Chapter 2

Heuristic Optimization

2.1 Introduction

2.1.1 The Problems with Optimization Problems

Optimization problems are concerned with finding the values for one or several deci-
sion variables that meet the objective(s) the best without violating the constraint(s).
The identification of an efficient portfolio in the Markowitz model (1.7) on page 7
is therefore a typical optimization problem: the values for the decision variables x;
have to be found under the constraints that (i) they must not exceed certain bounds
((1.7f): 0 < x; <1 and (1.7e): Y;x; = 1) and (ii) the portfolio return must have a
given expected value (constraint (1.7c)); the objective is to find values for the assets’
weights that minimize the risk which is computed in a predefined way. If there are
several concurring objectives, usually a trade-off between them has to be defined: In
the modified objective function (1.7a*) on page 9, the objectives of minimizing the

risk while maximizing the return are considered simultaneously.

The Markowitz model is a well-defined optimization model as the relationship
between weight structure and risk and return is perfectly computable for any valid
set of (exogenously determined) parameters for the assets’ expected returns and
(co-)variances (as well as, when applicable, the trade-off factor between portfolio
risk and return). Nonetheless, there exists no general solution for this optimization
problem because of the non-negativity constraint on the asset weights. Hence, there

is no closed form solution as there is for the Black model (which is equal to the

2.1. Introduction 39

flx)

XA XB xc X

Fig. 2.1: Global and local optima

Markowitz model except for the non-negativity constraint). Though not solvable
analytically, there exist numerical procedures by which the Markowitz model can be

solved for a given set of parameters values.

Depending on the objective function, optimization problems might have mul-
tiple solutions some of which might be local optima. In Figure 2.1, e.g., a function
f(x) is depicted, and the objective might be to find the value for x where f(x) reaches
its highest value, i.e., m;lx f(x). As can easily be seen, all three points x4, xp, and x¢
are (local) maxima: the first order condition, f’(x) = 0, is satisfied (indicated by the
horizontal tangency lines), and any slight increase or decrease of x would decrease
the function’s value: f(x) > f(x =+ ¢)|c—¢. Nonetheless, only xz is a global optimum
as it yields the highest overall value for the objective function, whereas x4 and xc
are just local optima. Unlike for this simple example, however, it is often difficult to
determine whether an identified solution is a local or the global optimum as the so-
lution space is too complex: All of the objective functions that will be considered in
the main part of this contribution have more than one decision variable, the problem
space is therefore multidimensional; and the objective functions are mostly discon-

tinuous (i.e., the first derivatives are not well behaved or do not even exist).

In portfolio management, these difficulties with the objective functions are fre-
quently observed when market frictions have to be considered. To find solutions
anyway, common ways of dealing with them would be to either eliminate these fric-
tions (leading to models that represent the real-world in a stylized and simplified
way) or to approach them with inappropriate methods (which might lead to sub-

optimal and misleading results without being able to recognize these errors). This

40 2 Heuristic Optimization

contribution is mainly concerned with the effects of market frictions on financial
management which are therefore explicitly taken into account. Hence, for reliable
results, an alternative class of optimization techniques has to be employed that are

capable of dealing with these frictions, namely heuristic optimization techniques.

Opposed to the well-defined problems considered so far, there also exist prob-
lems where the underlying structure is unknown, partially hidden - or simply
too complex to be modeled. When an underlying structure can be assumed or
when there are pairs of input/output data, these questions can be approached, e.g.,
with econometric! or Artificial Intelligence* methods. In finance, time series analy-
sis, pricing of complex securities, model selection problems, and artificial markets
would be typical examples.? In this contribution, however, only well-defined opti-

mization problems will be considered.

2.1.2 Techniques for Hard Optimization Problems
2.1.2.1 Measuring Computational Complexity

Before introducing specific optimization methods, it might be helpful to find a clas-
sification for the size and complexity of the considered problems - and, in due
course, a measure of the methods applied on them. The computational complex-
ity of an optimization problem as well as optimization procedures (and algorithms
in general) is frequently given in O(-) notation which indicates the asymptotic time
necessary to solve the problem when it involves n (instances of the) decision vari-
ables and the problem size is determined by the number of these decision variables.
An algorithm of order O (n), e.g., will consume a processor time (CPU time) of - ¢,
i.e., the time necessary for solving the problem increases linearly in the number of

instances;* a polynomial algorithm of order O (n*) will consume c - n* where k is

! See, e.g., Winker (2001) or Gourieroux and Jasiak (2001).

2 See, e.g., Russell and Norvig (2003).

3 See, e.g., Winker and Gilli (2004), Kontoghiorghes, Rustem, and Siokos (2002), Rasmussen, Goldy,
and Solli (2002) or LeBaron (1999).

Note that these considerations exclude aspects such as memory management or time consumed
by interface communication. Practical implementations should account for these machine and pro-

gramming environment depending characteristics.

2.1. Introduction 41

a constant specific for the problem or algorithm. E.g., reading n pages of a book
might consume linear time (i.e., O(n)), but finding out whether there are any dupli-
cates in a pile of n pages demands that each of them is compared to the remaining
(n— 1) pages, and the complexity becomes O(n- (n — 1)) ~ O(n?) and is therefore

quadratic in n.

The constant ¢ will differ across programming platforms as well as actual CPU
capacities. For sufficiently large n, the main contribution to computational time will
come from the argument related to n or, if the argument consists of several compo-
nents, the “worst” of them, i.e., the one that eventually outgrows the other: When the
complexity is O (In(n) - (n/k)*) then, for any constant k and sufficiently large n, the
quadratic term will outweigh the logarithmic term and the CPU time can be consid-
ered quadratic in n. A sole increase in CPU power which implies a reduction in ¢ will
therefore not have a sustainable effect on the (general) computability of a problem. A
real improvement of the complexity can only be achieved when a better algorithm is
found. This applies not only for the (sometimes called “easy”) polynomial problems
where the exponent k can become quite large, too; it is all the more true for a special
class of optimization and search problems: For the group of non-deterministic poly-
nomial time (NP) complete problems, there is no deterministic algorithm known
that can find an exact solution within polynomial time.”> This means that for decid-
ing whether the found solution is optimal, the number of necessary steps is not a
polynomial, but (at least) an exponential function of the problem size in the worst
case. Two well-known problems of this group are the Traveling Salesman Problem
(TSP)S and the Knapsack Problem (KP)”. One of the difficulties with optimization

5 Actually, it can be shown that if one of these problems could be solved in polynomial time, this

solution could be transferred and all of these problems could be solved in polynomial time.

In the TSP, a salesperson has to find the shortest route for traveling to n different cities, usually
without visiting one city twice. The problem can be modeled by a graph where nodes are the cities
and the arcs are the distances between any two cities. Finding the shortest route corresponds then
to finding the shortes path through this graph (or the shortest Hamiltonian cycle, if the salesperson
takes a round trip where the tour starts and ends in the same city). If the graph is fully connected,
i.e., there is a direct connection between any two cities, there are n! alternative routes to choose from
- which also characterizes the worst case computational complexity of this problem.

In the KP, a tourist finds a number of precious stones that differ in size and in value per size unit.
As the capacity of her knapsack is limited, the task of this 1,/0 knapsack problem is to select stones
such that the value of the contents is maximized. Fast decisions to this problem are possible only

under rare circumstances. See Kellerer, Pferschy, and Pisinger (2004) and section 4.2.1.

42 2 Heuristic Optimization

problems is that the complexity for solving them is not always apparent: Proofs that
an optimization problem belongs to a certain complexity class are therefore helpful

when deciding which solution strategy ought to be considered.®

2.1.2.2 Brute-Force Methods

Analytic, closed-form solutions to optimization problems are desirable as they allow
for exact and straightforward answers. The major advantage of these solutions is that
they can be derived without explicit knowledge of the included parameters’ values:
The optimization has to be done only once, and the result is in a form by which, given
the relevant (exogenous) parameters, the optimal values for the decision variables

can immediately be determined.

If such solutions do not exist, then the problem has usually to be solved for each
individual set of parameters. The approach that needs the least optimization skills
would be complete enumeration where simply all possible (and valid) values for the
decision variables are tested. This approach has some severe downsides: first and
foremost, it is frequently time-consuming far beyond acceptability. Second, it de-
mands the set of candidate solutions to be discrete and finite; if the decision vari-
ables are continuous (i.e., have infinitely many alternatives) then they have to be
discretized, i.e., transformed into a countable number of alternatives — ensuring that
the actual optimum is not excluded due to too large steps while keeping the resulting

number of alternatives manageable.

In chapter 4, e.g., the problem will be to select k out of N assets and optimize their
weights. The problem size can quickly get out of hand: there are (IZ) =N, (N—K)!- k)
alternative combinations for selecting k out of N assets without optimizing the

weights; correspondingly, the complexity of an exhaustive search would be O ((]Z)) .

Selecting just 10 out of 100 assets comes with (11%0) = 1.73 x 10'? alternatives. For

each of these alternatives, the optimal weights had to be found: When the weights of
10 assets may be either zero or multiples of 10% and short-sales are disallowed, the
granularity of the weights is g = 1/;9¢, which comes with k¢ = 10'° possible weight

structures per alternative; the complexity is then increased to O ((1]\!) k8) Having

8 See Knuth (1997) and Harel (1993).

2.1. Introduction 43

a computer that is able to evaluate a million cases per second, complete enumera-
tion would take 1.32 x 10!! years — which is approximately ten times the time since
the Big Bang. When £ is increased by just one additional asset from 10 to 11 (other
things equal), the CPU time would increase to 233 times the time since the Big Bang;
and if, in addition, the granularity would be increased to multiples of 5% (which
would still be too rough for realistic applications), then the CPU time increased to

more than 6 trillion times since the Big Bang.

Some of the problems dealt with in the following chapters have opportunity sets
that are magnitudes larger; complete enumeration is therefore not a realistic alterna-
tive, nor would a sheer increase in computational power (by faster CPU’s or having

parallel computers) do the trick.

2.1.2.3 Traditional Numerical Methods and Algorithmic Approaches

Traditional numerical methods are usually based on iterative search algorithms
that start with a (deterministic or arbitrary) solution which is iteratively improved
according to some deterministic rule.® For financial optimization, methods from
Mathematical Programming are often applied as these methods can manage prob-
lems where the constraints contain not only equalities, but also inequalities. Which

type of method should and can be applied depends largely on the type of problem:!?

Linear Programming will be applied when the optimization problem has a linear
objective function and its constraints, too, are all linear (in-)equalities. The
most popular method is the Simplex Algorithm where first the inequalities are
transformed into equalities by adding slack variables and then including and
excluding base variables until the optimum is found. Though its worst case

computational complexity is exponential, it is found to work quite efficiently

° For a concise presentation of applications in economics, see Judd (1998).

10 The following list of methods is far from exhaustive. For more details, see, e.g., Hillier and Lieber-
man (2003) for a concise introduction to Operations Research, and Stepan and Fischer (2001) for
quantitative methods in Business Administration. Hillier and Lieberman (1995) presents methods
in mathematical programming, a presentation of major algorithmic concepts can be found in Knuth
(1997). Seydel (2002) and Brandimarte (2002) tackle several issues in computational finance and
present suitable numerical methods.

44 2 Heuristic Optimization

for many instances. Some parametric models for portfolio selection therefore
prefer linear risk measures (accepting that these risk measures have less de-

sirable properties than the variance).

Quadratic and Concave Programming can be applied when the constraints are lin-
ear (in-)equalities, yet the objective function is quadratic. This is the case for
the Markowitz model (1.7); how this can be done, will be presented in sec-
tion 2.1.2.4. When the Kuhn-Tucker conditions hold,!! a modified version of
the Simplex Algorithm exists that is capable of solving these problems - the
computational complexity of which, however, is also exponential in the worst

case.

Dynamic Programming is a general concept rather than a strict algorithm and ap-
plies to problems that have, e.g., a temporal structure. For financial multi-
temporal problems, the basic idea would be to split the problem into several
sub-problems which are all myopic, i.e., have no temporal aspects when con-
sidered separately. First, the sub-problem for the last period, 7, is solved. Next
the optimal solution for last but one period, T — 1, is determined, that leads

to the optimal solution for 7', and so on until all sub-problems are solved.

Stochastic Programming is concerned with optimization problems where (some of
the) data incorporated in the objective function are uncertain. Usual ap-
proaches include recourse, assumption of different scenarios and sensitivity

analyses.

Other types of Mathematical Programming include non-linear programming, inte-
ger programming, binary programming and others. For some specimen types
of problems, algorithms exist that (tend to) find good solutions. To approach
the optimization problem at hand, it has to be brought into a structure for
which the method is considered to work - which, for financial optimization
problems, often comes with the introduction of strong restrictions or assump-

tions on the “allowed” values for the decision variables or constraints.

Greedy Algorithms always prefer the next one step that yields the maximum im-
provement but does not assess its consequences. Given a current (subopti-

mal) solution, a greedy algorithm would search for a modified solution within

11 gee, e.g., Chiang (1984, section 21.4).

2.1. Introduction 45

a certain neighborhood and choose the “best” among them. This approach is
sometimes called hill-climbing, referring to a mountaineer who will choose
her every next step in a way that brings the utmost increase. As these algo-
rithms are focused on the next step only, they get easily stuck when there are
many local optima and the initial values are not chosen well. Hence, this ap-
proach demands smooth solution spaces and a monotonous objective func-

tion for good solutions and is related to the concept of gradient search.

Gradient Search can be performed when the objective function f(x) is differen-
tiable and strictly convex'? and the optimum can be found with the first or-
der condition d f/dx = 0. Given the current candidate solution, the gradient

V)= (g—)f;, s %) is computed for ' = x. The solution is readjusted ac-

——

cording to x' = x’ + 6 - V f(x) which corresponds to x’; := x; +-& - % . vj.
This readjustment is repeated until the optimum x* with Vf(x) = 0 is
reached. Graphically speaking, this procedure determines the tangency at
point x” and moves the decision variables towards values for which the tan-
gency’s slope is expected to be 0 and any slight change of any x; would worsen

the value of the objective function f.

Divide and Conquer Algorithms iteratively split the problem into sub-problems un-
til the sub-problems can be solved in reasonable time. These partial results
are then merged for the solution of the complete problem. These approaches
demand that the original problem can be partitioned in a way that the quality
of the solutions for sub-problems will not interfere with each other, i.e., that

the sub-problems are not interdependent.

Branch and Bound Algorithms can be employed in some instances where parts of
the opportunity set and candidate solutions can be excluded by selection tests.
The idea is to iteratively split the opportunity space into subsets and iden-
tify as soon as possible those subsets where the optimum is definitely not
a member of, mainly by either repeatedly narrowing the boundaries within
which the solution must fall, by excluding infeasible solutions, or by “prun-
ing” those solutions that are already outperformed by some other solution

12 Here, maximization problems are considered. For minimization problems, the similar arguments
for concave functions can be considered. Note that any maximization problem can be transformed
into a minimization problem (usually by taking the inverse of the objective function or multiplying

it by —1) and vice versa.

46 2 Heuristic Optimization

found so far. The opportunity set is therefore repeatedly narrowed down until
either a single valid solution is found or until the problem is manageable with
other methods, such as complete enumeration of all remaining solutions or

another numerical method.

As mentioned earlier, a salient characteristic of these methods is that they work
only for problems which satisfy certain conditions: The objective function must be
of a certain type, the constraints must be expressible in certain formats, and so forth.
Their application is therefore restricted to a rather limited set of problems. In prac-
tice, these limitations are often circumvent by modifying the problems and stating
the problems is a way that they are solvable. Another main caveat of these opti-
mization methods is that they are mostly based on rather strict deterministic rules.
Hence, they might produce wrong solutions when the considered problem has not
just one global, but also one or several local optima. Once deterministic search rules
converge towards such local optima, they might have problems leaving them again
(and therefore will never find the global optimum), given they converge in the first
place. Also, deterministic rules have it that, by definition, for a given situation, there
is a unique response. A deterministic search algorithm will therefore always produce
the same result for a given problem when the search strategy cannot be influenced
and the initial values, too, are chosen deterministically. This being the standard case,
repeated runs will always report the same local optimum, in particular when the ini-
tial value for the search process is found with some deterministic rule, too.

In the lack of alternatives, however, financial optimization problems have often
been modeled in a way that they can be solved with one of these methods. As a
consequence, they either had to be rather restrictive or had to accept strong sim-
plifications (such as the assumption of frictionless markets in order to satisfy the
Kuhn-Tucker conditions), or accepted that the solutions are likely to be suboptimal
(such as, e.g., in Asset Class Management, where the universe of available assets is
split into submarkets (subportfolios) which are optimized independently in a “di-
vide and conquer” fashion, ignoring the relationships between the classes). How-
ever, without this fitting of the problems to the available methods, the majority of
(theoretical and practical) optimization problems in portfolio management could
not readily be answered. Due to the fitting, on the other hand, it is difficult (and
quite often impossible) to tell whether a reported solution is unique or just one out

of many optima and how far away this reported solution is from the global optimum.

2.1. Introduction 47

2.1.2.4 Portfolio Optimization with Linear and Quadratic Programming

Many software packages for optimization problems offer routines and standard so-
lutions for Linear and Quadratic Programming Problems. Linear Programming (LP)
can be applied when the objective function is linear in the decision variable and the
constraints are all equalities or inequalities that, too, are linear. A general statement
would be

s gl
min f'x
lin

subject to

Ax=a

Bx<b

where x is the vector of decision variables and A, B, a, and b are matrices and vec-
tors, respectively, that capture the constraints. Note that any minimization problem
can be transformed into a maximization problem simply by changing the sign of the
objective function (i.e., by multiplying f with —1) and that by choosing the appro-
priate signs, inequalities of the type Cx > ¢ can be turned into —Cx < —¢, i.e,, b

can contain upper and lower limits alike.

A simple application in portfolio selection might be to find the weights x;,i =
1,...,N, that maximize the portfolio’s expected return when the weight of each of the
N assets must be within a given range, i.e., X! < x; < ¥, and the weights must add
up to one, i.e., >;x; = 1. This can be achieved by setting f = —r; A =11y, a =1,
B=[-Inxny Iyxn) andb=[—x‘1;xy x"1;xy]" where r is the vector of expected
returns and I and 1 are the respective identity matrices and unity vectors with the
dimensions as indexed. This approach, however, is not able to cope with variance or

volatility as these are quadratic risk measures.

Quadratic Programming (QP) problems, like LP problems, have only constraints
that can be expressed as linear (in-)equalities with respect to the decision variables;
their objective function, however, allows for an additional term that is quadratic in

the decision variables. A standard general statement therefore might read as follows:

1
gl L
m;nfx—i—szx

48 2 Heuristic Optimization

subject to

This can be applied to determine the Markowitz efficient portfolio for a return of
rp by implementing the model (1.7) as follows. If ¥ and X denote the return vector
and covariance matrix, respectively, then f = 0;xy, H=2X, A= [Iyx1 1], a=

[1 rp]), B= —Iyxn and b = 0yx; where 0 is the zero vector.

If, however, the whole efficient line of the Markowitz model is to be identified,
then the objective function (1.7a*) is to be applied and the respective parameters
are f=—Ar, H=2(14+A)X,A=1;xy,a=1,B = —Iyxy and b = Oyy;. Since A
measures the trade-off between risk and return, A = 0 will lead to the identification
of the Minimum Variance Portfolio. On the other hand, A = 1 puts all the weight on
the expected return and will therefore report the portfolio with the highest possible
yield which, for the given model with non-negativity constraints but no upper limits
on x;, will contain exclusively the one asset with the highest expected return. To
identify the efficient portfolios between these two extremes, a usual way would be
to increase A in sufficiently small steps from zero to one and solve the optimization

problem for these values.

In a Tobin framework as presented in section 1.1.2.3 where the set of risky assets
is supplemented with one safe asset, the investor will be best off when investing an
amount « into the safe asset and the remainder of (1 — «) into the tangency portfo-
lio 7. Given an exogenously chosen value 0 < a < 1 (for convenience, @« — 0), the

respective parameters for the quadratic programming model are f = —[¢' r], H=
)2 Onx1 Iixy 1
A= 7 sa=[1a],B=—In 1)xn+1)and b =0y 1)x1-
O1xn 0 O1xn 1

The resulting vector x is of dimension (N + 1) x 1, where the first N elements repre-

sent (1 — &) - x7, whereas the (N + 1)-st element is the weight of the safe asset in the

investor’s overall portfolio and (by constraint) has the value of . By the separation
/

theorem, the weights for 7 can then be determined by x7 = ﬁ {xl xN} .

2.1. Introduction 49

2.1.2.5 “Traditional” Deterministic versus Stochastic and Heuristic Methods

Classical optimization techniques as presented so far can be divided into two main
groups. The first group of methods is based on exhaustive search or (complete) enu-
meration, i.e., testing all candidate solutions. The crux of approaches like branch
and bound is to truncate as much of the search space as possible and hence to elim-
inate groups of candidates that can been identified as inferior beforehand. However,
even after pruning the search space, the remaining number of candidates might still
exceed the available capacities, provided the number of solutions is discrete and fi-

nite in the first place.

The second type comprises techniques that are typically based on the differen-
tial calculus, i.e., they apply the first order conditions and push the decision vari-
ables towards values where the first derivative or gradient of the objective function is
(presumably) zero. An implicit assumption is that there is just one optimum and/or
that the optimum can be reached on a “direct path” from the starting point. The
search process itself is usually based on deterministic numerical rules. This implies
that, given the same initial values, repeated runs will always report the same result
- which, as argued, is not necessarily a good thing: repeated runs with same (de-
terministically generated) initial values will report the same results, unable to judge
whether the global or just a local optimum has been found. To illustrate this prob-
lem, reconsider the function depicted in Figure 2.1 on page 39. If the initial guess
is a value for x that is near one of the local optima x4 or x¢, then a traditional nu-
merical procedure is likely to end up at the local maximum closest to the initial
guess, and the global optimum, xp, will remain undiscovered. In practice, the deter-
ministic behavior and the straightforward quest for the closest optimum from the
current solutions perspective can be a serious problem, in particular when there are
many local optima which are “far apart” from the global optimum, but close to the
starting value. Also, slight improvements in the objective function might come with

substantially different values for the decision variables.

One radical alternative to deterministic methods would be Monte Carlo (MC)
search: A large number of random (yet valid with respect to the constraints) guesses

for values for the decision variables are generated and the respective values of the

50 2 Heuristic Optimization

objective function are determined.!®> With a sufficiently large number of indepen-
dent guesses, this approach is likely to eventually identify the optimum or at least
to identify regions within which it is likely or unlikely to be found. This concept is
much more flexible than numerical methods as its main restrictions are a priori the
availability of a suitable random number generator and the time necessary to per-
form a sufficiently large number of tries. It can therefore be applied to narrow down
the search space which could then be approached with numerical methods. The ma-
jor downside of it is, however, that it might be quite inefficient and inexact: Quite
often, significant parts of the opportunity set can quickly be identified as far from

the actual optimum,; further search in this “region” is therefore just time consuming.

Heuristic search methods and heuristic optimization techniques also incorporate
stochastic elements. Unlike Monte Carlo search, however, they have mechanisms
that drive the search towards promising regions of the opportunity space. They
therefore combine the advantages of the previously presented approaches: much
like numerical methods, they aim to converge to the optimum in course of iterated
search, yet they are less likely to end up in a local optimum and, above all, are very
flexible and therefore are less restricted (or even perfectly unrestricted) to certain

forms of constraints.

The heuristics discussed in due course and applied in the main part of this con-
tribution were designed to solve optimization problems by repeatedly generating
and testing new solutions. These techniques therefore address problems where there
actually exist a well-defined model and objective function. If this is not the case,

there exist alternative methods in soft computing'* and computational intelligence'>.

13 Tt is not always possible to guarantee beforehand that none of the constraints is violated; also, ascer-
taining that only valid candidate solutions are generated might be computationally costly. In these
cases, a simple measure would be not to care about these constraints when generating the candidate
solutions but to add a punishment term to the objective value when this candidate turns out to be
invalid.

Coined by the inventor of fuzzy logic, Lotfi A. Zadeh, the term soft computing refers to methods and
procedures that not only tolerate uncertainty, fuzziness, imprecision and partial correctness but also
make use of them; see, e.g., Zadeh and Garibaldi (2004).

Introduced by James Bezdek, computational intelligence refers to methods that use numerical pro-

cedures to simulate intelligent behavior; see Bezdek (1992, 1994).

2.2. Heuristic Optimization Techniques 51

A popular method of this type are Neural Networks which mimic the natural brain

process while learning by a non-linear regression of input-output data.'6

2.2 Heuristic Optimization Techniques

2.2.1 Underlying Concepts

The toy manufacturer Hasbro, Inc., produces a popular game called Mastermind.
The rules of this game are rather simple: one player selects four colored pegs and
the other player has to guess their color and sequence within a limited number of
trials. After each guess, the second player is told how many of the guessed pegs are
of the right color and how many are the right color and in the right position. The
problem is therefore well-defined, as there are a clear objective function and a well-
defined underlying model: though the “parameters” of the latter are hidden to the
second player, it produces a uniquely defined feedback for any possible guess within

a game.

Although there are 360 different combinations in the standard case!” the second
player is supposed to find the right solution within eight guesses or less. Complete
enumeration is therefore not possible. The typical beginner’s approach is to per-
form a Monte Carlo search by trying several perfectly random guesses (or the other
player’s favorite colors) and hoping to find the solution either by sheer chance or
by eventually interpreting the outcome of the independent guesses. With unlimited
guesses, this strategy will eventually find the solution; when limited to just eight

guesses, the hit rate is disappointingly low.

More advanced players also start off with a perfectly random guess, but they re-
duce the “degree of randomness” in the subsequent guesses by considering the out-
comes from the previous guesses: E.g., when the previous guess brought two white

16 See Russell and Norvig (2003) for a general presentation; applications to time series forecasting are
presented in Azoff (1994).

17" The standard case demands all four pegs to be of different color with six colors to choose from.
Alternative versions allow for “holes” in the structure, repeated colors and/or also the “white” and
“black” pegs, used to indicate “correct color” and “correct color and position”, respectively - result-

ing in up to 6 561 combinations.

52 2 Heuristic Optimization

pegs (i.e., only two right colors, none in the right position, and two wrong colors),
the next guess should contain some variation in the color; if the answer were four
white pegs (i.e., all the colors are right, yet all in the wrong position), the player
can concentrate on the order of the previously used pegs rather than experimenting
with new colors. The individual guesses are therefore not necessarily independent,
yet (usually) there is no deterministic rule for how to make the next guess. Master-
mind might therefore serve as an example where the solution to a problem can be

found quite efficiently by applying an appropriate heuristic optimization method.

2.2.2 Characteristics of Heuristic Optimization Methods

The central common feature of all heuristic optimization (HO) methods is that they
start off with a more or less arbitrary initial solution, iteratively produce new so-
lutions by some generation rule and evaluate these new solutions, and eventually
report the best solution found during the search process. The execution of the it-
erated search procedure is usually halted when there has been no further improve-
ment over a given number of iterations (or further improvements cannot be ex-
pected); when the found solution is good enough; when the allowed CPU time (or
other external limit) has been reached; or when some internal parameter terminates
the algorithm’s execution. Another obvious halting condition would be exhaustion

of valid candidate solutions - a case hardly ever realized in practice.

Since HO methods may differ substantially in their underlying concepts, a gen-
eral classification scheme is difficult to find. Nonetheless, the following list high-
lights some central aspects that allow for comparisons between the methods.'® With
the rapidly increasing number of new heuristics and variants or combinations of al-
ready existing ones, the following list and the examples given therein are far from

exhaustive.

Generation of new solutions. A new solution can be generated by modifying the cur-
rent solution (neighborhood search) or by building a new solution based on
past experience or results. In doing so, a deterministic rule, a random guess
or a combination of both (e.g., deterministically generating a number of alter-

natives and randomly selecting one of them) can be employed.

18 For an alternative classification, see, e.g., Silver (2002) and Winker and Gilli (2004).

2.2. Heuristic Optimization Techniques 53

Treatment of new solutions. In order to overcome local optima, HO methods usually
consider not only those new solutions that lead to an immediate improvement,
but also some of those that are knowingly inferior to the best solution found
so far. To enforce convergence, however, inferior solutions might either be in-
cluded only when not being too far from the known optimum or might be
given a smaller “weight.” Also, the best found solution so far might be rein-
forced (elitist principle), new solutions might be ranked and only the best of
them are kept for future consideration, etc. The underlying acceptance rules
can be deterministic or contain certain randomness.

Number of search agents. Whereas in some methods, a single agent aims to improve
her solution, population based methods often make use of collective knowl-

edge gathered in past iterations.

Limitations of the search space. Given the usually vast search space, new solutions
can be found by searching within a certain neighborhood of a search agent’s
current solution or of what the population (implicitly) considers promising.
Some methods, on the other hand explicitly exclude certain neighborhoods
or regions to avoid cyclic search paths or spending too much computation

time on supposedly irrelevant alternatives.

Prior knowledge. When there exist general guidelines of what is likely to make a
good solution, this prior knowledge can be incorporated in the choice of the
initial solutions or in the search process (guided search). Though the inclusion
of prior knowledge might significantly reduce the search space and increase
the convergence speed, it might also lead to inferior solutions as the search
might get guided in the wrong direction or the algorithm might have severe
problems in overcoming local optima. Prior knowledge is therefore found in
a rather limited number of HO methods and there, too, rather an option than

a prerequisite.

Flexibility for specific constraints. Whereas there exist true general purpose meth-
ods that can be applied to virtually any type of optimization problem, some
methods are tailor-made to particular types of constraints and are therefore

difficult to apply to other classes of optimization problems.

Other aspects allow for testing and ranking different algorithms and might also

affect the decision which method to select for a particular optimization problem:

54 2 Heuristic Optimization

Ease of implementation. The (in-)flexibility of the concept, the complexity of the
necessary steps within an iteration step, the number of parameters and the
time necessary to find appropriate values for these parameters are a common

first selection criterion.

Computational complexity. For HO methods the complexity depends merely de-
pends on the costs for evaluating per candidate solution, on the number of
iterations, and, if applicable, on the population size and the costs of admin-
istrating the population. Though the number of iterations (and population’s
size) will usually increase for larger problem spaces, the resulting increase in
computational costs is usually substantially lower than it would be for tradi-
tional methods. Hence, the computational complexity of HO methods is com-
paratively low; even for NP complete problems, many HO algorithms have
at most polynomial complexity. General statements, however, are difficult to
make due to the differences in the HO techniques and, above all, the differ-

ences in the optimization problems’ complexities.

Convergence speed. The CPU time (or, alternatively, the number of evaluated can-
didate solutions) until no further improvement is found, is often used as a
measure to compare different algorithms. Speed might be a salient property of
an algorithm in practical solutions - though not too meaningful when taken
as a sole criterion as it does not necessarily differentiate between local and
global optimum convergence and as long as a “reasonable” time limit is not

exceeded.

Reliability. For some major heuristics, proofs exist that these methods will converge
towards the global optimum - given sufficient computation time and an ap-
propriate choice of parameters. In practice, one often has to accept a trade-off
between low computational time (or high convergence speed) and the chance
that the global optimum is missed. With the inherent danger of getting stuck
in a local optimum, heuristics are therefore frequently judged by their ratio of

reporting local optima or other inferior solutions.

To reduce the vagueness of these aspects, section 2.3 presents some of the ma-
jor and commonly used heuristics that are typical representatives for this type of

methods and that underline the differences in the methods with regard to the above

2.3. Some Selected Methods 55

mentioned aspects: In Threshold Accepting (section 2.3.1), one solution is consid-
ered at a time and iteratively modified until it reaches an optimum; in Evolution
Based Methods (section 2.3.2), a number of promising solutions are further evolved
at the same time; in Ant Systems (section 2.3.3), collective experience is used; and
Memetic Algorithms (section 2.3.4) are a typical example for successful hybrid al-
gorithms where the advantages of several methods could be combined.! There is
neither a heuristic that outperforms all other heuristics whatever the optimization
problem, nor can one provide a general implementation scheme regardless of the
problem type.?’ The presentation in this introductory chapter is therefore reduced
to the fundamental underlying ideas of the heuristics; more detailed descriptions

will be offered when applied in the subsequent chapters.

2.3 Some Selected Methods

2.3.1 Simulated Annealing and Threshold Accepting

Kirkpatrick, Gelatt, and Vecchi (1983) present one of the simplest and most general
HO techniques which turned out to be one of the most efficient ones, too: Simulated
Annealing (SA). This algorithm mimics the crystallization process during cooling
or annealing: When the material is hot, the particles have high kinetic energy and
move more or less randomly regardless of their and the other particles’ positions.
The cooler the material gets, however, the more the particles are “torn” towards the
direction that minimizes the energy balance. The SA algorithm does the same when
searching for the optimal values for the decision parameters: It repeatedly suggests
random modifications to the current solution, but progressively keeps only those

that improve the current situation.

SA applies a probabilistic rule to decide whether the new solution replaces the

current one or not. This rule considers the change in the objective function (mea-

19 For general presentations and comparisons of HO methods, see, e.g., Osman and Kelly (1996), Tail-
lard, Gambardella, Gendreau, and Potvin (2001), Michalewicz and Fogel (1999), Aarts and Lenstra
(2003) or Winker and Gilli (2004). Osman and Laporte (1996) offer an extensive bibliography of the
theory and application of meta-heuristics, including 1380 references. Ausiello and Protasi (1995)

investigate local search heuristics with respect to NP optimization problems.

20 gee, e.g., Hertz and Widmer (2003).

56 2 Heuristic Optimization

generate random valid solution x;
REPEAT
generate new solution x by randomly modifying
the current solution x;
evaluate new solution x’;
IF acceptance criterion is met THEN;
replace x with x';
END;
adjust acceptance criterion;

UNTIL halting criterion is met;

Listing 2.1: Basic structure for Simulated Annealing (SA) and Threshold Accepting (TA)

suring the improvement/impairment) and an equivalent to “temperature” (reflect-
ing the progress in the iterations). Dueck and Scheuer (1990) suggest a determin-
istic acceptance rule instead which makes the algorithm even simpler: Accept any
random modification unless the resulting impairment exceeds a certain threshold;
this threshold is lowered over the iterations. This algorithm is known as Threshold
Accepting (TA).

Listing 2.1 summarizes the pseudo-code for SA and TA where the values for the
elements of a vector x are to be optimized; SA will be presented in more details when
applied in chapter 3; different acceptance criteria will be compared in section 6.3.1.
Both SA and TA usually start off with a random solution and generate new solutions
by perfectly random search within the current solution’s neighborhood. In either
method, the acceptance of impairments allows to overcome local optima. To avoid
a Monte Carlo search path, however, improvements are more likely to be accepted
than impairments at any stage, and with decreasing tolerance on impairments, the

search strategy shifts towards a hill-climbing search.

SA and TA are both extremely flexible methods which are rather easy to imple-
ment. Both are general purpose approaches which cause relatively little computa-

tional complexity and for which convergence proofs exist.?!

Single agent neighbor-
hood search methods such as SA and TA have proofed successful when the solution

space is not too rough, i.e., if the number of local optima is not too large.??

21 See Aarts and van Laarhoven (1985) and Althéfer and Koschnik (1991), respectively.

22 For a concise presentation of TA, its properties and applications in economics as well as issues re-

lated to evaluating heuristically obtained results, see Winker (2001).

2.3. Some Selected Methods 57

generate P random solutions x; ... Xp;
REPEAT
FOR each parent individual i=1...P
generate offspring x; by randomly modifying
the "parent" x;;
evaluate new solution xf-;
END;
rank parents and offspring;
select the best P of these solutions for new parent population;

UNTIL halting criterion met;

Listing 2.2: Basic structure for Evolutionary Strategies (ES)

2.3.2 Evolution Based and Genetic Methods

Inspired by their natural equivalent, the ideas of simulated evolution and artificial
life have gained some tradition in machine learning and, eventually, in heuristic op-
timization.> One of the first algorithms actually addressing an optimization prob-
lem are Evolutionary Strategies (ES) by Rechenberg (1965). Here, a population of P
initial solution vectors is generated. In each of the following iteration steps, each in-
dividual is treated as a parent that produces one offspring by adding a random mod-
ification to the parent’s solution. From the now doubled population, only the best P
agents are selected which will constitute the parent population in the next genera-
tion. Listing 2.2 summarizes the main steps of this original concept. Later versions
offer modifications and improvements; in Rechenberg (1973), e.g., multiple parents

generate a single offspring.

Evolution based methods gained significant recognition with the advent of Ge-
netic Algorithms (GA). Based on some of his earlier writings as well as related ap-
proaches in the literature, Holland (1975) attributes probabilities for reproduction
to the individual “chromosomes,” x;, that reflect their relative fitness within the pop-
ulation. In the sense of the “survival of the fittest” principle, high fitness increases
the chances of (multiple) reproduction, low fitness will ultimately lead to extinction.
New offspring is generated by combining the chromosomes of two parent chromo-
somes; in the simplest case this cross-over can be done by “cutting” each parent’s
chromosomes into two pieces and creating two siblings by recombining each par-

23 A survey on these topics can be found in Fogel (1998).

58 2 Heuristic Optimization

generate P random chromosomes;
REPEAT
determine fitness of all chromosomes i—=1...P;
determine replication probabilities p; based on relative fitness;
FOR number of reproductions;
randomly select two parents based on p;;
generate two children by cross-over operation on parents;
END;
insert offspring into the population;
remove P chromosomes based on inverse replication probability;
apply mutation to some/all individuals;

UNTIL halting criterion met;

Listing 2.3: Basic structure for Genetic Algorithms (GA)

parents [1[oJo[1]o] [1]1]o]1]1]

offpring [1 oo [t [t] [t[t]o]1]o0]

(a) 1-point cross-over operation

before [1 [1[o]1]0]

after 0 1 0 1 0

(b) Mutation

Fig. 2.2: Examples for evolutionary operators on binary strings

ent’s first part with the other parent’s second part (see Figure 2.2(a)). In addition
mutation can take place, again by randomly modifying an existing (i.e., parent’s or

newly generated offspring’s) solution (see Figure 2.2(b)).

Over the last decades, GA have become the prime method for evolutionary op-
timization - with a number of suggestions for alternative cross-over operations
(not least because GA were originally designed for chromosomes coded as binary
strings), mutation frequency, cloning (i.e., unchanged replication) of existing chro-
mosomes, etc. Listing 2.3 therefore indicates just the main steps of a GA; the struc-
ture of actual implementations might differ. Fogel (2001) offers a concise overview

of methods and literature in evolutionary computation.

2.3. Some Selected Methods 59

M (VN (N
2@
® @ F)

Fig. 2.3: Simple foraging example for a colony with two ants

:

Whereas SA and TA are single-agent methods where a solution is persistently
modified (or “mutated”), evolutionary methods have to administer whole popula-
tions. At the same time, they all derive their new solutions by modifying existing
current solutions. Evolutionary methods are more demanding to implement than
are SA and TA. Also, they are more time-consuming because of their computational
costs for administrating the population. At the same time, they are less likely to get
stuck in local optima as the respective chromosomes are likely to be eventually be
replaced with “fitter” alternatives.

2.3.3 Ant Systems and Ant Colony Optimization

Evolution has provided ants with a simple, yet enormously efficient method of find-
ing shortest paths.?* While traveling, ants lay pheromone trails which help them-

selves and their followers to orientate.

To illustrate the underlying principle, we assume a nest N and a food source F
are separated by an obstacle O (Figure 2.3) and that there are two alternative routes
leaving N both leading to F, yet different in length. Since the colony has no infor-
mation which of the two routes to choose, the population (here consisting of two
ants) is likely to split up and each ant selects a different trail. Since the route on
the right is shorter, the ant on it reaches F* while the other ant is still on its way.
Supplied with food, the ant wants to return to the nest and finds a pheromone trail
(namely its own) on one of the two possible ways back and will therefore select this

alternative with a higher probability. If it actually chooses this route, it lays a second

24 See Goss, Aron, Deneubourg, and Pasteels (1989).

60 2 Heuristic Optimization

pheromone trail while returning to the nest. Meanwhile the second ant has reached
F and wants to bring the food to the nest. Again, F' can be left on two routes: the left
one (=long) has now one trail on it, the right one (=short) has already two trails. As
the ant prefers routes with more pheromone in it, it is likely to return on the right
path — which is the shorter one and will then have a third trail on it (versus one on
the left path). The next time the ants leave the nest, they already consider the right
route to be more attractive and are likely to select it over the left one. In real live,
this self-reinforcing principle is enhanced by two further effects: shorter routes get
more pheromone trails as ants can travel on them more often within the same time
span than they could on longer routes; and old pheromone trails tend to evaporate

making routes without new trails less attractive.

Based on this reinforcement mechanism, the tendency towards the shorter route
will increase. At the same time, there remains a certain probability that routes with
less scent will be chosen; this assures that new, yet unexplored alternatives can be
considered. If these new alternatives turn out to be shorter (e.g., because to a closer
food source), the ant principle will enforce it, and - on the long run - it will become
the new most attractive route; if it is longer, the detour is unlikely to have a lasting

impression on the colony’s behavior.

Dorigo, Maniezzo, and Colorni (1991) transfer this metaphor to heuristic opti-
mization called Ant System (AS) by having a population of artificial ants search in
a graph where the knots correspond to locations and the arcs represent the amount
of pheromone, i.e., attractiveness of choosing the path linking these locations. Be-
ing placed at an arbitrary location and having to decide where to move next, the
artificial ant will choose (among the feasible) routes those with higher probability
that are marked with more pheromone. The pheromone is usually administered in
a pheromone matrix where two basic kinds of updates take place: on the one hand,
new trails are added that are the stronger the more often they are chosen and the
better the corresponding result; on the other hand, trails evaporate making rarely
chosen paths even less attractive.

Since the original concept of AS parallels the Traveling Salesman Problem,?’ List-
ing 2.4 presents this algorithm for the task of finding the shortest route when a given
number of cities have to be visited. Meanwhile, there exist several extensions and

25 See section 2.1.2.1.

2.3. Some Selected Methods 61

initialize trails and parameters;
REPEAT
FOR all ants do;
deposit ant at a random location;
REPEAT
select randomly next city according to pheromone trail;
UNTIL route complete;
determine tour length;
END;
let a fixed proportion of all pheromone trails evaporate;
FOR all ants DO;
add pheromone to chosen paths (more for shorter tours);
END;
UNTIL halting criterion met;

Listing 2.4: Basic Structure for Ant System (AS)

variants most of which suggest improved trail update rules or selection procedures
leading to higher reliability. Also there exist modifications to open this algorithm
for optimization problems other than ordering. A survey can be found in Bonabeau,
Dorigo, and Theraulaz (1999).

The concept of the pheromone matrix facilitates the gathering and sharing of
collective knowledge and experience: While in the previously presented methods
SA, TA and GA derive their new solutions from one (or two paternal) existing so-
lution(s) and adding a random term to it, the contributions of many ants (from the
current and past generations) support the generation of a new solution. As a result,
ant based systems usually have high convergence speed and reliability - yet are also
computationally more demanding as trail updates and the generation of new solu-
tions is more complex. Another disadvantage is that ant based algorithms are less
flexible in their application.

2.3.4 Memetic Algorithms

Single agent neighborhood search methods such as SA or TA, where one solution
is modified step by step until convergence, are successful in particular when there
is a limited number of local optima, when the agent can at least roughly figure out

in which direction the global optimum can be expected and when this optimum

62 2 Heuristic Optimization

initialize population;

REPEAT
perform individual neighborhood search;
compete;
perform individual neighborhood search;
cooperate;
adjust acceptance criterion;

UNTIL halting criterion met;

Listing 2.5: Basic Structure for a Memetic Algorithm (MA)

is easily reachable given the step size and the distance between initial and optimal
solution. If the algorithm appears to have problems of finding a solution or is likely
to get stuck in local optima, one common remedy is to have a higher number of
independent runs with different starting points, i.e., the optimization problem is
solved repeatedly, and eventually the best of all found solutions is reported. Though
the advantage of the independence between the runs is that mislead paths to local
optima cannot be misleading in the current search, prior experience is lost and has
to be gathered again. This increases inefficiency and run time. In population based
methods such as GA, a whole population of agents produces several solutions at a
time, which are regularly compared and the best of which are combined or re-used
for new solutions. Population based methods therefore tend to be more likely to
(eventually) overcome local optima. At the same time, they might have problems
when already being close to the optimum where local neighborhood search would

easily do the trick.

Moscato (1989) therefore suggests a method that combines the advantages of
both concepts by having a population of agents that individually perform local
search in a SA like fashion. In addition to the agents’ independent neighborhood
searches, they also compete and cooperate: competition is done in a tournament
fashion where one agent challenges another and, if winning, imposes his solution
onto the challenged agent; cooperation can be achieved by combining solutions with
a cross-over operation as known, e.g., from GA. Unlike in other evolutionary meth-
ods, however, replacement in competition and cooperation uses the SA acceptance
criterion instead of the replication probabilities and is therefore less time consum-

ing. Listing 2.5 indicates the main steps of a simple version of MA.

2.4. Heuristic Optimization at Work 63

This algorithm was inspired by a concept of Oxford zoologist Richard Dawkins
who found that ideas and cultural units sometimes behave like “selfish” genes: they
might be passed on from one person to another, they might be combined with other
ideas, they mutate over time, and they have a tendency to self-replication. To resem-
ble these properties, Dawkins introduced the term meme that reflects the French

word for “self,” méme, and is pronounced in a way that it rhymes with “gene 2

MA as presented here® is a typical hybrid algorithm that combines elements of
other algorithms and enhances them with original ideas and approaches. Compared
to the other algorithms presented so far, MA has lower computational complexity
than GA (yet, of course, higher complexity than a pure SA implementation). Being
more flexible in shifting between independent neighborhood search and joint pop-

ulation search, they are more flexible than the methods they are built on.

2.4 Heuristic Optimization at Work

2.4.1 Estimating the Parameters for GARCH Models
2.4.1.1 The Estimation Problem

In section 1.1.3, different ways for estimating the volatility were presented, including
GARCH models where the volatility can change over time and is assumed to follow
an autoregressive process. Applying these models, however, is not always trivial as
the parameters have to be estimated by maximizing the likelihood function (1.14)
(see page 22) which might have many local optima. In the lack of closed-form so-
lutions, traditional numerical procedures are usually employed - which might pro-

duce quite different results.

26 See Dawkins (1976, chapter 7). For a more in-depth presentation and discussion of the meme con-
cept and its application in social sciences, see, e.g., Blackmore (1999).

27 Meanwhile, the literature holds many different versions of Memetic Algorithms, some of which are

population based whereas others aren’t, where the local search is not based on SA but on alternative
methods such as Fred Glover’s Tabu Search (where a list of recently visited solutions is kept that must
not revisited again in order to avoid cycles), etc.; more details can be found in several contributions

in Corne, Glover, and Dorigo (1999).

64 2 Heuristic Optimization

Given a time series r;, Fiorentini, Calzolari, and Panattoni (1996) consider the
simple GARCH(1,1) model (our notation)

rr = Uu—é, et|Qt71 NN(O7O-t2) (2.13)
ol=ogtay-el |+ P10, (2.1b)

with the objective of maximizing the conditional likelihood function, apart from the
constant ~7/,-In(2- 7),

max.Z () = i —lln(O‘Z) _le (2.1¢)
¥ 2V 202 '

=1
where ¥ = [, g, 1, 31] is the vector of decision variables and €;_; is the infor-
mation set available at time # — 1. They present a closed-form analytical expressions
for the second derivatives of (2.1c) which can be used for initial values of 1p; for the

actual search, they test gradient methods.

Based on these results, Bollerslev and Ghysels (1996) provide parameter estima-
tions for the daily German mark/British pound exchange rate.? Their estimates for
the coefficients are then used for benchmarks by Brooks, Burke, and Persand (2001)
who estimate the parameters for the same data set with nine different specialized
software packages. They find that only one of these packages is able to hit the bench-
mark coefficients and Hessian-based standard errors using the default settings. As
this data set has become a benchmark problem for GARCH estimation®® it can be
used as a first example to illustrate how a heuristic optimization algorithm might be
implemented and how the algorithm’s performance can be optimized.

2.4.1.2 A Simple Heuristic Approach

To illustrate how to use heuristic optimization techniques and to test whether the
obtained results are reliable, we approach the maximization problem (2.1) with one
of the simpler of the introduced HO techniques, namely Simulated Annealing (SA)
which has been introduced in section 2.3.1. Based on the pseudo-code in listing 2.1,

the SA heuristic includes the following steps:

28 The data, comprising 1974 observations, are available at
www.amstat.org/publications/jbes/ftp.html — viewing existing

publications — JBES APR-96 Issue — bollerslev.sec4l.dat.
2 See also McCullough and Renfro (1999).

2.4. Heuristic Optimization at Work 65

e First, initial values for all decision variables (collected in the vector yp =
[4, 0,01, 31]) are generated by random guesses. The only prerequisite for
these guesses is that the guessed values are “valid” with respect to the con-

straints.

o The main part of SA consists of a series of iterations where the following steps
will be repeated:

- The algorithm produces a new candidate solution, ¢/, by modifying the
current solution, . To achieve this, one element j from 1 is selected
arbitrarily. Then its current value is changed randomly. Formally, 1[)} =
Y+ u-Z where Z € [—1,+1] is an equally distributed random number.
The other elements of 1 are left unchanged, i.e., tp,’(=Yy Yk # j.

- Having generated a new candidate solution, ', the change in the ob-
jective function (here: the log-likelihood function) is calculated: A.Z =
Z (') — Z (). According to the SA principle, a stochastic acceptance
criterion for the new solution is applied that takes the change in the ob-
jective function, A.Z, into account as well as how progressed the algo-
rithm is: In early iterations, even large impairments have a consider-
able chance of being accepted while in latter iterations, the criterion is
increasingly less tolerant in accepting impairments. Usually, the accep-
tance criterion is the Metropolis function which will be presented in due
course.

Based on this criterion’s decision, the current solution is either replaced

with the new one (i.e., P < ') or not (i.e., ¢ is left unchanged).

- The acceptance criterion is to be modified over the course of iterations.
SA is an analogue to the natural crystallization process while cooling.
SA’s acceptance therefore involves a “temperature” 7" which isgradually

lowered. The effect of this will be discussed in due course.

These steps of suggesting a new candidate solution and deciding whether to
accept it for a new candidate solution or not (plus modifying the acceptance
criterion), are repeated until some halting criterion is met. For the following

implementation, the number of iterations is determined beforehand.

Listing 2.6 provides a pseudocode for the algorithm as presented. As the counter

for the iterations starts with the value 2, the number of candidate solutions pro-

66 2 Heuristic Optimization

Initialize 1 with random values;

FOR i := 2 TO I do
Y= s
J := RandomInteger € [1,...,narg(y)];
Z; := RandomValue € [—1,+1];
Y= it G
AL = L) - L(W);
IF AY >0 THEN
Y=y
ELSE
with probability p=p(AZ,Ti) :eXp(Afi(f) DO
b=y
END;
END;

% New overall best solution?
IF Z(¢) > L (p*) THEN

P o=y
END;

Lower temperature: Tiiq:=7i Yr;
If applicable:
Adjust neighborhood range u; 1 :=u;i-Vuy;
END;
Report best solution ¥*;

Listing 2.6: Pseudo-code for GARCH parameter estimation with Simulated Annealing

duced by the algorithm (including the initialization) is equal to I; note also that the
iteration loop will be entered only if I > 2 and skipped otherwise.

A salient ingredient for an efficiently implement HO algorithm are proper values
for the algorithm’s parameters. For Simulated Annealing, the relevant parameters
and aspects include the admitted run time (i.e., the number of iterations), a concept
of “neighborhood” (i.e., the modification of 1), and the acceptance criterion (i.e., a
suitable cooling plan). What aspects should be considered in finding values for the

respective parameters, will be discussed in the following section.

Unfortunately, there is no unique recipe for how to approach this task. Actually,

it can be considered a demanding optimization problem in itself — which is partic-

2.4. Heuristic Optimization at Work 67

ularly tricky: A certain parameter setting will not produce a unique, deterministic
result but rather various results that are (more or less) randomly distributed; the
task is therefore to find a combination where the distribution of the reported results
is favorable. And as with many demanding problems, there are many possible pa-
rameter settings that appear to work equally well, yet it is hard to tell which one is

actually the best among them.

Generally speaking, a good parameter setting is one where the algorithm finds
reliable solutions within reasonable time. A common way for tuning the algorithm’s
parameters is to predefine several plausible parameter settings and to perform a se-
ries of independent experiments with each of these settings. The results can then be
evaluated statistically, e.g., by finding the median or the quantiles of the reported
solutions, and eventually select the parameter setting for which the considered sta-
tistics are the best; this approach will be used in the following section. Alternative
approaches include response surface analysis and regression analysis where a func-
tional relationship between the algorithm’s parameters and the quality of the re-

ported solutions is considered.

For complex algorithms where the number of parameters is high and their effects
on the algorithm’s quality are highly interdependent, a preselection of plausible pa-
rameter values is more difficult; in these circumstances, the parameter values can be

found either by a Monte Carlo search - or by means of a search heuristic.

2.4.2 Tuning the Heuristic’s Parameters
2.4.2.1 Neighborhood Range

General Considerations Simulated Annealing is a typical neighborhood search
strategy as it produces new solutions that are close to the current solutions. It does
so by slightly modifying one or several of the decision variables, in the above im-
plementation by adding a random term to the current value: 1,[)? =Pj+u-Z. 7 is
typically a normally or equally distributed random number; here it is chosen to
be equally distributed within [—1,+1]. The parameter u defines what is considered
a neighboring solution: the larger u, the larger the “area” surrounding 1; within

which the new solution will be, and vice versa. Here, “small” and “large” steps have

68 2 Heuristic Optimization

to be seen relative to the variable that is to be changed; hence, the proper value for u

will also depend on the magnitude of the different 1 ’s.

Large values for u allow fast movements through the solution space - yet also
increase the peril that the optimum is simply stepped over and therefore remains
unidentified. Smaller step widths, on the other hand, increase the number of steps
necessary to trespass a certain distance; if u is rather small, the number of iterations
has to be high. Furthermore, u is salient for overcoming local optima: To escape a
local optimum, a sequence of (interim) impairments of the objective function has to
be accepted; the smaller u, the longer this sequence is. Smaller values for # demand
a more tolerant acceptance criterion which might eventually lead to a perfectly ran-
dom search strategy, not really different from a Monte Carlo search. With a strict
acceptance criterion, small values for u will enforce an uphill search and therefore
help to find the optimum close to the current position which might be advantageous

in an advance stage of the search.

All this indicates that it might be favorable to have large values for u during the
first iteration steps and small values during the last. Also, it might be reasonable to
allow for different values for each decision variable if there are large differences in

the plausible ranges for the values of the different decision variables.

Finding Proper Values Given the data set for which the GARCH model is to be es-
timated, the optimal value for ¢; = i can be supposed to be in the range [—1,+1].
Also, it is reasonable to assume that the estimated variance should be non-negative
and finite at any point of time. For the variables «g, 1, and [3; in equation (2.1b)
(represented in the algorithm by 1,, 13, and 14), it is plausible to assume that their
values are non-negative, but do not exceed 1; hence, their optimal values are ex-
pected in the range [0, +1].

As only one of these decision variables is modified per iteration and the number
of iterations might be rather small, we will test three alternatives where u1 will have
an initial value of 0.05, 0.025, or 0.01; the actual modification, u; - Z, will then be
equally distributed in the range [—uq, +u1].

As argued, it might be reasonable to narrow the neighborhood in the course
of the search process. We will therefore test four different versions where u is kept

either constant; the value of u in the terminal iteration I is ’s initial value divided by

2.4. Heuristic Optimization at Work 69

10, 100, or 1 000. The value for u shall be lowered gradually in the course of iterations
according to u54+1 = u; - y,. This implies that the parameter ,, is to be determined

according to v, = /%, . With the chosen values for 1 and uz, y, can take the

values 1, v/0.1, +/0.01, and +/0.001.

2.4.2.2 The Number of Iterations

General Considerations For some heuristic optimization algorithms, there exist
proofs that the global optimum will be identified - eventually. In practical applica-
tions, concessions have to be made in order to find solutions within reasonable time.
This is primarily done by restrictions on the run time or on the number of iterations.
For the latter alternative, common solutions include convergence criteria and upper
limits on the number of iterations. Convergence criteria assume that the algorithm
has found a solution which is either the global solution - or some local optimum
which is unlikely to be escaped and computation time therefore ought to be used for

new runs.

As indicated above, selecting the number of iterations is related to finding the
parameter for the step size, u, and vice versa: The neighborhood range should be
large enough that the optimum can actually be reached within the chosen number
of iterations and from any arbitrary starting point. Also, for some problems it might
be reasonable to have more runs with independent initial guesses for the decision
variables, whereas for others it might be advantageous to have fewer runs, yet with

more iterations per run.

Finding Proper Values The algorithm will report a solution which it has actually
guessed and reached by chance at one stage of the search process. The algorithm,
however, does not have a mechanism that guides the search, e.g., by using gradi-
ents, estimating the step width with some interpolation procedure or based on past
experience. At the same time, we demand a high precision for the parameters. The
algorithm is therefore conceded 50000 guesses before it reports a solution; these
guesses can be spent on few independent runs with many iterations or the other way
round. We distinguish four versions where all guesses are used on one search run
(i.e., the number of iterations is set to I = 50000), 5 and 50 independent runs with

I =10000 and 1000 iterations, respectively, and version where no iterative search

70 2 Heuristic Optimization

is performed but all the guesses are used on perfectly random values; this last ver-
sion corresponds to a Monte Carlo search and can serve as a benchmark on whether
the iterative search by SA has a favorable effect on the search process or whether a

perfectly random search strategy might be enough.

2.4.2.3 Acceptance criterion

General Considerations In Simulated Annealing the acceptance probability, p, is
often determined via the Metropolis function, p = min {exp (4-4/z,) ,100% }.>° For
maximization problems, a positive sign for the change in the objective function,
AZ > 0, indicates an improvement, A.Z < 0 indicates an impairment. 7 is the
analogue for the temperature in iteration i and serves as an adjustment parame-
ter to make the criterion more or less tolerant to impairments: High temperatures
push the argument of the exp(-) expression towards zero and hence the acceptance
probability towards 100%, and changes with A.¥ < 0 might still be accepted; low
temperatures have the adverse effect and make even small impairments unlikely.
Improvements, however, are accepted whatever the temperature: as exp(:) > 1 (and
therefore exceeds the min-function’s limit of 100%) when the argument is positive,
the Metropolis function will return an acceptance probability of 100% whenever
AL >0.

Finding good values for the temperature is strongly dependent on what are “typ-
ical” impairments. This can be achieved by performing a series of modifications,
evaluating the resulting changes in the objective function, A.Z, and determining

the quantiles of the distribution of negative A_#”s.

Solving the Metropolis function for the temperature yields 73 = A% /In(p).
Hence, during the early iterations, 73 should have values that allow most of the im-
pairments to be accepted with reasonable probability; 7; should therefore be chosen
such that a relatively large impairment is accepted with high probability. In the last
iterations, only few of the impairments ought to be accepted; here, 73 should have
a value such that even a relatively small impairment is accepted with low proba-
bility. Once the temperatures for the first and last iterations, 77 and 771, have been

30" See also the discussion in section 6.3.1.

2.4. Heuristic Optimization at Work 71

u 95% 90% 75% 50% 25% 10% 5%

0.05 -17.70569 -13.42215 -8.13720 -3.59098 -0.78051 = -0.21308 -0.08924
0.025 -17.60417 ~ -13.09995 -7.92351 -3.46938 -0.52063 ~ -0.13813 -0.05751
0.01 -17.60372 ~ -13.15639 -8.06564 -3.58483 -0.35556 = -0.06503 -0.02704
0.005 -16.94350 -13.06744 -8.07430 -3.41242 -0.19775 = -0.02877 -0.01147
0.0025 -17.65643 -13.24645 -8.00821 -3.44650 -0.11675 = -0.01526 -0.00588
0.001 -17.59644 -13.15123 -8.05048 -3.45760 -0.12361 -0.00617 -0.00245
0.0005 -17.77629 -13.09759 -7.96761 -3.50134 -0.22632 ~ -0.00315 -0.00127
0.00025 -17.63221 -13.09240 -7.93378 -3.41761 -0.17682 ~ -0.00161 -0.00066
0.0001 -17.65130 -13.12136 -7.97900 -3.51114 -0.10407 =~ -0.00063 -0.00025
0.00005 -17.05599 -12.85940 -7.7959 -3.43883 -0.1256 -0.00029 -0.00011
0.000025 | -17.49037 -12.95163 -7.91984 -3.45329 -0.11150 = -0.00016 -0.00006
0.00001 -18.15359 -13.32715 -8.06117 -3.57329 -0.23852 = -0.00007 -0.00003

Tab. 2.1: Quantiles for modifications with negative A Z for different values of u, based on 10 000

replications each (italics and boldface as explained in the text)

found, the cooling parameter yr = /Tt /T1 can be determined where I is the cho-
sen number of iterations per run. In each iteration, the temperature is then lowered

according to 7541 =Ti - 7.

Finding Proper Values In order to find suitable values for the temperature, the dis-
tribution of the potential impairments due to one local neighborhood search step
has to be found. This can be done by a Monte Carlo approach where first a num-
ber of candidate solutions (that might occur in the search process) are randomly
generated and for which the effect of a modification is evaluated. As this distrib-
ution depends on what is considered a local neighborhood, Table 2.1 summarizes
the quantiles for impairments for the different values of u in the first and the last

iteration.

As stated above, the initial values for u were selected from the alternatives [0.05,
0.025, 0.01]. For these three alternatives, the 90% quantiles of the impairments were
approximately —13 (see figures in italics in Table 2.1). Hence, if in the beginning,
90% of all impairments should be accepted with a probability of at least p = 0.5,
then temperature should be set to 71 = —13/1n(0.5) ~ 20.

The 10% quantiles of the impairments depend strongly on the value of u; they can
be approximated by -6 - u (see figures in boldface in Table 2.1). Hence, if only the

72 2 Heuristic Optimization

10% of impairments that are smaller than this critical value shall be accepted with a
probability of more than p = 0.1 in the last iteration, I, the temperature should to be

setto T1 = —6'”1/1n(0.1) /2 2.6 - u1. As this shall be the case in the last iteration, the

cooling factor is set to y7 = {/ur - 2:6/59 where I is the number of iterations.’!

2.4.3 Results

Based on the above considerations, there are three candidate values for the initial
value of u (u1 = 0.05, 0.025 or 0.01) and four alternatives for the terminal value of
u (4, = 1/1, V10, Y100 and 1/1gg0; the values for y, follow directly according to
Yu = /",;). In addition, we test four different alternatives to use the conceded
50 000 guesses (ranging from a single run with I = 50000 iterations to 50 000 inde-
pendent runs with I = 1, i.e., without subsequent iterations3?), there are 48 different
parameter settings to be tested. With each of these combinations, the algorithm was
applied to the optimization problem several hundred times, and from each of these
experiments, the best of the 50000 candidate solutions was reported and the dis-
tributions of the reported solutions are evaluated. Implemented in Delphi (version
7), the CPU time per experiment (i.e., per 50 000 candidate solutions) was approx-
imately 15 seconds on a Centrino Pentium M 1.4 GHz. Table 2.2 summarizes the
medians and 10% quantiles for the deviations between reported solutions and the

optimum.

When an adequate parameter setting has been chosen, the algorithm is able to
find good solutions with high probability: when the number of iterations is suffi-
ciently high (e.g., I = 50000) and the parameters for the neighborhood search are
well chosen (e.g., u1 = 0.025 and #1/,, = 0.001), then half of the reported solutions
will have a ¢ which is at most 0.00001 below the optimum. The best 10% of the

solutions generated with this parameter setting will deviate by just 0.000001 or less.

31 A more sophisticated consideration could take into account that during the last iteration, the al-
gorithm has converged towards the optimum and that a random step in this region might have a
different effect on A.Z as the same modification would cause in a region far from the optimum.
Also, the values for p where chosen based on experience from implementations for similar prob-
lems; more advanced considerations could be performed. However, for our purpose (and for many
practical applications), the selection process as presented seems to generate good enough results.

32 Note that in listing 2.6, the loop of iterations is not entered when I = 1: To assure that the initial

values, too, count towards to the total number of guesses, the loop is performed only I — 1 times.

2.4. Heuristic Optimization at Work

73

runs X number of guesses per run (I)

uy UTfy, 1x50000 5x10000 50x1000 50000x 1, MC
1 -0.011240 -0.016400 -0.347450
0.05 0.1 -0.000795 -0.000985 -0.233348
0.01 -0.000055 -0.000062 -0.425277
0.001 -0.000007 -0.000078 -2.224412
= 1 -0.004913 -0.005810 -0.489114
ﬁ 0.1 -0.000328 -0.000359 -0.650558
g 0.025 -17.895114
0.01 -0.000024 -0.000103 -5.468503
0.001 -0.000008 -1.144997 -23.693378
1 -0.001681 -0.001865 -1.288883
0.01 0.1 -0.000114 -0.000572 -16.841008
0.01 -0.000012 -6.891969 -65.365018
0.001 -7.289898 -32.970728 -99.662400
1 -0.003348 -0.005210 -0.067568
0.1 -0.000309 -0.000363 -0.010878
0.05 0.01 -0.000020 -0.000025 -0.011645
) 0.001 -0.000002 -0.000008 -0.054592
g 1 -0.001790 -0.002157 -0.047682
& 0.1 -0.000123 -0.000127 -0.020024
S 0.025 -8.625649
S 0.01 -0.000008 -0.000024 -0.090048
0.001 -0.000001 -0.008738 -2.413633
1 -0.000614 -0.000749 -0.067869
0.01 0.1 -0.000041 -0.000112 -0.611584
0.01 -0.000004 -0.022991 -15.653601
0.001 -0.193161 -2.774787 -37.478838

Tab. 2.2: 10% quantiles and medians of differences between reported solutions and optimum

solution for different parameter settings from several hundred independent experiments (typi-
cally 400; MC: 7 800) with 50 000 candidate solutions each

74 2 Heuristic Optimization

If, on the other hand, the heuristic search part is abandoned and all of the allowed
50 000 guesses are used on generating independent random (initial) values for the
vector of decision variables, then the algorithm performs a sheer Monte Carlo (MC)
search where there is no neighborhood search (and, hence, the values for u; are
irrelevant) and where, again, only the best of the 50 000 guesses per experiment is
reported. The results are by magnitude worse than for SA with a suitable set of pa-
rameters (see last column, labeled MC). This also supports that the use of the search
heuristic leads to significantly better results — provided an appropriate parameter

setting has been selected.

A closer look at the results also underlines the importance of suitable parameters
and that inappropriate parameters might turn the algorithm’s advantages into their
exact opposite. When there are only few iterations and the neighborhood is chosen
too small (i.e., small initial value for u which is further lowered rapidly), then the
step size is too small to get anywhere near the optimum within the conceded number
of search steps. As a consequence, the algorithm virtually freezes at (or near) the

initial solution.

However, it also becomes apparent that for most of the tested parameter com-
binations, the algorithm performs well and that preliminary considerations might
help to quickly tune a heuristic optimization algorithm such that it produces good
results with high reliability. Traditional methods are highly dependent on the initial
values which might lead the subsequent deterministic search to the ever same local
optimum. According to Brooks, Burke, and Persand (2001) the lack of sophisticated
initializations is one of the reasons why the tested software packages found solutions
for the considered problem that sometimes differ considerably from the benchmark.
Table 2.3 reproduces their parameter estimates from different software packages®?
together with the benchmark values and the optimum as found by the SA algorithm

33 Brooks, Burke, and Persand (2001) report only three significant figures for the estimates from the
different software packages, also the packages might use alternative initializations for o2. (Our im-
plementation uses the popular approach o7 = e} = + ST | €? with e; coming from equation (2.1a).)
Reliable calculations of the respective values for .’ that would allow for statistically sound tests on

the estimation errors are not possible.

2.5. Conclusion 75

Method Po=n P =g Yr=01 YP3=p

Benchmark -0.00619041 0.0107613 0.153134 0.805974

Heuristic optimization | -0.00619034 0.0107614 0.153134 0.805973
E-Views -0.00540 0.0096 0.143 0.821
Gauss-Fanpac -0.00600 0.0110 0.153 0.806

go Limdep -0.00619 0.0108 0.153 0.806

é Matlab -0.00619 0.0108 0.153 0.806

; Microfit -0.00621 0.0108 0.153 0.806

g SAS -0.00619 0.0108 0.153 0.806

:9: Shazam -0.00613 0.0107 0.154 0.806
Rats -0.00625 0.0108 0.153 0.806
TSP -0.00619 0.0108 0.153 0.806

Tab. 2.3: Results for the GARCH estimation based on the benchmark provided in Bollerslev and
Ghysels (1996), the results from the software packages (with default settings) as reported in
Brooks, Burke, and Persand (2001)

- which, by concept, uses perfectly random initial values.>* Unlike with traditional
deterministic optimization techniques, this reliability can arbitrarily be increased
by increasing the runtime (which is the basic conclusion from convergence proofs
for HO algorithms).

2.5 Conclusion

In this chapter, some basic concepts of optimization in general and heuristic opti-
mization methods in particular were introduced. The heuristics presented in this
chapter differ significantly in various aspects: the varieties range from repeatedly
modifying one candidate solution per iteration to whole populations of search
agents each of them representing one candidate solution; from neighborhood search

strategies to global search methods, etc. As diverse these methods are, as diverse are

3% In practice, HO techniques do not always benefit when the initial values come from some “sophis-
ticated guess” or another optimization as this often means that the optimizer first and prime task
is to overcome a local optimum. On the contrary, heuristically determined solutions might some-
times be used as initial values for traditional methods. Likewise, it might be reasonable to have the

fine-tuning of the heuristic’s last iterations done by a strict up-hill search.

76 2 Heuristic Optimization

also their advantages and disadvantages: Simulated Annealing and Threshold Ac-
cepting are relatively easy to implement and are good general purpose methods,
yet they tend to have problems when the search space is excessively large and has
many local optima. Other methods such as Genetic Algorithms or Memetic Algo-
rithms, on the other hand, are more complex and their implementation demands
some experience with heuristic optimization, yet they can deal with more compli-
cated and highly demanding optimization problems. Hence, there is not one best
heuristic that would be superior to all other methods. It is rather a “different courses,
different horses” situation where criteria such as the type of optimization problem,
restrictions on computational time, experience with implementing different HO al-
gorithms, the programming environment, the availability of toolboxes, and so on
that influence the decision which heuristic to choose - or eventually lead to new or
hybrid methods.

The following chapters of this contribution make use of heuristic optimization
techniques for approaching problems, merely from the area portfolio management,
that cannot be answered with traditional models. The diversity of the problems leads
to the application of different methods as well as the introduction of a new hybrid
approach. Though the main focus of these applications shall be on the financial im-
plications that can be drawn from the results, there will also be some comparisons

of these methods together with suggestions for enhancements.

2 Springer
http://www.springer.com/978-0-387-25852-2

Portfolio Management with Heuristic Optimization
Maringer, D.G.

2005, XMV, 223 p., Hardcover

ISBN: @78-0-387-25852-2

