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A b s t r a c t  We study completeness of systems of third Jackson q-Bessel functions by 
two quite different methods. The  first uses a Dalzell-type criterion and 
relies on orthogonality and the evaluation of certain q-integrals. The 
second uses classical entire function theory. 

1. Introduction 
For 0 < q < 1 define the q-integral on the interval (0, a )  by 
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L%(o, 1) will denote the Hilbert space associated with the inner product 

(3) It is a well known fact that the third Jackson q-Bessel function J, (z; q), 
defined as 

satisfies the orthogonality relation 

where jl, < j zu  < . . . are the zeros of 5L3) (z; q2) arranged in ascending 
(3) order. Important information on the zeros of J v  (z; q2) has been given 

recently (Ismail, 2003; Koelink and Swarttouw, 1994; Koelink, 1999; 
Abreu et al., 2003). The orthogonality relation (1.3) is a consequence 
of the second order difference equation of Sturm-Liouville type satisfied 
by the functions 5i3) (z; q2) (Swartouw, 1992; Koelink and Swarttouw, 
1994). In this paper we consider completeness properties of the third 
q-Bessel function in the spaces Lq(O, 1) and Li(0,l). We will approach 
the problem from two substantially different directions. In one case we 
will apply a q-version of the Dalzell Criterion (Higgins, 1977) to prove 
completeness of the system { J: (jnvqx; q2) ) in L$ (0,l).  In another case 
we will use the machinery of entire functions and the Phragmh-Lindelof 
principle to prove completeness of the system { Jl (jnvqx; q2)) ,  p, v > 0 
in Lt(0,l).  This theorem is in the spirit of classical results on Bessel 
functions (Boas and Pollard, 1947) that state the completeness of sys- 
tems {Jv(Xn(z))) where the numbers An are allowed a certain freedom. 
Although the entire function argument is more general, there is reason to 
present the Dalzell Criterion approach as well because it relies solely on 
techniques of q-integration and on properties of orthogonal expansions 
in a Hilbert space. Also, this approach requires the calculation of some 
q-integrals of q-Bessel functions that parallel results for classical Bessel 
functions. Thus this method of proof extends the q-theory of orthogonal 
functions. 
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The third Jackson q-Bessel function was also studied by Exton (Exton, 
1983) and sometimes appears in the literature as The Hahn-Exton q- 
Bessel Function. There are other two analogues of the Bessel function 
introduced by Jackson (Jackson, 1904). The notation of Ismail (Ismail, 
1982; Ismail, 2003), denoting all three analogues by J;~)(z; q), k = 1,2,3 
has become common and we adhere to it here. However, because the 
present work will deal exclusively with J;~) (z; q2) , to simplify notation 
we write from now on 

It is critical to keep in mind that in definition (1.2) the q-Bessel function 
is defined with base q, whereas in defining J,(z) we have changed the 
base to q2. Thus the series definition for J,(z) is 

(3) Let zn,, n = 1,2,.  . . denote the positive roots of Ju (z; q) arranged 
in increasing order. From (Kvitsinsky, 1995) we have that 

Replacing q by q2, we find for the roots j,, of J,(z) that 

Expression (1.5) will be used in Section 2. 

2. Completeness: A Dalzell type criterion 
It is easy to verify (Higgins, 1977) that if {a,) and {an) are two 

sequences in a Hilbert space H, with Qn complete in H and an complete 
in Qn and orthogonal in H,  then an is also complete in H. Then, if Qn 
is complete in H, a necessary and sufficient condition for the orthogonal 
sequence cP, to be complete in H is that it satisfies the Parseval relation 

This fact was used by Dalzell to derive a completeness criterion and 
apply it to several sequences of special functions (Dalzell, 1945). In this 
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section we will derive a similar criterion suitable to be used in Li(0,l).  
Then, we use it to prove completeness in Li(0,l) of the orthonomal set 
of functions 

To do so, we will evaluate explicitly some q-integrals using the results 
from the preceding section. We start by stating and proving the following 
lemma: 

Lemma 2.1. Let g E Li (0,l) such that g (qn) > 0, n = 0,1,2. . . . 
Define x ~ ( x )  = 1 if x E [0, qn] and xn(z) = 0 otherwise. Then {gx,) is 
complete in Li(0, 1). 

Proof. Let f E Li(0, l)  be such that 

Now, by (1.1) and using the fact that xn (qk) = 0 if k < n, we get: 

Then, 
0 = An - An+l = f (qn) g (qn) qn 

because g (qn) > 0 it follows that 

Theorem 2.2. Let g E Li(0,l) such that g (qn) > 0, n = 1,2 . .  . and let 
1 

w(x) be such that f w(x)d,x exists and w (qn) > 0, n = 1,2 . .  . . Then 
0 

an orthonormal sequence {an) c Li(0, 1) is complete in Li(0, 1) i f  and 
only i f  
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Proof. Writing Qk = 9x1, in (2.1)) by the preceding lemma, the sequence 
{an) is complete in Li(0,l) if and only if 

that is 

Integrating both sides of this relation after multiplying by w(x), one gets 
the relation (2.2). On the other hand, if (2.2) holds, then define 

From the hypothesis, 
1 
n 

Observing that by the Bessel inequality, F(r)  is non-negative, we get 

We proceed to evaluate two important q-integrals. 

Lemma 2.3. For every real number r, 

Proof. Express 
T 
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using the power series expansion (1.2). Then interchange the q-integral 
with the sum and use the following fact: 

Rearranging terms the result follows in a straightforward manner. 0 

Lemma 2.4. 

Proof. Consider the following formula from (Koelink and Swarttouw, 
1994): 

and 

Shift v -+ v + 1 in (2.4) and set x = jnv. This yields 

Taking derivatives in both members of (2.4)) changing u t u + 1 and 
again setting x = jnv the result is 
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Substituting this in (2.3) we get the simplification: 

where (1.3) was used in the last identity. 

Theorem 2.5. The orthonormal sequence { a n )  defined by  

is complete in L i ( 0 , l ) .  
1 

Proof. In (2.2) take { a n )  defined as above, g(x)  = xv+i and w ( r )  = 
r-2v-1. We need thus to prove the identity 

Lemma 1 and Lemma 2 allow us to reduce the left hand member of 
above to: 

( 1  - q)2 * 1 C 7, q2 Jnv 

that is, 
1 - a  

by (1.5). It is straightforward to compute 

and the Theorem is proved. 0 
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3. Completeness: An entire function approach 
From (1.2) we can write 

where 

The function F,(w) is entire and it is directly shown that F,(w) has 
order zero. 

1 
G(w) Set G(w)  = 1 g ( ~ ) F , ( ~ w x ) d ~ x ,  and h(w) = -. 

0 

Lemma 3.1. If ,u > 0, v > 0 and g(x)  E L i ( 0 , l )  then h(w)  is entire of 
order 0. 

Proof. We first show that G(w)  is entire of order 0. From the definition 
of the q-integral we have 

The series in (3.1) converges uniformly in any disk Iw 1 _< R. Hence G(w)  
is entire. Recall that the order p ( f )  of an entire function f (w)  is given 
b!, 

InlnM(r; f )  
p( f )  = limsup 

I---too In r 

~ ( r ;  G)  5 M ( r ;  F,) J M X ) I  dqx. 
0 

Since p (F,) = 0 we have that p(G) = 0. 
Both the numerator and the denominator of h(w)  are entire functions 

of order 0. If we write G(w)  and F,(w) as canonical products, each 
factor of F,(w) divides out with a factor of G(w)  by the hypothesis of 
Theorem 3.3. h(w)  is thus entire of order 0. 0 
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Lemma 3.2. If p > 0, u > 0, and 0 < q < 1 then the quotient 
is bounded on the imaginary w axis. 

Proof. We will make use of the simple inequality 

(4 f f ;4 )w<(q f f ;q )k<1 ,  Q > O ,  O < 4 < 1 .  
Using this inequality we get for w = iy, y real, 

Theorem 3.3. Let p > 0, v > 0 and g(x) E L:(O,l). If 

n = 1,2,.  . . then g(x) = 0 for x = qm, m = 0,1,. . . . 
Proof. Lemma 3.2 implies that h(iy) is bounded. Since h(w) is entire 
of order 0, we can apply one of the versions of the Phragmkn-Lindelof 
theorem (Levin, 1980, p. 49) and Lemma 3.2 and conclude that h(w) is 
bounded in the entire w-plane. Next by Liouville's theorem we conclude 
that h(w) is constant. Say that h(w) - C. We will prove that C = 0. 
We have 

G(w) - CFv(w) r 0. 
In infinite series form this equality produces an identity of the form 

From the identity theorem for analytic functions we conclude that Ak = 
0. Calculating Ak we find 
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Dividing out common factors and letting k -+ oo gives C = 0. We can 
now conclude that G(w)  r 0, or that is, 

We complete the proof with a simple argument that gives g (qm) = 0, 
m = 0,1, . . . . If G(w)  = 0 then 

Letting k -+ 0 gives g(1) = 0. Then dividing by q2k and again letting 
k -+ oo gives g(q) = 0. Continuing this process we have g (qm) r 0 and 
the proof of the theorem is complete. 0 
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