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Abstract Recently in Carlson and Leitmann (2004) some improvements on Leit-
mann’s direct method, first presented for problems in the calculus of
variations in Leitmann (1967), for open-loop dynamic games in Dock-
ner and Leitmann (2001) were given. In these papers each player has
its own state which it controls with its own control inputs. That is,
there is a state equation for each player. However, many applications
involve the players competing for a single resource (e.g., two countries
competing for a single species of fish). In this note we investigate the
utility of the direct method for a class of games whose dynamics are
described by a single equation for which the state dynamics are affine
in the players strategies. An illustrative example is also presented

1. The direct method
In Carlson and Leitmann (2004) a direct method for finding open-loop

Nash equilibria for a class of differential N -player games is presented. A
particular case included in this study concerns the situation in which the
j-th player’s dynamics at any time t ∈ [t0, tf ] is a vector-valued function
t → xj(t) ∈ R

nj that is described by an ordinary control system of the
form

ẋj(t) = fj(t,x(t)) + gj(t,x(t))uj(t) a.e. t0 ≤ t ≤ tf (2.1)
xj(t0) = xjt0 and xj(tf ) = xjtf (2.2)

with control constraints

uj(t) ∈ Uj(t) ⊂ R
mj a.e. t ∈ [t0, tf ], (2.3)
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and state constraints

x(t) ∈ X(t) ⊂ R
n for t ∈ [t0, tf ], (2.4)

in which for each j = 1, 2, . . . N the function fj(·, ·) : [t0, tf ]×R
n → R

nj

is continuous, gj(·, ·) : [t0, tf ]× R
mj×nj is a continuous mj × nj matrix-

valued function having a left inverse, and Uj(·) is set-valued mapping,
and X(t) is a given set in R

n for t ∈ [t0, tf ]. Here we use the notation
x = (x1, x2, . . . , xN ) ∈ R

n1 × R
n2 × R

nN = R
n, where n = n1 + n2 +

. . . + nN ; similarly u = (u1, u2 . . . , uN ) ∈ R
m, m = m1 + m2 . . . + mN .

Additionally we assume that the sets, Mj = {(t,x, uj) ∈ [t0, tf ]× R
n ×

R
mj : uj ∈ Uj(t)} are closed and nonempty. The objective of each

player is to minimize an objective function of the form,

Jj(x(·), uj(·)) =
∫ tf

t0

f0
j (t,x(t), uj(t)) dt, (2.5)

where we assume that for each j = 1, 2, . . . , N the function f0
j (·, ·, ·) :

Mj × R
n × R

mj is continuous.
With the above model description we now define the feasible set of

admissible trajectory-strategy pairs.

Definition 2.1 We say a pair of functions {x(·),u(·)} : [t0, tf ] → R
n×

R
m is an admissible trajectory-strategy pair iff t → x(t) is absolutely

continuous on [t0, tf ], t → u(t) is Lebesgue measurable on [t0, tf ], for
each j = 1, 2, . . . , N , the relations (2.1)–(2.3) are satisfied, and for each
j = 1, 2, . . . , N , the functionals (2.5) are finite Lebesgue integrals.

Remark 2.1 For brevity we will refer to an admissible trajectory-strat-
egy pair as an admissible pair. Also, for a given admissible pair, {x(·),
u(·)}, we will follow the traditional convention and refer to x(·) as an
admissible trajectory and u(·) as an admissible strategy.

For a fixed j = 1, 2, . . . , N , x ∈ R
n, and yj ∈ R

nj we use the notation
[xj , yj ] to denote a new vector in R

n in which xj ∈ R
nj is replaced by

yj ∈ R
nj . That is,

[xj , yj ]
.= (x1, x2, . . . , xj−1, yj , xj+1, . . . , xN ).

Analogously [uj , vj ]
.= (u1, u2, . . . , uj−1, vj , uj+1, . . . , uN ) for all u ∈ R

m,
vj ∈ R

mj , and j = 1, 2, . . . , N . With this notation we now have the
following two definitions.

Definition 2.2 Let j = 1, 2, . . . , N be fixed and let {x(·),u(·)} be an
admissible pair. We say that the pair of functions {yj(·), vj(·)} : [t0, tf ]



2 Direct Method for Affine Control Systems 39

→ R
nj×R

mj is an admissible trajectory-strategy pair for player j relative
to {x(·),u(·)} iff the pair

{[x(·)j , yj(·)], [u(·)j , vj(·)]}
is an admissible pair.

Definition 2.3 An admissible pair {x∗(·),u∗(·)} is a Nash equilibrium
iff for each j = 1, 2, . . . , N and each pair {yj(·), vj(·)} that is admissible
for player j relative to {x∗(·),u∗(·)}, it is the case that

Jj(x∗(·), u∗
j (·)) =

∫ tf

t0

f0
j (t,x∗(t), u∗

j (t)) dt

≤
∫ tf

t0

f0
j (t, [x∗(t)j , yj(t)], vj(t)) dt

= Jj([x∗(·)j , yj(·)], vj(·)).
Our goal in this paper is to provide a “direct method” which in some

cases will enable us to determine a Nash equilibrium. We point out that
relative to a fixed Nash equilibrium {x∗(·),u∗(·)} each of the players
in the above game solves an optimization problem taking the form of a
standard problem of optimal control. Thus, under suitable additional as-
sumptions, it is relatively easy to derive a set of necessary conditions (in
the form of a Pontryagin-type maximum principle) that must be satisfied
by all Nash equilibria. Unfortunately these conditions are only neces-
sary and not sufficient. Further, it is well known that non-uniqueness
is always a source of difficulty in dynamic games so that in general the
necessary conditions are not uniquely solvable (as is often the case in
optimal control theory, when sufficient convexity is imposed). Therefore
it is important to be able to find usable sufficient conditions for Nash
equilibria.

The associated variational game
We observe that, under our assumptions, the algebraic equations,

zj = fj(t,x) + gj(t,x)uj j = 1, 2, . . . N, (2.6)

can be solved for uj in terms of t, zj , and x to obtain

uj = gj(t,x)−1 (zj − fj(t,x)) , j = 1, 2, . . . N, (2.7)

where gj(t,x)−1 denotes the inverse of the matrix gj(t,x). As a con-
sequence we can define the extended real-valued functions Lj(·, ·, ·) :
[t0, tf ]× R

n × R
nj → R ∪+∞ as

Lj(t,x, zj) = f0
j (t,x, gj(t,x)−1(zj − fj(t,x))) (2.8)
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if gj(t,x)−1 (zj − fj(t,x)) ∈ Uj(t) with Lj(t,x, zj) = +∞ otherwise.
With these functions we can consider the N -player variational game

in which the objective functional for the jth player is defined by,

Ij(x(·)) =
∫ tf

t0

Lj(t,x(t), ẋj(t)) dt. (2.9)

With this notation we have the following additional definitions.

Definition 2.4 An absolutely continuous function x(·) : [t0, tf ] → R
n

is said to be admissible for the variational game iff it satisfies the bound-
ary conditions given in equation (2.2) and such that the map t →
Lj(t,x(t), ẋj(t)) is finitely Lebesgue integrable on [t0, tf ] for each j =
1, 2, . . . , N .

Definition 2.5 Let x(·) : [t0, tf ] → R
n be admissible for the variational

game and let j ∈ {1, 2, . . . , N} be fixed. We say that yj(·) : [t0, tf ] → R
nj

is admissible for player j relative to x(·) iff [xj(·), yj(·)] is admissible for
the variational game.

Definition 2.6 We say that x∗(·) : [t0, tf ] → R
n is a Nash equilibrium

for the variational game iff for each j = 1, 2, . . . , N ,

Ij(x∗(·)) ≤ Ij([x∗j(·), yj(·)])
for all functions yj(·) : [t0, tf ] → R

nj that are admissible for player j
relative to x∗(·).

Clearly the variational game and our original game are related. In
particular we have the following theorem given in Carlson and Leitmann
(2004).

Theorem 2.1 Let x∗(·) be a Nash equilibrium for the variational game
defined above. Then there exists a measurable function u∗(·) : [t0, tf ] →
R

m such that the pair {x∗(·),u∗(·)} is an admissible trajectory-strategy
pair for the original dynamic game. Moreover, it is a Nash equilibrium
for the original game as well.

Proof. See Carlson and Leitmann (2004), Theorem 7.1. �

Remark 2.2 The above result holds in a much more general setting
than indicated above. We chose the restricted setting since it is sufficient
for our needs in the analysis of the model we will consider in the next
section.
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With the above result we now focus our attention on the variational
game. In 1967, for the case of one player variational games (i.e., the
calculus of variations), Leitmann (1967) presented a technique (the “di-
rect method”) for determining solutions of these games by comparing
their solutions to that of an equivalent problem whose solution is more
easily determined than that of the original game. This equivalence was
obtained through a coordinate transformation. Since then this method
has been used successfully to solve a variety of problems. Recently,
Carlson (2002) presented an extension of this method that expands the
utility of the approach as well as made some useful comparisons with a
technique originally presented by Carathéodory in the early twentieth
century (see Carathéodory (1982)). Also, Dockner and Leitmann (2001)
extended the original direct method to include the case of open-loop
dynamic games. Finally, the extension of Carlson to the method was
also modified in Leitmann (2004) to the include the case of open-loop
differential games in Carlson and Leitmann (2004).

We begin by stating the following lemma found in Carlson and Leit-
mann (2004).

Lemma 2.1 Let xj = zj(t, x̃j) be a transformation of class C1 having
a unique inverse x̃j = z̃j(t, xj) for all t ∈ [t0, tf ] such that there is a
one-to-one correspondence x(t) ⇔ x̃(t), for all admissible trajectories
x(·) satisfying the boundary conditions (2.2) and for all x̃(·) satisfying

x̃j(t0) = z̃j(t0, x0j) and x̃j(tf ) = z̃j(tf , xtf j)

for all j =1, 2, . . . , N . Furthermore, for each j =1, 2, . . . , N let L̃j(·, ·, ·) :
[t0, tf ] × R

n × R
nj → R be a given integrand. For a given admissible

x∗(·) : [t0, tf ] → R
n suppose the transformations xj = zj(t, x̃j) are such

that there exists a C1 function Hj(·, ·) : [t0, tf ] × R
nj → R so that the

functional identity

Lj(t, [x∗j(t), xj(t)], ẋj(t)) − L̃j(t, [x∗j(t), x̃j(t)], ˙̃xj(t))

=
d

dt
Hj(t, x̃j(t)) (2.10)

holds on [t0, tf ]. If x̃∗
j (·) yields an extremum of Ĩj([x∗j(·), ·]) with x̃∗

j (·)
satisfying the transformed boundary conditions, then x∗

j (·) with x∗
j (t) =

zj(t, x̃∗(t)) yields an extremum for Ij([x∗j(·), ·]) with the boundary con-
ditions (2.2).

Moreover, the function x∗(·) is an open-loop Nash equilibrium for the
variational game.

Proof. See Carlson and Leitmann (2004), Lemma 5.1. �



42 DYNAMIC GAMES: THEORY AND APPLICATIONS

This lemma has three useful corollaries which we state below.

Corollary 2.1 The existence of Hj(·, ·) in (2.9) implies that the fol-
lowing identities hold for (t, x̃j) ∈ (t0, tf )× R

njand for j = 1, 2, . . . , N :

Lj(t, [x∗j(t), zj(t, x̃j)],
∂zj(t, x̃j))

∂t
+ 〈∇x̃jzj(t, x̃j), p̃j〉) (2.11)

−L̃j(t, [x∗j(t), x̃j ], p̃j) ≡ ∂Hj(t, x̃j)
∂t

+ 〈∇x̃jHj(t, x̃j), p̃j〉,
in which ∇x̃jHj(·, ·) denotes the gradient of Hj(·, ·) with respect to the
variables x̃j and 〈·, ·〉 denotes the usual scalar or inner product in R

nj .

Corollary 2.2 For each j = 1, 2, . . . , N the left-hand side of the iden-
tity, (2.11) is linear in p̃j, that is, it is of the form,

θj(t, x̃j) + 〈ψj(t, x̃j), p̃j〉
and,

∂Hj(t, x̃j)
∂t

= θj(t, x̃j) and ∇x̃jHj(t, x̃j) = ψ(t, x̃j)

on [t0, tf ]× R
nj .

Corollary 2.3 For integrands Lj(·, ·, ·) of the form,

Lj(t, [x∗j(t), xj(t)], ẋj(t)) = ẋ′
j(t)aj(t, [x∗j(t), xj(t)])ẋj(t)

+bj(t, [x∗j(t), xj(t)])′ẋj(t)

+cj(t, [x∗j(t), xj(t)]),

and

L̃j(t, [x∗j(t), xj(t)], ẋj(t)) = ẋ′
j(t)αj(t, [x∗j(t), xj(t)])ẋj(t)

+βj(t, [x∗j(t), xj(t)])′ẋj(t)

+γj(t, [x∗j(t), xj(t)]),

with aj(t, [x∗j(t), xj(t)]) �= 0 and αj(t, [x∗j(t), xj(t)]) �= 0, the class of
transformations that permit us to obtain (2.11) must satisfy,[

∂zj(t, x̃j)
∂x̃j

]′
aj(t, [x∗(t)j , zj(t, x̃j)])

[
∂zj(t, x̃j)

∂x̃j

]
= αj(t, [x∗(t)j , x̃j ])

for (t, xj) ∈ [t0, t1]× R
nj .

A class of dynamic games to which the above method has not been ap-
plied is that in which there is a single state equation which is controlled
by all of the players. A simple example of such a problem is the com-
petitive harvesting of a renewable resource (e.g., a single species fishery
model). In the next section we show how the direct method described
above can be applied to a class of these types of models.
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2. The model
Consider an N -player game where a single state x(t) ∈ R

n satisfies an
ordinary control system of the form

ẋ(t) = F (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t) a.e. t0 ≤ t ≤ tf , (2.12)

with initial and terminal conditions

x(t0) = xt0 and x(tf ) = xtf , (2.13)

a fixed state constraint,

x(t) ∈ X(t) ⊂ R
n for t0 ≤ t ≤ tf , (2.14)

with X(t) a convex set for each t0 ≤ t ≤ tf , and control constraints,

ui(t) ∈ Ui(t) ⊂ R
mi a.e. t0 ≤ t ≤ tf i = 1, 2, . . . N. (2.15)

In this system each player has a strategy, ui(·), which influences the
state variable x(·) over time.

Definition 2.7 A set of functions

{x(·),u(·)} .= {x(·), u1(·), u2(·), . . . , uN (·)}
defined for t0 ≤ t ≤ tf is called an admissible trajectory-strategy pair iff
x(·) is absolutely continuous on its domain, u(·) is Lebesgue measurable
on its domain, and the equations (2.12)– (2.15) are satisfied.

We assume that F (·, ·) : [t0, +∞)×R
n → R

n and Gi(·, ·, ·) : [t0, +∞)×
R

n × R
mj → R

n is sufficiently smooth so that for each selection of
strategies u(·) (i.e., measurable functions) the initial value problem given
by (2.12)–(2.13) has a unique solution xu(·). These conditions can be
made more explicit for particular models and are not unduly restrictive.
For brevity we do not to indicate these explicitly.

Each of the players in the dynamic game wishes to minimize a per-
formance criterion given of the form,

Jj(x(·), uj(·)) =
∫ tf

t0

fj(t, x(t), uj(t)) dt, j = 1, 2, . . . , N, (2.16)

in which we assume that fj(·, ·, ·) : [t0, tf ]×R
n×R

mj → R is continuous.
To place the above dynamic game into a form amenable to the di-

rect method consider a set of strictly positive weights, say αi > 0,
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i = 1, 2, . . . N , which satisfy
∑N

i=1 αi = 1 and consider the related ordi-
nary control system

ẋi(t) = F

(
t,

N∑
i=1

αixi(t)

)
+

1
αi

G

(
t,

N∑
i=1

αixi(t)

)
ui(t) a.e. t ≥ t0,

(2.17)
i = 1, 2, . . . , N , with boundary conditions,

xi(t0) = xt0 and xi(tf ) = xtf , i = 1, 2, . . . N, (2.18)

and control constraints and state constraints,

ui(t) ∈ Ui(t) ⊂ R
mi a.e. t0 ≤ t ≤ tf i = 1, 2, . . . N, (2.19)

xi(t) ∈ Xi(t)
.= X(t) ⊂ R

n for t0 ≤ t ≤ tf i = 1, 2, . . . N. (2.20)

Definition 2.8 A set of functions

{x(·),u(·)} .= {x1(·), x2(·), . . . xN (·), u1(·), u2(·), . . . , uN (·)}
defined for t0 ≤ t ≤ tf is called an admissible trajectory-strategy pair
for the related system iff x(·) : [t0, +∞) → R

n, where n = nN , is
absolutely continuous on its domain, u(·) : [t0, +∞) → R

m, where m =
m1 + m2 + . . . + mN , is Lebesgue measurable on its domain, and the
equations (2.17)–(2.19) are satisfied.

For this related system it is easy to see that the conditions guarantee-
ing uniqueness for the original system would also insure the existence of
the solution x(·) for a fixed set of strategies ui(·).
Proposition 2.1 Let {x(·),u(·)} be an admissible trajectory-strategy
pair for the related control system. Then the pair, {x(·),u(·)}, with
x(t) .=

∑N
i=1 αixi(t) is an admissible trajectory-strategy pair for the origi-

nal control system. Conversely, if {x(·),u(·)} is an admissible trajectory-
strategy pair for the original control system, then there exists a function
x(·) = (x1(·), . . . , xN (·)) so that x(t) .=

∑N
i=1 αixi(t) for i = 1, 2, . . . N

and {x(·),u(·)} is an admissible trajectory-strategy pair for the related
control system.

Proof. We begin by first letting {x(·),u(·)} be an admissible trajectory-
strategy pair for the related control system. Then defining x(t) =∑N

i=1 αixi(t) for t0 ≤ t ≤ tf we observe that

ẋ(t) =
N∑

i=1

αiẋi(t)
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=
N∑

i=1

αi

(
F (t, x(t)) +

1
αi

Gi(t, x(t))ui(t)
)

=
N∑

i=1

αiF (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t)

= F (t, x(t)) +
N∑

i=1

Gi(t, x(t))ui(t),

since
∑N

i=1 αi = 1. Further we also have that

x(t0) =
N∑

i=1

αixt0 = xt0 ,

uj(t) ∈ Uj(t) for almost all t0 ≤ t ≤ tf and j = 1, 2, . . . N,

xj(t) ∈ X(t) for t0 ≤ t ≤ tf and j = 1, 2, . . . N,

implying that {x(·),u(·)} is an admissible trajectory-strategy pair.
Now assume that {x(·),u(·)} is an admissible trajectory-strategy pair

for the original dynamical system (2.12–2.15) and consider the system of
differential equations given by (2.17) with the initial conditions (2.18).
By our hypotheses this system has a unique solution x(·) : [t0, +∞) →
R

N . Furthermore, from the above computation we know that the func-
tion, y(·) .=

∑N
i=1 αixi(·), along with the strategies, u(·) satisfy the dif-

ferential equation (2.12) as well as the initial condition (2.13). However,
this initial value problem has a unique solution, namely x(·), so that we
must have y(t) ≡ x(t) for all t0 ≤ t ≤ tf . Further, we also have the
constraints, (2.19) and (2.20), holding as well. Hence we have, {x(·),
u(·)} is an admissible trajectory-strategy pair for the related system as
desired. �

In light of the above theorem it is clear that to use the direct method
to solve the dynamic game described by (2.12)–(2.16) we consider the
game described by the dynamic equations (2.17)–(2.19) where now the
objective for player j, j = 1, 2, . . . N , is given as

Jj(x(·), uj(·)) =
∫ tf

t0

f0
j

(
t,

N∑
i=1

αix(t), uj(t)

)
dt. (2.21)

In the next section we demonstrate this process with an example from
mathematical economics.

Remark 2.3 In solving constrained optimization or dynamic games
problems one of the biggest difficulties is finding reasonable candidates
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for the solution that meet the constraints. Perhaps the most often used
method is to solve the unconstrained problem and hope that it satis-
fies the constraints. To understand why this technique works we observe
that either in a game or in an optimization problem the set of admissible
trajectory-strategy pairs that satisfy the constraints is a subset of the
set of all admissible for pairs for the problem without constraints. Con-
sequently, if you can find an admissible trajectory-strategy pair which
is an optimal (or Nash equilibrium) solution for the problem without
constraints (say via the direct method for the unconstrained problem)
and if additionally it actually satisfies the constraints you indeed have
a solution for the original problem with constraints. It is this technique
that is used in the next section to obtain the Nash equilibrium.

3. Example
We consider two firms which produce an identical product. The pro-

duction cost for each firm is given by the total cost function,

C(uj) =
1
2
u2

j , j = 1, 2,

in which uj refers to a jth firm’s production level. Each firm supplies
all that it produces to the market at all times. The amount supplied at
each time effects the price, P (t), and the total inventory of the market
determines the price according to the ordinary control system,

Ṗ (t) = s[a− u1(t)− u2(t)− P (t)] a.e. t ∈ [t0, tf ]. (2.22)

Here s > 0 refers to the speed at which the price adjusts to the price
corresponding to the total quantity (i.e., u1(t) + u2(t)). The model
assumes a linear demand rate given by Π = a−X where X denotes total
supply related to a price P . Thus the dynamics above says that the rate
of change of price at time t is proportional to the difference between
the actual price P (t) and the idealized price Π(t) = a − u1(t) − u2(t).
We assume that (through negotiation perhaps) the firms have agreed to
move from the price P0 at time t0 to a price Pf at time tf . This leads
to the boundary conditions,

P (t0) = P0 and P (tf ) = Pf . (2.23)

Additionally we also impose the constraints

uj(t) ≥ 0 for almost all t ∈ [t0, tf ]. (2.24)

and
P (t) ≥ 0 for t ∈ [t0, tf ]. (2.25)
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The goal of each firm is to maximize its accumulated profit, assuming
that it sells all that it produces, over the interval, [t0, tf ] given by the
integral functional,

Jj(P (·), uj(·)) =
∫ tf

t0

[
P (t)uj(t)− 1

2
u2

j (t)
]

dt. (2.26)

To put the above dynamic game into the framework to use the direct
method let α, β > 0 satisfy α + β = 1 and consider the ordinary 2-
dimensional control system,

ẋ(t) = −s(αx(t) + βy(t)− a)− s

α
u1(t), a.e. t0 ≤ t ≤ tf (2.27)

ẏ(t) = −s(αx(t) + βy(t)− a)− s

β
u2(t), a.e. t0 ≤ t ≤ tf (2.28)

with the boundary conditions,

x(t0) = y(t0) = P0 (2.29)
x(tf ) = y(tf ) = Pf , (2.30)

and of course the control constraints given by (2.24) and state constraints
(2.25). The payoffs for each of the player now become,

Jj(x(·), y(·), uj(·)) =
∫ tf

t0

[
(αx(t) + βy(t))uj(t)− 1

2
uj(t)2

]
dt (2.31)

for j = 1, 2. This gives a dynamic game for which the direct method can
be applied.

We now put the above game in the equivalent variational form by solv-
ing the dynamic equations (2.27) and (2.28) for the individual strategies.
That is we have,

u1 = α(a− (αx + βy)− 1
s
p) (2.32)

u2 = β(a− (αx + βy)− 1
s
q) (2.33)

which gives (after a number of elementary steps of algebra) the new
objectives (with negative sign to pose the variational problems as mini-
mization problems) to get

J1(x(·), y(·), ẋ(·)) =
∫ tf

t0

{
α2

2s2
ẋ(t)2 +

α2a2

2

+
(

α2

2
+ α

)
(αx(t) + βy(t))2
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+
[
α

s
(αx(t) + βy(t))− α2

s
(a− (αx(t) + βy(t)))

]
ẋ(t)

− a(α2 + α)(αx(t) + βy(t))
}

dt (2.34)

and

J2(x(·), y(·), ẏ(t)) =
∫ tf

t0

{
β2

2s2
ẏ(t)2 +

β2a2

2

+
(

β2

2
+ β

)
(αx(t) + βy(t))2

+
[
β

s
(αx(t) + βy(t))− β2

s
(a− (αx(t) + βy(t)))

]
ẏ(t)

− a(β2 + α)(αx(t) + βy(t))
}

dt. (2.35)

For the remainder of our discussion we focus on the first player as the
computation of the second player is the same. We begin by observing
that the integrand for player 1 is

L1(x, y, p) =
{

α2

2s2
p2 +

α2a2

2
+
(

α2

2
+ α

)
(αx + βy)2

+
[
α

s
(αx + βy)− α2

s
(a− (αx + βy))

]
p

−a(α2 + α)(αx + βy)
}

. (2.36)

Inspecting this integrand we choose L̃(·, ·, ·) to be,

L̃(x̃, ỹ, p̃) =
α2

2s2
p̃2 +

α2a2

2

from which we immediately deduce, applying Corollary 2.3, that the
appropriate transformation, z1(·, ·), must satisfy the partial differential
equation, (

∂z1

∂x̃

)2

= 1

giving us that z1(t, x̃) = f(t)± x̃ and that

∂z1

∂t
+

∂z1

∂x̃
p̃ = ḟ(t)± p̃.
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From this we now compute,

ΔL1 = L1(f(t)± x̃, y∗(t), ḟ(t)± p̃)− L̃1(x̃, y∗(t), p̃)

=
{

α2

2s2
(ḟ(t)± p̃)2 +

α2a2

2
+
(

α2

2
+ α

)
(α(f(t)± x̃) + βy∗(t))2

+
[
α

s
(α(f(t)± x̃) + βy∗(t))

− α2

s
(a− (α(f(t)± x̃) + βy∗(t)))

]
(ḟ(t)± p̃)− a(α2 + α)×

(α(f(t)± x̃) + βy∗(t))
}

−
{

α2

2s2
p̃2 +

α2a2

2

}
=

{
α2

2s2
ḟ(t)2 +

(
α2

2
+ α

)
[α(f(t)± x̃) + βy∗(t)]2 − (α2 + α

)×
[α(f(t)± x̃) + βy∗(t)]

+
[(

α2

s
+

α

s

)
[α(f(t)± x̃) +βy∗(t)]− α2a

s

]
ḟ(t)

}
±
{

α2

s2
ḟ(t) +

(
α2

s
+

α

s

)
× [α(f(t)± x̃) + βy∗(t)]− α2a

s

}
p̃

.=
∂H1(t, x̃)

∂t
+

∂H1(t, x̃)
∂x̃

p̃.

From this we compute the mixed partial derivatives to obtain,

∂2H1

∂x̃∂t
(t, x̃) = ±2

(
α2

2
+ α

)
[α(f(t)± x̃) + βy∗(t)] α

∓aα(α2 + α)± α

(
α2

s
+

α

s

)
ḟ(t)

= ±
{

α3(α + 2)(f(t)± x̃) + α2β(α + 2)y∗(t)

−α2(α + 1)a +
α2

s
(α + 1)ḟ(t)

}
and

∂2H1

∂t∂x̃
(t, x̃) = ±

{
α2

s2
f̈(t) +

(
α2

s
+

α

s

)[
αḟ(t) + βẏ∗(t)

]}
= ±

{
α2

s2
f̈(t) +

α2

s
(α + 1)ḟ(t) +

αβ

s
(α + 1)ẏ∗(t)

}
.
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Assuming sufficient smoothness and equating the mixed partial deriva-
tives we obtain the following equation:

f̈(t)− αs2(α + 2)f(t) = βs2(α + 2)y∗(t)− βs

α
(α + 1)ẏ∗(t)

±αs2(α + 2)x̃− as2(α + 1).

A similar analysis for player 2 yields:

L2(x, y, q) =
{

β2

2s2
q2 +

β2a2

2
+
(

β2

2
+ β

)
(αx + βy)2[

β

s
(αx + βy)− β2

s
(a− (αx + βy)

]
q (2.37)

− a(β2 + β)(αx + βy)
}

,

and so choosing

L̃2(x̃, ỹ, q̃) =
{

β2

2s2
q2 +

β2a2

2

}
gives us that the transformation z2(·, ·) is obtained by solving the partial
differential equation (

∂z2

∂ỹ

)2

= 1,

which of course gives us, z2(t, ỹ) = g(t) ± ỹ. Proceeding as above we
arrive at the following differential equation for g(·),

g̈(t)− βs2(β + 2)g(t) = αs2(β + 2)x∗(t)− αs

β
(1 + β)ẋ∗(t)

±βs2(β + 2)ỹ − as2(β + 1).

Now the auxiliary variational problem we must solve consists of mini-
mizing the two functionals,∫ tf

t0

(
α2

2s2
˙̃x2(t) +

αa2

2

)
dt and

∫ tf

t0

(
β2

2s2
˙̃y2(t) +

βa2

2

)
dt

over some appropriately chosen boundary conditions. We observe that
these two minimization problems are easily solved if these conditions
take the form,

x̃(t0) = x̃(tf ) = c1 and ỹ(t0) = ỹ(tf ) = c2

for arbitrary but fixed constants c1 and c2. The solutions are in fact,

x̃∗(t) ≡ c1 and ỹ∗(t) ≡ c2
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According to our theory we then have that the solution to our variational
game is,

x∗(t) = f(t)± c1 and y∗(t) = g(t)± c2.

In particular, using this information in the equations for f(·) and g(·)
with x̃ = c1 and with ỹ = c2 we obtain the following equations for x∗(·)
and y∗(·),

ẍ∗(t)− αs2(α + 2)x∗(t) = βs2(α + 2)y∗(t)

−βs

α
(α + 1)ẏ∗(t)− as2(α + 1)

ÿ∗(t)− βs2(β + 2)y∗(t) = αs2(β + 2)x∗(t)

−αs

β
(1 + β)ẋ∗(t)− as2(β + 1),

with the end conditions,

x∗(t0) = y∗(t0) = P0 and x∗(tf ) = y∗(tf ) = Pf .

These equations coincide exactly with the Euler-Lagrange equations, as
derived by the Maximum Principle for the open-loop variational game
without constraints. Additionally we note that as these equations are
derived here via the direct method we see that they become sufficient
conditions for a Nash equilibrium of the unconstrained system, and hence
for the constrained system for solutions which satisfy the constraints (see
the comments in Remark 2.3). Moreover, we also observe that we can
recover the functions Hj(·, ·), for j = 1, 2, since we can recover both f(·)
and g(·) by the formulas

f(t) = x∗(t)∓ c1 and g(t) = y∗(t)∓ c2.

The required functions are now recovered by integrating the partial
derivatives of H1(·, ·) and H2(·, ·) which can be computed. Consequently,
we see that in this instance the solution to our variational game is given
by the solutions of the above Euler-Lagrange system, provided the re-
sulting strategies and the price satisfy the requisite constraints. Finally,
we can obtain the solution to the original problem by taking,

P ∗(t) = αx∗(t) + βy∗(t),

u∗
1(t) = α

(
a− P ∗(t)− 1

s
ẋ∗(t)

)
,

and

u∗
2(t) = β

(
a− P ∗(t)− 1

s
ẏ∗(t)

)
.
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Of course, we still must check that these functions meet whatever con-
straints are required (i.e., ui(t) ≥ 0 and P (t) ≥ 0).

There is one special case of the above analysis in which the solution
can be obtained easily. This is the case when α = β = 1

2 . In this case
the above Euler-Lagrange system becomes,

ẍ∗(t)− 5
4
s2x∗(t) =

5
4
s2y∗(t)− 3

2
sẏ∗(t)− 3

2
as2

ÿ∗(t)− 5
4
s2y∗(t) =

5
4
s2x∗(t)− 3

2
sẋ∗(t)− 3

2
as2.

Using the fact that P ∗(t) = 1
2(x∗(t) + y∗(t)) for all t ∈ [t0, tf ] we can

multiply each of these equations by 1
2 and add them together to obtain

the following equation for P ∗(·),

P̈ ∗(t) +
3
2
sṖ ∗(t)− 5

2
s2P ∗(t) = −3

2
as2,

for t0 ≤ t ≤ tf . This equation is an elementary non-homogeneous second
order linear equation with constant coefficients whose general solution
is given by

P ∗(t) = Aer+(t−t0) + Ber−(t−t0) +
3
5
a

in which r± are the characteristics roots of the equation and A and B
are arbitrary constants. More specifically, the characteristic roots are
roots of the polynomial

r2 +
3
2
sr − 5

2
s2 = 0

and are given by

r+ = s and r− = −5
2
s.

Thus, to solve the dynamic game in this case we select A and B so that
P ∗(·) satisfies the fixed boundary conditions. Further we note that we
can also take

x∗(t) = y∗(t) =
1
2
P ∗(t)

and so obtain the optimal strategies as

u∗
1(t) = u∗

2(t) =
1
2

(
a− P ∗(t)− 1

s
Ṗ ∗(t)

)
.

It remains to verify that there exists some choice of parameters for
which the optimal price, P ∗(·), and the optimal strategies, u∗

1(·), u∗
2(·)
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remain nonnegative. To this end we observe that we impose the fixed
boundary conditions to obtain the following linear system of equations
for the unknowns, A and B:(

1 1
es(tf−t0) e−

5
2
s(tf−t0)

)(
A
B

)
=
(

P0 − 3
5a

Pf − 3
5a

)
.

Using Cramer’s rule we obtain the following formulas for A and B,

A =
1
D

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
B =

1
D

[(
Pf − 3

5
a

)
−
(

P0 − 3
5
a

)
es(tf−t0)

]
in which D is the determinant of the coefficient matrix and is given by

D = e−
5
2
s(tf−t0) − es(tf−t0) = es(tf−t0)

(
e−

7
2
s(tf−t0) − 1

)
.

We observe that D is clearly negative since tf > t0. Also, to insure that
P ∗(t) is nonnegative for t ∈ [t0, tf ] it is sufficient to insure that A and
B are both positive. This means we must have,

0 >

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
0 >

[(
Pf − 3

5
a

)
−
(

P0 − 3
5
a

)
es(tf−t0)

]
which can be equivalently expressed as,(

P0 − 3
5
a

)
e−

5
2
s(tf−t0) < Pf − 3

5
a <

(
P0 − 3

5
a

)
es(tf−t0). (2.38)

Observe that as long as P0 and Pf are chosen to be larger than 3
5a this

last inequality can be satisfied if we choose tf − t0 sufficiently large. In
this case we have explicitly given the optimal price, P ∗(·) in terms of
the model parameters P0, Pf , t0, tf , a, and s (all strictly positive). It
remains to check that the strategies are nonnegative. To this end we
notice that,

Ṗ ∗(t) = Ases(t−t0) − 5
2
Bse−

5
2
s(t−t0)

so that we have, the admissible strategies given by, for j = 1, 2,

u∗
j (t) =

1
2

[
a− P ∗(t)− 1

2s
Ṗ ∗(t)

]
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=
1
2

[
a−

(
Aes(t−t0) + Be−

5
2
s(t−t0)

)
− 1

2s

(
Ases(t−t0) − 5

2
Bse−

5
2
s(t−t0)

)]
=

1
2

[
a− 3

2
Aes(t−t0) +

1
4
Be−

5
2
(t−t0)

]
.

Taking the time derivative of u∗
j (·) we obtain

u̇∗
j (t) =

1
2

[
−3

2
Ases(t−t0) − 5

8
Bse−

5
2
(t−t0)

]
< 0,

since A and B are positive. This implies that u∗
j (t) ≥ u∗

j (tf ) for all
t ∈ [t0, tf ]. Thus to insure that u∗

j (·) is nonnegative it is sufficient to
insure u∗

j (tf ) ≥ 0 which holds if we have

a− 3
2
Aes(tf−t0) +

1
4
Be−

5
2
(tf−t0) ≥ 0.

To investigate this inequality we first observe that we have, from the
solution P ∗(·), that

Pf = Aes(tf−t0) + Be
−5
2

s(tf−t0) +
3
5
a.

This allows us to rewrite the last inequality in the form,

a− 7
4
Ae−s(tf−t0) +

1
4

(
Pf − 3

5
a

)
≥ 0

or equivalently (using the explicit expression for A),

Pf− 3
5
a ≥ 7

1

e−
7
2
s(tf−t0) − 1

[(
P0 − 3

5
a

)
e−

5
2
s(tf−t0) −

(
Pf − 3

5
a

)]
−4a.

Solving this inequality for Pf − 3
5a we obtain the inequality,

Pf − 3
5
a ≤ 7e−

5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+ 4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

. (2.39)

Thus to insure that the state and control constraints, P ∗(t) ≥ 0 and
ui(t) ≥ 0 for t ∈ [t0, tf ], hold, we must check that the parameters of the
system satisfy inequalities (2.38) and (2.39). We have already observed
that for P0, Pf ≥ 3

5a we can choose tf − t0 sufficiently large to insure
that (2.38) holds. Further, we observe that as tf − t0 → +∞ the right
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side of (2.39) tends 2
3a so that we can always find tf − t0 sufficiently

large so that we have

7e−
5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+ 4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

≤
(

P0 − 3
5
a

)
es(tf−t0)

Moreover, it is easy to see that

7e−
5
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

(
P0 − 3

5
a

)
+4a

1− e−
7
2
s(tf−t0)

6 + e−
7
2
s(tf−t0)

≥
(

P0 − 3
5
a

)
e−

5
2
s(tf−t0)

holds whenever tf−t0 is sufficiently large. Combining these observations
allows us to conclude that for tf−t0 sufficiently large {P ∗(·), u∗

1(·), u∗
2(·)}

is a Nash equilibrium for the original dynamic game.

4. Conclusion
In this paper we have presented means to utilize the direct method to

obtain open-loop Nash equilibria for differential games for which there
is a single state whose time evolution is determined by the competitive
strategies of several players appearing linearly in the equation. That is
a so called affine control system with “many inputs and one output.”
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