Chapter 2

SHORTEST PATH PROBLEMS
WITH RESOURCE CONSTRAINTS

Stefan Irnich
Guy Desaulniers

Abstract In most vehicle routing and crew scheduling applications solved by col-
umn generation, the subproblem corresponds to a shortest path problem
with resource constraints (SPPRC) or one of its variants.

This chapter proposes a classification and a generic formulation for
the SPPRCs, briefly discusses complex modeling issues involving re-
sources, and presents the most commonly used SPPRC solution meth-
ods. First and foremost, it provides a comprehensive survey on the
subject.

1. Introduction

For more than two decades, column generation (also known as branch-
and-price when embedded in a branch-and-bound framework) has been
successful at solving a wide variety of vehicle routing and crew schedul-
ing problems (see e.g. Desrosiers et al., 1995; Barnhart et al., 1998; De-
saulniers et al., 1998), and most chapters in this book). In most of these
applications, the master problem of the column generation method is a
(possibly generalized) set partitioning or set covering problem with side
constraints, where most of the variables, if not all, are associated with
vehicle routes or crew schedules. These route and schedule variables are
generated by one or several subproblems, each of them corresponding
to a shortest path problem with resource constraints (SPPRC) or one of
its variants. The SPPRC has contributed to the success of the column
generation method for this class of problems for three main reasons.
Firstly, through its resource constraints, it constitutes a flexible tool for
modeling complex cost structures for an individual route or schedule, as
well as a wide variety of rules that define the feasibility of a route or a

34 COLUMN GENERATION

[6,14]

®

[8,12]

Figure 2.1. A small SPPRC example

schedule. Secondly, because it does not possess the integrality property
(i.e., there may be a positive gap between its optimal value and that
of its linear relaxation) as discussed in Desrosiers et al. (1984), the col-
umn generation approach can derive tighter bounds than those obtained
from the linear relaxation of arc-based formulations. Thirdly, there exist
efficient algorithms at least for some important variants of the SPPRC.

The SPPRC was introduced in the Ph.D dissertation of Desrochers
(1986) as a subproblem of a bus driver scheduling problem. It consists
of finding a shortest path among all paths that start from a source node,
end at a sink node, and satisfy a set of constraints defined over a set of
resources. A resource corresponds to a quantity, such as the time, the
load picked-up by a vehicle, or the duration of a break in a work shift,
that varies along a path according to functions, called resource exten-
sion functions (REFs). A REF is defined for every arc in the network
and every resource considered. It provides a lower bound on the value
that the corresponding resource can take at the head node of the corre-
sponding arc, given the values taken by all the resources at its tail node.
The resource constraints are given as intervals, called resource windows,
which restrict the values that can be taken by the resources at every
node along a path. Such a constraint is defined for every node in the
network and every resource considered.

Figure 2.1 provides an SPPRC example that involves the resource
time. The source and sink nodes are denoted by s and ¢, respectively.
Each arc (i,7) bears a two-dimensional vector: The first component #;;

2 Shortest Path Problems with Resource Constraints 35

provides the travel time (duration) of using the arc, while the second
cij indicates the cost associated with it. Given a value T; taken by the
resource at a node i (7; is said to be the visiting time at node i), the
REF for an arc (7,7) is defined as fi;(Ti) = T; + ¢y, i.e., it computes
the (earliest) arrival time at node 7 when starting at node ¢ at time 7;.
The resource window [a;, b;] associated with each node i is specified in
brackets beside it. It indicates at what time node i can be visited. If
the arrival time of a path ending at a node ¢ exceeds b;, then this path
is deemed infeasible. Otherwise, it is feasible even if its arrival time
precedes a; since waiting at a node is allowed, that is, the visiting time
at node 7 can be greater than the arrival time at this node.

In the example of Figure 2.1, three paths link the source node s to
the sink node t. The first path P, = (s, 1,t), denoted by the sequence of
nodes visited, is resource-feasible since it is possible to find visiting times
along that path which satisfy all resource constraints. Indeed, setting
Ts = 0 (the only feasible value at node s), it is easy to see that the
arrival times (77 = 8 and 7; = 12) at nodes 1 and ¢ provided by the
appropriate REFs (f51(Ts) and f1,(71)) are all feasible with respect to
the resource windows. The second path P, = (s,2,t) is also resource-
feasible. However, waiting is needed at node 2 since the arrival time
provided by fs2(0) = 5 is smaller than as = 9. In this case, the visiting
time Ty can be set at 9, and the subsequent visiting time 7; at 11,
respectively. Finally, the third path Ps = (s, 3,t) is not resource-feasible
since, along that path, Ty = 0, T3 > fs3(0) = 12, and the earliest arrival
time at node t is f3:(12) = 16. Hence, the resource window [9, 15] at
node ¢ cannot be met. Since the cost of P} (347 = 10) is smaller than the
cost of Py (5+ 6 = 11), the former path is optimal with respect to cost.
However, path P has a smaller earliest arrival time at node ¢. If the
network in Figure 2.1 were only a sub-network within a bigger network,
then extending path P, to a node could be feasible but extending P
could be infeasible.

This gives us a first glance at the core of SPPRC’s difficulty. The
SPPRC is very close to a multi-criteria problem. In the following we
will consider both criteria, time and cost, as resources. Paths are un-
comparable when one path is better than a second path in one criterion
and worse in another criterion. Resource constraints make it necessary
to consider all uncomparable paths that arrive at a node, since resource
constraints might forbid extending any subset of these paths but allow
an extension of the others.

The two-resource SPPRC, better known as the shortest path prob-
lem with time windows (SPPTW), was first studied in Desrosiers et al.
(1983, 1984). The resource cost is unconstrained while the resource time

36 COLUMN GENERATION

is restricted by corresponding time windows. Desrochers (1986) general-
ized the SPPTW to the case with several resources. Since then, several
variants of the SPPRC have appeared in the literature. For instance,
Ioachim et al. (1998) proposed the SPPTW with time dependent linear
costs at the nodes and Dumas et al. (1991) the SPPTW with pickups
and deliveries.

The contribution of this chapter is three-fold. Firstly, it presents a
classification of the SPPRC variants and provides a generic SPPRC for-
mulation that includes all variants studied so far (Section 2). Secondly,
it discusses non-trivial modeling issues for the SPPRC (Section 3). Fi-
nally, it surveys the most important papers on this subject, namely,
those introducing a new variant of the SPPRC (Section 2) or proposing
an interesting methodological contribution (Section 4).

2. Classification of the SPPRCs

The intention of this section is to provide a generic formulation for a
comprehensive class of shortest path problems with resource constraints
presented in the literature so far. Variants of the SPPRC, which we con-
sider, are extensions of the classical shortest path problem, where the
cost is replaced by multi-dimensional resource vectors, which are accu-
mulated along paths and constrained at intermediate nodes. Different
types of SPPRCs can be classified by

(i) the way in which resources are accumulated, leading to different
definitions of resource feasible paths,

(ii) the existence of additional path-structural constraints excluding
specific paths, e.g., non-elementary paths,

(iii) the objective,
(iv) and the underlying network.

We state all SPPRCs on a digraph G = (V, A), where V and A are
non-empty sets of nodes and arcs, respectively. A path P = (e1,...,¢ep)
is a finite sequence of arcs (some arcs may occur more than once) where
the head node of e; € A is identical to the tail node of e;41 € A for
all i = 1,...,p — 1. For the sake of convenience, we assume that G is
simple so that a path can be written as P = (vg,v1,...,vp) with the
understanding that (v;—1,v;) € A holds for all ¢ € {1,...,p}. The length
of this path is p.

2 Shortest Path Problems with Resource Constraints 37

2.1 Resource feasible paths

The description of feasible paths provides a basis for the generic defi-
nition of the SPPRC. In the following, we distinguish between feasibility
w.r.t. resources and feasibility w.r.t. path-structural constraints. This
section focuses on the first aspect while path-structural constraints are
discussed in the next section.

Resource constraints can be formulated by means of (minimal) re-
source consumptions and resource intervals (e.g., the travel times ¢;; and
time windows [a;, b;] in the SPPTW). Let R be the number of resources.
A vector T = (T1,...,TH)T € R¥ is called a resource vector and its
components resource variables (remark: z! denotes the transposed vec-
tor to the vector). T is said to be not greater than (i.e., dominates)
S = (S%,...,8%)T € R if the inequality 7% < S* holds for all compo-
nents¢ =1,..., K. We denote this by 7" < §. For two resource vectors a
and b the interval [a, b] is defined as the set {T'€ R®: ¢ < T < b}.

Resource intervals, also called resource windows, associated with a
node i € V are denoted by [a;,b;] with a;,b; € RF, a; < b, The
changes in the resource consumptions associated with an arc (i,j) €
A are given by a vector f;; = (f[j)le of so-called resource extension
functions (REFs). A REF [J R® — R depends on a resource vector

T; € RE, which corresponds to the resource consumption accumulated
along a path from s to i, i.e., up to the tail node 4 of arc (7,). Hence,
the result f;;(T;) € R#® can be interpreted as a resource consumption
accumulated along the path (s,...,7,7). “Classical” SPPRCs, like the
SPPTW presented in the introduction, only consider REFs of the form

5(T) =T+t (2.1)

where ¢} are constants associated with the arc (7, j). Classical REFs are
separable by resources, i.e., there exist no interdependencies between
different resources. The more general definition of REFs provides a
powerful instrument for modeling practically relevant resource interde-
pendencies.

Instead of giving an implicit MIP-formulation for the SPPRC, we
state the resource constraints by considering individual paths. The rea-
son for this is that node repetitions within a path (which are allowed
in our path definition) prohibit to model resource consumptions by in-
dividual resource variables associated with a node. For a given path
P = (vg,v1,...,vp), one has to refer to the p + 1 different positions i =
0,1,...,p. A path P is resource-feasible if there exist resource vectors
T; € [av,, by,] for all positions ¢ = 0,1,...,p such that fy, ., () < Tit1
holds for all i = 0,...,p — 1. T(P) is defined as the set of all feasible

38 COLUMN GENERATION

resource vectors at the last node v, of P = (vo,v1,...,vp), i.e.,

T(P) = {TP € [G”Up’ b’Uy]: 3,1—‘1 € [a”ul‘;b’ui]) f’Ui,’Ui+1 (,IIL) S ,I%—I»l
foralli=0,...,p—1}. (2.2)

Let F(u,v) be the set of all resource-feasible paths from a node u to a
node v. Note that P € F(u,v) holds if and only if 7(P) # .

2.2 Path-structural constraints

Path-structural constraints can model further requirements concern-
ing the feasibility of paths, which are not covered by resources. Such
additional requirements might either be an integral part of a feasible
path’s definition or be implied by branching rules, which come up in
the context of branch-and-price and require modifications of the pricing
problem. Sometimes, these modifications cannot be handled by simply
removing some arcs or nodes of the underlying network. In order to
specify those constraints, we need some definitions. An elementary path
is a path in which all nodes are pairwise different. Contrarily, a cycle is
a path (vo,v1,...,vp) of length p > 1 having vy = vp. We call any cycle
of length less than or equal to k a k-cycle.

The following SPPRC variants have been proposed in the literature
and defined according to path-structural constraints. Let G be the set
of all paths feasible with respect to these constraints.

For the elementary SPPRC (ESPPRC), G = {elementary paths}. On
acyclic graphs, all paths are elementary so that SPPRC and ESPPRC
coincide. In general (i.e., for networks with cycles), the ESPPRC has
been identified to be A’P-hard in the strong sense (Dror, 1994) and has
been first studied and solved by Beasley and Christofides (1989). In
many vehicle routing applications the pricing problem is an ESPPRC.
Feillet et al. (2004); Chabrier (2002); Rousseau et al. (2003) solved ESP-
PRC pricing problems in the context of the vehicle routing problem
with time windows (VRPTW). These approaches are known for their
very tight lower bounds computed by the LP-relaxation of the VRPTW
set-partitioning master program.

For the SPPRC, G = {all paths}, that is, no path-structural con-
straints are imposed. The SPPRC occurs as a subproblem in numerous
vehicle and crew scheduling problems which are most of the time formu-
lated over acyclic time-space networks (see Desrosiers et al., 1984; Vance
et al., 1997; Desaulniers et al., 199&; Gamache et al., 1999)).

Since the ESPPRC is very hard to solve (in some cases it is pro-
hibitively hard), classical solution approaches for vehicle routing prob-
lems which are formulated over cyclic graphs are also based on the corre-

2 Shortest Path Problems with Resource Constraints 39

sponding non-elementary SPPRC, because it can be solved using pseudo-
polynomial algorithms (see Section 4.1). Influential contributions which
rely on this idea were Desrosiers et al. (1986); Desrochers et al. (1992);
Desrosiers et al. (1995). However, while solving the enclosing problem by
branch-and-price, this subproblem relaxation sometimes leads to weak
lower bounds and possibly impractical large branch-and-bound trees.

For the SPPRC with k-cycle elimination (SPPRC-k-cyc),
G = {k-cycle-free paths}. A compromise between solving the ESPPRC
and the SPPRC is to forbid cycles of small length. Several examples of
VRPTW instances, e.g., taken from the benchmark library of Solomon
(1987), show that cycle elimination for small values of k£ can substan-
tially improve the master program lower bounds. This justifies an ad-
ditional effort to eliminate cycles (compared to solving a pure SPPRC)
while the corresponding ESPPRC is practically impossible to solve. The
case k = 2 was first analyzed by Houck et al. (1980) and used in the
VRPTW context by Kolen et al. (1987); Desrochers et al. (1992). Irnich
and Villeneuve (2003) recently proposed an algorithm for the general
case of k > 2.

For the SPPRC with forbidden paths (SPPRCFP), G = {all paths} \
Grorbidden Where Giorbidden 18 a set of forbidden paths. This set is implicitly
defined as the set of all paths that contain at least one element of a
finite set of pre-specified sub-paths. Villeneuve and Desaulniers (2000)
introduced this type of SPPRC which occurs two-fold in the context
of branch-and-price. First, in some applications one wants to branch
so that a route or schedule is excluded from the (restricted) master
program (see Desaulniers et al., 2002b; Arunapuram et al., 2003). This
makes it necessary to also exclude the corresponding path from being
generated by the SPPRC pricing procedure. Second, some constraints
might be impossible or very hard to model with resources. Instead of
considering them directly, one iteratively solves relaxed SPPRCs to get
tentative solutions, which are excluded from the SPPRC by means of
forbidden paths as long as not all constraints are respected. Examples
of hard-to-model constraints stem from aircrew scheduling applications,
see e.g. Fahle et al. (2002).

Two additional types of constraints, precedence constraints and pair-
ing constraints, are important in the pickup and delivery context. Given
two nodes 7, j € V, a path P fulfills the (4, 7)-pairing constraint if node ¢
occurs as often as node 7 in P (possibly P contains none of them).
A path P fulfills the (i, 7)-precedence constraint if P contains no sub-
path connecting j with . The SPPRC with pickups and deliveries (SP-
PRCPD) is a subproblem of the vehicle routing problem with time win-
dows, pickups and deliveries (see Dumas et al., 1991; Desaulniers et al.,

40 COLUMN GENERATION

2002a). In this problem, transportation requests ¢ € I must be satisfied
where a request requires a pickup at an origin i* and a delivery at a des-
tination i~. Consequently, the SPPRCPD contains an (:7,77)-pairing
and an (iT, i)-precedence constraint for each request i € I.

In a branch-and-price context, each node and each arc represent a
(possibly empty) sequence of tasks, where a task (e.g., a flight leg, a
train segment, or a crew pairing) is associated with a set partitioning
constraint in the master problem. A task can be part of several sequences
and can therefore be represented by several nodes and arcs. For any path
P = (vg,v1,...,vp) there is a (uniquely defined) task sequence W(P)
given by the concatenation of the sequences of tasks of vg, (vg,v1), v1,
(vi,v2), ..., (Up—1,Vp), vp. All of the above path-structural constraints
might also be formulated w.r.t. the task sequences. For instance, the
task-ESPPRC considers only paths P for which W(P) does not contain
task repetitions or the task-SPPRC-2-cyc does not allow paths having a
2-cycle in W(P)

Several branching rules proposed in the literature impose additional
constraints on how two given tasks have to be covered by the paths. The
branching rules of Ryan and Foster (1981) decide whether two tasks ¢
and j are covered by the same path or by different paths. Hence, one
branch is simply an (i, j)-pairing constraint. The other branch is an
(1, j)-anti-pairing constraint which forbids tasks i and j to be together
in W(P),ie,G={P:i¢ W(P) or j ¢ W(P)}. Similarly, the inter-
task constraints (introduced in Desrochers and Soumis (1989)) decide
whether two given tasks i and j are performed consecutively or not. In
this case, an (4, j)-follower constraint guarantees on one branch that, for
each path P € G, W(P) contains task ¢ followed by task j or none of
these tasks. On the other branch, an (1, j)-non-follower constraint only
allows paths P € G for which W(P) does not contain task i followed by
task 7.

Summing up the definitions of resource feasibility and path-structural
constraints, we know that the set 7 = [J,cy (F(s,v) N G) contains all
feasible paths to a one-to-all SPPRC problem.

2.3 Objectives and generic SPPRC formulation

The objective of the SPPRC is formulated by means of a resource
vector at the last nodes of feasible paths. Recall that in general, for
a single path P € F there exist many feasible choices for the resource
vectors T € T(P). Problems whose objective depends only on a sin-
gle resource, called cost resource, are normally one-to-one shortest path
problems with a source node s and a sink node t. They can be formulated

2 Shortest Path Problems with Resource Constraints 41

as follows:

min (min TCOS'°> : (2.3)

PeF(s,t)NG \TeT(P)
Computing the minimum cost of a path P = (vg, ..., vp) requires the de-
termination of feasible resource vectors T, ..., T, along the path. Simi-

larly to the feasibility problem 7 (P) # @ discussed above, this can be a
hard problem. In contexts with time windows, Dumas et al. (1990) opti-
mized the cost of a given path for time-dependent convex inconvenience
costs at all nodes.

A much more general formulation of the SPPRC is based on consider-
ing the set of Pareto-optimal resource vectors. For a given set M C R,
an element m € M is Pareto-optimal if © £ m holds for all x € M,z #
m. It means that none of the cones z- for x € M,z # m contain a
Pareto-optimal point m, where a cone T“ is defined as {S € Rf: § >
T}. For v € V, let PO(v) be the set of Pareto-optimal vectors in
UPef(s,v)mg 7(P). The SPPRC can be formulated as follows.

Generic SPPRC: Find for each node v € V and for each
Pareto-optimal resource vector 1" € PO(v) one feasible (rep-
resentative) s-v-path P € F(s,v) NG having T" € T(P).

For the sake of convenience, we call the representative path P a Pareto-
optimal path. Since all solutions to a problem ming,ep ' - m for a
non-negative weight vector o € Rf, o # 0 are Pareto-optimal points
of M, the generic SPPRC formulation also solves all problems of the
form :

min < min aTT> (2.4)
PeF(st)ng \T€T(P)

for any weight vector a € Rf. Problem (2.3) is a special case of (2.4).

2.4 Properties of T(P)

We will now study properties of the set 7(P) for a fixed path P =
(vo, v1, - . ., Up) under different assumptions concerning the REFs. Know-
ing 7 (P) and its structure is essential to (efficiently) resolve the following
two basic tasks:

= Given a path P. Is P resource feasible, i.e., P € F(vg,vp) or not?

= Given the prefix P’ = (vg, ..., vp—1) of P = (vo,...,Vp—1,p), COM-
pute 7(P) using T (P’).

Furthermore, compact implicit representations of 7(P) are substantial
for checking if a path P (or any of its extensions) is or might be a Pareto-
optimal path. For instance, efficient dominance checks in the context of

42 COLUMN GENERATION

dynamic programming are based on representing 7 (P) by either using
a single Pareto-optimal point 7'(P) or a function gp(-) to describe the
set of Pareto-optimal points in 7(P), see Section 4.1.

Before discussing different cases, we state the following universal prop-
erty: If T' € T(P) then T-Nay,, by,] € T(P), i.e., the set 7 (P) contains
the cone, restricted to the resource interval, generated by each point in
this set.

Classical SPPRC and non-decreasing REFs, In the classical
SPPRC the set 7(P) has a simple representation as a cone restricted by
[@0,, by,). Let Py = (vo,...,v;), 1 =0,...,p be the prefix of P of length i.
Each set 7(P;) has a unique cone-defining element T'(FP;) € 7 (P;) such
that T(P;) = T(F;)- N {ay,, by,] holds. The resource vector T'(P;) can be
recursively computed by

T(Py) = ay, and

T(P;) = max{av;, fo_1,0 (T (P—1))} forallie {1,... p}. (2:5)

The same is true when all REFs are non-decreasing functions, meaning
that each [j(Til,Tf, ..., TR) is a non-decreasing function in one vari-
able Ti’“, when the other £ — 1 components are kept fixed. Under these
assumptions 7 (P) is still a cone. Formula (2.5) computes T'(P) with
T(P)- 0 lay,, by,] = T(P) efficiently. '

As a consequence, the generic SPPRC formulation can be simplified
as follows.

Generic SPPRC with non-decreasing REFs: Find for
each node v € V one feasible representative s-v-path P €
F(s,v) NG for which T'(P) is Pareto-optimal in {T'(Q): Q €
F(s,v)NG}.

Formulation (2.4) can then be re-written as minpe z(syng @' T'(P).

Linear REFs. If the REFs are linear but not necessarily non-
decreasing, it is easy to see that 7(P) is a bounded polyhedron. The
description of the polyhedron 7 (P) (e.g., by its extreme points) can get
more and more complicated the longer the path P is (see Ioachim et al.,
1998) and Section 4.1.2).

For instance, consider the path P = (1,2), R = 2 resources, resource
intervals [a1,b1] = [0,1]? and [ag,be] = [0,1] x [=1,1] and the REF
Fro(THT?) = (T}, TE — T}). Tt is easy to see that T(P) is {(14,T4) €
[0,1]x |=1,1]: T2 > —T4}. There exists no element 7' € T(P) such that
T(P) C T- holds. Note that all vectors T' = (A, —X) for A € [0,1] are
Pareto-optimal points of 7 (P).

2 Shortest Path Problems with Resource Constraints 43

General REFs. For arbitrary REFs, checking whether P € F(u,v)
or equivalently 7(P) #. @ holds or not can be an N'P-hard prob-
lem. A known A 'P-complete problem is the binary knapsack lower
bound feasibility problem (KLBFP) (see Nemhauser and Wolsey, 1988):
Does there exist a feasible solution with profit at least Ib for a given
lower bound b to the knapsack problem max Y 1 | pixi, ¥ i wiz; < C,
x € {0,1}™? One can easily transform this decision problem into an SP-
PRC with three resources: Negative profit, weight, and decision. Let
G = (V,A) be a line graph with nodes V. = {0,1,...,n} and arcs
A= {(03 1)a (1’ 2)’ (23 3), sy (n_lvn)} Let [a’0> bO] = [07 O]X{O) C]X[Ov 1}’
[an, bp] = [—o0, —1b] x[0, C] x[0, 1], and [a;, b;] = [—o0,0]x [0, C]x[0, 1] be
the resource windows at all nodes 7 € V'\ {0,n}. Define the REFs to be
fi—l,z’(P, w, CL') = (p7 w, 0) for z = O) and fi—l,i(pa w, $) = (p-pi7w+wia 0)
for z # 0. The answer to the KLBFP is “yes” if and only if 7(P) # &
for the path P = (0,1,...,n).

2.5 Underlying network

The SPPRCs can also be differentiated according to whether or not
their underlying network is acyclic or cyclic. The existence of cycles
implies that there exist infinitely many different paths in G (not neces-
sarily feasible w.r.t. resource and path-structural constraints). Thus, the
SPPRC might be unbounded. In the following, we exclude these cases
from our consideration.

The following discretization of G = (V, A) formally makes the underly-
ing network acyclic. If there exists at least one non-decreasing resource r
(i.e., fZTJ(TJ — 17 >0, or tj; > 0 in the classical SPPRC with ZTJ(TZ) =
17 + i for all (i,7) € A, e.g., the resource time in many applications) it
is possible to transform (V, A) into an acyclic time-space network. Each
node v € V is replaced by several copies copy*(v),...,copy?{(v) corre-
sponding to a time discretization of the resource interval for r. Nev-
ertheless, this transformation is only a formal device, e.g., used in the
unified model of Desaulniers et al. (1998). Cycles of the original network
correspond with paths visiting two or more copies of the same original
node. Solving the ESPPRC in G is, therefore, equivalent to solving an
SPPRC with task-cycle elimination in the discretized network.

3. Modeling issues

The modeling of standard constraints like capacity constraints, path
length restrictions and time windows is obvious from the introduction.
Other simple examples can be found in Vance et al. (1997); Gamache
et al. (1999); Desaulniers et al. (1999). This section will, therefore, focus

44 COLUMN GENERATION

Table 2.1. Resource intervals and REFs for task-related constraints.

Constraint Type Resource interval REF
(a7, b] fi3(T)
forallie V forall (z,7) € A
(k, £)-pairing R™]0,0] for : = s,t T7 + 8k — Sue

M, M| for i € V\ {s,t}

(-

(k, £)-anti-pairing | R~ [0,0] for i = s T! + 6ix — Sus
[0, M] for ¢ =k, [-M,0] for i = ¢

—M,M] forie V\{sk, ¢}

[
(k, £)-precedence | RS [0,
[0

1 — 04 Ti + 0w
(k, €)-pairing R™ ,0] for ¢ = s, k,t T + 6ie — ik
and precedence 1,~1] for i = £
1,1] for all ¢ € V \ {s,t,k, ¢}

-
[~
(k, £)-follower RrR= [(W(s)),l(W(s))] fori=s

and [0, N} forie V\ {s} (see equation (2.6))
(k, £)-non-follower

on non-trivial modeling issues, provide examples and give references to
some relevant literature.

In some applications, one wants to model ezact resource consumptions
instead of minimal resource consumptions. For the SPPTW it means
that waiting is not allowed so that the arrival time at each node is
always identical to the visiting time. In general, the inequalities in (2.2)
deﬁning a resource-feasible path P = (vg,v1,...,vp) have to be replaced
by T/, 1 = f3, 0., (13).By R™ (resp. RS) we denote the resources which
force an equality (resp. inequality) in (2.2). However, as suggested in
Gamache et al. (1998), a resource r € R~ might equivalently be replaced
by two resources 11,79 € RS where the resource intervals and REFs
for 71 are identical to those for r while those for ro are [a;*,b;%] =
(=0, —af] and f2(T) = —f5(T},. . TN =T, 17 T (the
~ symbol refers to the case with the r; and 74 resources).

Section 2.2 has provided several examples of path-structural con-
straints. Most of them can be modeled with additional resources (one
for each constraint) in a standard SPPRC. For the ESPPRC, Beasley
and Christofides (1989) proposed to add to RS an additional resource
y for each node v € V. (For a compact notation, we use the Kronecker-
symbol with 6;; = 1 if 4 = j, and d;; = 0, otherwise.) The resource
intervals are defined as [a]”,b]"] = [0,1 — §] for all i € V and the REFs
by fir(Ti) = T{¥ + 8w for all (i,5) € A.

Table 2.1 gives an overview of how (anti-)pairing constraints, prece-
dence constraints, and (non-)follower constraints can be modeled by

2 Shortest Path Problems with Resource Constraints 45

means of resources. In this table, M is a sufficiently large positive in-
teger. For the first group (pairing, anti-pairing, and precedence) we
assume that a single task is associated with each node. Note that the
modeling proposed for the (k,£)-pairing and precedence constraints is
equivalent to the set component proposed by Dumas et al. (1991) for
the SPPRCPD.

If a single task is associated with each node, follower and non-follower
constraints simply imply the removal of some of the arcs (see e.g.
Desrochers and Soumis (1989)). Therefore, we present these constraints
for the case that sequences of tasks are associated with arcs and nodes.
We assume that tasks are numbered from 1 to N, the last task of any
non-empty task sequence W (-) is denoted by {(W(:)). For empty task
sequences one defines [{W(2)) =

All follower and non-follower constraints can be modeled with a single
resource 7, where T7 € {1,..., N} means that the last task of the task
sequence of the current path (s,...,v;) was the one with number T7.
T = 0 means that the current path has an empty task sequence. The
definition of the corresponding REFs is:

Tr it W((i,5),j) =@
W ((i,4),5) BT #0, W((0,9).5) # @,
P and (17, W ((4,7),)) feasible
S = W (3),9) 017 =0, W ((69),) 20
and W ((4,7),7) feaSIble
-1 otherwise.

\

The strength of the non-classical REF concept is that it allows mul-
tiple resources to depend on each other. In several applications such as
the aircrew pairing problem Vance et al. (1997), the cost of a path de-
pends on several resources. A second example of non-trivial dependent
REFs stems from the capacity constraints of the VRPTW with simulta-
neous pickups and deliveries, see Min (1989); Desaulniers et al. (1998).
Here, each customer i € V' \ {s,¢} has demanded for delivery ¢¢ and for
pickup qf . A vehicle of capacity @ starts at the depot s with the entire
delivery demand of the tour loaded. It services each customer (pickup
after delivery) so that the vehicle reaches the final depot ¢ having the en-
tire pickup demand on board. A feasible path (route) is one in which the
pickups of already visited nodes plus the deliveries of the following cus-
tomers do not exceed the vehicle capacity on any arc traveled. The fea-
sibility problem is modeled with two dependent resources 7, Tmax € RS,
where the resource variable Tirp is demand already picked (directly after
node i) and ;™ is the mazimum load in the vehicle on the path from s

46 COLUMN GENERATION

to ¢. Obviously, one has {a:p,b;p} = [a;m bim] = [0,Q)] for all i € V
and firjp(Tir”,Tir’"a") = T]7 + qf for all (i,7) € A. For the maximum
load, one has non-linear but non-decreasing REFs firj“"‘”‘(Tirp,Cl’irma") =
max{Tir” + q;) I mex 4 q;»i}. It means that the maximum load at node j
(following node 1) is either the entire pickup demand at the end of the
path, computed by Tirp + q? , or results from the maximum load on the
sub-path (0,...,7) to which the delivery of j has to be added.

The modeling of other non-linear resource consumptions is straight-
forward, e.g., soft time windows (see Dumas et al., 1990), load-dependent
travel costs or time-dependent travel times (connections (i,7) with dif-
ferent travel durations depending on the time of the day). Complex
schedule regulations and their modeling can be found in Desaulniers
et al. (1997); Vance et al. (1997).

Another non-trivial example of dependent resources is the computa-
tion of the minimal waiting time for an SPPTW path. With the notation
for the SPPTW given in the introduction, the total waiting time along
path P = (vg,v1,...,vp) is given by T, — Ty — >_F_, t;-1,4. Desaulniers
and Villeneuve (2000) showed that three resources with non-decreasing
REFs are enough to compute both the earliest arrival time and the min-
imal waiting time (or equivalently, an associated waiting cost).

4. Solution methods

This section describes different methodologies developed for solving
the SPPRCs, namely, dynamic programming which has been used exten-
sively, Lagrangean relaxation, constraint programming, and heuristics.
It also presents a graph modification approach for the SPPRCFP.

4.1 Dynamic programming and labeling
algorithms

Dynamic programming solution approaches for the SPPRC system-
atically build new paths, starting from the trivial path P = (s), by
extending paths one-by-one into all feasible directions. Their efliciency
depends on the ability to identify and discard paths which are not use-
ful either to build a Pareto-optimal set of paths or to be extended into
Pareto-optimal paths. Discarding non-useful paths is achieved by a dom-
inance sub-algorithm based on dominance rules, which strongly depend
on the path-structural constraints and the properties of the REFs,

For the sake of efficiency, paths in the dynamic programming algo-
rithms are encoded by labels. Paths sharing a common prefix are rep-
resented by using a single chain of labels for their common prefix. This

2 Shortest Path Problems with Resource Constraints 47

is implemented with the help of a tree data structure in which a label
corresponding to path P = (vg,...,vp—1,0p) is directly linked back to
the label of the prefix path (vo,...,vp-1) (see e.g. Ahuja et al., 1993,
for an introduction to labeling algorithms). Beside encoding the path it-
self, the label typically stores a representation of 7 (P), e.g., given by the
unique resource vector T'(P) in case of non-decreasing REFs. In Ioachim
et al. (1998) a more complex representation of 7 (P) is stored in the la-
bels, while Irnich and Villeneuve (2003) store additional (compressed)
information to accelerate the dominance algorithm.

In order to formalize the above ideas, we need some definitions. For
a given path P = (vg,v1,...,vp) we call v(P) = v, the resident node
of P. A path P = (vg,v1,...,v,) is a feasible extension of path Q =
(wo, w1, ..., wq) if (Q, P} = (wo, ..., wq,v0,...,0p) € Flwo,vp)NG. The
set of all feasible extensions is £(Q) = {P: (Q, P) € F(wo,v(P)) NG}.

Labeling algorithms rely on the manipulation of two sets The first
set U is the set of unprocessed paths, which have not yet been extended.
The second set P is the set of useful paths. Useful paths P € P
have already been processed. They have been identified to be Pareto-
optimal or might be prefixes of Pareto-optimal paths (note that Pareto-
optimal paths might have prefixes which are not Pareto-optimal, see
Section 4.1.2). Both sets, U and P, change dynamically in the course of
the labeling algorithm.

One can identify two basic procedures invoked by the labeling algo-
rithm (see the pseudo-code below). In the path extension step an unpro-
cessed path @ € U is chosen, all feasible extensions (@, v) with v € V are
constructed and added to U, while Q) itself is removed from U. Thus, the
extension step replaces one element of U/ by all of its feasible one-node
extensions. Once processed, an element is transferred to the set P. If
possible, the dominance algorithm reduces the sets U and P. Its goal
is to accelerate the overall labeling procedure by limiting the number of
necessary extension steps.

The path extension step and the dominance algorithm maintain the
following invariant: The useful paths P and all extensions of unpro-
cessed paths U together contain a solution of the SPPRC. Recall from
Section 2.3 that an SPPRC solution is not necessarily unique since it
contains representatives taken from a set of desired solutions, e.g., one
path for each Pareto-optimal resource vector. Therefore, let ¥ be the
set of all different solutions of an SPPRC, where each element § € X is
a set of paths, e.g., Pareto-optimal paths. The above invariant is

S e SC{(Q,P): QeU,Pel(Q)UP. (2.7)

48 COLUMN GENERATION

The algorithm is initialized with ¢ = {Py} and P = & where Py = (s)
is the trivial path. Each path P = (vg,v1,...,vp) € F results from an
extension of Py, ie., (vi,...,vp) € E(Fy). Hence, condition (2.7) holds
for the initialization. Obviously, the path extension step also maintains
the invariant. The crucial point is to define dominance rules in such a
way that the dominance algorithm also respects (2.7). We focus on that
aspect in Section 4.1.2. By doing so, the algorithm finally terminates
with an § € P for some & € X. In a post-processing filtering step
Pareto-optimal solutions can be extracted from P.

Generic Dynamic Programming SPPRC Algorithm {
(* Initialize *)
SET U ={(s)}and P =&
WHILE U 3 & DO
(* Path extension step *)
CHOOSE a path @ € Y and REMOVE Q from U
FORALL arcs (v(Q), w) € A of the forward star of v(Q) DO
IF (Q,w) € F(s,w)NG THEN ADD (Q,w) to U
ADD Q to P
(* Dominance step *)
IF (* any condition *)
APPLY dorminance algorithm to paths from I/ U P ending
at some node v
(* Filtering step *)
FILTER P, i.e., identify a solution S C P
}

Several remarks should be made.

1 If one performs path extension steps only, but no dominance steps,
the result is P = F, i.e., the algorithm computes all feasible paths.

2 The path extension step leaves the freedom to choose paths () € U
according to different processing strategies. These path selection
strategies can lead to label setting or label correcting algorithms
depending on the underlying network and the REFs. Thesc issucs
will be discussed in Section 4.1.1.

3 The dominance algorithm can be applied at any time in the course
of the algorithm. In order to keep the effort small, it makes sense
to delay the dominance algorithm to a point when there is a chance
to remove several of the paths at the same time, before they are
processed in the path extension step.

The dominance rules strongly depend on the problem at hand.
Section 4.1.2 discusses the impact of different path-structural con-
straints and classical, non-decreasing, special or general REFs.

2 Shortest Path Problems with Resource Constraints 49

4 There exist efficient algorithms for the filtering step to identify,
e.g., Pareto-optimal paths (see Bentley, 1980; Kung et al., 1975).

4.1.1 Label setting and label correcting algorithms. The
defining property of a label setting algorithm is that those labels chosen
to be extended (in the path extension step) are kept until the end of
the labeling process. They will not be identified as discardable in sub-
sequent calls of the dominance algorithm. Labeling algorithms that do
not guarantee this behavior are called label correcting algorithms. The
general ideas of label setting as well as label correcting algorithms in
the context of the one-dimensional shortest path problem (SPP) are, for
instance, explained in the book of Ahuja et al. (1993).

An acyclic network G = (V, A) naturally gives rise to label setting
algorithms if paths are treated (that is, chosen and extended) accord-
ing to a topological order of their resident nodes. More precisely, the
above generic algorithm loops over the topologically sorted nodes v =
8,V2,...,Y|y|, applies the dominance algorithm to the paths {PelUUP:
v(P) = v} resident at the current node v, and extends those paths who
survive the dominance process into all feasible directions.

It is possible to mimic an acyclic network for the treatment of labels if
the resource consumptions for at least one resource r are strictly positive,
Le., fi;(13) = T > 0 holds for all (4,j) € A and all T; € [a;,b]. In
this case, the labeling algorithm chooses unprocessed paths € U with
minimum (or “small”) T'(Q)" for extension first. It is guaranteed that
paths @ already treated only produce extensions (Q, P) with 7(Q, P)" >
T(Q)". Hence, newly generated paths cannot enforce the elimination of
already treated paths. Desrochers and Soumis (1988) used the concept
of generalized buckets to identify paths with small value T(Q)".

Label correcting algorithms solve shortest path instances with neg-
ative arc lengths. The existence of negative resource consumptions
fi;(Ti) = T7 for an arc (4,7) and all resources r (i.e., negative &f; for
the classical SPPRC) means that the strategy of treating paths in a
strictly increasing ord er of their resource vectors has to be replaced by
a more flexible processing strategy. The well-known Ford-Bellman label
correcting algorithm for the SPP adds newly generated labels to the end
of a queue and extends labels one-by-one starting with the label cur-
rently at the top of the queue. Powell and Chen (1998) have presented a
more sophisticated generalized label correcting strategy for the SPPRC,
which is directly applicable to the general SPPRC case.

4.1.2 Dominance rules and dominance algorithms. Ef-
ficient dominance rules have been described for the SPPRC, ESPPRC

o0 COLUMN GENERATION

and SPPRC-k-cyc with non-decreasing REFs. Recall that in these cases
each path P € F(s,v) has a unique resource vector T'(P) € T(P), which
is the only Pareto-optimal point of T (P).

Dominance rules identify paths) to be non-useful in the following
sense: (is neither necessary to describe the set of Pareto-optimal solu-
tions PO (v(Q)), nor feasible extensions @’ € £(Q) lead to paths (Q, Q')
necessary to construct PO(v(Q')). Such a path Q can be discarded.
Typically, dominance rules identify non-useful paths by comparing 7(Q)
and £(Q) with the corresponding values T'(P) and £(P) of paths P res-
ident at node v(P) = v(Q). We discuss the cases SPPRC, ESPPRC,
SPPRC-2-cyc, and SPPRC-k-cyc with non-decreasing REF's in detail.

SPPRC. Given two different paths P,Q € YU P,v(P) = v(Q) with
T(P) < T(Q), the dominance algorithm can discard path @ while keep-
ing P, which results from the following two arguments. First, T'(P) <
T(Q) means that T'(Q) is not necessary to represent Pareto-optimal
paths ending at v(Q). Second, one has to investigate possible extensions
of Q. The fact T(P) < T(Q), the absence of any path-structural con-
straints and the non-decreasing REF imply £(P) D £(Q). Therefore,
any Q' € £(Q) fulfills (P, Q') € F and T(P, Q") < T(Q,Q"). There do
not result any Pareto-optimal resource consumptions from extensions
of @ which could not have been built using extensions of P. Hence @
can be discarded.

Note that dominance rules are sensitive to the occurrence of paths
with identical resource vectors. Therefore, one has to distinguish be-
tween dominance and discarding dominated paths. Two paths P,Q €
F(s,v) with T(P) = T(Q) dominate each other but only one of these two
can be eliminated (while the other one is kept). (Irnich and Villeneuve,
2003) propose techniques to resolve ambiguity and analyze them for the
SPPRC and SPPRC-k-cyc cases.

ESPPRC. In presence of path-structural constraints, the relation
T(P) < T(Q) does not necessarily imply the relation £(P) D £(Q). For
the ESPPRC, the reason is that paths P € G can only be extended to
nodes not already visited. We denote the set of visited nodes by V(P).
A restricted dominance rule for the ESPPRC allows to discard path Q
if T(P) < T(Q) and V(P) C V(Q) since both conditions together imply
E(P) 2 £(Q). Beasley and Christofides (1989) modeled the sets V (P)
for paths P € F by one additional resource for each node of V.

Feillet et al. (2004) improved the idea of Beasley and Christofides.
They interpreted the set V(P) differently as the “set of nodes which
cannot be wvisited any more”. By analyzing the resource vector 1T'(P)

2 Shortest Path Problems with Resource Constraints 51

cost

N =~ = N

Figure 2.2. Example of an SPPTW with 2-cycle elimination.

they identified additional unvisited nodes which are impossible to reach
(e.g., because of current time, time window constraints and non-negative
travel times). These nodes are added to the set V(P) to form the set
V(P). As a result, the above dominance rule based on the “extended”
sets V(P) can eliminate more paths.

SPPRC-2-cyc. An informal description of a dominance rule for
the 2-cycle elimination case is the following: Keep only a Pareto-best
path P1 and a second-best path Ps which is extended from a different
predecessor node. For any path P = (vg,...,vp—1,vp) wWith p > 1, the
node vp_1 is called the predecessor node and denoted pred(P). It is
easy to see that the SPPRC dominance rule applies to paths P, @,
v(P) = v(Q), T(P) < T(Q) having identical predecessor nodes. Kohl
(1995); Larsen (1999) showed that if £(P) does not contain the one-
node path (pred(P)), i.e., the dominating path P cannot be extended
to its predecessor node, the SPPRC dominance rule also remains valid.
Contrarily, given three different paths Py, Py, Q, v(P1) = v(Py) = v(Q),
T(P), T(Py) < T(Q) with different predecessors pred(P;) # pred(Ps),
one can discard path) while keeping P, and P. The proof of this rule
is based on the fact that pred(P;) # pred(Py) implies £(P1) UE(P2) 2
£(Q).

52 COLUMN GENERATION

An example of an SPPTW with 2-cycle elimination is shown in Fig-
ure 2.2 and illustrates the two above-mentioned dominance rules.

First, at node 1 the paths P and @ fulfill T(P) < T(Q). Since
pred(P) # pred(Q) it is not allowed to eliminate (. This is substantial
because the dominated path @ = (s, 1) is a prefix of the Pareto-optimal
path P; = (s,1,2,t) at the sink ¢. The path-structural constraints im-
ply that some dominated paths, like @), are still useful paths. Second,
path @’ at node ¢ can be discarded because the two dominating paths P;
and P have different predecessor nodes (alternatively, because Py and
@)’ have the same predecessor node).

SPPRC-k-cyc. Handling the k-cycle elimination case for k > 3
needs sophisticated data structures (see Irnich and Villeneuve, 2003). In
essence, the dominance rule efficiently checks whether

Q)< U E(P) (2.8)

PePUU: T(P)<T(Q),v(P)=v(Q)

holds, i.e., all extensions of dominating paths cover the extensions of Q.
A path @ for which (2.8) holds can be discarded. There exists a finite
representation of the right hand side of (2.8), which uses up to (k — 1)!?
vectors (so-called set forms) with (g) entries. Moreover, these set forms
can be used to efficiently encode and update the relation (2.8) so that the
evaluation of (2.8) can be performed in constant time. From a complexity
point of view, the main result of this dominance rule is that the maximum
number of paths stored in P U grows by a factor a(k) compared to
the classical SPPRC. The factor a(k) is independent of the size of the
underlying network and bounded by a(k) < k(k — 1)!2.

SPPTWTC. Another case where efficient dominance rules have
been described is the shortest path problem with time windows and
time costs (SPPTWTC)(see Toachim et al., 1998). An SPPTWTC in-
stance is uniquely defined by the SPPTW data, i.e., travel costs c;;,
travel times t;;, and time windows [aj, bj], together with arbitrary node
costs w; € R (positive as well as negative) for the nodes j € V. Visit-
ing the node j at time T;lme causes additional time costs or profits of
ij;ime. Hence, depending on the sign of w; it is advantageous to visit
node j as early or as late as possible. When negative and positive time
costs occur together at the nodes of a path, the determination of fea-
sible visiting times T;ime with minimum overall cost is an optimization
problem in itself.

Formally, the SPPTWTC is a two-resource problem with a resource
time and a time-dependent resource cost. The REFs for time are given

2 Shortest Path Problems with Resource Constraints

T((s,0,1))
Lo/ T
a R

) ,/;:7/

T((50)) N

14

93

Figure 2.3. Example of an SPPTWTC: Travel time and travel cost are given as
pairs (ti;,¢i;) for each arc (¢,), time windows [a;, b;] and linear node costs w; are
given for each node i, paths ending at node ¢ are P; = (s,0,1,t), P2 = (s,0,2,t), and

Py = (s,0,3,1).
12 4 14
10 4
8
? gpl(rr) T
S
6 4
4 -
S
2 T
gpl(rr)
0 . . ; - s
4 6 8 10 12 14 16 18 20 Time

Figure 2.4. Piecewise linear cost functions representing 7 (P) for the paths P,
(s,1,t), P2 = (s,2,t), and Pz = (s,3,1).

54 COLUMN GENERATION

by it;me (Titime) — Titime +tij and for cost by iCQQSt (Tjt;ime) TiCOSt) — TiCOSt +

Cij —i—ijjtime. This is a (minor) extension of the REF concept of Section 2
because iCjOSt depends on a resource variable T;ime of the node j (and
not only on resource variables T; at node ¢). Figure 2.3 shows a small
SPPTWTC example. Next to each node, the resource space (a time-cost
diagram) shows the set 7 (P) for each of the feasible paths P. Obviously,
T(P) is a bounded polyhedron.

Dominance rules for the SPPTWTC were proposed by loachim et al.
(1998). Although presented differently, their main ideas are the follow-
ing. The set T(P) is determined by its lower envelope, which is a piece-
wise linear (cost) function fp(T™€) with a maximum of p + 1 pieces
when P has length p (in the following we use 7" = T%™¢), The func-
tion fp(T') is convex and only its first strictly decreasing part is relevant
for dominance (since the objective is to find the minimum-cost path, the
nonnegative slope segments are useless (see loachim et al., 1998, p. 196).
Hence, the relevant piecewise linear cost function is

N fe(T), for T <argminy fp(T)
gp (T/ - . .
frs for T > arg miny fp(7")

with the minimum f, = miny fp(7"). Simple update formulas allow to
compute gp(T) from gp/(T) when P’ is the prefix path of P = (P',v).
A path @ can be discarded if there exists paths Pi,..., P, ending at
v =0(Q) = v(P) = - = v(B) with T(Q)- C U, T(P)- (for a
set X the symbol X denotes the set | J . x). This dominance rule
can be implemented by computing the minimum cost function G,(71) =
minp gp(T') over all paths P ending at node v. Each path Q with v(Q) =
v which does not contribute to the minimum cost function G,(1") can
be discarded. Figure 2.4 shows the situation for the three paths Py, P,
and Pj ending at node ¢ from the above example. All paths P, P,
P3 contribute to G¢(T), which is composed of four pieces imposed by
gp, (T) for T € [5,9), gp,(T) for T € [9,13.3], gp,(T) for T € [13.3,17],
and gp, (T') for T' € [17,20]. None of the paths are dominated by the
other paths.

4.2 Lagrangean relaxation

The constrained shortest path problem (CSPP) is a specialized s-t-
SPPRC with independent additive resource consumptions along arcs.
The resource consumption is constrained only as a whole and not by in-
dividual resource intervals. The objective is to find a least-cost s-t-path
with resource consumptions within a pre-specified interval. Among oth-
ers, Beasley and Christofides (1989}; Borndérfer et al. (2001) proposed to

2 Shortest Path Problems with Resource Constraints 55

solve the CSPP with Lagrangean relaxation for computing lower bounds
and a tree search procedure exploiting these computed lower bounds.
For the remainder of this section we assume that the underlying net-
work G = (V, A) is acyclic.

For a formal description of the CSPP, consider R different resources
including cost as the last resource R with cost matrix C' = (¢;;) =
(tf}). For the remaining resources, let R = (t];) € RE-DXIA] be the
resource consumption matriz with non-negative consumptions tfj forr =
1,...,R — 1. The REFs are IT](TZ) =T+t forallr =1,...,R
and (4,7) € A, and the resource accumulation is Tj = f;;(1;) whenever
arc (4,7) is traversed. Lower bounds I € R®~! and upper bounds u €
RE~1 on the overall accumulated resource consumptions are implied by
defining [as, bs] = [0,0, [at, b] = [I,u], and [ai, b] = [0,u] at all other
node i € V \ {s,t}. For a given path P and its incidence vector = €
{0, 1}|A|, the resource consumption is Rz and the cost is ¢'x. P is
feasible if | < Rz < wu holds. Borndorfer et al. (2001) have added a
goal value g € [I,u] for the resource consumption Rz to the formulation
of Beasley and Christofides (1989). Slack and surplus variables 24, z—
measure the deviation of Rz from g, which is penalized by p4+,p- €

Rggl. The CSPP can be stated as follows:

zcspp = mine' z +pl 2z + plz+ (2.9a)
subject to Iz =es — e (2.9b)
Re+zy —z-=g (2.9¢)
(2-y24) < (u—g,9 1) (2.9d)
e {01} 2 2z € RE, (2.9e)

Cost (2.9a) is a combination of accumulated travel costs and the penalty
for the deviation of Rz from g. Flow conservation constraints (2.9b) are
given by means of the arc-node incidence matrix I € {—1, 0 1}Vixial
and unit vectors ey, e; € {0,1}V]. They guarantee that {(3,j): z;; = 1}
forms a path in the acyclic network G. Constraints (2.9d) bounds the
slack and surplus variables so that [< Rz < u is ensured.

A Lagrangean relaxation of (2.9) can be obtained by relaxing the
resource consumption constraints (2.9¢c). Let 7 € R¥~! be an associated
dual price vector. The Lagrangean dual of (2.9) is max,cgr-1 2DCspp (7)
where the Lagrangean subproblem decomposes into the following two
parts:

zpespp(n) = P(x) + B(n) + 7' g (2.10a)
with P(7) = min(c¢' — 7' R)az,

56 COLUMN GENERATION

Iz =e;—e, x€{0,1}4 (2.10b)
and B(m) = min(pl —a)zy + (pl + 77z,
0<z.<u—g, 0<2z, <g-1. (2.10¢)

The first part (2.10b) is an SPP, which can be solved with a label set-
ting algorithm (see Ahuja et al., 1993). The second part (2.10c) is a
minimization problem defined over a box, which is trivial to solve by
inspection of the signs of the components of (pI —7T)and (pl + 7).

High quality solutions for the above Lagrangean dual formulation can
be computed with any subgradient optimization method, e.g., a coordi-
nate ascent method as in Borndérfer et al. (2001). The same authors
proposed to use such a dual solution 7* and the dual solution of (2.10b)
obtained for m = 7* (i.e., a distance vector (h,(7*))yev) to compute
so-called Lagrangean distance labels:

9o(7*) = hy(7*) = h(n*) + B(n*) + g'n*, forallveV.

These labels are very useful to prune the search tree because of the fol-
lowing property. Let z* € {0,114l and 22 € {0,1}'4l be path incidence
vectors of an s-v-path and a v-t-path, respectively. If z = 2! + 22 is a
feasible CSPP path and 7* € RF~! a Lagrangean multiplier vector, then

zospp () 2 go(m*) + (¢" — m* TR)z? (2.11)

where 2ogpp(z) denotes the cost of path z. The inequality means that
if the right-hand side is non-negative then there exists no prefix path z'
such that z' 422 has a negative (reduced) cost. Consequently, one should
implement a tree search for finding negative (reduced) cost CSPP paths
in G by systematically building v-t-paths 22 starting at the sink node
t. A tentative path z? can be discarded if the right-hand side of (2.11)
becomes non-negative. Note that additional constraints that could not
be considered in (2.9) can always be taken into account in the search
phase.

4.3 Constraint programming

Constraint programming (CP) relies on a model which is defined by
a set of variables, each with an initial domain, and a set of constraints.
A CP approach is composed of a search mechanism to explore the solu-
tion space,.a domain reduction algorithm for each constraint that tries
to remove inconsistent values from the domains of the variables involved
in that constraint, and a propagation algorithm that propagates these
domain changes among the constraints. It allows to consider a wide

2 Shortest Path Problems with Resource Constraints 57

spectrum of constraints (algebraic and non-algebraic), including some
that cannot be modeled using resources or simple path-structural con-
straints: For instance, an employee cannot work more than 8 hours in
every 24-hour period. Within column generation approaches, CP has
recently been used to tackle the SPPRC on an acyclic network (de Silva,
2001; Fahle et al., 2002) and the ESPPRC (Rousseau et al., 2003). In
both cases, the goal is solely to find at least one feasible path with a
negative (reduced) cost. This goal is modeled as a constraint (the cost
of a feasible path must be negative), yielding a constraint satisfaction
problem.

Fahle et al. (2002) considered an SPPRC on an acyclic network where
a task, defined by a starting and an ending time, is associated with each
node. They proposed a model where a boolean variable is associated
with each node. Such a variable is set to true if the corresponding node
is part of the path currently built. In this case, we will say that the node
is selected. Additional variables are also used to specify, for instance, the
minimal amount of rest to assign after each task. Their model includes
simple constraints such as the boolean variables associated with two
nodes whose tasks must be performed concurrently cannot be set at {rue
simultaneously, or the total duration of the tasks associated with the
selected nodes cannot exceed the maximum worked time in a schedule.
Given a set of selected nodes, these two types of constraints can be used
to fix some boolean variables to false.

In de Silva (2001), a different CP model is used. It involves variables to
indicate the successor node next|t] of each node ¢ and variables to specify
the amount of accumulated resource consumptions at each node. Nodes
with next[t] = ¢ are not included in the current path. Path constraints
model resource consumptions along the selected (partial) path, e.g., for
the reduced cost, total working time, etc. Each time that a successor
node is selected, the propagation algorithm is invoked, i.e., constraints
are verified by solving an SPP for every unselected node of the underlying
network. For instance, one can exclude a node (i.e., set next{t] = t) if
the value of the path with the shortest worked time and passing through
that node t and all selected nodes exceeds the maximum total worked
time. A similar decision propagation based on the (reduced) cost of
a path can also be executed. So-called goals, e.g., based on reduced
cost shortest path computations, control how new tasks are added to
the current partial path. The search tree is usually explored until a
prespecified number of negative cost paths are found or until a time
limit is reached.

For the ESPPRC, Rousseau et al. (2003) used a similar model with
variables for the successor node and variables for the accumulated re-

58 COLUMN GENFERATION

source consumptions. Some of the constraints they consider are: All
successor nodes must be different, no subtours are allowed, lower bounds
provided by the resource REFs must be respected, the (reduced) cost of
a feasible path must be negative. For verifying this last constraint, the
authors compute a lower bound by solving an assignment problem. The
choice of the next variable to branch on in the search tree is made in
such a way to construct a path from the source to the sink node.

4.4 Heuristics

Even with sophisticated solution methods, solving an SPPRC instance
might still be very time-consuming. In the column generation context,
solving SPPRCs to proven optimality is only necessary to show that no
negative reduced cost paths exist in the last pricing step. In preceding
iterations it is sufficient to approximately solve the SPPRC, i.e., to com-
pute any negative reduced cost feasible paths. That is the point where
heuristics for the SPPRC come into play. In addition, they might be ap-
plied when the entire column generation problem is treated heuristically.
In the following, we distinguish between three major areas of application
for heuristics: Pre-processing, dynamic programming, and direct search.

Classical pre-processing techniques eliminate arcs and reduce the re-
source intervals (see e.g. Desrochers et al., 1992). The heuristic version
of this idea is to solve a given SPPRC instance on a hierarchy of re-
stricted networks, where each of the restricted networks contains only a
limited number of arcs, e.g., defined by the p > 0 “nearest neighbors” of
each node. Starting with the smallest p-nearest-neighbor network, one
solves the associated SPPRC, and if no solution is found, one contin-
ues with the next p. This idea has been used in many implementations
(e.g. Dumas et al. (1991); Savelsbergh and Sol (1998); Larsen (1999);
Irnich and Villeneuve (2003)). Another idea is to replace some of the
resources by less accurate resources to get an easier-to-solve SPPRC
network. Gamache et al. (1999) gave the example where a restricted
network measures time rounded up to the nearest hour while the exact
global network uses minutes.

Dynamic programming heuristics are based on the techniques of Sec-
tion 4.1 but heuristically accelerate the computation. For the VRPTW,
Larsen (1999) used a so-called forced early stop rule to quit from the
dynamic program when an adequate number of negative reduced cost
columns has been found and a pre-defined number of labels has been
generated. Chabrier (2002) tried to solve the ESPPRC by using the
standard path extension step (i.e., not extending a path to a node al-
ready visited) with the stronger SPPRC dominance rule (i.e., only the

2 Shortest Path Problems with Resource Constraints 59

resource vectors are compared but not the visited nodes). Clearly, this
procedure is quick but might fail to detect any negative reduced cost
path. Therefore, he proposed to iteratively apply a dynamic program-
ming procedure which combines the ESPPRC extension step with a grad-
ually parametrizable dominance rule. A parameter DomLevel (between
0 and o) defines the length of a path after which the ESPPRC domi-
nance rule is applied. If the partial path is shorter, the heuristic SPPRC
dominance rule is applied. Larger values of DomLevel make the mod-
ified dynamic programming procedure substantially faster. The case
DomLevel = O corresponds with the exact ESPPRC and is expected
to be quite slow (especially for non-adjusted dual variables). Hence,
starting with a large value for DomlLevel, the dynamic programming
algorithm with the modified dominance rule is iteratively applied with
decreasing values of DomLevel until a negative reduced cost path is found
(or the ESPPRC is solved exactly).

Finally, direct search heuristics are mainly based on local search. Such
improvement procedures start from a given feasible path P and delete,
insert, or replace nodes or exchange arcs in order to find an improving
feasible path P’ with smaller reduced cost. Note that after solving the
restricted master program, the basic variables provide a set of paths
with reduced cost 0 from which an improvement algorithm might start.
Successful column generation applications which use these techniques
can be found in Savelsbergh and Sol (1998); Xu et al. (2003).

4.5 A graph modification approach for the

SPPRCFP
The graph modification approach for the SPPRCFP defined on a
given network G = (V, A) is not a solution method in itself but a

method that manipulates G to obtain a new network G' = (V’/, 4")
from which all forbidden paths are removed while the other paths of
G are still feasible. One can then apply any of the proposed meth-
ods for the SPPRC to the network G’ to solve the given SPPRCFP.
Formally, let H be the set of forbidden sub-paths and let Grorbidden =
{(P,Q,P"): P,Q, P paths, Q € H} so that G = { all paths} \ Grorbidden
is the set of all feasible paths for the SPPRCFP. The approach of Vil-
leneuve and Desaulniers (2000) merges the original graph G with the
state graph of a finite automaton, which identifies the infeasible sub-
paths in H. We illustrate the procedure by an example in which G is
given in Figure 2.5(a) and H = {(1,2,4),(2,1),(2,3,1)}.

The approach works in two stages. First, the algorithm of Aho and
Corasick (1975) is used to construct the state graph S = (Vg, Ag) of a

60 COLUMN GENERATION

Figure 2.5. (a) Example network G = (V,A) for the SPPRCFP. (b) State
graph S = (Vs, As) of a finite automaton which identifies the sub-paths of H =
{(1,2,4),(2,1),(2,3,1)}. “e” stands for any label v € V except those corresponding to
the other out-arcs of the same node. (c) Resulting SPPRCFP network G’ = (V'/, 4),
node 12 corresponds with node 2 of the original network and node 23 with node 3.

finite automaton, which processes the nodes of a path P to detect the
first sub-path in H it contains. The nodes (states) in Vg correspond
to the prefixes of the sub-paths in H, ie., Vg = {@,1,12,124,2,21,
23,231} in the example (see Figure 2.5(b)). Each time that a node
of P is processed, the automaton performs a state transition. Possible
transitions are represented by labeled arcs. There is an arc (21, 22) € Ag
labeled with v € V (v represents a possible node of P) that connects
two different states z; and 2o if 21 ¢ H and 29 = (0’(21), ju), where o(z1)
is the longest (possibly empty) suffix of z; for which (o(z1),v) € V.
Further loops, i.e., (124,124), (231,231), and (21,21) guarantee that
once a forbidden sequence has been detected, the automaton stays in
the corresponding state. The remaining transitions connect a state 21
back to the initial state @. The states z € H indicate that a forbidden
path has been detected.

Second, the original graph G has to be merged with the state graph S
to produce a new graph G' = (V' A’). Prefixes z € Vg of length 1
are identified with the nodes of V. The new node set V' consists of all
original nodes V' and all nodes of Vg except the state @ and the states
z € H. In the example, the new node set V' is {s,1,2,3,4,12,23,t}.
In order to get the new arc set A', one has to join the sets A and
{(2,7') € As: 2,2/ € V'} and to perform three operations:

(i) remove all loops of the arc set Ag;

2 Shortest Path Problems with Resource Constraints 61

(ii) remove from the original arc set A the first arc of each sub-path
in H; ‘

(ili) replace each transition (z,@) of the finite automaton by a set of
arcs (z,v) with v € V such that (z,v) ¢ Vs but (A(2),v) € 4
where A(2) denotes the last node of the prefix z.

In the example, all loops and the arcs (1,2), (2,1) and (2,3) are re-
moved while the arc (23,4) replaces the transition (23,@). The new
digraph G' = (V’, A’} is depicted in Figure 2.5(c). A node z in V' repre-
sents the node A(2) in V so that paths in G’ are in correspondence with
paths in G. For instance, the path (s,1,12,23,2,4,t) corresponds with
the feasible path (s,1,2,3,2,4,t) of the original network.

5. Conclusions

This survey has highlighted the richness of the SPPRC. In particular,
it showed its great flexibility to incorporate a wide variety of constraints,
yielding numerous SPPRC variants as well as diversified solution meth-
ods. We have given a new classification scheme and a generic formu-
lation, which integrates the special purpose SPPRC formulations pre-
sented in the literature so far. Future research on the SPPRC will focus
on developing more efficient exact and heuristic algorithms for some of
the most difficult SPPRCs such as the ESPPRC or the SPPRC with gen-
eral REFs. Additionally, with the application of column generation to a
wider class of vehicle routing and crew scheduling problems, one should
expect new variants of the SPPRC that will require the adaptation of
existing solution methods or the development of new ones.

References

Aho, A. and Corasick, M. (1975). Efficient string matching: An aid to
bibliographic search. Journal of the ACM, 18(6):333-340.

Ahuja, R., Magnanti, T., and Orlin, J.(1993). Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, New
Jersey.

Arunapuram, S., Mathur, K., and Solow, D.(2003). Vehicle routing and
scheduling with full truck loads. Transportation Science, 37(2):170~
182.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance,
P. (1998). Branch-and-price: Column generation for solving huge in-
teger programs. Operations Research, 46(3):316-329.

62 COLUMN GENERATION

Beasley, J. and Christofides, N.(1989). An algorithm for the resource
constrained shortest path problem. Networks, 19:379-394.

Bentley, J. (1980). Multidimensional divide-and-conquer. Communica-
tions of the ACM, 23(4):214-229.

Borndérfer, R., Grotschel, M., and Loébel, A. (2001). Scheduling du-
ties by adaptive column generation. Technischer Bericht (ZIB-Report)
01-02, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB),
Berlin.

Chabrier, A. (2002). Vehicle routing problem with elementary shortest
path based column generation. Technical Report, ILOG, Madrid.

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon,
M. M., and Soumis, F. (1997). Crew pairing at Air France. European
Journal of Operational Research, 97:245-259.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M., and Soumis,
F. (2002a). VRP with pickup and delivery. In: The Vehicle Routing
Problem (P. Toth and D. Vigo, D., eds.), Chapter 9, pp. 225-242.
Siam, Philadelphia.

Desaulniers, G., Desrosiers, J., loachim, [., Solomon, M., Soumis, F., and
Villeneuve, D. (1998). A unified framework for deterministic time con-
strained vehicle routing and crew scheduling problems. In: Fleet Man-
agement and Logistics (T. Crainic and G. Laporte, eds.), Chapter 3,
pp. 57-93. Kluwer Academic Publisher, Boston, Dordrecht, London.

Desaulniers, G., Desrosiers, J., Lasry, A., and Solomon, M. M. (1999).
Crew pairing for a regional carrier. In: Computer-Aided Transit
Scheduling (N. Wilson, ed.), Lecture Notes in Computer Science, Vol-
ume 471, pp. 19-41. Springer, Berlin.

Desaulniers, G., Langevin, A., Riopel, D., and Villeneuve, B. (2002b).
Dispatching and conflict-free routing of automated guided vehicles:
An exact approach. Les Cahiers du GERAD G-2002-31, HEC, Mon-
tréal, Canada. Forthcoming in: International Journal of Flezible Man-
ufacturing Systems.

Desaulniers, G. and Villeneuve, D. (2000). The shortest path problem
with time windows and linear waiting costs. Transportation Science,
34(3):312-319.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimiza-
tion algorithm for the vehicle routing problem with time windows.
Operations Research, 40(2):342-354.

2 Shortest Path Problems with Resource Constraints 63

Desrochers, M. and Soumis, F. (1988). A generalized permanent labelling
algorithm for the shortest path problem with time windows. Informa-
tion Systems and Operations Research, 26(3):191-212.

Desrochers, M. and Soumis, F. (1989). A column generation approach
to the urban transit crew scheduling problem. Transportation Science,
23(1):1-13.

Desrochers, M. (1986). La Fabrication d’horaires de travail pour les con-
ducteurs d’autobus par une méthode de génération de colonnes. Ph.D
Thesis, Centre de recherche sur les Transports, Publication #470, Uni-
versité de Montréal, Canada.

Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. (1995). Time
constrained routing and scheduling. In: Handbooks in Operations Re-
search and Management Science (M. Ball, T. Magnanti, C. Monma,
and G. Nemhauser, eds.), Volume 8, Network Routing, Chapter 2,
pp. 35-139. Elsevier, Amsterdam.

Desrosiers, J., Pelletier, P., and Soumis, F. (1983). Plus court chemin
avec contraintes d’horaires. RAIRO, 17:357-377.

Desrosiers, J., Soumis, F., Desrochers, M., and Sauve, M. (1986). Meth-
ods for routing with time windows. Furopean Journal of Operational
Research, 23:236-245.

Desrosiers, J., Soumis, F., and Desrochers, M. (1984). Routing with time
windows by column generation. Networks, 14:545-565.

de Silva, A. (2001). Combining constraint programming and linear pro-
gramming on an example of bus driver scheduling. Annals of Opera-
tions Research, 108:277-291.

Dror, M. (1994). Note on the complexity of the shortest path models for
column generation in VRPTW. Operations Research, 42(5):977-978.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pick-up and de-
livery problem with time windows. Furopean Journal of Operational
Research, 54:7-22.

Dumas, Y., Soumis, F., and Desrosiers, J. (1990). Optimizing the sched-
ule for a fixed vehicle path with convex inconvenience costs. Trans-
portation Science, 24(2):145-152.

Fahle, T., Junker, U., Karisch, S., Kohl, N., Sellmann, M., and
Vaaben, B. (2002). Constraint programming based column generation
for crew assignment. Journal of Heuristics, 8(1):59-81.

64 COLUMN GENERATION

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An ex-
act algorithm for the elementary shortest path problem with resource

constraints: Application to some vehicle routing problems. Networks,
44(3):216-229.

Gamache, M., Soumis, F., and Marquis, G. (1999). A column genera-
tion approach for large-scale aircrew rostering problems. Operations
Research, 47(2):247-263.

Gamache, M., Soumis, F., Villeneuve, D., Desrosiers, J., and Gélinas, E.
(1998). The preferential bidding system at Air Canada. Transportation
Science, 32(3):246-255.

Houck, D., Picard, J., Queyranne, M., and Vemuganti, R. (1980). The
travelling salesman problem as a constrained shortest path problem:
Theory and computational experience. Opsearch, 17:93-109.

loachim, L., Gélinas, S., Desrosiers, J., and Soumis, F. (1998). A dynamic
programming algorithm for the shortest path problem with time win-
dows and linear node costs. Networks, 31:193-204.

Irnich, S. and Villeneuve, D. (2003). The shortest path problem with
resource constraints and k-cycle elimination for k > 3. Les Cahiers du
GERAD G-2003-55, HEC, Montréal, Canada.

Kohl, N. (1995). Exact methods for time constrained routing and re-
lated scheduling problems. Ph.D Thesis, Institute of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark.

Kolen, A., Rinnooy-Kan, A., and Trienekens, H. (1987). Vehicle routing
with time windows. Operations Research, 35(2):266-274.

Kung, H., Luccio, F., and Preparata, F. (1975). On finding maxima of
a set of vectors. Journal of the ACM, 22(4):469-476.

Larsen, J. (1999). Parallelization of the gehicle routing problem with
time windows. Ph.D Thesis, Department of Mathematical Modelling,
Technical Report, University of Denmark.

Min, H. (1989). The multiple vehicle routing problem with simultaneous
delivery and pick-up points. Transportation Research, 23:377-386.

Nemhauser, G. and Wolsey, L. (1988). Integer and Combinatorial Opti-
mization. Wiley, New York.

Powell, W. and Chen, Z. (1998). A generalized threshold algorithm for
the shortest path problem with time windows. In: DIMACS Series in

2 Shortest Path Problems with Resource Constraints 65

Discrete Mathematics and Theoretical Computer Science (P. Pardalos
and D. Du, eds.), pp. 303-318. American Mathematical Society.

Rousseau, L.-M., Focacci, F., Gendreau, M., and Pesant, G. (2003).
Solving VRPTWSs with constraint programming based column gener-
ation. Publication CRT-2003-10, Center for Research on Transporta-
tion, Université de Montréal, Canada.

Ryan, D. and Foster, B. (1981). An integer programming approach to
scheduling. In: Computer Scheduling of Public Transport Urban Pas-
senger Vehicle and Crew Scheduling (A. Wren, ed.), pp. 269-280.
North-Holland, Amsterdam.

Savelsbergh, M. and Sol, M. (1998). Drive: Dynamic routing of indepen-
dent vehicles. Operations Research, 46(4):474-490.

Solomon, M. (1987). Algorithms for the vehicle routing and schedul-
ing problem with time window constraints. Operations Research,
35(2):254-265.

Vance, P., Barnhart, C., Johnson, E., and Nemhauser, G. (1997). Airline
crew scheduling: A new formulation and decomposition algorithm.
Operations Research, 45(2):188-200.

Villeneuve, D. and Desaulniers, G. (2000). The shortest path problem
with forbidden paths. Les Cahiers du GERAD G-2000-41, HEC, Mon-
tréal, Canada. Forthcoming in: Furopean Journal of Operational Re-
search.

Xu, H., Chen, Z., Rajagopal, S., and Arunapuram, S. (2003). Solv-
ing a practical pickup and delivery problem. Transportation Science,
37(3):347-364.

2 Springer
http://www.springer.com/978-0-387-25485-2

Column Generation

Desaulniers, G.; Desrosiers, |.; Solomon, MM, (Eds.)
2005, XV, 358 p., Hardcowver

ISBM: 878-0-387-25485-2

