Table 5
Comparison of DNA Edit Metric Code Sizes for the Plain
Lexicode Algorithm and the Greedy Fitness Evolutionary
Algorithm. The Figures in Parenthesis are the Number of
Times the Best Result was Located in 100 Runs.

Minimum Plain Evolutionary
Length Distance Lexicode Algorithm
4 3 12 16 (18)
5 3 36 41(2)
5 4 8 11(1)
6 3 96 106 (2)
6 4 20 25 (11)
6 5 4 9(9)
7 3 311 329 (2)
7 4 57 63 (1)
7 5 14 18 (12)
7 6 4 7(92)
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Table 6
An Instance of a Maximum Size (6; 3)-Error Correcting Code Among
those Locate by the Evolutionary Algorithm. This Code has 106
Members, All at Mutual Edit Distance at Least 3. The Unmodified
Version of Conway’s Lexicode Algorithm Locates a 96 Member Code.

GTGCTC ATTGGC ACGGOG CGOCTG
GACTAA AGGAGC GAAGOG ATACTG

OOCAGC TAGTGC TTGACG GTTGTG
GOCOOC ACATGC GCTAOG COGATG
CGGOCC ATCCAC GTCOGG TGAATG
AAAOOC TAOGAC CAGCGG AOCTTG
TTTCOC CTGGAC AGAGGG TATTTG

AGOGCC GGCAAC TCTGGG TGACCA
TCAGOC AATAAC AACAGG CTGGCA
CAGACC CGATAG CGTAGG CGCACA
CTAACC TCTTAC GGGTGG ACAACA
CACTOC TGGGTC TTATGG TATACA

ATGTOC CCTGTC GOGCAG TOCTCA
GGTTCC TTCATC AGTCAG CTTTCA

TGOCGC GAATTC CATGAG ATGOGA
GATOGC TAOCOG TOCAAG ACOGGA
GOGGGC CCAOOG GTAAAG CGGGGA
CAAGGC CTOGCG AAATAG TCGAGA
ATTGGC ACGGCG CGOCTG GGAAGA
AGGAGC GAAGOG ATACTG GCTTGA
TAGTGC TTGACG GTTGTG OOCCAA
ACATGC GCTAOC COGATG TAGCAA
ATOCAC GTCCGG TGAATG GTTCAA
TAOGAC CAGOGG AOCTTG GCAGAA
CTGGAC AGAGGG TATTTG TGTGAA
GGCAAC TCTGGG TGACCA CAAAAA
AGGAGC GAAGOG

The application for the error correcting codes in the edit metric is to provide
embeddable bar codes for cDNA libraries. Because these bar codes are to be
embedded in constructs there are a number of constraints on the sequence that
may be used that are driven by biology beyond the need for error correction. In
making the constructs various restriction enzymes are used which cut a DNA
strand at a particular pattern. We must avoid creating additional instances of this
pattern either within our bar codes or as a side effect of embedding our bar codes
into the construct. Sub-strings of the form TT or AAA will interfere with use of
the construct because of a long sting of T’s near the point were the bar code is
embedded.

It turns out that modifying the evolutionary algorithm to deal with such con-
straints is not difficult. In the seed generator, mutation operators, and in the greedy
algorithm, a short piece of code is called that checks the acceptability of each
string relative to the biological constraints.
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6. SUMMARY

Three examples of applications of evolutionary computation to bioinformat-
ics are presented here. The first differs from the simple introductory example, the
string evolver, only by having a different fitness function. With a fitness function
that minimized the randomness of an alignment of a set of 315 sequences the
string evolver was able to bring a motif correlated with transposon insertion over
the threshold of detectability. While quite simple as an example of evolutionary
computation, this application solved a real problem. Because of the essential sim-
plicity of evolutionary computation, the entire software development effort needed
to solve that problem took an afternoon.

The creation of finite state machines to learn how to second-guess a standard
primer-picking package was a more difficult effort. A large amount of data, in
the form of scored primers, was required before the effort began. The choice of
a representation was not as obvious as in the first example. Finite state machines
are well able to pick out a pattern no matter where it appears along the length
of the primer and so were selected as the representation for our classifiers. The
standard fitness function—scoring the number of correct predictions—did not
work well in preliminary studies. The use of an incremental reward, computed as a
primer traverses the finite state machine, worked well enough to have an impact on
future costs. Classifiers located with the incremental fitness function will decrease
the number of bad primers used. Substantial room remains for improvement. The
evolutionary algorithm used to evolve finite state machines to classify primers
(equivalently: to learn the patterns in the scored primer training set) was a fairly
standard evolutionary algorithm. The only feature not completely standard was
the fitness function. It is also worth reminding the reader that this evolutionary
algorithm over-trained the finite state machines when permitted to hybridize a
second time. It is not possible to over-emphasize the need for cross validation
when learning from data.

The creation of larger sets of error correcting DNA bar codes used a new type
of evolutionary algorithm called a greedy closure evolutionary algorithm. The
basic notion is to first choose a greedy algorithm that extends partial structures. In
this case Conway’s lexicode algorithm is the greedy algorithm. The representation
for this type of evolutionary algorithm is a small initial part of the structure, in
this case a seed of three initial DNA bar codes. The fitness is the quality (in the
case of error correcting codes: size) of the final structure constructed by the greedy
algorithm. While we used this technique to find larger sets of DNA bar codes it
has many other possible applications.

These three examples, while quite different from one another, do not do justice
to the breadth of evolutionary computation. Evolutionary computation has been
used since at least the 1960s (Fogel, Owens, and Walsh, 1965) with techniques
similar to those used in the primer-picking example. Foundational works in the area
include (Goldberg, 1989; Holland, 1992) which introduce a type of evolutionary
computation called genetic algorithms. Evolution of variable sized structures, in-
cluding whole computer programs, comes under the name of genetic programming
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(Kinnear, 1994; Kinnear, and Angeline, 1994; Koza., 1992 and 1994). While these
techniques have in common the basic structure given in Figure 1, they each incor-
porate unique features and potential pitfalls.

Evolutionary computation started as a machine learning and optimization
techniques, having been discovered many times in many places. It was not practi-
cal until the late 1980s when the size of widely available computers grew to where
it could support the long run times required. The algorithms used by evolutionary
computation are fast to write, slow to run, and easy to specialize for particular tasks.
In general, pure evolutionary computation does not perform well on problems that
have been studied for a long time. This is because pure evolutionary computa-
tion is too simple to take advantage of expert knowledge about problems. Hybrid
evolutionary algorithms, where evolutionary computation is blended with other
techniques, can incorporate expert knowledge and does often compare well with
or beat other techniques. The DNA bar codes are an example of a high performance
hybrid technique.

Evolutionary computation is an option for problem solving best used in the
initial, exploratory stages of a project. Algorithms that are less general-purpose
can almost always out-perform evolutionary computation. Such specialized al-
gorithms, while they supplant evolutionary computation techniques, may require
knowledge gained with initial studies of the problem that used evolutionary com-
putation. In summary, evolutionary computation is so easy to use that it is a good
choice for brain-storming and prototyping. It is also quite a lot of fun.
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