
Research on Image Super-Resolution 

Many researchers have tackled the super-resolution reconstruction prob­
lem for both still images and video. Although the super-resolution re­
construction techniques for video are often extensions to still image 
super-resolution, many different approaches have also been proposed. 
In general, based on the type of cues used, the super-resolution meth­
ods can be classified into two categories: motion-based techniques and 
the motion-free approaches. Motion-based techniques use the relative 
motion between different low resolution observations as a cue in esti­
mating the high resolution image, while motion-free super-resolution 
techniques may use cues such as blur, zoom, and shading. These meth­
ods do not require observations with relative motion among them. Some 
researchers have also attempted to solve the super-resolution recon­
struction problem without considering any specific cue, but by using 
an ensemble of images as a training set in order to learn the required 
information for resolution enhancement. 

Different methods to obtain super-resolution include nonuniform in­
terpolation approach, frequency domain approach, and regularization 
based reconstruction technique which may be either deterministic or 
stochastic. Few other existing approaches include projection onto con­
vex sets, iterative back projection method, adaptive filtering method, 
etc. Most of the super-resolution techniques discussed in the literature 
are based on the motion cue, i.e., using the subpixel shifts among the 
observations. A few researchers have also tackled the super-resolution 
problem without using the motion cue. In this chapter we review the lit­
erature on super-resolution reconstruction for motion-based as well as 
for mot ion-free techniques. A comprehensive survey on super-resolution 
imaging can also be found in [28, 29]. 
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2.1 Motion-Based Super-Resolution 

The super-resolution idea was first proposed by Tsai and Huang [30]. 
They used the frequency domain approach to demonstrate the ability 
to reconstruct a single improved resolution image from several down-
sampled, noise free versions of it. A frequency domain observation 
model was defined for this problem which considered only the glob­
ally shifted versions of the same scene. Their approach is based on the 
following principles: 

• the shifting property of the Fourier transform, 
• the aliasing relationship between the continuous Fourier transform 

of the original image and the discrete Fourier transform (DFT) of 
the observed low resolution frames, and 

• the assumption that the original high resolution image is bandlim-
ited. 

Kim et al discuss a recursive algorithm, also in the frequency do­
main, for the restoration of super-resolution images from noisy and 
blurred observations [31]. They consider the same blur and noise charac­
teristics for all the low resolution observations. Their recursive approach 
combines the two steps of filtering and reconstruction. The filtering op­
eration on the registered images compensates for the degradation and 
noise, and the reconstruction step estimates the image samples on a 
high resolution grid in order to obtain the super-resolved image. Kim 
and Su [32] consider different amounts of blur for each low resolution 
image and used the Tikhonov regularization to obtain the solution of 
an inconsistent set of linear equations. 

The disadvantage with the frequency domain approach lies on the 
restrictions imposed on the observation model. One may consider only 
a translational motion and a linear space invariant (LSI) blur. Also, 
since the data is uncorrelated in the frequency domain, it is difficult to 
apply apriori knowledge about the data for the purpose of regulariza-
tion. Nonetheless, it was a good beginning and very soon researchers 
started looking at the problem in the spatial domain also. Needless 
to say, researchers have also explored the use of other types of image 
transforms to achieve super-resolution. For example, a discrete cosine 
transform (DOT) based method instead of DFT has been proposed by 
Rhee and Kang [33]. 

A minimum mean squared error approach for multiple image restora­
tion, followed by interpolation of the restored images into a single high 
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resolution image has been presented in [34]. Ur and Gross use the Pa-
pouhs and Brown generahzed sampling theorem [35],[36] to obtain an 
improved resolution picture from an ensemble of spatially shifted ob­
servations [37]. These shifts are assumed to be known by the authors. 
A recursive total least squares method for super-resolution reconstruc­
tion to reduce the effects of registration error is discussed in [38]. All 
the above super-resolution restoration methods are restricted either to 
a globally uniform translational displacement between the measured 
images, or an LSI blur, and a homogeneous additive noise. 

A different approach to the super-resolution restoration problem 
was suggested by Peleg and his co-authors [39, 40, 41], based on the 
iterative back projection (IBP) method adapted from computer aided 
tomography. This method starts with an initial guess of the output 
image, projects the temporary result to the measurements (simulating 
them), and updates the temporary guess according to this simulation 
error. A back projection kernel determines the contribution of the error 
to the reconstructed image at each iteration. The disadvantage of IBP 
is that it has no unique solution as it does not attempt to involve prior 
constraints. A set theoretic approach to the super-resolution restoration 
problem was suggested in [42]. The main result there is the ability to 
define convex sets which represent tight constraints on the image to be 
restored. Having defined such constraints it is straightforward to apply 
the projections onto convex sets (POCS) method, which was originally 
suggested by Stark and Oskoui [4]. The POCS based approach describes 
an alternative way to incorporating the prior knowledge about the so­
lution into the super-resolution reconstruction process. According to 
this method, the solution is restricted to be a member of a closed con­
vex set that is defined as a set of vectors which satisfy a user specified 
property. If the constraint sets have nonempty intersection, then a so­
lution can be found by alternately projecting onto the convex sets. All 
these methods mentioned above are not restricted to having a specific 
motion characteristic. They can handle smooth motion, linear space 
variant blur, and non-homogeneous additive noise. 

Ng et al develop a regularized constrained total least squares 
(RCTLS) solution to obtain a high resolution image in [43]. They con­
sider the presence of perturbation errors of displacements around the 
ideal subpixel locations in addition to sensor noise. The superiority of 
the approach over conventional least squares based approach is sub­
stantiated through examples. The analysis of the effect of displacement 
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errors on the convergence rate of the iterative approach for solving the 
transform based preconditioned system of equations during high reso­
lution image reconstruction with multiple sensors has been carried out 
in [44]. It is established that the use of MAP, L2'-noim. or ili-norm 
based regularization functional leads to a linear convergence of the 
conjugate gradient descent method in terms of the displacement errors 
caused by the imperfect subpixel localization. Bose et al [45] point out 
the important role of the regularization parameter and suggest the use 
of a constrained least squares (CLS) method for super-resolution re­
construction which generates the optimum value of the regularization 
parameter, using the L-curve method [46]. 

In [47] the authors use a maximum a posteriori (MAP) framework 
for jointly estimating the registration parameters and the high reso­
lution image for severely aliased observations. They use an iterative, 
cyclic coordinate-descent optimization technique to update the regis­
tration parameters. A similar idea of joint estimation applied to infra­
red imagery is presented in [48]. The high resolution estimate of the 
image is obtained by minimizing a regularized cost function based on 
the observation model. It is also shown that with a proper choice of tun­
ing parameter, the algorithm exhibits robustness in presence of noise. 
Both the gradient descent and the conjugate gradient descent optimiza­
tion techniques are used to minimize the cost function. An expectation 
maximization (EM) based algorithm solved in the frequency domain 
in order to simultaneously estimate the super-resolved image, the blur 
and the registration parameters is described in [49]. All these methods 
alternately estimate the high resolution image and the motion fields for 
an improved accuracy. 

A MAP estimator with Huber-Markov random field (HMRF) prior 
is described by Schultz and Stevenson in [50] for improving the image 
resolution. Here a discontinuity preserving stabilizing functional is used 
for the preservation of edges. In HMRF, an edge preserving potential 
function is used to define the prior constraint. The potential function 
is given by 

x^, if \x\ < a 
^ ^ )2a\x\ — a^^ otherwise 

where x is the finite difierence approximation of the first order deriva­
tive of the image at each pixel. HMRF is an example of a convex but 
nonquadratic prior. The purpose of making the prior linearly increasing 
beyond the threshold \x\ > a is to partly reduce the rate of growth in 
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the cost function when there is an edge between two pixels. The idea is 
quite similar to the concept of an M-estimator prevalent in the area of 
robust regression analysis. In the paper two separate algorithms have 
been derived: a constrained optimization method for a noise free image 
reconstruction, and an unconstrained optimization algorithm for im­
age data containing Gaussian noise. The gradient projection algorithm 
has been used to minimize the cost derived from a noise free case and 
a gradient descent optimization is used for the noise corrupted case. 
Till date this method is probably the most popular one among the re­
searchers as we notice that most of the currently proposed approaches 
compare their performances with the results obtained with an HMRF 
prior. Since all these methods claim a superiority over the HMRF based 
method, it is probably safe to state that the HMRF method, indeed, 
yields a reasonably accurate result. 

In many resolution enhancement applications, the blurring process 
i.e., the point spread function (PSF) of the imaging system, is not 
known. Nguyen et al [51] propose a technique for parametric blur iden­
tification and regularization based on the generalized cross-validation 
(GOV) theory. The idea of cross-validation is to divide the data set into 
two parts; one part is used to construct an approximate solution, and 
the other is used to validate that approximation. They propose approx­
imation techniques based on the Lanczos algorithm and Gauss quadra­
ture theory for reducing the computational complexities of GCV. They 
solve a multivariate nonlinear minimization problem for the unknown 
parameters. They have also proposed circulant block preconditioners to 
accelerate the conjugate gradient descent (CG) method while solving 
the Tikhonov-regularized super-resolution problem [52]. Precondition­
ing is a process used to transform the original system into one with the 
same solution, but which can be solved more quickly by the iterative 
solver. They use specific preconditioners such that the preconditioned 
system has eigenvalues clustered around unity which makes CG method 
to converge rapidly. 

Elad and Feuer [10] propose a unified methodology for super-
resolution restoration from several geometrically warped, blurred, noisy 
and down-sampled observations by combining maximum likelihood 
(ML), MAP and POCS approaches. The proposed super-resolution ap­
proach is general but assumes explicitly a linear space variant blur, 
and an additive Gaussian noise. In addition to the motion-based super-
resolution the authors also discuss the condition for motion-free super-
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resolution imaging when the observations are captured with different 
amounts of defocus blur even when both the camera and the object 
are stationary. This issue will be taken up in the next section. An 
adaptive filtering approach to super-resolution restoration is described 
by the same authors in [53] using the least mean squares (LMS) and 
the pseudo-recursive least squares (RLS) algorithms. Both the meth­
ods have been demonstrated with and without regularization. They 
exploit the properties of the operations involved in their previous work 
[10] and develop a fast super-resolution algorithm in [54] for a purely 
translational motion and space invariant blur, assuming them to be 
the same for all the images. The approach consists of deblurring and 
measurement fusion which is shown to be solvable using a non-iterative 
algorithm. Similarly two fast non-iterative algorithms for image super-
resolution based on Choleskey decomposition have been developed by 
Jorge and Ferreira [55]. They use the spatial domain formulation and 
the frequency domain approach. The spatial domain approach leads to 
a set of linear equations for the unknown pixels, while the frequency 
domain approach leads to equations for the unknown DFT coefficients. 
An additional inverse Fourier transform is used to obtain the required 
image while working in the frequency domain. 

A computationally fast super-resolution algorithm based on the pre-
conditioner using the motion adaptive relaxation parameters is consid­
ered in [56]. The proposed algorithm can be implemented in real time 
by updating the motion compensated low resolution frame at each time 
instant by using the preconditioner which increases the converges rate. 
Thus the speed up operation is achieved through system precondition­
ing as discussed earlier. This method can be applied to a general image 
sequence with differently moving objects, thus can handle local varia­
tions in the motion parameters. Farsiu et al propose a fast and ro­
bust super-resolution algorithm based on Li-norm for both data fitting 
term and the prior term and show that it performs better with and 
even without the outliers present in the data [57]. The robustness is 
achieved by limiting the contribution of the highly erroneous outlier 
data through the use of Li-norm. Quite naturally, we may replace the 
Li-norm by any appropriate weight function W{x) as it is commonly 
done in M-estimator. The authors in [58] investigate the performance of 
super-resolution algorithms using different potential functions such as 
convex, nonconvex, bounded, and the unbounded as a prior in the cost 
function and compare their performance on synthetic and real images. 
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They evaluate the performances of three different potential functions 
given below proposed, respectively, by Charbonnier [59], Hebert and 
Leahy [60], and Geman and Reynolds [61]. 

i 7 ( x ) - 2 ^ ( l + a : 2 ) - 2 , 

[/(re) = l o g ( l + a;^), and 

where x is the finite difference approximation of the first order deriva­
tive of the image at each pixel. Different optimization methods have 
been used for each prior model. 

Edges are typically the most important features in an image. For 
a homogeneous region, any kind of interpolation technique for image 
upsampling would suflSce. However, one must be careful while upsam-
pling the regions having edges as we would like them to be sharp in the 
high resolution data. Chiang and Boult [62] use edge models and a local 
blur estimate to develop an edge-based super-resolution algorithm. An 
image consistent reconstruction algorithm is used which gives the exact 
solution for some input function which, according to the sensor model, 
would have generated the measured input. Rather than obtaining the 
super-resolution by fusion of all the images together they choose one 
of the images from the image sequence and then fuse together all the 
edges from the other images. This requires that the reference image be 
re-estimated and scaled up based on the edge models and local blur 
estimation. Thus they mitigate the problem arising due to illumination 
variation during image capture since the edge positions are less sensitive 
to lighting variations. They have also applied image warping to recon­
struct a high resolution image [63] which is based on a concept called 
integrating resampler [64] that warps the image subject to some con­
straints. Here the upsampled images are combined using the median, 
and the resultant image is convolved to remove blur, with a high pass 
filter. Similarly, a robust median-based estimator is used in an iterative 
process to achieve the super-resolution in [65]. This approach discards 
the measurements which are inconsistent with the imaging model, thus 
increasing the resolution even in regions having the outliers. 

An image super-resolution technique based on the wavelet domain 
hidden Markov tree (HMT) model as a prior is proposed by Zhao et al 
[66]. The wavelet domain HMT characterizes the statistical properties 
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of the real image. Here the authors use the motion cue, but unhke 
using the Huber-MRF prior, they use the HMT prior. They formulate 
the problem as a constrained optimization problem and solve it using 
a cyclic optimization procedure. 

All the methods discussed so far do use the motion cue for super-
resolution, and in order to do that they need to actually compute the 
motion parameters. At this point some researchers may feel that since 
most of the available video sequences are already MPEG compressed, 
decompression of the video and then motion estimation is a wastage 
of time. The MPEG data already has the motion vectors in the bit 
stream. Can these motion vectors be used without fully decompressing 
the MPEG data? This problem of recovering a high resolution image 
from a sequence of DCT compressed images is addressed in [67]. It may 
be noted that the MPEG motion vectors may not always give us the 
true motion field. Also, the motion vectors are not dense. It is spec­
ified over a macro-block. So the authors recover the high resolution 
image using an iterative method considering the effects of quantiza­
tion (residual) noise as well as registration errors, both modeled as 
zero mean additive Gaussian noise. A regularization functional is in­
troduced not only to reflect the relative amount of registration error 
but also to determine the regularization parameter. Segall et al esti­
mate the high resolution image as well as subpixel displacements from 
compressed image observations [68]. They formulate the problem in a 
Bayesian framework and use the iterative cyclic coordinate descent ap­
proach for the joint estimation. Here the pixel intensities are no longer 
the observations, instead motion vectors and quantized transform co­
efficients are provided to the recovery algorithm. 

There have been very few publications in the area of quantifying 
the performance of motion-based super-resolution methods. Lin and 
Shum determine the fundamental limits of reconstruction-based super-
resolution algorithms and obtain the super-resolution limits from the 
conditioning analysis of the coeflBcient matrix [69]. They prove that 
fundamental limits do exist for reconstruction based super-resolution 
algorithms where a number of low resolution, subpixel displaced frames 
are used to estimate a high resolution image. They discuss two extreme 
cases and find that the practical limit for magnification is 1.6, if the 
registration and the noise removal is not good enough. 

Let us now discuss some of the application specific super-resolution 
schemes. There has been an effort in the area of astrophysics for improv-
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ing the image resolution of celestial objects. In [70] authors use a series 
of short-exposure images taken concurrently with a corresponding set 
of images of a guidestar and obtain a maximum-likelihood estimate of 
the undistorted image. Yang and Parvin [71] compute the dense map 
of feature velocities from lower resolution data and project them onto 
the corresponding high resolution data. The proposed technique is ap­
plied to measurement of sea surface temperature. The super-resolution 
principle has been applied to the face recognition systems as well in 
[72, 73]. They apply the super-resolution technique after dimensional­
ity reduction to a set of inaccurate feature vectors of a subject, and 
their reconstruction algorithm estimates the true feature vector. Au­
thors in [74] have proposed a MAP estimator based on the Huber prior 
for enhancing text images. The authors map the problem as that of 
a total variation and super-resolve the text. They consider images of 
scenes for which the point to point image transformation is a planar 
projective one. 

It is now worth digressing a bit to look into the problem of image 
mosaicing. Mosaicing works on the principle that there are overlapping 
regions in the successive images so that interest points can be recovered 
in these regions and subsequently matched to compute the homogra-
phy. Once the homography is computed, images are stitched together 
to obtain a high field of view mosaic. But while stitching these images 
across the overlapping regions, we throw away the additional informa­
tion available from multiple views as redundant. This apparently redun­
dant information is, however, the ideal cue for image super-resolution. 
The complementary set of information can be used for super-mosaicing 
purposes, [75] i.e., to build a high resolution mosaic. An efficient super-
resolution algorithm with application to panoramic mosaics has been 
proposed by Zomet and Peleg [76]. The method preserves the geome­
try of the original mosaic and improves spatial resolution. Capel and 
Zisserman have proposed a technique for automated mosaicing with 
super-resolution zoom in which a region of the mosaic can be viewed 
at a resolution higher than any of the original frames by fusing in­
formation from several views of a planar surface in order to estimate 
its texture [77]. Similarly, in [75], Bhosle et al. use the motion cue for 
super-resolution of a mosaic. They use the overlap among the observed 
images to increase the spatial resolution of the mosaic and to reduce 
the noise. In order to illustrate this, we show in Figure 2.1 a panoramic 
mosaic of a building constructed from 36 overlapped observations. The 
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corresponding super-mosaic is displayed in Figure 2.2. One can notice 
an improvement in bringing out some of the finer details here. 

^ i . ^ - ^ ^ 

Fig. 2 .1. Example of a low resolution panoramic mosaic. 

Fig. 2.2. Illustration of a super-mosaic constructed from the same set of observa­
tions used in obtaining Figure 2.1. 

Now we discuss some of the research efforts in super-resolving a 
video sequence. Most of the super-resolution algorithms applicable to 
video are extensions of their single frame counterpart. Authors in [78] 
describe a complete model of video acquisition with an arbitrary input 
sampling lattice and a non-zero exposure time. They use the theory of 
POCS to reconstruct super-resolution still images or video frames from 
a low resolution time sequence of images. They restrict both the sensor 
blur and the focus blur to be constant during the exposure. Their video 
formation model includes an arbitrary space time lattice in order to ob­
tain the sampled video signal. A hierarchical block matching algorithm 
is used to estimate the nonuniform translational motion between the 
low resolution images and the reference image. The motion model is 
incorporated into the video formation model to establish a linear space 
variant (LSV) relationship between the low resolution images and the 
desired super-resolved image at an arbitrary time t. By appropriately 
setting the values of t, a single super-resolved still image or a super-
resolved video is reconstructed. Eren et al extended the technique in 
[78] to scenes with multiple moving objects by introducing the concepts 
of validity maps and segmentation maps and by using the POCS frame­
work [79]. The validity map disables projections based on observations 
with inaccurate motion information for a robust reconstruction when­
ever there is error in motion estimation. The segmentation map enables 
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an object-based processing where a more accurate motion model can 
be utilized to improve the quality of reconstructed images. 

In [80] a technique for robust deinterlacing for creating high quality 
stills from an interlaced video is presented. A method for motion com­
pensated deinterlacing that combines a motion trajectory filter for re­
moving the dominant motion such as camera zoom, pan and jitter, with 
motion detection to remove artifacts caused by independently moving 
objects has been discussed. The motion detection method employs an 
adaptive thresholding scheme that simultaneously suppresses aliasing 
artifacts and artifacts caused by independently moving objects. 

Schultz and Stevenson use the hierarchical block matching algo­
rithm to estimate the subpixel displacement vectors and then solve the 
problem of estimating the high resolution frame given a low resolution 
sequence by formulating it as a Bayesian MAP estimation with Huber-
Markov random field (HMRF) prior, resulting in a constrained opti­
mization problem with a unique minimum [81]. The super-resolution 
video enhancement technique proposed by Shah and Zakhor consider 
the fact that the motion estimates used in the reconstruction process 
will be inaccurate [82]. To this end their algorithm finds a set of candi­
date motion estimates instead of a single motion vector for each pixel, 
and then both the luminance and the chrominance values are used 
to compute the dense motion field with subpixel accuracy. The high 
resolution frame is restored subsequently by a method based on the 
Landweber algorithm. 

Researchers have also used appropriate smoothness constraints over 
successive frames. Hong et al define a multiple input smoothing convex 
functional and use it to obtain a globally optimal high resolution video 
sequence [83]. An iterative algorithm for resolution enhancement of 
a monochrome or a color video sequence using motion compensation 
has been presented in [84]. The choice of which motion estimator to use 
versus how the final estimates are obtained is weighed to see which issue 
is more critical in improving the estimated high resolution sequence. 
A single motion field is estimated using the three color fields. They 
use two diff'erent approaches for motion estimation, which recover the 
motion in two steps. In the first step, a displacement vector field (DVF) 
is estimated for each channel. In the second step, these three DVFs 
are combined via data fusion (merging the individual motion fields) 
to yield a single DVF. The straightforward examples of data fusion 
are the use of a prespecified vector corresponding to a particular color 
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channel or the vector mean or the vector median. The estimated high 
resolution images using the block matching motion estimators have 
been compared to those obtained by using a pixel recursive scheme. 

Altunbasak et al. [85] have proposed a motion-compensated, trans­
form domain super-resolution procedure for creating high quality video 
or still images that directly incorporates the transform domain quanti­
zation information by working in the compressed bit stream. They ap­
ply this new formulation to MPEG-compressed video. In [86], a method 
for simultaneously estimating the high resolution image frames and the 
corresponding motion fields from a compressed low resolution video 
sequence is presented. The algorithm incorporates knowledge of the 
spatio-temporal correlation between low and high resolution images to 
estimate the original high resolution sequence from the degraded low 
resolution observation. The idea has been further extended to introduce 
additional high resolution frames in between two low resolution input 
frames to obtain a high resolution, slow motion sequencing of a given 
video [87]. The authors develop the above system for the purpose of 
post-facto video surveillance, i.e., to find what exactly had happened 
from the stored video. 

Authors in [88] propose a high-speed super-resolution algorithm us­
ing the generalization of Papoulis' sampling theorem for multichannel 
data with applications to super-resolving video sequences. They esti­
mate the point spread function (PSF) for each frame and use the same 
for super-resolution. Borman and Stevenson [89] present a MAP ap­
proach for multi-frame super-resolution of a video sequence using the 
spatial as well as temporal constraints. The spatio-temporal constraint 
is imposed by using a motion trajectory compensated MRF model, in 
which the Gibbs distribution is dependent on pixel variation along the 
motion trajectory. 

Most of the research works discussed so far assume that the low 
resolution image formation model illustrated in Figure 1.1, is indeed 
correct. Model uncertainties are not considered. In [90] the authors 
consider the problem of super-resolution restoration of the video, con­
sidering the model uncertainties caused by the inaccurate estimates of 
motion between frames. They use a Kalman filter based approach to 
solve the problem. For MPEG compressed data, quantization noise adds 
upto the uncertainties. Gunturk et al propose a Bayesian approach for 
the super-resolution of MPEG-compressed video sequence considering 
both the quantization noise and the additive noise [91]. 



2.2 Motion-Free Super-Resolution 27 

We observe that additional temporal data is used to improve the 
spatial resolution. Is it then possible to use additional spatial data 
(read high resolution image) to improve the temporal resolution? Or, 
in other words, can the concepts of resolution in space and time be 
fused together? This issue is discussed next. Shechtman et al. [92] con­
struct a video sequence of high space-time resolution by combining 
information from multiple low resolution video sequences of the same 
dynamic scene. They used video cameras with complementary proper­
ties like low-frame rate but high spatial resolution and high frame-rate 
but low spatial resolution. They show that by increasing the temporal 
resolution using the information from multiple video sequences spatial 
artifacts such as motion blur can be handled without the need to sepa­
rate static and dynamic scene components or to estimate their motion. 
To constrain the solution and provide numerical stability they use a 
space-time regularization term to impose the smoothness on the solu­
tion. A directional (or steerable) space-time regularization term applies 
smoothness only in directions where the derivatives are low, and does 
not smooth the space-time edges, thus preserving spatial edges as well 
as minimizing the motion blur due to the finite exposure time. 

2.2 Motion-Free Super-Resolution 

In the previous section we have discussed many different methods that 
use motion as the cue to generate the high frequency details. All these 
methods require a dense point correspondence among frames. Any 
error in establishing the correspondence affects the quality of super-
resolution. Although the bulk of the work on super-resolution does 
use motion cue, of late, there has been work on using other possible 
cues. Motion-free super-resolution techniques try to obtain the spatial 
enhancement by using the cues which do not involve a motion among 
low resolution observations, thus avoiding the correspondence problem. 
One may expect an improved result since there would be no correspon­
dence. However, we must find out what other cues can possibly be used 
as a substitute for the motion cue to bring in the high frequency de­
tails. We need to study how useful are these cues and what additional 
difficulties do they introduce during the super-resolution process. An­
other issue that comes out is how should we compare the performances 
of these methods with those of the motion-based methods. We simply 
cannot compare the methods as the data generation process is very 
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different in both the cases. Further, the volume of work in this area is 
still quite small. Use of cues other than motion is the subject matter of 
this monograph. Before we discuss some of the specific methods in sub­
sequent chapters, we begin reviewing some of the existing techniques 
in motion-free super-resolution. 

Use of different amounts of blur is probably the first attempt in 
the direction towards motion-free super-resolution. In order to under­
stand the problem let us take an example in ID data. Let / ( n ) be 
the unknown high resolution data, g{m) be the observed data, hi{n) 
and h2{n) be the known finite impulse response (FIR) blurring kernels. 
Here the indices m and n — 2m stand for the low and high resolution 
grids, respectively. We assume the decimation module to give us the 
average of the two adjacent pixels as the low resolution value. In order 
to explain the usefulness of the blur cue, let us further assume that the 
blur kernels are given by 

hi{n) •= an6{n) + ai2S{n — 1) 

/i2(n) = a2iS{n) + a22(5(n - 1), 

where 6{n) is the delta function. Let us further assume that there is no 
observation noise. Then, neglecting boundary conditions, 

gi{m) = 0.5[aii/(2m + 1) + (an + ai2)/(2m) + a i2/ (2m - 1)] 

g2{m) = 0.5[a2i/(2m + 1) -h (a2i -f a22)/(2m) + a22/(2m - 1)] 

Since the filter parameters are known the above two equations can eas­
ily be solved to obtain the high resolution data, provided the two blur 
kernels are linearly independent. Here we have 2m number of obser­
vations gi and g2 and 2m number of unknowns in the high resolution 
signal / . 

Hence we observe that it is, indeed, possible to use the differential 
blur as a cue for super-resolution. Definitely, there will be issues of sen­
sor noise, availability of sufficient number of observations, smoothness 
of the reconstructed image, etc. This calls for the use of regularizing 
priors to solve the restoration problem. 

A MAP-MRF based super-resolution technique has been proposed 
by Rajan et al in [93]. Here the authors consider an availability of dec­
imated, blurred and noisy versions of a high resolution image which are 
used to generate a super-resolved image. A known blur acts as a cue in 
generating the high resolution image. They model the high resolution 
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image as an MRF to serve as a prior for regularization. In chapter 3 
we shall relax the assumption of the known blur and extend it to deal 
with an arbitrary space-varying defocus blur for super-resolution pur­
poses. Recently, Rajagopalan and Kiran [94] have proposed a frequency 
domain approach for estimating the high resolution image using the de-
focus cue. They derive the Cramer-Rao lower bound (CRLB) for the 
covariance of the error in the estimate of the super-resolved image and 
show that the estimate becomes better as the relative blur increases. 

A scheme for image high resolution from several blurred observa­
tions by imposing a periodic grating with various absorptions in the 
object field is proposed in [95]. This method is based on the solution 
of a Predholm's integral equation of the first kind. The method can be 
employed in different fields such as microscopy and for signal and image 
transmission under conditions of heavy blur. The super-resolution here 
is based on an interference of spatial frequencies of the object and the 
grating. 

There has also been an effort in using a functional decomposition 
approach for super-resolution. One such example is the use of gener­
alized interpolation [96]. Here a space containing the original function 
is decomposed into appropriate subspaces. These subspaces are cho­
sen so that the rescaling operation preserves properties of the original 
function. On combining these rescaled sub-functions, they get back the 
original space containing the scaled or zoomed function. Here the pho­
tometric information is used as the cue. The authors in [18] proposed 
a multi-objective super-resolution technique for super-resolving both 
the intensity field and the structure using blur and shading as cues. It 
is shown in the paper that the use of the blur and the shading cues 
can be combined under a common mathematical framework. All these 
methods discussed thus far assume the availability of multiple observa­
tions of the same scene under different camera or lighting conditions. 
However, at times one may have to do with a single observation. What 
if you are given a low resolution image of a suspected criminal? Can 
this picture be super-resolved? 

Researchers have also attempted to solve the super-resolution prob­
lem by using learning based techniques. These methods try to recognize 
the local features in a low resolution image and then retrieve the most 
likely high frequency information from the given training samples. In 
this book, these methods are also classified under motion-free super-
resolution as the new information required for predicting the high res-
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olution image is obtained from the training images rather than from 
the subpixel shifts among low resolution observations. Authors in [97] 
describe image interpolation algorithms which use a database of train­
ing images to create plausible high frequency details in zoomed im­
ages. They propose a learning framework called VISTA - Vision by Im­
age/Scene TrAining. By blurring and down-sampling sharply defined 
images they construct a training set of sharp and blurred images. These 
are then incorporated into a Markov network to learn their relation­
ship. A Bayesian belief propagation allows to find the maximum of the 
posterior probability. 

A quite natural extension to the above is to use the best of the both 
world - information from multiple observations as discussed earlier and 
the priors learnt from a given high resolution training data set. Capel 
and Zisserman have proposed a super-resolution technique from mul­
tiple views using learnt image models [98]. Their method uses learnt 
image models either to directly constrain the ML estimate or as a prior 
for a MAP estimate. To learn the model, they use principal component 
analysis (PCA) applied to a face image database. Researchers have also 
attempted to combine the motion cue with the learning based method 
for super-resolution restoration. Pickup et al [99] combine the motion 
information due to subpixel displacements as well as motion-free infor­
mation in the form of learning of priors to propose a domain specific 
super-resolution using the sampled texture prior. They use training 
images to estimate the density function. Given a small patch around 
any particular pixel, they learn the intensity distribution for the cen­
tral pixel by examining the values at the centers of similar patches 
available in the training data. The intensity of the original pixel to be 
estimated is assumed to be Gaussian distributed with mean equal to 
the learnt pixel value and obtain the super-resolution by minimizing a 
cost function. 

There has also been some effort on applying an output feedback 
while super-resolving the images. If the purpose of super-resolution is to 
recognize a face, a character or a fingerprint, then the partially super-
resolved image is first matched to a database to extract the correct 
match and then this information can be used to enhance the prior 
for further improving the image quality. In [100] Baker and Kanade 
develop a super-resolution algorithm by modifying the prior term in 
the cost to include the results of a set of recognition decisions, and call 
it as recognition-based super-resolution or hallucination. Their prior 
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enforces the condition that the gradient of the super-resolved image 
should be equal to the gradient of the best matching high resolution 
training image. The learning of the prior is done by using a pyramidal 
decomposition. 

An image analogy method applied to super-resolution is discussed 
by Hertzmann et al in [101]. They use the low resolution and the 
high resolution versions of a portion of an image as the training pairs 
which are used to specify a "super-resolution" filter that is applied to 
a blurred version of the entire image to obtain an approximation to 
the high resolution original image. Here the emphasis is in learning the 
local statistics at a finer details. Candocia and Principe [102] address 
the ill-posedness of the super-resolution problem by assuming that the 
correlated neighbors remain similar across scales, and this apriori infor­
mation is learnt locally from the available image samples across scales. 
When a new image is presented, a kernel that best reconstructs each 
local region is selected automatically and the super-resolved image is 
reconstructed by a simple convolution operation. 

So far all these learning based methods are restricted to dealing 
with enhancing a still frame only. A learning based method for super-
resolution enhancement of a video has been proposed by Bishop et al 
[103]. Their approach builds on the principle of example based super-
resolution for still images proposed by Freeman et al. [97]. They use a 
learnt data set of image patches capturing the relationship between the 
middle and the high spatial frequency bands of natural images and use 
an appropriate prior over such patches. A key concept there is the use 
of the previously enhanced frame to provide part of the training set for 
super-resolution enhancement of the current frame. 

Having discussed the current research status in super-resolution 
imaging, we concentrate on a few specific ways of achieving motion-free 
super-resolution. These methods are discussed in detail in the subse­
quent chapters. 
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