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Abstract  We study completeness of systems of third Jackson g-Bessel functions by
two quite different methods. The first uses a Dalzell-type criterion and
relies on orthogonality and the evaluation of certain g-integrals. The
second uses classical entire function theory.

1. Introduction

For 0 < g < 1 define the g-integral on the interval (0,a) by

n=0

[ @ ==Y f (e ag™ (1.1)
0
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Lg(O, 1) will denote the Hilbert space associated with the inner product

1
(f, ) = / f(@)9(x)dgz
0

It is a well known fact that the third Jackson g-Bessel function J53) (z;9),
defined as
1/-|-1 —H“H

T (z;q) = ’q S Z V+1 PRCTID 2 (1.2

satisfies the orthogonality relation

1
/ &y (javaz; ¢2) Jy (Gmwqz; ¢2) dg
0 (1.3)
_g-—1 . 9 .9
T 2g2 Jut1 (Gnv; @°) Jo (Gnv; @%) Onm

where j1, < jo, < --- are the zeros of J,, ® (2;¢%) arranged in ascending

order. Important information on the zeros of J, ® ( 2) has been given
recently (Ismail, 2003; Koelink and Swarttouw, 1994; Koelink, 1999;
Abreu et al., 2003). The orthogonality relation (1.3) is a consequence
of the second order difference equation of Sturm-Liouville type satisfied
by the functions J53) (z; q2) (Swartouw, 1992; Koelink and Swarttouw,
1994). In this paper we consider completeness properties of the third
g-Bessel function in the spaces L4(0, 1) and Lg(O, 1). We will approach
the problem from two substantially different directions. In one case we
will apply a g-version of the Dalzell Criterion (Higgins, 1977) to prove
completeness of the system {JS’ (j,wqx; ¢*)} in Lg(O, 1). In another case
we will use the machinery of entire functions and the Phragmén-Lindelof
principle to prove completeness of the system {Jg (jn,,qa:; qz) }, w,v >0
in L;(O, 1). This theorem is in the spirit of classical results on Bessel
functions (Boas and Pollard, 1947) that state the completeness of sys-
tems {J,(A\n(2))} where the numbers A, are allowed a certain freedom.
Although the entire function argument is more general, there is reason to
present the Dalzell Criterion approach as well because it relies solely on
techniques of g-integration and on properties of orthogonal expansions
in a Hilbert space. Also, this approach requires the calculation of some
g-integrals of g-Bessel functions that parallel results for classical Bessel
functions. Thus this method of proof extends the g-theory of orthogonal
functions.
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The third Jackson g-Bessel function was also studied by Exton (Exton,
1983) and sometimes appears in the literature as The Hahn-Ezton q-
Bessel Function. There are other two analogues of the Bessel function
introduced by Jackson (Jackson, 1904). The notation of Ismail (Ismail,
1982; Ismail, 2003), denoting all three analogues by J,gk)(z; q),k=123
has become common and we adhere to it here. However, because the
present work will deal exclusively with J,£3) (z; q2), to simplify notation
we write from now on

J(2) = I (24%) -

It is critical to keep in mind that in definition (1.2) the g-Bessel function
is defined with base g, whereas in defining J,(z) we have changed the
base to g2. Thus the series definition for J,(z) is

2v42. 2 o k(k+1)
Ju(z) = 2" la 2 ,2q ) Z(_l)k 2w+2 q2 e
(0% = (@*%%4) 0 (4% ¢ oo

Let zp,, n = 1,2,... denote the positive roots of J,S?’)(z;q) arranged
in increasing order. From (Kvitsinsky, 1995) we have that

o0

Z (Znu)—2 = (1 — q) ((il — ql/-i-l) . (14)

n=1

Replacing q by ¢2, we find for the roots jn, of J,(z) that

7; ()™ = (1-¢% (3 — g +2)’ (15)

Expression (1.5) will be used in Section 2.

2. Completeness: A Dalzell type criterion

It is easy to verify (Higgins, 1977) that if {®,} and {¥,} are two
sequences in a Hilbert space H, with ¥,, complete in H and ®,, complete
in ¥,, and orthogonal in H, then ®,, is also complete in H. Then, if ¥,
is complete in H, a necessary and sufficient condition for the orthogonal
sequence ®,, to be complete in H is that it satisfies the Parseval relation

> @, W) [* = || Tg ], for every ¥y, k=0,1,.... (2.1)
n

This fact was used by Dalzell to derive a completeness criterion and
apply it to several sequences of special functions (Dalzell, 1945). In this
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section we will derive a similar criterion suitable to be used in Lﬁ(O, 1).

Then, we use it to prove completeness in L2(0,1) of the orthonomal set
of functions

To do so, we will evaluate explicitly some g-integrals using the results
from the preceding section. We start by stating and proving the following
lemma:

Lemma 2.1. Let g € Lg(O, 1) such that g(¢") > 0, n = 0,1,2....
Define xn(z) =1 if x € [0,¢"] and xn(z) = 0 otherwise. Then {gxn} is
complete in Lg(O, 1).

Proof. Let f € Lg(O, 1) be such that

1
/ F(2)g(2)xn(2)dg = 0, 7 = 0,1,2, .. |
0

Now, by (1.1) and using the fact that x, (¢*) = 0 if k < n, we get:
o0
=>f (q’“) 9 (q'“) ¢" =0.
k=n

0=An—An1=f(¢")9(d")¢"
because g (¢") > 0 it follows that

Then,

f(@)=0,n=0,1,2,....
a
Theorem 2.2. Let g € Lg(O, 1) such that g (¢") >0, n=1,2... and let
w(z) be such that zw(x)dqm exists and w(q") > 0, n =1,2.... Then

an orthonormal sequence {®,} C Lg(O, 1) is complete in Lg((), 1) if and
only if

i/l/ré g(af:d:c w(r)d /ll/Tlga:)|2dm]w )dgr. (2.2)
0 0

n



q-Bessel functions 33

Proof. Writing ¥, = gxx in (2.1), by the preceding lemma, the sequence
{®,} is complete in L2(0,1) if and only if

o |1 2 1
3| [ @@ = [lopa@)de k=01,
" lo 0
that is
oo | T 2
Z /‘I’n(:c)g(x)dqm
"™ |0

T

=/|g(m)|2dqx for every r € {qk,kr—O, 1,...}.
0

Integrating both sides of this relation after multiplying by w(z), one gets
the relation (2.2). On the other hand, if (2.2) holds, then define

r 2

Fo) = [ L@ gz = 3| [ @n@g()dez
0 n

0

From the hypothesis,
1
/F(r)w(r)dqr =0.
0

Observing that by the Bessel inequality, F'(r) is non-negative, we get

F(qk)=0,k=1,2,....

We proceed to evaluate two important g-integrals.

Lemma 2.3. For every real number r,

T

. 1- .
/a:"HJ,, (Jnvgz) dgz = —q—j_q 1 Grvgr) .
0 nv
Proof. Express
T
/m”‘HJl, (Jnvgzx) dgx

0
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using the power series expansion (1.2). Then interchange the g-integral
with the sum and use the following fact:

T

o0
/ ZHUHLG g = (1= )22 3 i@ 2k+2)
0 n=0

_ _1—_‘1 2w+2k+2
T 1 g :

Rearranging terms the result follows in a straightforward manner. [

Lemma 2.4.
1 1
[ @921 Groz) gz = [ 032 (Gnuso) d
0 0

Proof. Consider the following formula from (Koelink and Swarttouw,
1994):

1

1 — v
/93]3+1(aqz)dq93= d-o¢ {aJyy2(aq)J) 1 (a)
0

“2a (2.3)
~Jy+2(aq)Jy11(a) — agdy 5(aq)J11(a) }
and
S = (A - da@). 4

Shift v — v + 1 in (2.4) and set « = jp,. This yields

1— q2u+2

Ju+2 (jm/(I) = Jyt1 (jnV) .

24y

Taking derivatives in both members of (2.4), changing v — v + 1 and
again setting x = j,, the result is

) o 1
v Govd) = 4~ 3{(1—q2v+2) [.—
Inv

1

—7 e (jnv)jl —Jy (jm/)}‘

nv

Jnlz+1 (jnt/)
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Substituting this in (2.3) we get the simplification:

1
, 1- . ,
/wJEH (Jnvqz) dgz = (_2qg) T, () Jv41 (Grnw)
0

1
1 _ . . .
—5(1 — q)q" 2-]1/—!—1 (Jm/Q) Jy (]nu) = /{1,‘.]3 (Jnqu) quL‘
0

where (1.3) was used in the last identity. O
Theorem 2.5. The orthonormal sequence {®,} defined by

1 .

x2 ']I/ (]nl/qm)
1 .

z2J, (]nvqx) ”

®,(z) = |

is complete in L2(0,1).

Proof. In (2.2) take {®,} defined as above, g(z) = 2“*7 and w(r) =
r~2»=1 We need thus to prove the identity

5/

r 2

xzJ, (
/ ]nvqx V+1dqm ,,,——2:/——1qu,
’ 2Jy (Jnvg) ll

[ z)]*d m} w(r)dgr.

Lemma 1 and Lemma 2 allow us to reduce the left hand member of

above to:
o0
Z —2 :
n=1 Jnv

l1—g¢
(1+9g)(1 - g**?)
by (1.5). It is straightforward to compute

1 T
2 _ 1—g¢
0/ [ 0/ l9(2)| dq:vjl W)y = o

and the Theorem is proved. O

|r—l

|>—l

n=1

that is,
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3. Completeness: An entire function approach

From (1.2) we can write

(¢2+2; ¢?)
Jy(w) = ————F—"=22F,(w),
) (6% 0% oo (v)

where o0 k_k(k+1) ,2k
(=1)*g** V2
F,(w) = E .
() (@**2;,¢), (6%, 6*)y

k=0

The function F,(w) is entire and it is directly shown that F,(w) has
order zero.

Set G(w) = fg w(quz)dgz, and h(w) = 1(7":,(“«1;) .

Lemma 3.1. If >0, v >0 and g(z) € L;(O, 1) then h(w) is entire of
order 0.

Proof. We first show that G(w) is entire of order 0. From the definition
of the g-integral we have

6w =(1-0Y 0 (#) B (wdHe). ()
k=0

The series in (3.1) converges uniformly in any disk |w| < R. Hence G(w)
is entire. Recall that the order p(f) of an entire function f(w) is given
by

p(f) = lim sup W
where
M(r, f) = max | f(w)].
From (3.1)

M(r;G) < M (r; E,) / 19(2)] dz.
0

Since p (F,) = 0 we have that p(G) = 0.

Both the numerator and the denominator of h(w) are entire functions
of order 0. If we write G(w) and F,(w) as canonical products, each
factor of F,(w) divides out with a factor of G(w) by the hypothesis of
Theorem 3.3. h(w) is thus entire of order 0. O
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Lemma 3.2. If u >0, v >0, and 0 < g < 1 then the quotient _ﬁTFF(,,qu)
is bounded on the imaginary w axis.

Proof. We will make use of the simple inequality
(€% D0 < (%9 <1, >0, 0<g<L
Using this inequality we get for w = iy, y real,
n(n+1) 2mn, 2n © _n(n+1),2n
Fu(qmiy)=2 2q+2. 2q 2y o < 2+21 2 ! 2 2y ’
(@*1%0%), (0% %), (@72%50%) = (%507,

n=0

o qn(n+1)y2n 0 qn(n+1)y2n

Fu(iy) = Z (q2u+2; q2)n (q2; q2)n > W

n=0

n=0

Thus we have
F.(q™;y) < 1
F,,(iy) (‘12”+2§ q2)oo

0<

Theorem 3.3. Let >0, v >0 and g(z) € Ly(0,1). If

1
/ 9(2)J, () dyz = O,
0

n=12,... theng(z) =0 forx=¢™, m=0,1,....

Proof. Lemma 3.2 implies that h(iy) is bounded. Since h(w) is entire
of order 0, we can apply one of the versions of the Phragmén-Lindelof
theorem (Levin, 1980, p. 49) and Lemma 3.2 and conclude that h(w) is
bounded in the entire w-plane. Next by Liouville’s theorem we conclude
that h(w) is constant. Say that h(w) = C. We will prove that C = 0.
We have

G(w) — CF,(w) = 0.

In infinite series form this equality produces an identity of the form

0o
Z Akw2k =0.
k=0

From the identity theorem for analytic functions we conclude that Ay =
0. Calculating A we find

"V — g) (-1 ig (¢°) ¢+
(@42%¢%), (% %)
gt (—1)k

(@59, (6% )y ©=0 k=012
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Dividing out common factors and letting k& — oo gives C = 0. We can
now conclude that G(w) = 0, or that is,

1
/g z)J, (wgz)dgx = 0.
0

We complete the proof with a simple argument that gives g (¢™) = 0,
m=0,1,.... If G(w) =0 then

o0
S0 (@) g <o
§=0

Letting k — 0 gives g(1) = 0. Then dividing by ¢?* and again letting
k — oo gives g(q) = 0. Continuing this process we have g (¢™) = 0 and
the proof of the theorem is complete. O
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