Chapter 2

RELATED WORK

Sequential pattern discovery has been an active research topic in past several
years. The application of sequential pattern mining spans over a wide range,
from analyzing user access patterns of a web site to the protein motif discovery,
from studying the workload of a large computer system to the child-abuse cases,
etc. The diversity of the applications suggest that it may not be possible to
apply a single sequential pattern model to all these problems. Each application
may require a unique model and solution. A number of research projects were
established in recent years to develop meaningful sequential pattern models and
efficient algorithms for mining these patterns. Most of these models belong
to one of the following four categories, frequent patterns, periodic patterns,
statistically significant patterns, and approximate patterns. We will describe
some of the state of art achievement within these fields in this chapter.

1.  Frequent Patterns

In many applications, the frequency can be viewed as a very useful metric to
indicate the importance of a pattern. If a pattern occurs a large number of times
in a data set, then this pattern may be important in characterizing or analyzing
the data set. For instance, in a long genome (DNA) sequence, a pattern that
occurs a large number of times may correspond to a tandem repeat, which can
be very interesting to a molecular biologist. In the application of intrusion
detection, there may be a set of sequences each of which represents the system
calls of an intrusion process. A pattern that occurs in a large percentage of these
sequences may be a signature for the intrusion.

The frequent pattern is one of earliest problems studied in the realm of the
sequential pattern mining. It was first studied in [2, 19]. The input data is a set
of sequences, where each sequence is a list of sets. For instance, a sequence
can be in the form of {a}{b, c}{d} where the first occurred set of items is a, the



6 MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS

secondly occurred set of items are b and ¢ and etc. b and ¢ can be considered as
occurring simultaneously. We say that a sequence S supports a pattern P if S
contains P (or P appears in S). In the above example, {a}{b, c}{d} supports
pattern {a}{b}, {b,c}{d}. and {a}{d}. The support of a pattern P in a data
set is the percentage of the sequences that support P. These patterns whose
support is above a user-defined threshold are called frequent sequential patterns.
The goal of frequent sequential pattern mining is to find all frequent sequential
patterns from a given data set with a user specific support threshold.

The authors in [1] used a technique similar to that of level-wise mining
algorithm of the frequent itemset mining for discovering frequent sequential
patterns. The main idea behind the Apriori algorithm is that if a longer pattern P
is qualified as a frequent pattern, any of P’s sub-patterns should also be qualified
as a frequent pattern, which is known as the Apriori property. Formally, the
Apriori property can be described as the following.

PROPERTY 1.1 Apriori Property. Let II be a set of sequences, P be a
sequential pattern, and supp(P) be the support of P in II. We have, supp(P) <
winp-p(supp(P')) where P’ is a sub-pattern (subsequence) of P.

The Apriori property can be directly derived from the definition of support. In
order for a pattern P to appear in a sequence S, every sub-pattern of P has to
appear in S. This means that S supports every sub-pattern of P, and in turn,
the support of P is less than or equal to that of every sub-pattern of P.

Based on the Apriori property, the authors in {1] devise a level-wise search
algorithm. The algorithm proceeds one level at a time. In level ¢, it finds -
patterns (i.e., patterns with ¢ positions or sets). In the first level, the algorithm
finds the frequent patterns with only one set. From these 1-patterns, it constructs
the candidate set of 2-patterns in the following manner. If {a} and {b, ¢} are
the frequent 1-patterns, then it is possible that {a}{b, ¢} and {b,c}{a} could
be frequent 2-patterns. Next, the actual support of the 2-patterns are computed
based on the entire data set. The algorithm terminates at level j when there is
no any frequent pattern with j sets found.

However, this method may not be efficient if the pattern is very long, ie.,
consists of a large number of positions. To further improve the performance,
projection-based algorithms such as PrefixSpan [16] was introduced to reduce
the candidate patterns and hence reduce the number of scans of the data. The
main technique of projection-based pattern mining is to search the patterns in
a depth-first fashion. After discovering pattern P as a frequent pattern, the
algorithm searches the patterns with P as the prefix. For instance, if pattern a
is deemed frequent, next, pattern {a}{b}, {a}{c},... will be searched. Due
to the order of pattern search, the data set can be partitioned in the following
manner. To compute the support of patterns having P as the prefix, we only
need to search in the sequences that contain P as a subsequence. Therefore,
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during the depth-first search, we can recursively partition (project) the data
sets according to the prefixes. As a result, the search time can be significantly
reduced.

2.  Regular Patterns

The above frequent sequential pattern mining algorithms discover the se-
quential patterns that occur many times in a set of sequences. However, it does
not care the position where a pattern occurs. In some application, a user may not
be interested in the frequent patterns but rather be interested in the patterns that
occur in some regularity. For instance, if we can find sequential patterns that
occur in some periodicity, then we can predict the occurrences of some event in
the future and better understand the inherent characteristics of the underlying
data set.

There are two kinds of regularity. One is the cyclic patterns and the other is
periodic patterns. The cyclic pattern was proposed in [13], which is also called
cyclic association rules. The input data to [13] is a set of transactions, each of
which consists of a set of items. In addition, each transaction is tagged with
an execution time. The goal is to find association rules that repeat themselves
throughout the input data. An associate rule may exhibit a cyclic behavior
which can be represented as ([, 0). An association rule has a cycle (I, 0) if the
association rule holds in every [th time unit starting at time unit o. For instance,
if the unit of time is an hour and “coffee — dough-nuts™ holds during the interval
7AM to 8AM every day (i.e., every 24 hours), the rule “coffee — dough-nuts”
has a cycle (24, 7). The authors proposed two methods for discovering the
cyclic patterns. The main ideas behind these approaches is to use some pruning
techniques to reduce the computation. For instance, if itemset A and B have
different non-overlapped cycles, then it is impossible for the rule A — B to
exhibit cyclic behavior.

For the periodic patterns, the input is a long sequence of sets of items. The
goal is to find the subsequences that exhibit the periodicity in the input se-
quence. Assume that {a}{b}{c}{a}{b}{c}{a}{b}{c} is the input sequence.
The pattern {a}{b}{c} is called periodic pattern because it repeats itself with
period 3. This is also called full periodic pattern because every position in the
pattern exhibits the periodicity. However, in many applications, not every posi-
tion may exhibit the periodic behavior. For example, in a set of custom purchase
transactions, a periodic trend may be only observed at certain time of a day.
For instance, let {a}{a}{c}{a}{b}{c}{a}{c}{c} be the input sequence, then
there is no full periodic pattern with length 3. However, when the constraint
is relaxed, e.g., some position can be don’t care, then we can find the pattern
{a} * {c} where * is a wide card and can represent any set of items. This is
called partial periodic pattern.
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Han et. al. [9] presented algorithms for efficiently mining these partial
periodic patterns by exploring some interesting properties related to partial
periodicity such as the Apriori property and the max-sub-pattern hit set property.
Inessence, to discover patterns with periodicity of [, the algorithm divides input
sequence into a set of contiguous segments with length {, each of which can be
viewed as an independent sequence, then a frequent sequential pattern mining
algorithm is used. Although the partial periodic pattern model can capture the
patterns where some position is non-specified, it could not represent the patterns
whose occurrences are asynchronous. For instance, if there is some noise in
the input sequence and some sets are missed or extra sets are added (which is a
common phenomenon in many real applications), e.g., the input sequence may
become {a}{a}{c}{a}{c}{a}{c}{c} due to noises, then there does not exist
any partial periodic pattern with periodicity of 3.

3. Statistically Significant Patterns

In many applications, the symbols in a sequence have very skewed distribu-
tion. For instance, in a trace of messages of some router, some message type
occurs very rarely, e.g., “the link connected to the router is saturated” while
other type of messages may occur commonly, e.g., “I am alive” message. As a
result, the patterns with common messages should be expected to have a higher
support than that of these with the rare messages. If we use the uniform support
(number of occurrences) as a measure of importance, then we would miss these
patterns with rare events. Researchers have been investigating this problem in
various data mining applications.

Brinetal. [4] first introduced the concept of correlation and it was shown that
in many applications the correlation measurement can reveal some very impor-
tant patterns. The Chi-squared test was used to test the correlation among items.
For example, by analyzing the words in the clari.world.africa news article, Brin
et. al. found that there exist some very strong correlation among some words
combination, e.g., “nelson” and “mandela”, but their support is relatively low.
In this approach, the itemsets form a lattice based on the superset-subset rela-
tionship. Instead of explicitly enumerating all correlated itemsets, the border
comprising the set of minimal correlated itemsets® is identified, and no further
distinction is made on the degree of correlation of itemsets above the border
(i.e., supersets of some itemset on the border). This model sometimes becomes
sub-optimal. As shown in Figure 2.1, itemsets A and B are highly correlated
but C is independent of them?. In addition, {4, B, C, D} is also highly corre-
lated. We can view that the degree of correlation of { A, B, C'} is not as strong
as that of {4, B} and {A, B, C, D}. This observation can also be confirmed
by the Chi-squared test®. In many applications, users are only interested in
the itemsets such as {A, B} and {4, B, C, D}, but not {A, B, C'}. However,
[4] cannot distinguish between {A, B, C} and {A, B, C, D} once {4, B} is
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Transaction ID Items
1 ABCD
5 ABFG
3 CEGF
4 ABCD
5 CEGH
6 CEFH

Figure 2.1. An Example of Transaction Set

identified as a correlated itemset. Furthermore, if a user is interested in finding
k itemsets with the highest correlation, then all itemsets in the lattice have to be
examined before k highest ones can be determined. Another potential drawback
of this model is the expensive computation required by this model. The running
time of all patterns with i-correlated items is O(n x |[CAN D| x min{n, 2})
where n and |C AN D] are the number of transactions and the number of can-
didates at the tth level, respectively. To overcome these drawbacks, Oates et
al. [11, 12] proposed models for statistical dependencies using G statistic and
devised randomized algorithms to produce approximate results.

More recently, Cohen et al. [6] and Fujiwara et al. [8] address the problem
of identifying pairs of attributes with high confidence or similarity (in terms of
probabilistic correlations in the database) in the absence of support requirement.
Hashing based algorithms [6] are proposed to tackle the problem, which consist
of three general phases: computing hash signature, generating candidates, and
pruning candidates. To avoid both false negatives and false positives that may
be yielded with the hashing based scheme, a family of so called dynamic miss
counting algorithms are proposed in [8]. Instead of counting the number of
hits (as most other algorithms do), the number of transactions where the given
pair of attributes disagree is counted and this counter is deleted as soon as the
number of misses exceeds the maximum number of allowed misses for that pair.
This strategy is proved to be able to reduce the memory size significantly.

Another important advance is accomplished in mining so-called unexpected
patterns. Berger et al. [3] proposed a probabilistic measure of interestingness
based on unexpectedness in the context of temporal logic, whereby a pattern
is deemed interesting if the ratio of the actual number of occurrences of the
pattern exceeds the expected one by some user defined threshold. Solving the
problem in its general frame is in nature NP-hard and hence some heuristics are
proposed to produce an approximate answer. Padmanabhan et al. [14, 15, 18]
define the unexpectedness of association rules relative to a system of prior
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beliefs. Specifically, the belief is of the form X — Y and a rule is said to be
unexpected if it contradicts the belief. The set of beliefs (given by the user)
are used to conduct the mining process efficiently so that an exhaustive search
is avoided. The primary advantage of this model is that it can customize the
mining process for the users who have fairly good prior knowledge and specific
interests, and is particularly useful in refinements of user’s beliefs.

A formal study of surprising patterns is furnished in [5], focusing on the
analysis of variation of inter-item correlations along time. The surprise is
defined in terms of the coding length in a carefully chosen encoding scheme and
has solid theoretic foundation, but requires much more expensive computation
comparing to other models.

4. Approximate Patterns

Approximate frequent itemset mining is studied in [17, 20]. Although the
two methods are quite different in techniques, they both explored approximate
matching among itemsets. Instead of perfect matchs, the modelin [17, 20] allow
imperfect matchs. A transaction supports an itemset [ if a large portion of the
items in I, e.g., more than 95% occur in the transaction. Algorithms similar to
mining perfect itemsets are devised to mine the approximate itemsets.

In[7], Chudova and Smyth used a Bayes error rate framework under a Markov
assumption to analyze different factors that influence string pattern mining in
computational biology. Extending the theoretical framework to mining se-
quences of sets could shed more light to the future research direction.

Notes

1 A minimal correlated itemset is a correlated itemset whose subsets are all
independent.

2 Prob(AB) x Prob(C) = 1 x 2 = Prob(ABC).
3 In general, the chi-squared test requires a large sample. For the demon-
stration purpose only, we assume that the chi-squared test is valid in this

example.
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