Chapter 2

Eigenvalue and Singular Value
Inequalities of Schur Complements

2.0 Introduction

The purpose of this chapter is to study inequalities involving eigenvalues
and singular values of products and sums of matrices.

In addition to denoting the m x n matrices with complex (real) entries
by C™*™ (R™*™), we denote by H, the set of n x n Hermitian matrices,
and for an A € H,,, we arrange the eigenvalues of A in a decreasing order:

M (A) 2 Ma(A) = - 2 Aa(A).

The singular values of a matrix A € C™*™ are defined to be the square
roots of the eigenvalues of the matrix A*A, denoted and arranged as

o1(A) > 02(A) > -+ > op(A).

For a set of subscript indices i1, 3, ..., ik, we always assume that ¢; <
ig < - -+ < ig. Furthermore, if A € H,, then A;,(A) indicates 1 < i; < n.

One of the most important results in matrix analysis is the Cauchy
(eigenvalue) interlacing theorem (see, e.g., [272, p. 294]). It asserts that
the eigenvalues of any principal submatrix of a Hermitian matrix interlace
those of the Hermitian matrix. To be precise, if H € H,, is partitioned as

‘A B
(7 5)

in which A is an r x 7 principal submatrix, then for each ¢ =1,2,...,r,

AM(H) 2 Xi(A) 2 Aign—r (H).
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Eigenvalue and singular value problems are a central topic of matrix
analysis and have reached out to many other fields. A great number of
inequalities on eigenvalues and singular values of matrices are seen in the
literature (see, e.g., [228, 230, 272, 301, 438, 452]). Here, we single some of
these out for later use.

Let A and B be n x n complex matrices. Let [ be an integer such that
1 <! < n. Then for any index sequence 1 <¢; < --- <14 < n,

l

!
[[o:(4B) = [J 0w (4)0n-i1(B), (2.0.1)
t=1

l l l
[ (A)ou(B ZH (AB) ZH i, (A)on_t11(B), (2.0.2)
t=1 t=1 t=1

and

min {o;(A)o;(B)} > 0:(AB) > max {a,( Jo;(B)}. (2.0.3)
i+j=t+1 ij=t+
The inequalities on the product ([]) yield the corresponding inequalities
on the sum (>). This is done by majorization in the following sense.
Let 1, za, ..., n and y1, ¥2, - .., Yn be two sequences of nonnegative
numbers in the order £1 > x> -+ >z and y3 > y2 > - - > y,. Then

k E k
ngnyi,kgn = Y <>y, k<n (2.0.4)
i=1 i=1 i=1 t=1

and . .
Z:lx( z_: @ k<n = H Ty < H Yay, k<n, (2.0.5)
where z(1) < z2) < -+ < z(py and Y1) < yYz) < oo < Y(n) are rearrange-

ments of x1, zo, ..., x, and y1, ya, ..., yn, respectively.
Translations from product to sum or vice versa are often done through
(2.0.4) and (2.0.5). For example, by (2.0.2) and (2.0.4), we can get

l

{ l
> i, (A)oe(B) > Y 0i,(AB) > > 0i,(A)on_141(B). (2.0.6)
t=1 t=1

We point out that all the above singular value inequalities remain valid
when AB is changed to BA; even though o;(AB) # o0;(BA) in general.
Moreover they all hold with the replacement of the eigenvalues (A\) by the
singular values (o) when A and B are positive semidefinite. For instance,

l l
Z)\zf AB Z Z n t+l(B)' (207)
t=1 t=1
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For the sum of Hermitian matrices, two existing parallel results are

l

5 () X N(B) 2 A4+ B) 2 S () + X hea(B) (208)

and

min Ou(A4) + X (B)) 2 M(A+ B) 2 max (M(A)+X(B)). (20.9)

All the above inequalities appear explicitly in Chapter 2 of [451]. We
note that the second inequality in (2.0.8) does not hold in general for sin-
gular values (o) [451, p. 113].

2.1 The interlacing property

The Cauchy interlacing theorem states that the eigenvalues of any principal
submatrix of a Hermitian matrix interlace those of the grand matrix. Does
a Schur complement possess a similar property? That is, do the eigenvalues
of a Schur complement in a Hermitian matrix interlace the eigenvalues of
the original Hermitian matrix? The answer is negative in general: Take

H=<; f) o= {1}.

Then H/o = (—3), while the eigenvalues of H are —1 and 3.
In what follows, we show that with a slight modification of the Schur
complement (augmented by 0s) the analogous interlacing property holds.

Theorem 2.1 Let H € H,, and let o be an index set with k elements,
1 <k < n. If the principal submatriz H|«a] is positive definite, then

MN(H) > N(H/a®0) > Ngw(H), i=1,2...,n—k  (2.1.10)
and if H|a] is negative definite, i.e., —H|[a] is positive definite, then
AN(H) > N (H/a ®0) > \gk(H), i=1,2,...,n—k  (2.1.11)

Proof. Since permutation similarity preserves the eigenvalues, we may
assume that « = {n —k+1,...,n}. With o® = {1,2,...,n— k}, we have

" ( Héa 8 ) N ( H[ac,a](HH[[aoi]()l:]lH[a,ac} H}?[Z]a] ) —E4F

Let

po (e ~HlateltElah ™).
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Then PFP* = 0@ H|a], so F is positive semidefinite if H[a] > 0. Moreover
rank(F) = rank(H[a]) = k < n.

Now using (2.1.10) and by (2.0.9), we have

Xtk (H) = Xisk (B + F) < N(E) + Mera (F) = A K Héa 8 )}

and

M(H) = M(E + F) > M(E) + M(F) = K Héa ’ )] .

The inequalities (2.1.11) are proven in a similar manner. Note that if
A is a Hermitian matrix, then A\;(—4) = =\,—i11(4),1=1,2,...,n. 1

The theorem immediately yields the following results for positive semidef-
inite matrices; see [160, 288, 421].

Corollary 2.3 Let H (or —H) be an n x n positive semidefinite matriz
and let H[a] be a k x k nonsingular principal submatriz, 1 < k <n. Then

N(H) > N(H/a) > Nigw(H), i=1,2,...,n—k. (2.1.12)
Proof. When H is positive semidefinite, H/co is positive semidefinite. It is
sufficient to notice that \;(H/a® 0) = \;(H/a) for i =1,2,...,n—k. 1
Corollary 2.4 Let H be an n Xn positive semidefinite matriz and let H |
be a k x k nonsingular principal submatriz of H, 1 < k <mn. Then
MNi(H) > N(H[ef]) > M(Hf o) > Mgk (H), i=1,2,...,n—k. (2.1.13)
Proof. Since H, H[a], and H[a®] are all positive semidefinite, we obtain
H[a®] > H[a®] — H[a, o|(H[a]) ' H]a, ] = H/a.

The second inequality in (2.1.13) follows at once, while the first inequality
is the Cauchy interlacing theorem and the last one is (2.1.12). &

Corollary 2.5 Let H be an n X n positive semidefinite matriz and let «
and o' be nonempty index sets such that o/ C o C {1,2,...,n}. If H(a] is
nonsingular, then for everyi=1,2,...,n — |o|,

/\i(H/a') > /\i(H[O/ U ac}/o/) > N(H/a) > Ai+|a|_|a/|(H/a’). (2.1.14)
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Proof. Note that H[a'] > 0 since it is a principal submatrix of H[a] > 0.
By the quotient formula on the Schur complement (see Theorem 1.4),

H/a = (H/a')/(H[a]/d).

With H/a' and H[a]/a' in place of H and H|[a], respectively, in Corol-
lary 2.4 and since (H/a')[a®] = H[o/ U af]/d/, (2.1.14) follows. B

For the case where H is negative definite, we have the analogs:
N(H) > Ni(H/a) 2 N (H[a®]) > Ak (H)
and
Ni(H/a') = N(H/a) = X(H[o' Ua]/a) > Nigja)—jo| (H/ ).

As we saw, the Cauchy eigenvalue interlacing theorem does not hold for
the Schur complement of a Hermitian matrix. We show, however, and inter-
estingly, that it holds for the reciprocals of nonsingular Hermitian matrices.
This is not surprising in view of the representation of a Schur complement
in terms of a principal submatrix (see Theorem 1.2).

Lemma 2.3 Let H be an n x n nonsingular Hermitian matriz and let A
be a k x k nonsingular principal submatriz of H, where 1 <k <n. Then

MNHY > N[(H/A > M (HTY, i=1,2,...,n—k.

Proof. 1t is sufficient to notice, by Theorem 1.2, that (H/A)~! is a principal
submatrix of the Hermitian matrix 1. W

We now extend this to a singular H. That is, we show that if H is any
Hermitian matrix and A is a nonsingular principal submatrix of H, then
the eigenvalues of (H/A)! interlace the eigenvalues of H'.

Let In(H) = (p, g, 2). The eigenvalues H' are, in decreasing order,

;—il—i(H% i = 17"'7p»
N(HTY={ 0, i=p+1,...,p+ 2,
Mipteri(H), i=p+z+1,...,n

Since the eigenvalues of a matrix are continuous functions of the entries
of the matrix, the eigenvalues of the Moore-Penrose inverse of a matrix are
also continuous functions of the entries of the original matrix.

To establish the interlacing property for any Hermitian H, we need to
use the usual trick — continuity argument. Let H € H,, and H, = H +¢l,,
where ¢ is a positive number. Let A be a k X k nonzero principal submatrix
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of H and denote A, = A + elr. Choose € such that it is less than the
absolute value of any nonzero eigenvalue of H and A. Thus H., A., and
H,/A. are all invertible. It follows that if \s(H) # 0 and A, [(H/A)!] # 0,

lim Ay (H: 1) = Ao (H)

and

lim A, [(He/A) ') =N [(H/A)'.
Now we are ready to present the following interlacing theorem [421].

Theorem 2.2 Let H be an n x n Hermitian matriz and let A be a k X k

nonsingular principal submatriz of H. Then fori=1,2,...,n—k,
N(HY) = NIH/A 2 A (HD). (2.1.15)

Proof. Let In(H) = ( z) and In(A4) = (p1, q1, 0). Consequently,

In(H/A)=(p—p1, ¢— ) by Theorem 1.6. Without loss of generality,

we write H = ( )

. _ A+ el B _ A. B
He“H”I"‘( B* O+s]n_k>=<B* CE>’

in which ¢ is such a small positive number that both H. and A, are non-
singular. Note that In(H.) = (p + z, ¢, 0), In(A;) = In(A), and also
In(K) = In(K") for any Hermitian matrix K. Moreover, upon computa-
tion, we have H./A; = C. — B*AZ!'B, and thus lim._,o H./A. = H/A.

To show that A\;(HT) > \[(H/A)!] fori=1,2,...,n—k, we consider a
set of exhaustive cases on the index i:

Case (1) If i < p — p1, then \;[(H/A]'] > 0. By Lemma 2.3,
)‘i(Hs_l) 2 /\i[(HE/AE)_l] >0

The desired inequalities follow by taking the limits as € — 0.
Case (2) If p—p1 <@ <p+ 2, then \;(HT) > 0 > X\ [(H/A)T].
Case (3) If p+ z <1 < n — k, then, by Lemma 2.3,

0> N(H. ") > A[(H:/Ao)™"].
By continuity, we arrive at 0 > X\;(HT) > X; [(H/A)T].

To establish the second inequality in (2.1.15), we proceed by exhausting
the cases of the index i + k:
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Case i) f i+ k < p, ie, ¢ < p—k < n—k, then, by Lemma 2.3,
Ni[(He/Ae)™Y > Nk (HZ1) > 0. Letting € — 0 yields the inequalities.

Case i) fp+1<i+k<p+ztheni<p—Fk+2z<p—p+2zs0
N[(H/A)T] >0 and Ak (HT) = 0. The inequality then follow.

Case (i) f p+2z<i+k <p+k—p1+2=p+q + 2z <n, then
i <p—p1+z 50 N[(H/A)] >0and Ay, (H') <0 since i + &k > p + 2.

Case (iv) If p+2 < p+k—p1+2z <i+k <n,thenp—-p1+2z <i<n-k.
By Lemma 2.3, 0 > \;[(He/Ac) ™) > Nivw(HZY). Letting € — 0 shows that
0> N[(H/A)T > Niyr(HT). B

At the end of this section we note that the converse of the previous
theorem is discussed by Hu and Smith in [235].

2.2 Extremal characterizations

The Courant-Fischer min-max principles, or the extremal characteriza-
tions, of eigenvalues for Hermitian matrices play an important role in deduc-
ing eigenvalue inequalities. For instance, the representation of the minimum
eigenvalue Ay (H) of a Hermitian matrix H € H,

Amin (H) = rg}j%{x*Hm s ¥ =1}

leads immediately to the eigenvalue inequalities: For A, B € H,
Amin (A + B) > Amin (A) + Amin (B).
We now show extremal characterizations [280] for Schur complements.

Theorem 2.3 Let H be an nxXn positive semidefinite matriz partitioned as

Hyy, Hig
H= ,
< Hz1  Ha >

where Hy1 is a k x k leading principal submatriz of H, 1 <k <n. Then

= . -_— > = *
H/Hy; Xec(nrr_lg}i(n_k){X H-0,6X)>0, X =X"*}
and
H/Hy;1= min {Y: (Y, Ih_)H(Y, In_x)*}. (2.2.16)
YeC(n—k)xk

Proof. Let X be an (n — k) x (n — k) Hermitian matrix and set

o 0 O _ I 0
X—(O X)’ T—<_H21H]Tl In~/c>'
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Since Hy; is positive semidefinite, we have (H1/%)T = (H],)!/2. Since H is
positive semidefinite, by Theorem 1.19, we have HllelHu = Hyo. Thus,

B Hyy 0
T(H—-X)T* = .
( ) < 0 sz—X—HmHIlle >

So H > X if and only if the matrix on the right-hand side is positive
semidefinite, and this occurs if and only if H/Hy; — X > 0.
The maximum is attained when X = H/Hy; due to the fact that

0 0 Hy Hio
H— = > 0.
< 0 H/Hp ) ( Hy Hy HI Hy, > =

To show the minimum representation (2.2.16), observe that
(Y, In_e)H(Y, In_x)* = H/Hyy + (Y + Hy Hi ) Hyy (H Hio + V™).

It follows that
(Yy In—k:)H(K In—k>* Z H/Hll,

and equality holds if and only if
(Y + Ho H ) Hii (H] Hi2 +Y) =0,
equivalently, (Y + Hngfl)Hn = 0. One may take Y = —HngL. [ ]
The following corollary will be used repeatedly in later sections.

Corollary 2.6 Let H be n x n Hermitian. If o = {1,2,...,k}, then

H/a=(Z,H(Z,I)*
and ifa ={k+1,k+2,...,n}, then

Hla=(I,2)H(I,Z)",

where, for both cases,
Z = —HJ[a* o]|H[a]'.

As consequences of the theorem, we have, for positive semidefinite 4, B,
(A% B)/a > A/ax B/a,

where « is an index set and x denotes sum + or the Hadamard product o.

We now show a minimum representation for the product of the eigen-
values of a Schur complement [289]. Let integers [ and & be such that
1 <1<k <n. We consider the product of the eigenvalues of the Schur
complement indexed by an increasing sequence 1 < iy <ig < --- <4 < k.
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Theorem 2.4 Let A be an nXxn positive semidefinite matriz partitioned as
A A
A= ,
( Az Az
in which Agg is an (n — k) x (n — k) principal submatriz. Then

l l
[1X.(A4/42%) = min  []Xl(, 2) ALk, 2)7). (2.2.17)
t=1

kX (n—k)
ZeCkx(n i1

Proof. For any Z € Ck*(n—F) by (2.2.16), we have
(Ika Z)A(Ik7 Z)* > A/A22

which yields
i [k, Z) ALk, 2)7] = Ni, (A/ A22)

for each iy, t =1,2,...,l, and equality holds by setting Z = —A12A;2. [ ]
Putting [ = 1 results in, for any t = 1,2, ..., k,

)\t(A/Agg) = ZeCIIg(lg—k) /\t[(Ik, Z)A(Ik, Z) ] (2218)
In a similar fashion, one proves that for positive 61,0s,...,0; € R
1
Z i (A)A22)0: = min Z Xie[(Ti, Z2)A(Ix, Z)* )0

ZeCkx(n—k) =

= Y min (e 2)AUk 2)7)0.. (2.2.19)

t=1ZeCkXx(n—k)

2.3 Eigenvalues of the Schur complement of a product

This section, based on [289], is focused on the eigenvalue inequalities of
Schur complements concerning the product of positive semidefinite matrices
that resemble those of Section 2.0.

Theorem 2.5 Let A be n x n positive semidefinite. Let o C {1,2,...,n}
denote an index set and 1 <43 < --- <4 <k=n—|a|, wherel and k are
positive integers such that 1 <1 <k <n. Then for any B € C"*",

l
\i,[((BAB*)/a] > H [(BB*)/a)An—141(A), (2.3.20)

I-

M[(BAB*)/a] > H i, [(BB*)/a)An_i,+1(A), (2.3.21)

o~
[uy
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and l

l
[1):.1(BAB*)/a] < H A\ [(BB*)/al. (2.3.22)
t=1

Proof. There exists an n X n permutation matrix U such that

AU — ( ﬁ{g]a ; A[a;{[g% > UBU* = < Bﬁf‘jc] Bf[z]al )

Let 3= {k+1,...,n}. Notice that for any P € CF** Q € C***, PQ and
QP have the same nonzero eigenvalues. Using (2.2.17) and (2.0.2), we have

l
[12:.1(BAB*)/a]
t=1

X, ((UBAB™U™)/ ]

Il
EN

o+
Il
-

I
EN

\i, (UBU*UAU*UB*U*) /()

o
Il
-

l
= i N, [(In, Z)UBU*U AU*U B*U* (I, Z)*
Zecr,{lxlg_k)g (Ix, ZYUBU*UAU*UB*U* (I, Z)"]

l
= i i, (UAUNUB*U* (I, Z)* (I, Z)UBU*
Zecglxlg_k)tl;[l A WUB*U*(Ik, 2)*(Ix, Z)UBU"]

l
Jodmin HAn_m(UAU Wi, [UB*U* (I, Z)*(I1, Z)U BU*|

Y

- zecrilxlfi—HHA” er1(A), [(Ix, Z)UBU*UB*U* (I, Z)*]

— 1:[ An—t+1(4) Lo min i, |[(Ix, ZYUBB*U* (I, Z)*]

l
= [[-ena(N(UBB'U")/4)
t=1
l

= [[2.UBB*)/a)An_ss1(A).
t=1

This proves (2.3.20). (2.3.21) and (2.3.22) can be proved similarly. B
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An analogous result for (2.3.22) is

l l

[ ((BAB*) /o) < T] M. [(BB™)/alXe(A).

t=1 t=1
Setting B = I in (2.3.20), (2.3.22), and (2.3.21), respectively, we obtain

l

! {
[Th-esa(A) < [TM(4/) < T2 (4)
t=1 t=1

and l

l
H A/O‘ H n-n+1
t=1

Putting I = k£ in Theorem 2.5 reveals the inequalities

ko

H,\n t+1(A) det(BB*)/a) < det((BAB*)/a) < H A)det((BB*)/a).

We point out that every matrix can be regarded as a Schur complement
of some matrix. For instance, we may embed an n x n matrix A in

i=(3 %)

If we take o = {1}, then A/o = A. With this observation, many of our
inequalities on the Schur complements reduce to certain existing results on
regular matrices (without involving the Schur complements).

Theorem 2.6 Let A be n X n positive semidefinite. Let o C {1,2,...,n}
denote an index set and 1 <4y < --- <4 < k=n—|al, wherel and k are
positive integers such that 1 <1 < k <n. Then for any B € C"*"

l l

> N [(BAB*)/a] > Z [(BB*)/a)An_s41(A), (2.3.23)
t=1 t=1

1

> M[(BAB*)/a) > Z i [(BB*) /o) A—i,41(A), (2.3.24)
t=1 t=1

and l

l
> N [(BAB*)/a] < Z A)NJ[(BB*)/al. (2.3.25)
t=1
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Proof. This follows from (2.0.4) immediately. Following is a proof based
upon (2.2.19) and (2.0.7). We may take o = {k+1,...,n}. Then

l
> A [(BAB")/al
t=1

l

=, nin ; X [(Ix, Z)BAB* (I, Z)*]

l
= min > N, [AB*(Ix, 2)* (I, Z)B)

kX (n—k)
ZeChx(n =1

l
o ; Ane1 (AN [B* (T, 2)" (I, Z)B)

v

l
S Z An—t1(A)N [Tk, Z) BB* (It Z)']

= Z)\n t+1(A)N, [(BB*)/a]. W

The following is a parallel result to the inequality (2.3.25):

l l
> N l(BAB*)/a] <> N, [(BB*)/a]A(A).
t=1

t=1
Setting B = I in (2.3.23), (2.3.25), and {2.3.24), respectively, we obtain

EAn t+1 Z A/a SZ/\“

t=1 t=1

o~

and

i
ZAt Afa) ZZ n—ip+1(A).

Putting I =k in Theorem 2.6, since (BAB* /o is k X k, we have

k
> MI(BB*)/a)An_t41(A) < tr[(BAB*)/a)] ZAt [((BB*)/a]\(A).
t=1

Theorem 2.7 Let A be an n X n positive semidefinite matriz and let « be
an indez set of k elements. Then for any B€ C*"*™ andt =1,2,...,n—k,

Lin A(A)N[(BE")/a] 2 M[(BAB")/al 2 max As(A)N[(BBT)/al.
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Proof. Taking a={n—k+1,...,n}, by (2.2.18) and (2.0.3), we have

A[(BAB™)/a]
= min M-k, Z)BAB® (In—r, 2)"]
= ze«:(n k)xkz+ryn—i}—(+-n/\( WillIn—k, Z)BB" (In—k, 2)’]
= [ Jmax Ai(d) min  Aj[(Inr, 2)BB" (In—k, Z)"]
= Jmex A(A)X[(BB”)/a).

By (2.2.19), along with the first inequality in (2.0.3),

M[(BAB™)/a]

< .
< nin i A(A) (k. 2)BB" (Ink, 2)']

- z+ran—1?+1/\ i(4) Zecrgrl—r}ka Ailln=r, Z)BB" (In—k, 2)']

=, min A(A)X[(BB")/a).

As we are interested in relating the eigenvalues of the matrix product
AB to those of individual matrices A and B, our next result shows lower
bounds for the eigenvalues of the Schur complement of the matrix product
BAB* in terms of the eigenvalues of the Schur complements of BB* and
A. The proof of the theorem is quite technical.

Theorem 2.8 Let A be n X n positive semidefinite of rank r, B € C™*™,
and o C {1,2,...,m}. Ifrank[(BAB*)/a] = s, then foreachl =1,2,...,s,

N[(BAB")/a] > 1<3§3§l+1[>\1+t+r—s—1(A)/\r—u+1(A)]%/\s—t+u+n—r[(BB*)/a]-
1<u<t

Proof. Let k = m — |a|. We may assume o = {k+ 1,...,m}. Then
a¢={1,2,...,k}. Since rank(A) = r, there exists unitary U € C**" such
that

UAU* = D ¢ 0 = diag(D,0), where D =diag(A\i(A4),...,A\-(4)) > 0.

Let
X = ~[(BAB*)[o*, ]| [(BAB*)[o]]".

Then

N[(BAB*)/a] = \[(I, X)BAB* (I, X)*] = M[AB* (I, X)* (I, X)B].
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Thus
rank[AB* (I, X)*(Ix, X)B] = rank[(BAB*)/a] = s.
Let
B =B*(It, X)*(Is, X)B, U= ( g; ) U e CXm
Then

rank(AB) rank(U AU*U BU*)
[

= rank|[diag(D, 0)(UBU )]
rank|diag(D? )(UBU*)diag(D%,O)]

= rank(DzUlBUlD )

= rank(U; BUY}).

Since U3 BU is 7 x r positive semidefinite and rank[(BAB*)/a] = s,
there exists an r x r unitary matrix V; such that

ViU BU; Vy = diag(G, 0),

where
G = diag(\ (U1 BUY), ..., A(U BUY)).

Set D = V1DV}* and partition it as (gg gz> with Dy of order s x s. Let
I 0
b= <—D5DI I) |

LV, DV} L* = diag(D;, D3 — D3 D! Dy).

Then

Let By = D2U; BU;D%. Then

(L*"ViD~%)By (L', D™ )7
= L*'ViD" ¥ DU, BU; DE DRV L*
= L*"'W\U; BU; DVy* L*
= L "ViU,BU; Vi L™ (LVi DV L")
= (L~1)* diag(G, 0) L~ " diag(D;, Ds — D3 D} Dy)
= diag(G Dy, 0).
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So Bl and GD; have the same nonzero eigenvalues. On the other hand,

MN[(BAB*)/a] =

Noticing that

and

I

NIAB® (I, X)" (1, X)B]
M (AB)
N(UAU)(UBUY)]
Ai[diag(D, 0)(UBU )]

[

Ai[diag(D dlag(D2 0)(UBU™)
)\z[dlag (D*,0)(UBU*) diag(D?,0)]
N(D}ULBU; DY)

Ni(By).

DE(GD)D[* = DIGD?

~ FR
we see that By, D2 GD?, and G2 D,G 7 have the same nonzero eigenvalues,
including multiplicities. It follows that, for [ =1,2,...,s,

MI(BAB")/a] = N(By) = (D GD}) = N(GID1GY).

Forl=s+1,...,

k, since rank[((BAB*)/a] = s, we have

N[(BAB*)/a] = 0.

By the Cauchy interlacing theorem, we have, fori=1,2,.. .,

Ai(D1) 2 Aigr— s (ViDVY) = Xiyr—s(A)

and fori=1,2,...,r,

X (U1 BUY)

= X\(U1 BUY) > Nitn—r(B).

Sy

(2.3.26)

(2.3.27)
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By (2.0.3) and (2.2.17), we have, fort =1,...,s =1+ 1, u=1,...,t,
M[(BAB™)/a]
N(DfGDY)

> Apro1(DE)os_es1(GDF) [by (2.0, )
> Apio1 (D e—es1ru-1(G)As—us1 (DF) [by (2.0.3)
> Npeetr—s(AAr_us1 (A))F
Ns—turn_r(B) [by (2.3.26) and (2.3.27)]
= Prssres—1 (A Ar—ur1(A)]F
'/\s—t+u+n—r[B*(Ik X>*(Ik X)B]
= [/\l+t+r—s——1(A))‘7‘ u+1(A)]%
')\s—t+u+n-—r[(Ik )BB*( ) ]
Z [)\H-t—{—r—s—l(A) r— u+1(A]

)
(In 2)BB* (I Z)"]

. min A
ZeCRx(m—k) S—t+u+n— r[

[/\l+t+r—s—1 (A)/\r—u—H (A)] %
Ns—trusn_r[(BB*)/a] [by (2.2.17)]. N

In a similar manner, one can obtain the following additional inequalities

MN[(BAB™)/a] =

1

Dttemten—r (BB /alAs—wiren—r[(BB") o]} Ar—u(4),
r—tru (A Agtar—s—1(A)]2 Xs—ut14n—r [(BB™) /0],
Pr—wt1 (A A= e41 (A)) 2 Mgtuzin—r [(BBY) /,

max  { Pereru—atr—s(AAoer1 (A]F Nemurien—r[(BB*)/al,
=L | e [(BBY)/adAe—truin—r [(BB) /al}EAr _us1 (A),
{Nemtsran—r[(BB*)/a]Aemurronr (BB*) /a]} Aryeru—2 (),
{Nsmtrtn—r[(BB") /e Asstruzin—r[(BB*)/a]} E Ar—us1 (A).
Setting 7 = n in the first inequality above, we arrive at

MN[(BAB*)/a) >

{)‘H-t 1[(BB*)/a]Xs—u41[(BB” )/0‘]}2/\n t+u(4).

t_l,,..,s
u=1,...,t

In particular, letting t = u = 1 reveals that

Nb—a

NI(BAB™)/a) = [N[(BBY)/a]As((BB™)/al]* An(A).
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If we take a = {1} and set X = (} %) for the matrix X, then for any
n x n matrices A and B, we obtain

N(BAB*) > [M(BB*)A(BB*)]? Ans1(A).
The result below presents a lower bound for the product of eigenvalues.

Theorem 2.9 Let all assumptions of Theorem 2.8 be satisfied, let u be a
positive integer with 1 <u <k, andlet 1 <i; <--- <1y < k. Then

u

[17dBAB*)/a] = [[IMr-sesr (A1 (D) A, [(BB*) /.
t=1

t=1

Proof. Following the line of the proof of the previous theorem, we have

[T rl(BAB*)/0]
t=1
— [[rpicD?)
t=1
> [ A-art(PHN(GDF) [oy (201)
t=1
> J[Ae-srtDHAer1(DEIN(G) [by (2.0.2)]
t=1
> [T @A (A)]2
t=1
Anrii, (B) [by (2.3.26) and (2.3.27)]
=TT s (DA i (A))?
t=1
An—rti | (Ix X)BB* (I X)*]
> r z,+1 r t—{—l(A)]%

t 1

polBin  Anoryi,[(Ie Z)BB" (I 2)°)
= T A ()2
t=1
An—ryi [(BB*)/a] [by (2.2.17)]. 8
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Similar results are

[[l(BAB*)/a] >

t=1

e

Tt (DA (A As- 4100 [(BB") o,
tl;ll{/\s—if,+1+n—r[(BB*)/a]/\n—r+n {(BB*)/OZ}}% Ar—t+1(4),

tli{)\s—i‘+l+n"r[(BB*)/O‘]/\s_t+1+n—r[(BB*)/a]}%>\,_s+it(A),

—_

ell

2.4 Eigenvalues of the Schur complement of a sum

This section is concerned with inequalities involving the eigenvalues of Schur
complements of sums of positive semidefinite matrices [289].

Theorem 2.10 Let A, B be nxn positive semidefinite. Let o C {1,2,...,n}
andk=n—la|. If1 <4 <---<i; <n, wherel <1<k, then

l

l
S NlA+B)/o] > Z (A/a) +Zxk ww1(B/a).
t=1

t=1 t=1

Proof. This actually follows immediately from (2.0.8) and the fact that
(A+ B)/a> A/a+ B/a. It can also be proven by (2.2.19) as follows. As
in the proof of Theorem 2.5, we may take a = {k +1,...,n} and have

l
> Ail(A+ B)/al
t=1
l
= mi N [Tk, Z)(A + B) (I, Z)*
Zeclglxlg_k); (I, 2)(A + B) (I, Z)"]

l
= i ZA“ [(In, Z)A(Ik, Z)* + (Ix, Z)B(Ix, Z)*]

ZE(CIIPXIE; k) Z)‘“ Uk, 2) AL, 2)"]

*
+ i k)ZAk t+1{(Ie, Z2)B(Ix, Z)"]

1}
=3 N (A/a) +Z)\k t11(B/a). 1
t=1 t=1
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Note that [T'_y (@i+:)"" > ([Ti—y 2:)Y 4+ ([T._, v:)*/! for nonnegative
z,y's and (@ +b)P > o + bP for a, b > 0, p > 1. Setting i; = k —t+ 1,
T = M[(A+ B)/a) and y; = \(A/a) + M\(B/a) and by (2.0.5), we have

Corollary 2.7 Let A, B be nxn positive semidefinite. Let C {1,2,...,n}
and k =n —|a|. Then for any integer !, 1 <1<k, and real number p > 1,

!
! l l
HAQ/ wnl(A+B)/a} > H N (Afa) + H,\ﬁ/ s (Bla).

Putting [ = &k and p = 1 in the corollary reveals the known result:

det(A+ B) \“* L [ detA 1/’“+ det B \'/*
det(A + B)[a] ~ \ det A[a] det Bla] '
By mathematical induction, we may extend our results to multiple

copies of positive semidefinite matrices.

Corollary 2.8 Let A, ..., A, be nxn positive semidefinite matrices. Let
aC{L,2,...,n} and k = n — |a|]. Then for any integer |, 1 <1 < k, and
real number p > 1,

l m
Z Ak—t+1 Z Aj; /a
=1 j=1

uM~

Z k— t+1(Aj/a)

and

l
Ai/_m(Aj/a)-

NgE
NE
— -

l
l
H AZ/—tﬂ

t=1

A; /az

1 1t=1

Al
Il
.
il
Il

The next theorem presents a sum-product to product-sum inequality on
Schur complements. For this purpose, we recall the Holder inequality [22]:
Let 21,...,2, and y1, ..., Yy, be nonnegative numbers, let p be a nonzero
number, p < 1, and let %—I— z% = 1. Then, assuming z, y > 0 if p <0,

Seu (54) (S0

t=1
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We note here that if we take in the following theorem a = {1} or
{1,...,n} and embed matrices A in

=~ (1 0 ~ (A 0
A“(o A) o A—(o trA)
respectively, we may arrive at many matrix (trace) and scalar inequalities.

Theorem 2.11 Let Apg, p=1,2,...,14,¢=1,2,...,v, be n X n positive
semidefinite matrices. Let o C {1,2,...,n}, k = n — |a|, and | be an
integer, 1 < | < k. Then for any nonzero real ™ < 1 and w, 0 < w < [,
conventionally assuming that all Apq are positive definite if r < 0, we have

S (S A}

p=1

1/r

1/r

v P ! r/w
> Z [H )\k—t+1(qu/a)}

g=1 | p=1 Lt=1

Proof. Let s be the number so that 1/r+1/s = 1. Then (r —1)s = r. Set

! 1/w
Cpg = [H /\k—t+1(APQ/a):|
=1

ol (£ )

Then we need to show

w 1/r v M 1/r
p=1 qg=1 \p=1

Note that 1/w > 1/1. By Corollary 2.8, we have

and

L v 1w v 1 1w )
{:1;11 Ae—t+1 {(szl qu) /a} } > LH )\k:—t+1(qu/a)} = Cpq,

g=1 lt=1

-
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from which, and by the Holder inequality, we have

1/s
Since 1 — % = %, dividing by ( 5:1 Bf;) yields the desired result. B

If we set w = 1 in the theorem, we then obtain

(St [(S) 1)

> 3 {Z [ﬁ Ak_m(qu/a)]r}

g=1 \p=1 [t=1

1/r
1/r

Theorem 2.12 Let Apy, p=1,2,...,1, ¢ =1,2,...,v, be n x n positive
semidefinite matrices. Let o C {1,2,...,n} and denote k = n — |a|. Let
| be an integer such that 1 <1 < k and cy1,ca,...,c, be positive numbers
such that ¢y + ca+ -+ ¢, > 1/1. Then

3 {f[ Meeri(Apef)| < IZI {ﬁ - [(}; qu> /a} } |

q=1 p:l t=1 —

Cp
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Proof. All we need to show is that

i:l li Ll:[ /\k—t+1(qu/a)} '
L= P = lp— - S cp — L
| (540 ) ]}
p=1 | t=1 g=1

By the weighted arithmetic-geometric mean inequality and Corollary 2.8,

Lfi[l )\Ic—t+1(APQ/O‘):| !

L= H l v »
p e {}31 Ab—tin K; qu> /a“

11 e )]
A

s (£av) /o
v l " ¢
; {H /\k—t+1(APQ/a)}

— ZC/ q

p=1 P{}jl)\k_t_H {(équ> /a:|}c

m
< Z ¢, [by Corollary 2.8]
1

k—t+1

I

p:
1.1
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2.5 The Hermitian case

In the previous sections, we presented some eigenvalue inequalities for the
Schur complements of positive semidefinite matrices. In particular, we paid
attention to the matrices in the form BAB*, where A is positive semidef-
inite. We now study the inequalities for the Hermitian case of matrix A.
Unless otherwise stated, we arrange the eigenvalues of A € H,, in the order

AL(A) > Aa(A) > - > M (4).

Theorem 2.13 Let A € H,, B € C™*", and o C {1,2,...,m}. Denote
k=m—|a|. Then for everyt=1,2,...,k,

M((BAB")/0) 2 mas {Mu-rst( AN [(BB')/a] : Aacria(4) 2 0}

and

A(BAB*) /o] < min {Ar(A)Aesr—+((BB")/0] - Ar(4) < 0}

Proof. Without loss of generality, we assume that @ = {k+1,...,m}. Let
X = —[(BAB*)[a, o]][(BAB")[]], C = (Ix,X)B.
On one hand, for any integer r, 1 < r < k, we have
CAC* = ClA— M—rt(A)L)C* + My—r 1t (A)CC™,

where A — Ap—r1:(A)I, is n x n Hermitian and A,_,+(A)CC* is k x k
Hermitian. Thus, there exists an n x n unitary matrix U such that

A= rii (AL, = Udiag(M(A) = Anrit(A), ..o, An(A) = Anria(A))U™.
On the other hand, putting P = CU, we have
ClA = A—rit (A ]C”
= Pdiag(M(A) = A—rit(A), .., M(A) = An—r e (A)) P
220 ) Attt ) 7= P
Since —D is k x k positive semidefinite and rank(—D) < r — ¢, we see that
—Ae—r4t(D) = Aroyi1(=D) =0

and
)\k—r+t[0(A - )\n—r-f-t (A)In)c*] > )\k—r-i-t (D) =0
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Thus

M[(BAB)/a] = M[(Ir, X)BAB" (I, X)"]

M (CACT)

MCUA = Ay (A)T)C + Ay sa(A)CCY]
max {)\[ (A= M—rit(A)1,)C7)

r+s=

+/\ [An r+t( )CC*]} [by (209)]
max {)\k r4t[C(A = Mp—r it (A) 1) C)

t<r
+)‘T[/\n—r+t( )CC*}}
2 trsnra‘g(k{An—-rH (A)A-(CC™)}

Il

Y

Il

It follows that, if Ap,—r41(A) > 0, by (2.2.17), we have

A[(BAB™)/a] > tr<nra<xk{/\n r+t(A)A(CC™)}
= tI<na<Xk:{)\n r+t(A) r[(Ika )BB*(I/C’X)*]}
> trgla<xk{)\n r+t(A) Zecr&(l(r}l k)/\ |(Ix, Z)BB* (I, Z)*]}
= max{)\n r+t(A)A[(BB™)/al}.

t<r

This completes the proof of the first inequality. The second inequality
on the minimum can be similarly dealt with by substituting —A for A. 1

As an application of the theorem, setting B = I,,,r = kand B = I,,,r =
t, respectively, we see an interlacing-like result for the Hermitian case:

M(A) o) > Mgyt (A),  if Ap_gye(A) >0

and
A(Afa) < A(4), if A(4) <0.

In the following two theorems, Theorem 2.14 and Theorem 2.15, for a
Hermitian A € H,,, we arrange and label the eigenvalues of A in the order so
that [A1(A)] > |A1(4)] > -+ > |Ap(A4)]. Our next theorem, like Theorem
2.8, gives lower bounds for the eigenvalues of the Schur complement of
matrix product in terms of those of the individual matrices.
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Theorem 2.14 Let A € H,,,B € C™*", and o C {1,2,...,m}. Denote
k=m —|al. Let the rank of A be r. Then for eachl=1,2,... )k,

IN[(BAB*) /o] = .
{)\l+t—1+n-—r[(BB*)/O‘})‘n—uH[(BB*)/a]}% [Artu—t(A)]
max {)\l+t—1+n—r[(BB*)/Q}An—t-ru[(BB*)/la]}?|>\r—u+1(A)|
Lot | et [(BB)/aAn—ura[(BB*)/a]}? [Aipiru—2(4)]
{1 [(BB*)/ ] Nistru—2+n—r[(BB*)/a]} 2 [Ar—ut1(A)]-
Proof. We may assume that o« = {k+ 1,...,m}. Since A € H,, and

rank(A) = r, there exists a unitary matrix U € C"*" such that UAU* =
diag(D, 0), where D = diag(A\1(A4), ..., A\(4)), and D is nonsingular. Let

X = ~[(BAB")[o*, ol]|(BAB")[o])".
Then

IM[(BAB™)/all MLk, X)BAB™ (I, X)"|

|M[AB™ (I, X)* (I, X)B]|

Il

Il

where B = B* (I, X)*(Ix, X)B. Partition

s [ By Ba
UBU_<B’2" BB)’

where By is 7 X 7 positive semidefinite. Take

I, 0
L= ( -B;B! I, )

Then _
LUBU*L* = diag(B:, Bs — B B] By)
and
L 'UAU*L™! = diag(D, 0).
Thus

(L*YUYAB)L*'UYY = L 'WAU*L 'LUBU*L*
diag(D, 0) diag(B,, Bs — B3 B} By)
= diag(DB,,0).

That is, AB and diag(DBj,0) have the same set of eigenvalues. Thus
IM[(BAB®)/al| = |\(AB)| = | \i(diag(DBi, 0))].
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It follows that, for [ > r,
IN[(BAB™)/ol| =
and that, for i =1,2,...,r,
|M{(BAB”)/a]| = [\(DB1)l.
Notice that the eigenvalue interlacing theorem shows that, fori =1,2,...,r,
Ai(B1) = Nign—r(UBU*) = Niyn—r(B).
We have, fort=1,...,r—Il+landu=1,...,¢,
|M[(BAB™) /o]
1
= N(Bf DB{)
1 1
2 Mit—1(BE )Ar—e41(DB?) [by (2.0.3)]
1 1
Z Agt-1 (B ) Ar—tu(D)Ar—us1 (Bf) [by (2.0.3)]
> Meptm14n—r (B)An—uit (B2 Dryu—i(4)]
= { st tim—r (I X)BB* (I X)']

An—ut[(Te X)BB* (I X)1} Ariu—i(A)]

z {Zecrknxl(lrln_k) Mrt—14n—r|(Ix Z)BB* (I}, Z)*]

min  Ay_uy1[(Ie Z)BB (I 2)1}% | Arra—i(A)]
ZeCkXx(m—k)

= {Mrto14n—r[(BB*)/a)Aausar[(BB*)/a]} ®
rrumi(A)] [by (2.2.17)).

The other remaining inequalities can be proved similarly. R

Setting r = n in Theorem 2.14 yields the following

IM[(BAB®)/al| =

{Merea [(BBY) /aJAn_uH[(BB*)/a]}f|An_t+u<A>|,
{Mie-1[(BB*) /o] —t+ul(BB*)/a]}2 |/\n ut1(A)],
I
I

t=ton=tin | {1 [(BB*)/aAn —w1[(BB*)/a]}* |Areru—2(A)],
o {Mn-t41[(BB*)/ 2l Aisrsu—2[(BB*)/al} 2 Anura (A)].

Our next theorem is a version of Theorem 2.9 for Hermitian matrices.
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Theorem 2.15 Let A € H,, with rank A = r and B € C™*", Let o C
{1,2,...,m} and denote k =m — |a|. Then for any 1 <i3 < ---<i, <k,

ﬁ I/\t[(BAB*)/a]I > [[{n-icr1[(BB") /ol Anersic (BB) [a]} [ A1 (A)].

t=1

Proof. Following the line of the proof of Theorem 2.14, we have

11 1M[(BABY)/a]]

t=1

v

Vv

IV

Y

t=1
[ eics B vy (B)F At (A)]

t=1
ﬁ{xn_w[(fk X)BB* (I, X))

Hnerir [Tk X)BB* (Iiy X)*1}2 | A_er (A))|

[1t, _min_, Ancicoil( 2)BB" (5 2
t=1

. " w1y L
omin AU 2)BB" (e 2) i (4)

[[ i1 l(BB*) /0] A rss, [(BB*) [a]} =
t=1
Do (A)] [by (2.217)). 8

Setting r = n in Theorem 2.15, we arrive at

[1I%(BAB)/a]l = [[{An-i+11(BB*)/a]X,[(BB")/a]}E [ An-t41(A)].

t=1

t=1
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Theorem 2.16 Let A € H,, B € C**™, and o C {1,2,..

k =n—|a|. Then for any integer | with 1 <1 < k,

~

Z)‘k t+1[(BAB*)/a] < Z M, [(BB*)/al

t=1 t=1

and
l

l
> A l(BB*)/alAn-t41(A) < > N[(BAB*)/al.
t=1

t=1

CHAP. 2

.,n}. Denote

(2.5.28)

(2.5.29)

Proof. If A > 0, the inequalities follow immediately from Theorem 2.6.
So we consider the case where A has negative eigenvalues. Let A, (A) < 0.

Without loss of generality, we take @« = {k+ 1,...,m}. Let
X = —[(BB*)[a%, a]][(BB*)[]]'.

By (2.2.19), (2.0.6), we have

l
S A AIB(A = Mn(A)],)B*) Ja}

l
= min Z/\it[(lk,Z)B(A—)\n(A)In)B*(Ik,Z)*]

ZECkx(n—Fk)
- ZECI%“MZA“ [(A = M\ (A)L,)B* (I, Z)* (I, Z)B]
S el ; MIA = M (A)Xi,[B* Lk, 2)* (I, 2)B)
= in_ g[xtm) — M (AN, [(Ix, Z)BB* (I, Z)"]
< XI:MA) — M (A)] i, [(Ix, X)BB* (I, X)*]

t=1
l

= > _[M(A) = A (A)IN, [(BB*)/a

t=1

l
= th X, [(BB*)/a] = An(A) > N, [((BB*)/a].  (2.5.30)
t=1
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By (2.2.19) and (2.0.8), noticing that —\,(A4) > 0, we have

l

> M A[B(A = M(A)I,)B*]ja}

l
=, in t; X (T, Z)B(A = My (A) 1) B* (I, Z)"]

l
=, nin ;Ait[(Ik,Z)BAB (I, Z)* = M(A)(Ix, Z)BB* (I, Z)*)

l
S b
l
+ 3" A=Al )Tk, 2)BB* (I, 2)']} by (2.0.8)
t=1
l
- zec“k‘E&H{;A’“-t“[a’“Z)BAB*(I’“’Z)*]
l
“nlA) 3" Nl 2)BB* (I, 2)'] |
t=1
l
_>_ ZAk t+1 (Ik7 )BAB (IkHZ)]

ZGC’“ X (n k)

l

—An(A4) Jocnin ;Ait[(lk,Z)BB (Ix, Z)¥]

i l
= Y M—en1[(BAB") /o] = \(A) Y N, [(BB*)/al. (2.5.31)
t=1

t=1

Combining (2.5.30) and (2.5.31) reveals (2.5.28). Likewise, by making
use of (2.0.8) and (2.2.19) in the proof of (2.5.31), we have

l
> AiA[B(A = M(A)n)B*]/a} <
t=1

MN

14
MI(BAB*)/a] = A (A) > X [(BB*)/a].  (2.5.32)
t=1

o
Il
—
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Using (2.2.19), (2.0.7) and as in the proof of (2.5.30), we have
3 A{IBA - M4 B /a} >
tél An—t+1(A) A, [(BB™)/a] — An(A) t:il Xi.[(BB*)/a). (2.5.33)

Combining (2.5.32) and (2.5.33), we obtain the inequality (2.5.29). B

2.6 Singular values of the Schur complement of product

Singular values are, in many aspects, as important as the eigenvalues for
matrices. This section, based upon [285], is devoted to the inequalities on
singular values of the Schur complements of products of general matrices.

Theorem 2.17 Let A € C™*" and B € C**P. Let oo C {1,2,...,1}, where
! = min{m, n,p}. If B*B is nonsingular, then for s=1,2,...,1— |a],
oi[(AB)/a] 2> max_ Ap_ja|-its [(B*B)/a] An—peri [(A47) /0]
1<i<m—|al+p—n
Proof. We first claim that we may take o = {1,2,...,|a|}. To see this, let
a¢={1,....m}—a, B ={1,...,n}—a,and ¥v* = {1,...,p} — a. There
exist permutation matrices U € C™*™ V € C"*™ W € CP*P such that

_ [ Ald] Ala, p°]
vavV = ( Alat,a]  Alat, 59 > ’
- _( Bla] Bla, ]

VBW—<BWﬂ]BWWﬂ)

and
(UAV)(V™BW) = UABW = ( (AB)lo]  (AB)[a, "] ) .

Let & ={1,2,...,]al}. Then
(AB)/a = (UABW)/a,
(B*B)/a = (W*B*BW)/a,
(AA*)/a = (UAA*U™)/a.

So we may replace A with UAV and B with V7 BW in the theorem so that
the submatrices indexed by « are now located in the upper left corners.
Thus, without loss of generality, we may assume that o = {1,2,...,|af}.
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The idea of the proof of the inequality is to obtain two quantities, one of
which bounds \;{[AB(B*B)~!B*A*]/a} from above, and the other from
below; combining the two inequalities will yield the desired inequality.

We shall make heavy use of Corollary 2.6. Let

C = AB(B*B)™'B*4*,
X =-Cla%, o][Cla]],

= —[(4B)[e*, a]J[(4B)ld]]",
and

= —[(AA")[o*, o] [(AA") o]

Using (2.0.3) and upon computation, we have

M{[AB(B*B)~'B*A*]/a}

Ai[Claf) + X Cla, af]

A{(Y, L ja))OY, In—ja))* = Y(Cle, af])
—(C[at, a]))Y* = Y(C[a])Y* + XC[a, of]}
A{(Y, L jo))CY, Tnmja))”

+X = Y)(Cla])(Cla))(Cla, a)

—(Cla*, a)(Cla])!(Cla))Y* = Y(Cla))Y™}

= A{{Y, Ln—1a))C(Y, In—ja))” — (X = Y)(Cla]) X
+X(Cla)Y* =Y (Cla])Y™}

)\z{(Y, Im—IaI)C(Ya Im-—lal)*

I

—(X = Y)(Cla])(X — Y) } (2.6.34)
< X[V Ineja))CEY, Injal)]
= M{((Y, Im—lal)AB](B* )Y, Ln—ja))AB]"}
= X [0, (AB)/a)(B*B)~1(0, (AB)/a)*]
= A{((AB)/e]((B*B) " [¥]|[(AB)*/a]}
= AM{{(B*B) A )/a]*[(AB /ol} (2.6.35)
S min A [(B*B) T [ )JA{[(AB)/a]*[(AB)/a]}
t=1,...p—|a
s=1,....p—|a|
< min  A[(B*B)7| 1l02[(AB)/a). (2.6.36)
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On the other hand, by (2.0.6), for every i =1,2,...,m — |a| +p — n,
M{[AB(B*B)"'B*A*]/a}
= X [(X, Ln_ja))AB(B*B)"'B*A*(X, Ih_|a))"]
/\z{[B(B*B)_lB*HA*(Xa Im—|a|>*(X7 Im—|a|)A}}

I

>, max M[B(B*B) ' B*IAJA (X, Ln—ja))* (X, Im—ja))A]
2 )‘P[B(B*B> ] n— p+z[(X I IaI)AA*(X Im—lai)]
= M[(B*B)” 'B*B BlAn—ptil(X, Im—|a) JAA" (X, Im—lal)]
= Anptil(Xs I o)) AA™(X, I;njaf)”]
= Moptil(Z, In—ja))AA*(Z, Tp—ja))
+(X — Z)[(AAM)[a]](X = Z2)*} [by (2.6.35)] (2.6.37)
> Anpti [(Z, In-ja)) AAY(Z, Tnoja))”]
= Ap—pti[(AA%)/al. (2.6.38)

By Theorem 1.2, (B*B)~1[y¢] = [(B*B)/a] !, so fort =1,2,...,p — o],
N HI(B B /o] ™} = Apjap-ent[(B*B) o,

it follows that, by using (2.6.36) and (2.6.38), for s =1,2,...,1 —|o],

o3[(AB)/a} > max Ap—la|-t+1[(B*B)/a] An—p+i[(AA)/ 0]

1<i<m—ja H'P—
t=t—s-+1

= max Ap—la|—its(B*B)/ ] An—ptil(AA") /. B

1<i<m—|al+p—n

Corollary 2.9 Let A € C™*", | = min{m, n}, « C {1,2,...,1}. Then
oi(A/a) = \(AA%)/a] 2 giya(A), §=1,2,...,1— |a].
Proof. Set B =1,i=s in Theorem 2.17 and use Corollary 2.4. B

Corollary 2.10 If A € C™*", B € C™*P, | = min{m,n,p}, and let « C
{1,2,...,1}. If B*B is nonsingular, then for s =1,2,...,1 —|a|,

oil(AB)fa) 2z _ | max = Au-piil(AdT)/alop i (B).

Proof. This follows from (2.1.12) and Theorem 2.17. B
Setting m = n = p in Corollary 2.10 shows, for each s = 1,2,...,n—|a],

0 [(AB)/a] > max AZ[(AA")/ao;(B)

i+j=n+s

In a similar manner, we obtain lower bounds for products of singular
values of Schur complements of matrix products.
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Theorem 2.18 Let the assumptions of Theorem 2.17 be satisfied. Let u be
an integer, L <u<l—Ja|,andn—p+1<i; < - <iy <l—|a|. Then

u u

H [(AB)/a] > H (A4 /N o [(B"B)/al.

,_a

Proof. Following the proof of Theorem 2.17, by (2.6.35) and using (2.0.1),
we have, forevery n> 4, >n—p+1,t=1,2,...,u,

[T {[AB(B"B)~'B*A")/a}

t=1

I
:j:

At [(X, In-ja))AB(B*B) ' B*A*(X, I_ja))"]

o~
1
-

%
::]:

Ai [A*(Xa Im—|a|)*(Xa Im—|a|)A]

T

>

n—iy+1[B(B*B)"'B*] [by 2.0.1)]

Il
z:

)\it{(Za Im—lal)AA*(Z> -Z'm—|a|>’k

+3
be

~ Z)[(AAT)a))(X - 2)°} [see (2.6.35)]

Ai, [(Z, In—ja))AAY(Z, Ln-ia))*]

v
o

o+
Il
—_

A, [(AA*)/al. (2.6.39)

Il
-

i
L

On the other hand, by (2.6.35) and (2.0.2), we have

[[ > {{AB(B*B)"'B* A*]/a}

Il
-

MY, Ln1a)CY, Inja))*

T

~—~

X = Y)[Cla)(X ~Y)*} [by (2.6.35)]

At [(Y, Im_|a|)C(Y, Im—|a|)*]

=

<

o~
i
—

M(B*B)™ (1))} [(AB)/a] [by (2.6.35)].  (2.6.40)

—.

<

o+
Il
-
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Combining (2.6.39) and (2.6.40) we obtain the desired inequality. W
The proof of the next theorem is similar to the above, thus omitted.
Theorem 2.19 Let A € C™*™ and B be n X n nonsingular. Let | =

min{m, n}, a C {1,2,...,1}, and u be an integer with 1 < u <1 — |a.
Then for1 <43 < -+ <1y <l —]a,

e

1 1
2

[10:.1(4B)/a] > H M((AAT)/alN:_ - l(B*B)/a]
t=1

and
1 1

[1od(aB)/a) = TTAZ[(AA") falX:_ ., .1 [(B*B)/al.

Corollary 2.11 Let A € C™*™ and B € C"*P. Let | = min{m,n, p},
a C{1,2,...,1}, and u be an integer such that 1 < u <[ —|a|. Then for
n—p+1<i3< - <i, <l—|a,

v 1

Hat [((AB)/a] > H AZ[(AA*)/a)op—i41(B) (2.6.41)

and if n = p, then

e

Haz, [(AB)/a] > H A [(A4%)/a)on—is1(B). (2.6.42)

Proof. If B*B is singular, for t = 1 we have 0p—¢4+1(B) = 0p(B) = 0. The
first inequality holds. If B*B is nonsingular, then Theorem 2.18, together
with Theorem 2.2, yields the first inequality again. The second inequality
can be obtained in a similar manner. B

Corollary 2.12 Let all the assumptions of Theorem 2.19 be satisfied. Then

u

Ha [(AB)/a) > H A2 [(AAY)/a)on—i,+1(B)
t=1

-

and

=

H (4B)/a] = [] ostial (AN oy _i, 1 [(B*B)/l.

t=1
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All the inequalities we obtained so far in this section present lower
bounds for the singular values. It is tempting to obtain analogous results
on upper bounds. For instance, we may ask if an analog of (2.0.2)

! ! !
Ho—it[(AB)/a] < min{n 0i,(A/a)o (B H (A/a)oy, ( )}

or an analog of (2.0.3)
7l(AB)/a] < _min_ (o:(4]a)o(B), oi(B/a)a;(4))

holds. The answer is negative as the following example shows: Take

1 2
A=, B:(_2 1), o= {2}.

Then 01[(AB)/a] = 1(5) = 5, 01(A/a)o1(B) = 01(B) = v/5. Thus
01[(AB)/a} = 01(A/a)o1(B).

This says neither of the above two inequalities holds. This comes as
no surprise if one reinspects the signs of the second summands in (2.6.35)
and (2.6.38). Furthermore, invalidity remains true even if one replaces the
pair 0(A/a) and o(B/a) or 0(A) and o(B) by the pair A¥[(AA*)/a] and
A((BB")/al.

Finally, we apply the theorems of this section to obtain some new upper
bounds for eigenvalues of the Schur complements of BAB*, where Aisnxn
positive semidefinite and B is any m X n matrix.

Theorem 2.20 Let A be n x n positive semidefinite and B be m X n. Let
[ =min{m,n},a C {1,2,...,1}, and a® ={1,2,...,n} —a. Then for every
t=1,2,...,m—|a| and every t =1,2,...,1 — |af,

N(BAB*)/a] < _min A (Ala)oi(B/a).

Proof. Without loss of generahty, assume a = {1,2,...,|a|}. By Theorem
2.17, since (A%)* = A%, (A"%)* = A~% fort=1,2,...,] — |, we have

0i2(B/a) = o2 [(BA%A_% /a]
> max  Ap_jal-i+t(A7/)N[(BAB*) /o).

=12, ,m~|a|

By Theorem 1.2, we have

A7V o= [(A7 /o)™t = (Al
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So, for any 1 < j <n, we have

A AT @) = Acjaj—j+1(A[af]).
It follows that, for every i = 1,2,...,m —|aj and t = 1,2,...,] — |a],

M[(BAB*)/a] < min  02(B/a)Ni_i+1(Alf)

t=1,2,...,l1— ||
— 2
— min_A(4%)o?(B/a). 8

Setting B = I in Theorem 2.20 results in eigenvalue inequalities that
may be compared with the ones in Section 2.1: For i =1,2,...,n —|a],

Ai(Afa) < Mi(Alaf]).

By Theorems 2.18 and 2.19, one gets the following result which is proven
in a manner similar to that of Theorem 2.20.

Theorem 2.21 Let all the assumptions of Theorem 2.20 be satisfied. Let u
be an integer such that 1 <u <l—|a|. Then for1 <i; < -+ <1y <l—|af,

HA” BAB")/a] < n{ﬁxz, (Ala®])o: B/a),H/\t o))y, (B/a)}.

t=1 t=1
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