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Abstract In most vehicle routing and crew scheduling applications solved by col­
umn generation, the subproblem corresponds to a shortest path problem 
with resource constraints (SPPRC) or one of its variants. 

This chapter proposes a classification and a generic formulation for 
the SPPRCs, briefly discusses complex modeling issues involving re­
sources, and presents the most commonly used SPPRC solution meth­
ods. First and foremost, it provides a comprehensive survey on the 
subject. 

!• Introduction 
For more than two decades, column generation (also known as branch-

and-price when embedded in a branch-and-bound framework) has been 
successful at solving a wide variety of vehicle routing and crew schedul­
ing problems (see e.g. Desrosiers et al., 1995; Barnhart et ah, 1998; De­
saulniers et a l , 1998), and most chapters in this book). In most of these 
applications, the master problem of the column generation method is a 
(possibly generalized) set partitioning or set covering problem with side 
constraints, where most of the variables, if not all, are associated with 
vehicle routes or crew schedules. These route and schedule variables are 
generated by one or several subproblems, each of them corresponding 
to a shortest path problem with resource constraints (SPPRC) or one of 
its variants. The SPPRC has contributed to the success of the column 
generation method for this class of problems for three main reasons. 
Firstly, through its resource constraints, it constitutes a flexible tool for 
modeling complex cost structures for an individual route or schedule, as 
well as a wide variety of rules that define the feasibility of a route or a 
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Figure 2.1. A small SPPRC example 

schedule. Secondly, because it does not possess the integrality property 
(i.e., there may be a positive gap between its optimal value and that 
of its linear relaxation) as discussed in Desrosiers et al. (1984), the col­
umn generation approach can derive tighter bounds than those obtained 
from the linear relaxation of arc-based formulations. Thirdly, there exist 
efficient algorithms at least for some important variants of the SPPRC. 

The SPPRC was introduced in the Ph.D dissertation of Desrochers 
(1986) as a subproblem of a bus driver scheduling problem. It consists 
of finding a shortest path among all paths that start from a source node, 
end at a sink node, and satisfy a set of constraints defined over a set of 
resources. A resource corresponds to a quantity, such as the time, the 
load picked-up by a vehicle, or the duration of a break in a work shift, 
that varies along a path according to functions, called resource exten­
sion functions (REFs). A REF is defined for every arc in the network 
and every resource considered. It provides a lower bound on the value 
that the corresponding resource can take at the head node of the corre­
sponding arc, given the values taken by all the resources at its tail node. 
The resource constraints are given as intervals, called resource windows, 
which restrict the values that can be taken by the resources at every 
node along a path. Such a constraint is defined for every node in the 
network and every resource considered. 

Figure 2.1 provides an SPPRC example that involves the resource 
time. The source and sink nodes are denoted by s and t, respectively. 
Each arc (i^j) bears a two-dimensional vector: The first component Uj 
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provides the travel time (duration) of using the arc, while the second 
Cij indicates the cost associated with it. Given a value Ti taken by the 
resource at a node i [Ti is said to be the visiting time at node i), the 
R E F for an arc (i, j ) is defined as fij{Ti) = Ti + tij^ i.e., it computes 
the [earliest) arrival time at node j when starting at node i at time T^. 
The resource window [ai,?)^] associated with each node i is specified in 
brackets beside it. It indicates at what time node i can be visited. If 
the arrival time of a path ending at a node i exceeds hi^ then this path 
is deemed infeasible. Otherwise, it is feasible even if its arrival time 
precedes ai since waiting at a node is allowed, that is, the visiting time 
at node i can be greater than the arrival time at this node. 

In the example of Figure 2.1, three paths link the source node s to 
the sink node t. The first path Pi — (5 ,1 , t ) , denoted by the sequence of 
nodes visited, is resource-feasible since it is possible to find visiting times 
along that path which satisfy all resource constraints. Indeed, setting 
Tg = 0 (the only feasible value at node 5), it is easy to see that the 
arrival times (Ti = 8 and T^ = 12) at nodes 1 and t provided by the 
appropriate REFs {fsi{Ts) and fuiTi)) are all feasible with respect to 
the resource windows. The second path P2 = (<5,2,t) is also resource-
feasible. However, waiting is needed at node 2 since the arrival time 
provided by /s2(0) = 5 is smaller than a^ — 9. In this case, the visiting 
time T2 can be set at 9, and the subsequent visiting time Tt at 11, 
respectively. Finally, the third path P3 = (5, 3, t) is not resource-feasible 
since, along that path, Tg == 0, T3 > /s3(0) — 12, and the earliest arrival 
time at node t is ht{^2) = 16. Hence, the resource window [9,15] at 
node t cannot be met. Since the cost of Pi (3-f-7 = 10) is smaller than the 
cost of P2 (5 + 6 = 11), the former path is optimal with respect to cost. 
However, path P2 has a smaller earliest arrival time at node t. If the 
network in Figure 2.1 were only a sub-network within a bigger network, 
then extending path P2 to a node could be feasible but extending Pi 
could be infeasible. 

This gives us a first glance at the core of SPPRC's difficulty. The 
SPPRC is very close to a multi-criteria problem. In the following we 
will consider both criteria, time and cost, as resources. Paths are un-
comparable when one path is better than a second path in one criterion 
and worse in another criterion. Resource constraints make it necessary 
to consider all uncomparable paths that arrive at a node, since resource 
constraints might forbid extending any subset of these paths but allow 
an extension of the others. 

The two-resource SPPRC, better known as the shortest path prob­
lem with time windows (SPPTW), was first studied in Desrosiers et al. 
(1983, 1984). The resource cost is unconstrained while the resource time 
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is restricted by corresponding time windows. Desrochers (1986) general­
ized the SPPTW to the case with several resources. Since then, several 
variants of the SPPRC have appeared in the literature. For instance, 
loachim et al. (1998) proposed the SPPTW with time dependent linear 
costs at the nodes and Dumas et ah (1991) the SPPTW with pickups 
and deliveries. 

The contribution of this chapter is three-fold. Firstly, it presents a 
classification of the SPPRC variants and provides a generic SPPRC for­
mulation that includes all variants studied so far (Section 2). Secondly, 
it discusses non-trivial modeling issues for the SPPRC (Section 3). Fi­
nally, it surveys the most important papers on this subject, namely, 
those introducing a new variant of the SPPRC (Section 2) or proposing 
an interesting methodological contribution (Section 4). 

2. Classification of the SPPRCs 
The intention of this section is to provide a generic formulation for a 

comprehensive class of shortest path problems with resource constraints 
presented in the literature so far. Variants of the SPPRC, which we con­
sider, are extensions of the classical shortest path problem, where the 
cost is replaced by multi-dimensional resource vectors, which are accu­
mulated along paths and constrained at intermediate nodes. Different 
types of SPPRCs can be classified by 

(i) the way in which resources are accumulated, leading to different 
definitions of resource feasible paths, 

(ii) the existence of additional path-structural constraints excluding 
specific paths, e.g., non-elementary paths, 

(iii) the objective, 

(iv) and the underlying network. 

We state all SPPRCs on a digraph G = {V,A), where V and A are 
non-empty sets of nodes and arcs, respectively. A path P — ( e i , . . . , e^) 
is a finite sequence of arcs (some arcs may occur more than once) where 
the head node of ê  G A is identical to the tail node of e^+i G A for 
alH = 1 , . . . ,p — 1, For the sake of convenience, we assume that G is 
simple so that a path can be written as P = ('̂ ô̂ '̂ i?»• • j'^p) with the 
understanding that (vi-i^Vi) G A holds for all i G { 1 , . . . ,p}. The length 
of this path is p. 
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2,1 Resource feasible pa ths 

The description of feasible paths provides a basis for the generic defi­
nition of the SPPRC. In the following, we distinguish between feasibility 
w.r.t. resources and feasibility w.r.t. path-structural constraints. This 
section focuses on the first aspect while path-structural constraints are 
discussed in the next section. 

Resource constraints can be formulated by means of {minimal) re­
source consumptions and resource intervals (e.g., the travel times tij and 
time windows [a ,̂ hi] in the SPPTW). Let R be the number of resources. 
A vector T -= ( r \ . . . , r ^ ) ' ^ G M^ is called a resource vector and its 
components resource variables (remark: x~^ denotes the transposed vec­
tor to the vector x). T is said to be not greater than (i.e., dominates) 
5 = ( S \ . . . , 5^)"^ G M^ if the inequahty T < S' holds for all compo­
nents i = 1 , . . . , i?. We denote this hy T < S. For two resource vectors a 
and h the interval [a, h] is defined as the set {T G M^: a <T <h}. 

Resource intervals, also called resource windows,, associated with a 
node i G y are denoted by [ai^^hi] with ai^^hi G M^, ai < hi. The 
changes in the resource consumptions associated with an arc {i^j) G 
A are given by a vector fij = {flA!^_i of so-called resource extension 
functions (REFs). A REF flj: R^ —> M depends on a resource vector 
Ti G M^, which corresponds to the resource consumption accumulated 
along a path from s to i, i.e., up to the tail node i of arc (i, j ) . Hence, 
the result fij{Ti) G M^ can be interpreted as a resource consumption 
accumulated along the path (5, . . . , i , j ) . "Classical" SPPRCs, hke the 
SPPTW presented in the introduction, only consider REFs of the form 

n^{T,) = Tl + t\^ (2.1) 

where t[- are constants associated with the arc (i, j ) . Classical REFs are 
separable by resources, i.e., there exist no interdependencies between 
different resources. The more general definition of REFs provides a 
powerful instrument for modeling practically relevant resource interde­
pendencies. 

Instead of giving an implicit MlP-formulation for the SPPRC, we 
state the resource constraints by considering individual paths. The rea­
son for this is that node repetitions within a path (which are allowed 
in our path definition) prohibit to model resource consumptions by in­
dividual resource variables associated with a node. For a given path 
P = (fo, t 'l , . •., 'î p), one has to refer to the p+l different positions i = 
0 , 1 , . . . ,p. A path P is resource-feasible if there exist resource vectors 
Ti G [avi.by.] for all positions i == 0 , 1 , . . . ,p such that fv^,v^^l{Ti) < T^+i 
holds for ah i = 0 , . . . ,p — 1. T{P) is defined as the set of all feasible 
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resource vectors at the last node Vp oi P =• {VQ,VI, ... ,Vp), i.e., 

for a l H - : 0 , . . . , p - l } . (2.2) 

Let J-'{u^ v) be the set of all resource-feasible paths from a node n to a 
node V. Note that P e T{u, v) holds if and only if T{P) i=- 0 . 

2,2 Path-structural constraints 
Path-structural constraints can model further requirements concern­

ing the feasibility of paths, which are not covered by resources. Such 
additional requirements might either be an integral part of a feasible 
path's definition or be implied by branching rules, which come up in 
the context of branch-and-price and require modifications of the pricing 
problem. Sometimes, these modifications cannot be handled by simply 
removing some arcs or nodes of the underlying network. In order to 
specify those constraints, we need some definitions. An elementary path 
is a path in which all nodes are pairwise different. Contrarily, a cycle is 
a path {vo^vi^,,, ^ Vp) of length p > 1 having VQ = Vp. We call any cycle 
of length less than or equal to A: a k-cycle. 

The following SPPRC variants have been proposed in the literature 
and defined according to path-structural constraints. Let Q be the set 
of all paths feasible with respect to these constraints. 

For the elementary SPPRC (ESPPRC), Q = {elementary paths}. On 
acyclic graphs, all paths are elementary so that SPPRC and ESPPRC 
coincide. In general (i.e., for networks with cycles), the ESPPRC has 
been identified to be ATP-hard in the strong sense (Dror, 1994) and has 
been first studied and solved by Beasley and Christofides (1989). In 
many vehicle routing applications the pricing problem is an ESPPRC. 
Feillet et al. (2004); Chabrier (2002); Rousseau et al. (2003) solved ESP­
PRC pricing problems in the context of the vehicle routing problem 
with time windows (VRPTW). These approaches are known for their 
very tight lower bounds computed by the LP-relaxation of the VRPTW 
set-partitioning master program. 

For the SPPRC, Q = {all paths}, that is, no path-structural con­
straints are imposed. The SPPRC occurs as a subproblem in numerous 
vehicle and crew scheduhng problems which are most of the time formu­
lated over acyclic time-space networks (see Desrosiers et al., 1984; Vance 
et al., 1997; Desaulniers et al., 1998; Gamache et al., 1999)). 

Since the ESPPRC is very hard to solve (in some cases it is pro­
hibitively hard), classical solution approaches for vehicle routing prob­
lems which are formulated over cyclic graphs are also based on the corre-
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spending non-elementary SPPRC, because it can be solved using pseudo-
polynomial algorithms (see Section 4.1). Influential contributions which 
rely on this idea were Desrosiers et al. (1986); Desrochers et al. (1992); 
Desrosiers et al. (1995). However, while solving the enclosing problem by 
branch-and-price, this subproblem relaxation sometimes leads to weak 
lower bounds and possibly impractical large branch-and-bound trees. 

For the SPPRC with k-cycle elimination (SPPRC-fc-cyc), 
Q = {/c-cycle-free paths}. A compromise between solving the ESPPRC 
and the SPPRC is to forbid cycles of small length. Several examples of 
VRPTW instances, e.g., taken from the benchmark library of Solomon 
(1987), show that cycle elimination for small values of k can substan­
tially improve the master program lower bounds. This justifies an ad­
ditional effort to eliminate cycles (compared to solving a pure SPPRC) 
while the corresponding ESPPRC is practically impossible to solve. The 
case k — 2 was first analyzed by Houck et al. (1980) and used in the 
VRPTW context by Kolen et al. (1987); Desrochers et al. (1992). Irnich 
and Villeneuve (2003) recently proposed an algorithm for the general 
case of /c > 2. 

For the SPPRC with forbidden paths (SPPRCFP), g = {all paths} \ 
f̂orbidden where f̂orbidden IS a set of forbidden paths. This set is implicitly 

defined as the set of all paths that contain at least one element of a 
finite set of pre-specified sub-paths. Villeneuve and Desaulniers (2000) 
introduced this type of SPPRC which occurs two-fold in the context 
of branch-and-price. First, in some applications one wants to branch 
so that a route or schedule is excluded from the (restricted) master 
program (see Desaulniers et al., 2002b; Arunapuram et a l , 2003). This 
makes it necessary to also exclude the corresponding path from being 
generated by the SPPRC pricing procedure. Second, some constraints 
might be impossible or very hard to model with resources. Instead of 
considering them directly, one iteratively solves relaxed SPPRCs to get 
tentative solutions, which are excluded from the SPPRC by means of 
forbidden paths as long as not all constraints are respected. Examples 
of hard-to-model constraints stem from aircrew scheduling applications, 
see e.g. Fahle et al. (2002). 

Two additional types of constraints, precedence constraints and pair­
ing constraints^ are important in the pickup and delivery context. Given 
two nodes i, j G F , a path P fulfills the (i, j)-pairing constraint if node i 
occurs as often as node j in P (possibly P contains none of them). 
A path P fulfills the (i, j)-precedence constraint if P contains no sub-
path connecting j with i. The SPPRC with pickups and deliveries (SP-
PRCPD) is a subproblem of the vehicle routing problem with time win­
dows, pickups and deliveries (see Dumas et al., 1991; Desaulniers et al., 
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2002a). In this problem, transportation requests i G / must be satisfied 
where a request requires a pickup at an origin i'^ and a dehvery at a des­
tination i~, Consequently, the SPPRCPD contains an (i"^,i~)-pairing 
and an (i+, i~)-precedence constraint for each request i G / . 

In a branch-and-price context, each node and each arc represent a 
(possibly empty) sequence of tasks, where a task (e.g., a flight leg, a 
train segment, or a crew pairing) is associated with a set partitioning 
constraint in the master problem. A task can be part of several sequences 
and can therefore be represented by several nodes and arcs. For any path 
P = iy^^vi^,,. ^Vp) there is a (uniquely defined) task sequence W(P) 
given by the concatenation of the sequences of tasks of t'o, ('̂ o '̂̂ i)) '^b 
(t;i, 1^2),..., (t'p-i, fp), Vp, All of the above path-structural constraints 
might also be formulated w.r.t. the task sequences. For instance, the 
task-ESPPRC considers only paths P for which W (P) does not contain 
task repetitions or the task-SPPRC-2-cyc does not allow paths having a 
2-cyclein W{P), 

Several branching rules proposed in the hterature impose additional 
constraints on how two given tasks have to be covered by the paths. The 
branching rules of Ryan and Foster (1981) decide whether two tasks i 
and j are covered by the same path or by different paths. Hence, one 
branch is simply an (i, j)-pairing constraint. The other branch is an 
(i^jy anti-pairing constraint which forbids tasks i and j to be together 
in W{P), i.e., ^ = {P: i ^ W[P) or j ^ W{P)], Similarly, the inter­
task constraints (introduced in Desrochers and Soumis (1989)) decide 
whether two given tasks i and j are performed consecutively or not. In 
this case, an {i^j)-follower constraint guarantees on one branch that, for 
each path P E. Q^ W(^P) contains task i followed by task j or none of 
these tasks. On the other branch, an {i^ j)-non-follower constraint only 
allows paths P G ̂  for which W[P) does not contain task i followed by 
task j . 

Summing up the definitions of resource feasibihty and path-structural 
constraints, we know that the set J^ = [J^^Y{J^{S^V) f) Q) contains all 
feasible paths to a one-to-all SPPRC problem. 

2.3 Objectives and generic SPPRC formulation 
The objective of the SPPRC is formulated by means of a resource 

vector at the last nodes of feasible paths. Recall that in general, for 
a single path P E T there exist many feasible choices for the resource 
vectors T G T{P). Problems whose objective depends only on a sin­
gle resource, called cost resource, are normally one-to-one shortest path 
problems with a source node s and a sink node t. They can be formulated 
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as follows: 

( min T^'^A . (2.3) 
\Ter(p) J 

mm 
PeT{s,t)ng \Ter(p) 

Computing the minimum cost of a path P = {VQ^ . ̂ . ̂ Vp) requires the de­
termination of feasible resource vectors To,. •., Tp along the path. Simi­
larly to the feasibility problem T{P) ^ 0 discussed above, this can be a 
hard problem. In contexts with time windows, Dumas et al. (1990) opti­
mized the cost of a given path for time-dependent convex inconvenience 
costs at all nodes. 

A much more general formulation of the SPPRC is based on consider­
ing the set of Pareto-optimal resource vectors. For a given set M C M^, 
an element m € M is Pareto-optimal ii x ^ m holds for all x G M, x 7̂  
m. It means that none of the cones x^ for x G M, x 7̂  m contain a 
Pareto-optimal point m, where a cone T"- is defined as {5 G M^: 5 > 
T}. For t; G y , let PO{v) be the set of Pareto-optimal vectors in 
UpGJ^(s,i;)na^(^)* ^^^ SPPRC can be formulated as follows. 

Generic SPPRC: Find for each node v eV and for each 
Pareto-optimal resource vector T G PO{v) one feasible (rep­
resentative) s-v-pdith P G J^{s^ v) DQ having T G T{P), 

For the sake of convenience, we call the representative path P a Pareto-
optimal path. Since ah solutions to a problem xninmeM Oi^ • m for a 
non-negative weight vector a G R:^, a / 0 are Pareto-optimal points 
of M, the generic SPPRC formulation also solves all problems of the 
form 

min f min a^T] (2.4) 
PeHs,t)nG \Ter{P) ) 

for any weight vector a G M^. Problem (2.3) is a special case of (2.4). 

2A Properties of r{P) 
We will now study properties of the set T(P) for a fixed path P — 

(i;o, f 1 , . . . , t'p) under different assumptions concerning the REFs. Know­
ing T[P^ and its structure is essential to (efficiently) resolve the following 
two basic tasks: 

• Given a path P . Is P resource feasible, i.e., P G T{y{)^Vy) or not? 

• Given the prefix P' — (t'o, • . . , '^p-i) of P = (t'o, • . . , 'Up_i, i;p), com­
pute r ( P ) using r ( P O . 

Furthermore, compact implicit representations of T(P) are substantial 
for checking if a path P (or any of its extensions) is or might be a Pareto-
optimal path. For instance, efficient dominance checks in the context of 
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dynamic programming are based on representing T(P) by either using 
a single Pareto-optimal point T{P) or a function gp{') to describe the 
set of Pareto-optimal points in T{P)^ see Section 4.1. 

Before discussing different cases, we state the following universal prop­
erty: I fTG r ( P ) thenr^n[a^p,6^J C r ( P ) , i.e., the set r ( P ) contains 
the cone, restricted to the resource interval, generated by each point in 
this set. 

Classical SPPRC and non-decreasing REFs, In the classical 
SPPRC the set T{P) has a simple representation as a cone restricted by 
[^vp-) bvp]' Let Pi — (t'o^ - • 5 ^i)^ i — 0 , . . . ,p be the prefix of P of length i. 
Each set T(P^) has a unique cone-defining element T{Pi) G T{Pi) such 
that 7{Pi) = T{PiY n [a^.^hy.] holds. The resource vector T{Pi) can be 
recursively computed by 

r(Po) = â o and 

T{Pi) = max{a^.,/^._^,^.(r(Pi_i))} for all i G { l , . . . , p } . 

The same is true when all REFs are non-decreasing functions, meaning 
that each flATl^Tf^... ,T^^) is a non-decreasing function in one vari­
able T^^ when the other R—1 components are kept fixed. Under these 
assumptions T{P) is still a cone. Formula (2.5) computes T{P) with 
T{PY n [a^ ,̂ 6^J - r{P) efficiently. 

As a consequence, the generic SPPRC formulation can be simplified 
as follows. 

Generic SPPRC vv̂ ith non-decreasing REFs: Find for 
each node v ^ V one feasible representative s-t'-path P G 
J^{s, v)r\g for which T{P) is Pareto-optimal in {T{Q): Q G 

Formulation (2.4) can then be re-written as minp^jr(^gi)^ga^T{P). 

Linear REFs. If the REFs are hnear but not necessarily non-
decreasing, it is easy to see that T{P) is a bounded polyhedron. The 
description of the polyhedron T(P) (e.g., by its extreme points) can get 
more and more complicated the longer the path P is (see loachim et al., 
1998) and Section 4.1.2). 

For instance, consider the path P = (1,2), R — 2 resources, resource 
intervals [ai,6i] = [0,1]^ and [a^M] = [0,1] x [-1,1] and the REF 
fi2{Tl,Tl) = \TI,T1 ~ Tl), It is easy to see that T{P) is {{Tl,T^) G 
[0,1] X [-1,1]: r | > -Tl). There exists no element T G T{P) such that 
T{P) C r^ holds. Note that all vectors T = (A, -A) for A G [0,1] are 
Pareto-optimal points of T[P), 
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General REFs. For arbitrary REFs, checking whether P e J^{u, v) 
or equivalently T(P) ^- 0 holds or not can be an A/'P-hard prob­
lem. A known A/'P-complete problem is the binary knapsack lower 
bound feasibihty problem (KLBFP) (see Nemhauser and Wolsey, 1988): 
Does there exist a feasible solution with profit at least lb for a given 
lower bound lb to the knapsack problem max^^^^p^Xi; Yl^=i ^i^i ^ C'̂  
X G {0,1}^? One can easily transform this decision problem into an SP-
PRC with three resources: Negative profit, weight, and decision. Let 
G = {V^A) be a line graph with nodes V = {0 ,1 , . . . ,n} and arcs 
A - {(0,1), (1,2), (2 ,3) , . . . , ( n - 1 , n)}. Let [ao, 6o] = [0,0] x [0, C] x [0,1], 
[a^, b^] = [-00, -lb] X [0, C] X [0,1], and [a ,̂ bi] = [-oo, 0] x [0, C] x [0,1] be 
the resource windows at all nodes i G F \ {0, n}. Define the REFs to be 
fi-iAv^ u», x) = (p, w, 0) for a; = 0, and /z-i,i(p, w, x) = {p-pi,w + Wi, 0) 
for X j^O, The answer to the KLBFP is ''yes" if and only if T{P) j^ 0 
for the path P == ( 0 , 1 , . . . , n). 

2*5 Underlying network 

The SPPRCs can also be differentiated according to whether or not 
their underlying network is acyclic or cyclic. The existence of cycles 
implies that there exist infinitely many different paths in G (not neces­
sarily feasible w.r.t. resource and path-structural constraints). Thus, the 
SPPRC might be unbounded. In the following, we exclude these cases 
from our consideration. 

The following discretization of G = (V, A) formally makes the underly­
ing network acyclic. If there exists at least one non-decreasing resource r 
(i.e., flj{Ti) -Tl >0, or t^^ > 0 in the classical SPPRC with /[̂ -(T )̂ = 
T[ +1[- for all (i, j ) G A, e.g., the resource time in many apphcations) it 
is possible to transform {V^ A) into an acyclic time-space network. Each 
node t' G V̂  is replaced by several copies copy^(f),... ,copy^(f) corre­
sponding to a time discretization of the resource interval for r. Nev­
ertheless, this transformation is only a formal device, e.g., used in the 
unified model of Desaulniers et al. (1998). Cycles of the original network 
correspond with paths visiting two or more copies of the same original 
node. Solving the ESPPRC in G is, therefore, equivalent to solving an 
SPPRC with task-cycle eUmination in the discretized network. 

3, Modeling issues 

The modeling of standard constraints like capacity constraints, path 
length restrictions and time windows is obvious from the introduction. 
Other simple examples can be found in Vance et al. (1997); Gamache 
et al. (1999); Desaulniers et al. (1999). This section wih, therefore, focus 
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Table 2.L Resource intervals and REFs for task-related constraints. 
Constraint 

(/c,£)-pairing 

(/c, ^)-anti-pairing 

(/c,^)-precedence 

(/c,^)-pairing 
and precedence 

(/c,^)-foIlower 
and 
(/c, ^)-non-follower 

Type Resource interval 

for alH e y 

R= 

R^ 

R^ 

R=^ 

Ä^ 

[0,0] for i = s,t 
[-M,M] ioxieV\{s,t} 

[0,0] for i :== s 
[0, M] for i = k, [-M, 0] for i = 
[-M.,M] for ieV\{s,k,£} 

[0,1 - 6ik] 

[0,0] for i=^ s,k,t 

[ -1 , -1] for z = ^ 
[-1,1] for a lHG V\{s,t,k,£} 

[l{W{s)),l{W{s))\ ioYi = s 
[0, TV] for z e F \ {s} 

REF 
flj(Ti) 
for all (ij) G A 

Ti + 6ik - (5i£ 

77 + Sik - Sie 
i 

T[ + 6u 

Ti + <5i£ — oik 

(see equation (2.6)) 

on non-trivial modeling issues, provide examples and give references to 
some relevant literature. 

In some applications, one wants to model exact resource consumptions 
instead of minimal resource consumptions. For the SPPTW it means 
that waiting is not allowed so that the arrival time at each node is 
always identical to the visiting time. In general, the inequahties in (2.2) 
defining a resource-feasible path P = {VQ^ t'l, • • •, t'p) have to be replaced 
by T[^i = fy^^y (Ti),By R^ (resp. R-) we denote the resources which 
force an equality (resp. inequality) in (2.2). However, as suggested in 
Gamache et al. (1998), a resource r 6 R^ might equivalently be replaced 
by two resources ri ,r2 € R- where the resource intervals and REFs 
for ri are identical to those for r while those for r2 are [tt[^,6[^] = 
[-bl-al] and ^^T, ) = -fl^if^,... ,fr\-ir\f[+\.. .,fi') (the 

symbol refers to the case with the ri and r2 resources). 
Section 2.2 has provided several examples of path-structural con­

straints. Most of them can be modeled with additional resources (one 
for each constraint) in a standard SPPRC. For the ESPPRC, Beasley 
and Christofides (1989) proposed to add to R- an additional resource 
ry for each node v G V. (For a compact notation, we use the Kronecker-
symbol with Sij ~ 1 Hi = j , and 6ij = 0, otherwise.) The resource 
intervals are defined as |a^", 6[''] = [0,1 - 6si] for all i e V and the REFs 
by fljm) = Tl^ + 5iy for all (i, j ) G A,^ 

Table 2.1 gives an overview of how (anti-)pairing constraints, prece­
dence constraints, and (non-)follower constraints can be modeled by 
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means of resources. In this table, M is a sufficiently large positive in­
teger. For the first group (pairing, anti-pairing, and precedence) we 
assume that a single task is associated with each node. Note that the 
modeling proposed for the (A;,^)-pairing and precedence constraints is 
equivalent to the set component proposed by Dumas et al. (1991) for 
the SPPRCPD. 

If a single task is associated with each node, follower and non-follower 
constraints simply imply the removal of some of the arcs (see e.g. 
Desrochers and Soumis (1989)). Therefore, we present these constraints 
for the case that sequences of tasks are associated with arcs and nodes. 
We assume that tasks are numbered from 1 to Â ,̂ the last task of any 
non-empty task sequence W{') is denoted by l{W{')), For empty task 
sequences one defines/(VF(0)) - 0 . 

All follower and non-follower constraints can be modeled with a single 
resource r, where T[ G { 1 , . . . , N} means that the last task of the task 
sequence of the current path (5 , . . . ^Vi) was the one with number T[, 
T[ = 0 means that the current path has an empty task sequence. The 
definition of the corresponding REFs is: 

T[ iiW{ii,j),j)=0 

l{W{{i,j),j)) iiT[^O,W{{i,j),j)^0, 

and (7;^W^((^,i),j)) feasible 

l{W{{i,j),j)) iiT[ = O,W{{i,j),j)^0, 

and W[{i^j)^j) feasible 

— 1 otherwise. 

The strength of the non-classical REF concept is that it allows mul­
tiple resources to depend on each other. In several applications such as 
the aircrew pairing problem Vance et al. (1997), the cost of a path de­
pends on several resources. A second example of non-trivial dependent 
REFs stems from the capacity constraints of the VRPTW with simulta­
neous pickups and deliveries^ see Min (1989); Desaulniers et al. (1998). 
Here, each customer i eV\{s^t} has demanded for delivery qf and for 
pickup g?. A vehicle of capacity Q starts at the depot s with the entire 
delivery demand of the tour loaded. It services each customer (pickup 
after dehvery) so that the vehicle reaches the final depot t having the en­
tire pickup demand on board. A feasible path (route) is one in which the 
pickups of already visited nodes plus the deliveries of the following cus­
tomers do not exceed the vehicle capacity on any arc traveled. The fea­
sibility problem is modeled with two dependent resources rp, rmax ^ R~^ 
where the resource variable T^ ^ is demand already picked (directly after 
node i) and Tl""^"" is the maximum load in the vehicle on the path from s 

fim = { 
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to i. Obviously, one has [a[^6[^] = [a[^^^6[^^^] = [0, Q] for oil i e V 
and fl^{Tl""Xr^"") = T^"" + gj for all {ij) G A. For the maximum 
load, one has non-hnear but non-decreasing REFs flj^''''{Tl^^T['^^'') = 
max{T^ ^ + Qjj j\̂ max -f.. g^}. it means that the maximum load at node j 
(following node i) is either the entire pickup demand at the end of the 
path, computed by T̂  ^ + ^^, or results from the maximum load on the 
sub-path (0 , . . . , i) to which the delivery of j has to be added. 

The modeling of other non-linear resource consumptions is straight­
forward, e.g., soft time windows (see Dumas et al., 1990), load-dependent 
travel costs or time-dependent travel times (connections (i, j ) with dif­
ferent travel durations depending on the time of the day). Complex 
schedule regulations and their modeling can be found in Desaulniers 
et al. (1997); Vance et al. (1997). 

Another non-trivial example of dependent resources is the computa­
tion of the minimal waiting time for an SPPTW path. With the notation 
for the SPPTW given in the introduction, the total waiting time along 
path P = (t'o, t^i, . . . , t'p) is given by Tp — TQ — J2^=i U-i.i- Desaulniers 
and Villeneuve (2000) showed that three resources with non-decreasing 
REFs are enough to compute both the earliest arrival time and the min­
imal waiting time (or equivalently, an associated waiting cost). 

4. Solution methods 
This section describes different methodologies developed for solving 

the SPPRCs, namely, dynamic programming which has been used exten­
sively, Lagrangean relaxation, constraint programming, and heuristics. 
It also presents a graph modification approach for the SPPRCFP. 

4.1 Dynamic programming and labeling 
algorithms 

Dynamic programming solution approaches for the SPPRC system­
atically build new paths, starting from the trivial path P = (5), by 
extending paths one-by-one into all feasible directions. Their efficiency 
depends on the ability to identify and discard paths which are not use­
ful either to build a Pareto-optimal set of paths or to be extended into 
Pareto-optimal paths. Discarding non-useful paths is achieved by a dom­
inance sub-algorithm based on dominance rules, which strongly depend 
on the path-structural constraints and the properties of the REFs. 

For the sake of efficiency, paths in the dynamic programming algo­
rithms are encoded by labels. Paths sharing a common prefix are rep­
resented by using a single chain of labels for their common prefix. This 
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is implemented with the help of a tree data structure in which a label 
corresponding to path P = {VQ, . . . ^Vp^i^Vp) is directly linked back to 
the label of the prefix path {VQ^ . . . ^Vp-i) (see e.g. Ahuja et al., 1993, 
for an introduction to labeling algorithms). Beside encoding the path it­
self, the label typically stores a representation of T'(P), e.g., given by the 
unique resource vector T{P) in case of non-decreasing REFs. In loachim 
et al. (1998) a more complex representation of T{P) is stored in the la­
bels, while Irnich and Villeneuve (2003) store additional (compressed) 
information to accelerate the dominance algorithm. 

In order to formalize the above ideas, we need some definitions. For 
a given path P = {vo^^i^ - - ^'^p) we call v{P) = Vp the resident node 
of P. A path P = ( '̂o '̂̂ i, • • • )'̂ p) is a feasible extension of path Q = 
{wo,wi,,,,,Wq) ii{Q,P) = {wo,.^,,Wq,vo,.,.jVp) G J^{wo,Vp)ng, The 
set of all feasible extensions is £{Q) = {P: (Q, P) G J^{wo,v{P)) D Q}, 

Labehng algorithms rely on the manipulation of two sets. The first 
set U is the set of unprocessed paths^ which have not yet been extended. 
The second set V is the set of useful paths. Useful paths P e V 
have already been processed. They have been identified to be Pareto-
optimal or might be prefixes of Pareto-optimal paths (note that Pareto-
optimal paths might have prefixes which are not Pareto-optimal, see 
Section 4.1.2). Both sets, U and P , change dynamically in the course of 
the labeling algorithm. 

One can identify two basic procedures invoked by the labeling algo­
rithm (see the pseudo-code below). In the path extension step an unpro­
cessed path Q eU is chosen, all feasible extensions (Q, v) with v eV are 
constructed and added to W, while Q itself is removed from U. Thus, the 
extension step replaces one element of U by all of its feasible one-node 
extensions. Once processed, an element is transferred to the set P . If 
possible, the dominance algorithm reduces the sets U and V. Its goal 
is to accelerate the overall labeling procedure by limiting the number of 
necessary extension steps. 

The path extension step and the dominance algorithm maintain the 
following invariant: The useful paths V and all extensions of unpro­
cessed paths U together contain a solution of the SPPRC, Recall from 
Section 2.3 that an SPPRC solution is not necessarily unique since it 
contains representatives taken from a set of desired solutions, e.g., one 
path for each Pareto-optimal resource vector. Therefore, let S be the 
set of all diff'erent solutions of an SPPRC, where each element <S G S is 
a set of paths, e.g., Pareto-optimal paths. The above invariant is 

35 G E: 5 C {(Q, p):QeU,Pe £{Q)} U V, (2.7) 
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The algorithm is initiahzed with U — {PQ} and V — 0 where PQ = {s) 
is the trivial path. Each path P = {VQ^vi^,.. ^Vp) 6 ^ results from an 
extension of PQ? i-e., ('^i, • • • ,'î p) G f(Po)- Hence, condition (2.7) holds 
for the initialization. Obviously, the path extension step also maintains 
the invariant. The crucial point is to define dominance rules in such a 
way that the dominance algorithm also respects (2.7). We focus on that 
aspect in Section 4.1.2. By doing so, the algorithm finally terminates 
with an 5 C P for some <S € S. In a post-processing filtering step 
Pareto-optimal solutions can be extracted from P . 

Generic Dynamic Programming S P P R C Algorithm { 
(* Initialize *) 
SET U = {{s)} and P - 0 
WHILE U-i^0 DO 

(* Path extension step *) 
CHOOSE a path Q eU and REMOVE Q from U 
FORALL arcs {v{Q),w) G A of the forward star of v{Q) DO 

IF (Q, w) e T{s, w) n g THEN ADD (g, w) to u 
ADD g to P 
(* Dominance step *) 
IF (* any condition *) 

APPLY dominance algorithm to paths from U öV ending 
at some node v 

(* Filtering step *) 

FILTER V, i.e., identify a solution S CV 

} 

Several remarks should be made. 

1 If one performs path extension steps only, but no dominance steps, 
the result is "P = ^ , i.e., the algorithm computes all feasible paths. 

2 The path extension step leaves the freedom to choose paths Q eU 
according to different processing strategies. These path selection 
strategies can lead to label setting or label correcting algorithms 
depending on the underlying network and the REFs. These issues 
will be discussed in Section 4.1.1. 

3 The dominance algorithm can be applied at any time in the course 
of the algorithm. In order to keep the effort small, it makes sense 
to delay the dominance algorithm to a point when there is a chance 
to remove several of the paths at the same time, before they are 
processed in the path extension step. 

The dominance rules strongly depend on the problem at hand. 
Section 4.1.2 discusses the impact of different path-structural con­
straints and classical, non-decreasing, special or general REFs. 
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4 There exist efficient algorithms for the filtering step to identify, 
e.g., Paretp-optimal paths (see Bentley, 1980; Kung et al., 1975). 

4.1.1 Label setting and label correcting algorithms. The 
defining property of a label setting algorithm is that those labels chosen 
to be extended (in the path extension step) are kept until the end of 
the labeling process. They will not be identified as discardable in sub­
sequent calls of the dominance algorithm. Labeling algorithms that do 
not guarantee this behavior are called label correcting algorithms. The 
general ideas of label setting as well as label correcting algorithms in 
the context of the one-dimensional shortest path problem (SPP) are, for 
instance, explained in the book of Ahuja et al. (1993). 

An acyclic network G = (V, A) naturally gives rise to label setting 
algorithms if. paths are treated (that is, chosen and extended) accord­
ing to a topological order of their resident nodes. More precisely, the 
above generic algorithm loops over the topologically sorted nodes v — 
5, ̂ '2) • • • 5 v\Y\, applies the dominance algorithm to the paths {P G UUV : 
v{P) = v} resident at the current node i;, and extends those paths who 
survive the dominance process into all feasible directions. 

It is possible to mimic an acyclic network for the treatment of labels if 
the resource consumptions for at least one resource r are strictly positive, 
i.e., flj{Ti) -T[ > 0 holds for all (i, j ) E A and all Ti G [a^,6^]. In 
this case, the labeling algorithm chooses unprocessed paths Q eU with 
minimum (or ''small") T{QY for extension first. It is guaranteed that 
paths Q already treated only produce extensions (Q, P) with r ( Q , Py > 
T{Qy, Hence, newly generated paths cannot enforce the ehmination of 
already treated paths. Desrochers and Soumis (1988) used the concept 
of generahzed buckets to identify paths with small value T{QY, 

Label correcting algorithms solve shortest path instances with neg­
ative arc lengths. The existence of negative resource consumptions 
fL(Ti) — T[ for an arc (i,j) and all resources r (i.e., negative tlj for 
the classical SPPRC) means that the strategy of treating paths in a 
strictly increasing ord er of their resource vectors has to be replaced by 
a more flexible processing strategy. The well-known Ford-Bellman label 
correcting algorithm for the SPP adds newly generated labels to the end 
of a queue and extends labels one-by-one starting with the label cur­
rently at the top of the queue. Powell and Chen (1998) have presented a 
more sophisticated generalized label correcting strategy for the SPPRC, 
which is directly applicable to the general SPPRC case. 

4.1.2 Dominance rules and dominance algorithms. Ef­
ficient dominance rules have been described for the SPPRC, ESPPRC 
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and SPPRC-Zc-cyc with non-decreasing REFs. Recall that in these cases 
each path P 6 T{s^ v) has a unique resource vector T[P) G T{P), which 
is the only Pareto-optimal point of T{P), 

Dominance rules identify paths Q to be non-useful in the following 
sense: Q is neither necessary to describe the set of Pareto-optimal solu­
tions PO[v{Q))^ nor feasible extensions Q' G £{Q) lead to paths (Q, Q') 
necessary to construct PO[v{Q')), Such a path Q can be discarded. 
Typically, dominance rules identify non-useful paths by comparing T{Q) 
and £{Q) with the corresponding values T{P) and £{P) of paths P res­
ident at node v{P) = v{Q). We discuss the cases SPPRC, ESPPRC, 
SPPRC-2-cyc, and SPPRC-/c-cyc with non-decreasing REFs in detail. 

SPPRC. Given two different paths P,Q eUUV,v{P) = v{Q) with 
T{P) < T{Q)^ the dominance algorithm can discard path Q while keep­
ing P, which results from the following two arguments. First, T{P) < 
T{Q) means that T{Q) is not necessary to represent Pareto-optimal 
paths ending at v{Q). Second, one has to investigate possible extensions 
of Q, The fact T{P) < T{Q)^ the absence of any path-structural con­
straints and the non-decreasing REF imply £{P) 2 £{Q)' Therefore, 
any Q' G £{Q) fulfills (P,QO ^ ^ and T{P,Q') < T{Q,Q'), There do 
not result any Pareto-optimal resource consumptions from extensions 
of Q which could not have been built using extensions of P . Hence Q 
can be discarded. 

Note that dominance rules are sensitive to the occurrence of paths 
with identical resource vectors. Therefore, one has to distinguish be­
tween dominance and discarding dominated paths. Two paths P^Q E 
^ (5 , v) with r ( P ) = T{Q) dominate each other but only one of these two 
can be eliminated (while the other one is kept). (Irnich and Villeneuve, 
2003) propose techniques to resolve ambiguity and analyze them for the 
SPPRC and SPPRC-A:-cyc cases. 

ESPPRC. In presence of path-structural constraints, the relation 
r ( P ) < T{Q) does not necessarily imply the relation £{P) 'D £{Q). For 
the ESPPRC, the reason is that paths P e G can only be extended to 
nodes not already visited. We denote the set of visited nodes by V{P). 
A restricted dominance rule for the ESPPRC allows to discard path Q 
if r ( P ) < T{Q) and V{P) C V(Q) since both conditions together imply 
£{P) D £{Q). Beasley and Christofides (1989) modeled the sets V{P) 
for paths P G ̂  by one additional resource for each node of V. 

Feillet et al. (2004) improved the idea of Beasley and Christofides. 
They interpreted the set V{P) differently as the ''set of nodes which 
cannot be visited any more^\ By analyzing the resource vector T{P) 
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path Q: s - 1 
path P: s - 2 - 1 

path s - 2 -1 
ath Pi: s - 1 - 2 -1 

pathQ': s- 1 -t 
path5: s - 2 - l - t 

path s - 2 
path s - 1 - 2 

[ 1, 4 ] 

Figure 2.2. Example of an SPPTW with 2>cycle elimination. 

they identified additional unvisited nodes which are impossible to reach 
(e.g., because of current time, time window constraints and non-negative 
travel times). These nodes are added to the set V{P) to form the set 
V{P), As a result, the above dominance rule based on the "extended" 
sets V{P) can eliminate more paths. 

SPPRC-2-cyc. An informal description of a dominance rule for 
the 2-cycle elimination case is the following: Keep only a Pareto-best 
path Pi and a second-best path P2 which is extended from a different 
predecessor node. For any path P = (i;o,..., Vp-i^ Vp) with p > 1, the 
node Vp-i is called the predecessor node and denoted pred(P). It is 
easy to see that the SPPRC dominance rule applies to paths P, Q, 
v{P) =^ v{Q)^ T{P) < T{Q) having identical predecessor nodes. Kohl 
(1995); Larsen (1999) showed that if £{P) does not contain the one-
node path (pred(P)), i.e., the dominating path P cannot be extended 
to its predecessor node, the SPPRC dominance rule also remains valid. 
Contrarily, given three different paths Pi, P2, Q. v{Pi) — v{P2) — v{Q)^ 
r (P i ) , r (P2) < r (Q) with different predecessors pred(Pi) ^ pred(P2), 
one can discard path Q while keeping Pi and P2. The proof of this rule 
is based on the fact that pred(Pi) 7̂  pred(P2) implies £{Pi) U £{P2) 2 
SiQ). 
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An example of an SPPTW with 2-cycle elimination is shown in Fig­
ure 2.2 and illustrates the two above-mentioned dominance rules. 

First, at node 1 the paths P and Q fulfill T{P) < T{Q). Since 
pred(P) ^ pred((5) it is not allowed to eliminate Q, This is substantial 
because the dominated path Q = (5,1) is a prefix of the Pareto-optimal 
path Pi = (5, l ,2,t) at the sink t. The path-structural constraints im­
ply that some dominated paths, like Q, are still useful paths. Second, 
path Q' at node t can be discarded because the two dominating paths Pi 
and P2 have different predecessor nodes (alternatively, because P2 and 
Q' have the same predecessor node). 

SPPRC-/c-cyc, Handhng the /c-cycle ehmination case for /c > 3 
needs sophisticated data structures (see Irnich and Villeneuve, 2003). In 
essence, the dominance rule efficiently checks whether 

£{Q)C [j £{P) (2.8) 

PeVUU: T{P)<T{Q)MP)=v{Q) 

holds, i.e., all extensions of dominating paths cover the extensions of Q, 
A path Q for which (2.8) holds can be discarded. There exists a finite 
representation of the right hand side of (2.8), which uses up to {k — 1)!^ 
vectors (so-called set forms) with (2) entries. Moreover, these set forms 
can be used to efficiently encode and update the relation (2.8) so that the 
evaluation of (2.8) can be performed in constant time. From a complexity 
point of view, the main result of this dominance rule is that the maximum 
number of paths stored in V UU grows by a factor a{k) compared to 
the classical SPPRC. The factor a{k) is independent of the size of the 
underlying network and bounded by a{k) < k{k — 1)!^. 

S P P T W T C . Another case where efficient dominance rules have 
been described is the shortest path problem with time windows and 
time costs (SPPTWTC)(see loachim et a l , 1998). An SPPTWTC in­
stance is uniquely defined by the SPPTW data, i.e., travel costs QJ, 
travel times i^j, and time windows Ictj^ 6j], together with arbitrary node 
costs Wj € M (positive as well as negative) for the nodes j E V, Visit­
ing the node j at time T̂ "̂̂ ^ causes additional time costs or profits of 
WjTj^^^, Hence, depending on the sign of Wj it is advantageous to visit 
node j as early or as late as possible. When negative and positive time 
costs occur together at the nodes of a path, the determination of fea­
sible visiting times Tj^^^ with minimum overall cost is an optimization 
problem in itself. 

Formally, the SPPTWTC is a two-resource problem with a resource 
time and a time-dependent resource cost The REFs for time are given 
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Figure 2.3. Example of an S P P T W T C : Travel t ime and travel cost are given as 

pairs {tij,Cij) for each arc ( i , j ) , t ime windows [ai,6i] and linear node costs Wi are 
given for each node i, pa ths ending at node t are P i = (s, 0 , 1 , ^), P2 — (s , 0, 2, t), and 

P 3 - ( 5 , 0 , 3 , t ) . 

20 T/me 

Figure 2.4- Piecewise linear cost functions representing T{P) for the paths Pi 

(s, l , t ) , P2 = (s,2,t) , and ft = (5,3,t). 
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by flp^Tf'"^^) = Tl'"^^ + Uj and for cost by /f/^H^ji^^ T[^'^) - T;̂ ^^^ + 
Cij+WjTj^^^. This is a (minor) extension of the REF concept of Section 2 
because f^j^^^ depends on a resource variable Tj^^^ of the node j (and 
not only on resource variables Ti at node i). Figure 2.3 shows a small 
SPPTWTC example. Next to each node, the resource space (a time-cost 
diagram) shows the set T{P) for each of the feasible paths P. Obviously, 
T{P) is a bounded polyhedron. 

Dominance rules for the SPPTWTC were proposed by loachim et al. 
(1998). Although presented differently, their main ideas are the follow­
ing. The set T{P) is determined by its lower envelope, which is a piece-
wise linear (cost) function fp(T^^^^) with a maximum oi p + 1 pieces 
when P has length p (in the following we use T = ĵ time^ r^^^^ func­
tion fp{T) is convex and only its first strictly decreasing part is relevant 
for dominance (since the objective is to find the minimum-cost path, the 
nonnegative slope segments are useless (see loachim et al., 1998, p. 196). 
Hence, the relevant piecewise linear cost function is 

"̂"̂  ' \ / * , forT>argminT/p(r) 

with the minimum /* — min^/p(T). Simple update formulas allow to 
compute gp{T) from gp'{T) when P' is the prefix path of P = {P\v), 
A path Q can be discarded if there exists paths P i , . . . , P/̂  ending at 
V = v{Q) = v{Pi) = . . . = v{Pk) with T{Qr C U t i ^ ( ^ z ) ' (for a 
set X the symbol X^ denotes the set [Jxex^^)- '̂ '̂ ^^ dominance rule 
can be implemented by computing the minimum cost function Gy (T) = 
minp gp{T) over all paths P ending at node v. Each path Q with v{Q) — 
V which does not contribute to the minimum cost function Gy{T) can 
be discarded. Figure 2.4 shows the situation for the three paths Pi, P2, 
and P3 ending at node t from the above example. All paths Pi, P2, 
P3 contribute to GtiT)^ which is composed of four pieces imposed by 
gp,{T) for T G [5,9), gp,{T) for T G [9,13.3], gp,{T) for T G [13.3,17], 
and gPi{T) for T G [17,20]. None of the paths are dominated by the 
other paths. 

4*2 Lagrangean relaxation 

The constrained shortest path problem (CSPP) is a speciahzed s-t-
SPPRC with independent additive resource consumptions along arcs. 
The resource consumption is constrained only as a whole and not by in­
dividual resource intervals. The objective is to find a least-cost 5-t-path 
with resource consumptions within a pre-specified interval. Among oth­
ers, Beasley and Christofides (1989); Borndörfer et al. (2001) proposed to 
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solve the CSPP with Lagrangean relaxation for computing lower bounds 
and a tree search procedure exploiting these computed lower bounds. 
For the remainder of this section we assume that the underlying net­
work G = (y, A) is acyclic. 

For a formal description of the CSPP, consider R different resources 
including cost as the last resource R with cost matrix C = (cij) = 
{t^j). For the remaining resources, let 7^ - {tlj) e M(^-I )X|^I be the 
resource consumption matrix with non-negative consumptions t[- for r = 
1 , . . . , i? - 1. The REFs are flj{Ti) = Ti + t\^ for all r - 1 , . . . , i? 
and (i, j ) G ^4, and the resource accumulation is Tj — fij{Ti) whenever 
arc {ijj) is traversed. Lower bounds / G R^"^ and upper bounds u G 
R^~^ on the overall accumulated resource consumptions are implied by 
defining [as,6s] = [0,0, [at^bf] = [/,n], and [ai^bi] — [0,u] at all other 
node i E V \ {s^t}. For a given path P and its incidence vector x G 
{0,1}I^I, the resource consumption is TZx and the cost is c^x. P is 
feasible if / < TZx < u holds. Borndörfer et al. (2001) have added a 
goal value 5 G [/, î ] for the resource consumption TZx to the formulation 
of Beasley and Christofides (1989). Slack and surplus variables ZJ^^Z-

measure the deviation of TZx from g^ which is penahzed by P4-,P- G 
R^~^ The CSPP can be stated as follows: 

^̂ ĉspp = niin c^ x + pLz^ + p^z^ (2.9a) 

subject to Ix — Cs — et (2.9b) 

nx + z+- z-^g (2.9c) 

{z.,z^)<{u-g,g-l) (2.9d) 

xe {0,1}I^I, ^_,^+GMfo (2.9e) 

Cost (2.9a) is a combination of accumulated travel costs and the penalty 
for the deviation oiTZx from g. Flow conservation constraints (2.9b) are 
given by means of the arc-node incidence matrix / G {—1,0, l } ' ^ ' ^ ! ' 
and unit vectors 65, ê  G {0,1)1^1. They guarantee that {(^, j ) : Xij = 1} 
forms a path in the acychc network G. Constraints (2.9d) bounds the 
slack and surplus variables so that / < TZx < u is ensured. 

A Lagrangean relaxation of (2.9) can be obtained by relaxing the 
resource consumption constraints (2.9c). Let TT G M^~^ be an associated 
dual price vector. The Lagrangean dual of (2.9) is max^^j^^-i ZBCSPF{^) 

where the Lagrangean subproblem decomposes into the following two 
parts: 

^DCSPP(^) - P{7r) + B{7v) + TT^g (2.10a) 

with P{n) = min(c^ - TT'^TVJX^ 
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Ix = es-eu xe {0,1)1^1 (2.10b) 

and B{7T) = min(pj - 7r^)z^ + (pi + 7r"^)^_, 

0<z-<u-g, 0<z^<g-L (2.10c) 

The first part (2.10b) is an SPP, which can be solved with a label set­
ting algorithm (see Ahuja et al., 1993). The second part (2.10c) is a 
minimization problem defined over a box, which is trivial to solve by 
inspection of the signs of the components of {pj. — TT^) and {pZ + TT^). 

High quality solutions for the above Lagrangean dual formulation can 
be computed with any subgradient optimization method, e.g., a coordi­
nate ascent method as in Borndörfer et al. (2001). The same authors 
proposed to use such a dual solution TT* and the dual solution of (2.10b) 
obtained for TT =: TT* (i.e., a distance vector (/i^(7r*))^^\/) to compute 
so-called Lagrangean distance labels: 

^^(^*) =: /i^(7r*) - /i,(7r*) + Bin'') + / T T * , for ah VEV, 

These labels are very useful to prune the search tree because of the fol­
lowing property. Let x^ G {0, l} '^! and x^ G {0, l } ' ^ ' be path incidence 
vectors of an s-v-pdith and a i;-t-path, respectively. If x = x-̂  + x^ is a 
feasible CSPP path and TT* G R^~^ a Lagrangean multiplier vector, then 

^cspp(^) > 9v{r^n + (c^ - TT* ^7^)x2 (2.11) 

where ^CSPP(^) denotes the cost of path x. The inequality means that 
if the right-hand side is non-negative then there exists no prefix path x^ 
such that x^+x^ has a negative (reduced) cost. Consequently, one should 
implement a tree search for finding negative (reduced) cost CSPP paths 
in G by systematically building t;-t-paths x^ starting at the sink node 
t. A tentative path x^ can be discarded if the right-hand side of (2.11) 
becomes non-negative. Note* that additional constraints that could not 
be considered in (2.9) can always be taken into account in the search 
phase. 

4.3 Constraint programming 
Constraint programming (CP) relies on a model which is defined by 

a set of variables, each with an initial domain, and a set of constraints. 
A CP approach is composed of a search mechanism to explore the solu­
tion space,, a domain reduction algorithm for each constraint that tries 
to remove inconsistent values from the domains of the variables involved 
in that constraint, and a propagation algorithm that propagates these 
domain changes amiong the constraints. It allows to consider a wide 
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spectrum of constraints (algebraic and non-algebraic), including some 
that cannot be modeled using resources or simple path-structural con­
straints: For instance, an employee cannot work more than 8 hours in 
every 24-hour period. Within column generation approaches, CP has 
recently been used to tackle the SPPRC on an acyclic network (de Silva, 
2001; Fahle et a l , 2002) and the ESPPRC (Rousseau et a l , 2003). In 
both cases, the goal is solely to find at least one feasible path with a 
negative (reduced) cost. This goal is modeled as a constraint (the cost 
of a feasible path must be negative), yielding a constraint satisfaction 
problem. 

Fahle et al. (2002) considered an SPPRC on an acyclic network where 
a task, defined by a starting and an ending time, is associated with each 
node. They proposed a model where a boolean variable is associated 
with each node. Such a variable is set to true if the corresponding node 
is part of the path currently built. In this case, we will say that the node 
is selected. Additional variables are also used to specify, for instance, the 
minimal amount of rest to assign after each task. Their model includes 
simple constraints such as the boolean variables associated with two 
nodes whose tasks must be performed concurrently cannot be set at true 
simultaneously, or the total duration of the tasks associated with the 
selected nodes cannot exceed the maximum worked time in a schedule. 
Given a set of selected nodes, these two types of constraints can be used 
to fix some boolean variables to false. 

In de Silva (2001), a different CP model is used. It involves variables to 
indicate the successor node next[t] of each node t and variables to specify 
the amount of accumulated resource consumptions at each node. Nodes 
with next[t] = t are not included in the current path. Path constraints 
model resource consumptions along the selected (partial) path, e.g., for 
the reduced cost, total working time, etc. Each time that a successor 
node is selected, the propagation algorithm is invoked, i.e., constraints 
are verified by solving an SPP for every unselected node of the underlying 
network. For instance, one can exclude a node (i.e., set next[t] == t) if 
the value of the path with the shortest worked time and passing through 
that node t and all selected nodes exceeds the maximum total worked 
time. A similar decision propagation based on the (reduced) cost of 
a path can also be executed. So-called goals^ e.g., based on reduced 
cost shortest path computations, control how new tasks are added to 
the current partial path. The search tree is usually explored until a 
prespecified number of negative cost paths are found or until a time 
limit is reached. 

For the ESPPRC, Rousseau et al. (2003) used a similar model with 
variables for the successor node and variables for the accumulated re-
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source consumptions. Some of the constraints they consider are: AH 
successor nodes must be different, no subtours are allowed, lower bounds 
provided by the resource REFs must be respected, the (reduced) cost of 
a feasible path must be negative. For verifying this last constraint, the 
authors compute a lower bound by solving an assignment problem. The 
choice of the next variable to branch on in the search tree is made in 
such a way to construct a path from the source to the sink node. 

4,4 Heuristics 
Even with sophisticated solution methods, solving an SPPRC instance 

might still be very time-consuming. In the column generation context, 
solving SPPRCs to proven optimality is only necessary to show that no 
negative reduced cost paths exist in the last pricing step. In preceding 
iterations it is sufficient to approximately solve the SPPRC, i.e., to com­
pute any negative reduced cost feasible paths. That is the point where 
heuristics for the SPPRC come into play. In addition, they might be ap­
plied when the entire column generation problem is treated heuristically. 
In the following, we distinguish between three major areas of application 
for heuristics: Pre-processing^ dynamic programming^ and direct search. 

Classical pre-processing techniques eliminate arcs and reduce the re­
source intervals (see e.g. Desrochers et al., 1992). The heuristic version 
of this idea is to solve a given SPPRC instance on a hierarchy of re­
stricted networks, where each of the restricted networks contains only a 
limited number of arcs, e.g., defined by the p > 0 "nearest neighbors" of 
each node. Starting with the smallest p-nearest-neighbor network, one 
solves the associated SPPRC, and if no solution is found, one contin­
ues with the next p. This idea has been used in many implementations 
(e.g. Dumas et al. (1991); Savelsbergh and Sol (1998); Larsen (1999); 
Irnich and Villeneuve (2003)). Another idea is to replace some of the 
resources by less accurate resources to get an easier-to-solve SPPRC 
network. Gamache et al. (1999) gave the example where a restricted 
network measures time rounded up to the nearest hour while the exact 
global network uses minutes. 

Dynamic programming heuristics are based on the techniques of Sec­
tion 4.1 but heuristically accelerate the computation. For the VRPTW, 
Larsen (1999) used a so-called forced early stop rule to quit from the 
dynamic program when an adequate number of negative reduced cost 
columns has been found and a pre-defined number of labels has been 
generated. Chabrier (2002) tried to solve the ESPPRC by using the 
standard path extension step (i.e., not extending a path to a node al­
ready visited) with the stronger SPPRC dominance rule (i.e., only the 
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resource vectors are compared but not the visited nodes). Clearly, this 
procedure is quick but might fail to detect any negative reduced cost 
path. Therefore, he proposed to iteratively apply a dynamic program­
ming procedure which combines the ESPPRC extension step with a grad­
ually parametrizable dominance rule. A parameter DomLevel (between 
0 and (X)) defines the length of a path after which the ESPPRC domi­
nance rule is apphed. If the partial path is shorter, the heuristic SPPRC 
dominance rule is applied. Larger values of DomLevel make the mod­
ified dynamic programming procedure substantially faster. The case 
DomLevel — 0 corresponds with the exact ESPPRC and is expected 
to be quite slow (especially for non-adjusted dual variables). Hence, 
starting with a large value for DomLevel^ the dynamic programming 
algorithm with the modified dominance rule is iteratively applied with 
decreasing values of DomLevel until a negative reduced cost path is found 
(or the ESPPRC is solved exactly). 

Finally, direct search heuristics are mainly based on local search. Such 
improvement procedures start from a given feasible path P and delete, 
insert, or replace nodes or exchange arcs in order to find an improving 
feasible path P ' with smaller reduced cost. Note that after solving the 
restricted master program, the basic variables provide a set of paths 
with reduced cost 0 from which an improvement algorithm might start. 
Successful column generation applications which use these techniques 
can be found in Savelsbergh and Sol (1998); Xu et al. (2003). 

4,5 A graph modification approach for the 
SPPRCFP 

The graph modification approach for the SPPRCFP defined on a 
given network G — (V, Ä) is not a solution method in itself but a 
method that manipulates G to obtain a new network G' = (V'^A^) 
from which all forbidden paths are removed while the other paths of 
G are still feasible. One can then apply any of the proposed meth­
ods for the SPPRC to the network G' to solve the given SPPRCFP. 
Formally, let H be the set of forbidden sub-paths and let f̂orbidden = 
{(P, Q, PO • P^ Q^ P' paths, Qen}so that ^ - { all paths} \ f̂orbidden 
is the set of all feasible paths for the SPPRCFP. The approach of Vil-
leneuve and Desaulniers (2000) merges the original graph G with the 
state graph of a finite automaton, which identifies the infeasible sub-
paths in H. We illustrate the procedure by an example in which G is 
given in Figure 2.5(a) and H - {(1, 2,4), (2,1), (2, 3,1)}. 

The approach works in two stages. First, the algorithm of Aho and 
Corasick (1975) is used to construct the state graph S — (T 5̂, A^) of a 
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Figure 2.5. (a) Example network G = {V]A) for the SPPRCFP. (b) State 
graph S — {Vs^As) of a finite automaton which identifies the sub-paths of H = 
{(1, 2,4), (2,1), (2,3,1)}. "•" stands for any label v ^V except those corresponding to 
the other out-arcs of the same node, (c) Resulting SPPRCFP network G' — {V', A'), 
node 12 corresponds with node 2 of the original network and node 23 with node 3. 

finite automaton, which processes the nodes of a path P to detect the 
first sub-path in 7i it contains. The nodes (states) in Vs correspond 
to the prefixes of the sub-paths in H^ i.e., Vs = {0,1,12,124,2,21, 
23,231} in the example (see Figure 2.5(b)). Each time that a node 
of P is processed, the automaton performs a state transition. Possible 
transitions are represented by labeled arcs. There is an arc (^1,^2) ^ As 
labeled with v e V {v represents a possible node of P) that connects 
two different states zi and Z2 ii zi ^ Ti and Z2 = [a{zi)^v)^ where cr{zi) 
is the longest (possibly empty) suffix of zi for which (^a{zi)^v) G Vs> 
Further loops, i.e., (124,124), (231,231), and (21,21) guarantee that 
once a forbidden sequence has been detected, the automaton stays in 
the corresponding state. The remaining transitions connect a state zi 
back to the initial state 0, The states z e H indicate that a forbidden 
path has been detected. 

Second, the original graph G has to be merged with the state graph S 
to produce a new graph G^ = (y\A^). Prefixes ^ G V̂ - of length 1 
are identified with the nodes of V, The new node set V consists of all 
original nodes V a,nd all nodes of V̂ - except the state 0 and the states 
z e H, In the example, the new node set V is {s, 1, 2, 3, 4,12, 23, t}. 
In order to get the new arc set A\ one has to join the sets A and 
{{z^ z') e As: z^z^ e V'} and to perform three operations: 

(i) remove all loops of the arc set As] 
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(ii) remove from the original arc set A the first arc of each sub-path 
in 7i] 

(iii) replace each transition (z, 0) of the finite automaton by a set of 
arcs (z^v) with v e V such that (z^v) ^ Vs but (^X{z)jv) G A 
where X{z) denotes the last node of the prefix z. 

In the example, all loops and the arcs (1,2), (2,1) and (2,3) are re­
moved while the arc (23,4) replaces the transition (23,0). The new 
digraph G' = {V\ A') is depicted in Figure 2.5(c). A node z in V' repre­
sents the node X{z) in V so that paths in G' are in correspondence with 
paths in G, For instance, the path (s, 1,12,23,2,4, t) corresponds with 
the feasible path (5,1,2,3, 2,4, t) of the original network. 

5, Conclusions 

This survey has highlighted the richness of the SPPRC. In particular, 
it showed its great flexibility to incorporate a wide variety of constraints, 
yielding numerous SPPRC variants as well as diversified solution meth­
ods. We have given a new classification scheme and a generic formu­
lation, which integrates the special purpose SPPRC formulations pre­
sented in the literature so far. Future research on the SPPRC will focus 
on developing more efläcient exact and heuristic algorithms for some of 
the most difficult SPPRCs such as the ESPPRC or the SPPRC with gen­
eral REFs. Additionally, with the application of column generation to a 
wider class of vehicle routing and crew scheduling problems, one should 
expect new variants of the SPPRC that will require the adaptation of 
existing solution methods or the development of new ones. 
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