
Chapter 2 

RELATED WORK 

Sequential pattern discovery has been an active research topic in past several 
years. The application of sequential pattern mining spans over a wide range, 
from analyzing user access patterns of a web site to the protein motif discovery, 
from studying the workload of a large computer system to the child-abuse cases, 
etc. The diversity of the applications suggest that it may not be possible to 
apply a single sequential pattern model to all these problems. Each application 
may require a unique model and solution. A number of research projects were 
established in recent years to develop meaningful sequential pattern models and 
efficient algorithms for mining these patterns. Most of these models belong 
to one of the following four categories, frequent patterns, periodic patterns, 
statistically significant patterns, and approximate patterns. We will describe 
some of the state of art achievement within these fields in this chapter. 

1. Frequent Patterns 
In many applications, the frequency can be viewed as a very useful metric to 

indicate the importance of a pattern. If a pattern occurs a large number of times 
in a data set, then this pattern may be important in characterizing or analyzing 
the data set. For instance, in a long genome (DNA) sequence, a pattern that 
occurs a large number of times may correspond to a tandem repeat, which can 
be very interesting to a molecular biologist. In the application of intrusion 
detection, there may be a set of sequences each of which represents the system 
calls of an intrusion process. A pattern that occurs in a large percentage of these 
sequences may be a signature for the intrusion. 

The frequent pattern is one of earliest problems studied in the realm of the 
sequential pattern mining. It was first studied in [2, 191. The input data is a set 
of sequences, where each sequence is a list of sets. For instance, a sequence 
can be in the form of { a ) { b ,  c ) {d)  where the first occurred set of items is a, the 
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secondly occurred set of items are b  and c and etc. b  and c  can be considered as 
occurring simultaneously. We say that a sequence S supports a pattern P if S 
contains P (or P appears in S).  In the above example, { a ) { b ,  c ) { d )  supports 
pattern { a ) { b ) ,  { b ,  c } { d } ,  and { a ) { d ) .  The support of a pattern P in a data 
set is the percentage of the sequences that support P. These patterns whose 
support is above a user-defined threshold are called frequent sequential patterns. 
The goal of frequent sequential pattern mining is to find all frequent sequential 
patterns from a given data set with a user specific support threshold. 

The authors in [ I ]  used a technique similar to that of level-wise mining 
algorithm of the frequent itemset mining for discovering frequent sequential 
patterns. The main idea behind the Apriori algorithm is that if a longer pattern P 
is qualified as a frequent pattern, any of P ' s  sub-patterns should also be qualified 
as a frequent pattern, which is known as the Apriori property. Formally, the 
Apriori property can be described as the following. 

PROPERTY 1 .1  Apriori Property. Let II be a set of sequences, P be a 
sequential pattern, and supp(P) be the support of P in II. We have, supp(P) 5 
minp,cp(supp(P')) where P' is a sub-patter11 (subseqlrence) of P. 

The Apriori property can be directly derived from the definition of support. In 
order for a pattern P to appear in a sequence S ,  every sub-pattern of P has to 
appear in S. This means that S supports every sub-pattern of P, and in turn, 
the support of P is less than or equal to that of every sub-pattern of P. 

Based on the Apriori property, the authors in [l] devise a level-wise search 
algorithm. The algorithm proceeds one level at a time. In level i, it finds i- 
patterns (i.e., patterns with i positions or sets). In the first level, the algorithm 
finds the frequent patterns with only one set. From these 1-patterns, it constructs 
the candidate set of 2-patterns in the following manner. If { a )  and { b ,  c )  are 
the frequent 1-patterns, then it is possible that { a ) { b ,  c) and { b ,  c ) { a }  could 
be frequent 2-patterns. Next, the actual support of the 2-patterns are computed 
based on the entire data set. The algorithm terminates at level j when there is 
no any frequent pattern with j sets found. 

However, this method may not be efficient if the pattern is very long, ie., 
consists of a large number of positions. To further improve the performance, 
projection-based algorithms such as Prefixspan [16] was introduced to reduce 
the candidate patterns and hence reduce the number of scans of the data. The 
main technique of projection-based pattern mining is to search the patterns in 
a depth-first fashion. After discovering pattern P as a frequent pattern, the 
algorithm searches the patterns with P as the prefix. For instance, if pattern a  
is deemed frequent, next, pattern { a ) { b ) ,  { a ) { c ) ,  . . . will be searched. Due 
to the order of pattern search, the data set can be partitioned in the following 
manner. To compute the support of patterns having P as the prefix, we only 
need to search in the sequences that contain P as a subsequence. Therefore, 
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during the depth-first search, we can recursively partition (project) the data 
sets according to the prefixes. As a result, the search time can be significantly 
reduced. 

2. Regular Patterns 

The above frequent sequential pattern mining algorithms discover the se- 
quential patterns that occur many times in a set of sequences. However, it does 
not care the position where a pattern occurs. In some application, a user may not 
be interested in the frequent patterns but rather be interested in the patterns that 
occur in some regularity. For instance, if we can find sequential patterns that 
occur in some periodicity, then we can predict the occurrences of some event in 
the future and better understand the inherent characteristics of the underlying 
data set. 

There are two kinds of regularity. One is the cyclic patterns and the other is 
periodic patterns. The cyclic pattern was proposed in [13], which is also called 
cyclic association rules. The input data to [13] is a set of transactions, each of 
which consists of a set of items. In addition, each transaction is tagged with 
an execution time. The goal is to find association rules that repeat themselves 
throughout the input data. An associate rule may exhibit a cyclic behavior 
which can be represented as (1 ,o ) .  An association rule has a cycle ( I ,  o) if the 
association rule holds in every lth time unit starting at time unit o. For instance, 
if the unit of time is an hour and "coffee -+ dough-nuts" holds during the interval 
7AM to 8AM every day (i.e., every 24 hours), the rule "coffee -+ dough-nuts" 
has a cycle (24, 7). The authors proposed two methods for discovering the 
cyclic patterns. The main ideas behind these approaches is to use some pruning 
techniques to reduce the computation. For instance, if itemset A and B have 
different non-overlapped cycles, then it is impossible for the rule A -+ B to 
exhibit cyclic behavior. 

For the periodic patterns, the input is a long sequence of sets of items. The 
goal is to find the subsequences that exhibit the periodicity in the input se- 
quence. Assume that { a )  { b )  { c }  { a )  {b){c){a}{b}{c}  is the input sequence. 
The pattern {a}{b){c )  is called periodic pattern because it repeats itself with 
period 3. This is also called full periodic pattern because every position in the 
pattern exhibits the periodicity. However, in many applications, not every posi- 
tion may exhibit the periodic behavior. For example, in a set of custom purchase 
transactions, a periodic trend may be only observed at certain time of a day. 
For instance, let { a )  { a )  { c )  { a )  { b )  { c )  { a }  { c )  { c )  be the input sequence, then 
there is no full periodic pattern with length 3. However, when the constraint 
is relaxed, e.g., some position can be don't care, then we can find the pattern 
{ a )  * { c )  where * is a wide card and can represent any set of items. This is 
called partial periodic pattern. 
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Han et, al. [9] presented algorithms for efficiently mining these partial 
periodic patterns by exploring some interesting properties related to partial 
periodicity such as the Apriori property and the max-sub-pattern hit set property. 
In essence, to discover patterns with periodicity of 1, the algorithm divides input 
sequence into a set of contiguous segments with length I ,  each of which can be 
viewed as an independent sequence, then a frequent sequential pattern mining 
algorithm is used. Although the partial periodic pattern model can capture the 
patterns where some position is non-specified, it could not represent the patterns 
whose occurrences are asynchronous. For instance, if there is some noise in 
the input sequence and some sets are missed or extra sets are added (which is a 
common phenomenon in many real applications), e.g., the input sequence may 
become { a )  {a) {c)  { a )  {c )  {a)  { c )  {c} due to noises, then there does not exist 
any partial periodic pattern with periodicity of 3. 

3. Statistically Significant Patterns 
In many applications, the symbols in a sequence have very skewed distribu- 

tion. For instance, in a trace of messages of some router, some message type 
occurs very rarely, e.g., "the link connected to the router is saturated while 
other type of messages may occur commonly, e.g., "I am alive" message. As a 
result, the patterns with common messages should be expected to have a higher 
support than that of these with the rare messages. If we use the uniform support 
(number of occurrences) as a measure of importance, then we would miss these 
patterns with rare events. Researchers have been investigating this problem in 
various data mining applications. 

Brin et al. [4] first introduced the concept of correlation and it was shown that 
in many applications the correlation measurement can reveal some very impor- 
tant patterns. The Chi-squared test was used to test the correlation among items. 
For example, by analyzing the words in the clari.world.africa news article, Brin 
et. al. found that there exist some very strong correlation among some words 
combination, e.g., "nelson" and "mandela", but their support is relatively low. 
In this approach, the itemsets form a lattice based on the superset-subset rela- 
tionship. Instead of explicitly enumerating all correlated itemsets, the border 
comprising the set of minimal correlated itemsets' is identified, and no further 
distinction is made on the degree of correlation of itemsets above the border 
(i.e., supersets of some itemset on the border). This model sometimes becomes 
sub-optimal. As shown in Figure 2.1, itemsets A and B are highly correlated 
but C is independent of them2. In addition, { A ,  B ,  C, D)  is also highly corre- 
lated. We can view that the degree of correlation of {A ,  B ,  C )  is not as strong 
as that of {A ,  B )  and {A ,  B ,  C,  D). This observation can also be confirmed 
by the Chi-squared test3. In many applications, users are only interested in 
the itemsets such as {A ,  B )  and {A ,  B ,  C,  D),  but not { A ,  B, C ) .  However, 
[4] cannot distinguish between {A ,  B ,  C )  and {A .  B ,  C, D )  once {A ,  B )  is 
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Transaction I Items 

Figure 2.1. An Example of Transaction Set 

identified as a correlated itemset. Furthermore, if a user is interested in finding 
k itemsets with the highest correlation, then all itemsets in the lattice have to be 
examined before k highest ones can be determined. Another potential drawback 
of this model is the expensive computation required by this model. The running 
time of all patterns with i-correlated items is O ( n  x ICANDl x min{n, 2 ' ) )  
where n, and ICANDI are the number of transactions and the number of can- 
didates at the ith level, respectively. To overcome these drawbacks, Oates et 
al. [ l l ,  121 proposed models for statistical dependencies using G statistic and 
devised randomized algorithms to produce approximate results. 

More recently, Cohen et al. [6] and Fujiwara et al. [8] address the problem 
of identifying pairs of attributes with high confidence or similarity (in terms of 
probabilistic correlations in the database) in the absence of support requirement. 
Hashing based algorithms [6] are proposed to tackle the problem, which consist 
of three general phases: computing hash signature, generating candidates, and 
pruning candidates. To avoid both false negatives and false positives that may 
be yielded with the hashing based scheme, a family of so called dynamic miss 
counting algorithms are proposed in [8]. Instead of counting the number of 
hits (as most other algorithms do), the number of transactions where the given 
pair of attributes disagree is counted and this counter is deleted as soon as the 
number of misses exceeds the maximum number of allowed misses for that pair. 
This strategy is proved to be able to reduce the memory size significantly. 

Another important advance is accomplished in mining so-called unexpected 
patterns. Berger et al. [3] proposed a probabilistic measure of interestingness 
based on unexpectedness in the context of temporal logic, whereby a pattern 
is deemed interesting if the ratio of the actual number of occurrences of the 
pattern exceeds the expected one by some user defined threshold. Solving the 
problem in its general frame is in nature NP-hard and hence some heuristics are 
proposed to produce an approximate answer. Padmanabhan et al. [14, 15, 181 
define the unexpectedness of association rules relative to a system of prior 
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beliefs. Specifically, the belief is of the form X 4 Y and a rule is said to be 
unexpected if it contradicts the belief. The set of beliefs (given by the user) 
are used to conduct the mining process efficiently so that an exhaustive search 
is avoided. The primary advantage of this model is that it can customize the 
mining process for the users who have fairly good prior knowledge and specific 
interests, and is particularly useful in refinements of user's beliefs. 

A formal study of surprising patterns is furnished in [5], focusing on the 
analysis of variation of inter-item correlations along time. The surprise is 
defined in terms of the coding length in a carefully chosen encoding scheme and 
has solid theoretic foundation, but requires much more expensive computation 
comparing to other models. 

4. Approximate Patterns 
Approximate frequent itemset mining is studied in [17, 201. Although the 

two methods are quite different in techniques, they both explored approximate 
matching among itemsets. Instead of perfect matchs, the model in [17,20] allow 
imperfect matchs. A transaction supports an itemset I if a large portion of the 
items in I, e.g., more than 95% occur in the transaction. Algorithms similar to 
mining perfect itemsets are devised to mine the approximate itemsets. 

In [7], Chudova and Smyth used aBayes error rate frameworkunder a Markov 
assumption to analyze different factors that influence string pattern mining in 
computational biology. Extending the theoretical framework to mining se- 
quences of sets could shed more light to the future research direction. 

Notes 
1 A minimal correlated itemset is a correlated itemset whose subsets are all 

independent. 

2 Prob(AB) x Prob(C) = x = Prob(ABC). 
3 In general, the chi-squared test requires a large sample. For the demon- 

stration purpose only, we assume that the chi-squared test is valid in this 
example. 
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