
Chapter 2

SVA SIMULATION METHODOLOGY

In Chapter 1, SVA language constructs were discussed in detail with
examples. All examples were illustrated as relationships between two or
more generic signals without any design details. In Chapter 2, a dummy
system is used to present a real situation. The process of protocol extraction
and assertion development will be discussed step by step. Various simulation
methodologies that can significantly increase the productivity of assertion
based verification will be discussed. Functional coverage and reactive
testbench development will be discussed in detail.

2.1 A sample system under verification

The sample system under consideration is shown in Figure 2-1. The
system has 3 master devices and 2 target devices. A link is established
between the master and the target devices by the mediator. At a given time,
only one master can conduct a transaction and with only one target device.
Any master device can conduct a transaction with any target device. The
transaction can be a read or a write. The mediator contains arbiter logic that
decides which master will be allowed to conduct a transaction. The arbiter
uses a simple round robin technique. The mediator also contains glue logic
that actually decodes the master information for the target device and vice
versa. The glue logic helps establish the link between a specific master
device and target device to conduct the transaction successfully.

2.1.1 The Master device

The block diagram of the master device along with input and output ports
is shown in Figure 2-2. The master device can perform a read and a write

90 Chapter 2

transaction. It can support 2 target devices in a single system. When the
master device gets the instruction "ask_for_it," it is ready to perform a
transaction. It sends an active low pulse on the "req" signal and waits for a
"gnt." The "gnt" signal is an active low signal. If the "gnt" signal does not
come within 2 to 5 clock cycles, then the master will retry to get access at a
later time. If the "gnt" is acquired, then the master will immediately assert
the "frame" and "irdy" signals acknowledging the arrival of the "gnt" signal
("frame" and "irdy" are active low signals). In the same clock cycle it also
selects the target device it will have the transaction with. The master uses the
output signal "rsel" to indicate this. If signal "rsel" is set to 1, then the
master will to have a fransaction with target device 1. If the signal "rsel" is
set to 0, then the master will have a transaction with target device 0.

Masterl <; - 1 /

Master2 C ^^

Masters c

C:

Mediator

<?

Figure 2-1. A sample system

Once the signal "rsel" is updated, the target device is expected to identify
itself to the master. The target device uses the signal "trdy" to acknowledge
its readiness. If the target does not acknowledge itself within 3 clock cycles
from the point when "rsel" is assigned, it is an error condition. If the target
does acknowledge itself, then the master decides whether to read or write.
The master sends the data and the instruction whether to read or write
through the "datac" bus.

2. SVA SIMULATION METHODOLOGY 91

elk

gnt

ask_for_it

trdyH:0]

datio [7:0|

Master device

rsel

frame

irdy

req

datac [8:0]

Figure 2-2. Sample master device

elk

ask^for^jt

req

gttt

irame

irdy

rsel

trdyll)

t r ^ | 0 |

datac [7:0|

rw

datao (7:0)

fW ummn
L . u
L
i
1
1

fdiTLjirinjinnimJU"

1
1
J
1

~]

jM 1M1 i;f 1 "K 1«11,(1 j rC (M; 1 , ,„

1 "1

irmjinniuinn
1 1

u

1 1

Figure 2-3. Write transaction of a master device

The most significant bit is the instruction bit (shown as signal "rw" in
waveforms). If it is 1, the master will write and if it is a 0 then the master
will read. If it is a write transaction, the least significant 8 bits consist of the
data that needs to be written to the target device. If it is a read transaction,
then the data read fi-om the target device appears on the "datao" input bus.
Each transaction of the master will last exactly 8 clock cycles. In other
words, a master can either read 8 bytes in a transaction or write 8 bytes in a
transaction. There is no specific address generation scheme. The master will
write to the most updated write pointer address existing within the target
device. Similarly, the master will read from the most updated read pointer
address within the target device. The sample waveform for a master write
transaction is shown in Figure 2-3. The sample waveform for a master read
transaction is shown in Figure 2-4.

92

cllc

ask_for_it

req

gnt

frame

irdy

rsel

trdylll

trdy[0]

datac[7:0]

rw

datao [7:0]

Chapter 2

^mmmmmmI\mJm\ms\mmmm
n

Figure 2-4. Sample read transaction of a master device

Once the read or write transaction is complete, the master indicates
completion by de-asserting the signals "frame" and "irdy" in the next clock
cycle. It also sets the "rsel" signal to tri-state. The arbiter acknowledges this
and de-asserts the "gnt" signal in the next clock cycle. Once the arbiter
removes the "gnt" signal, the target device acknowledges completion of the
transaction by de-asserting the "trdy" signal.

2.1.2 The Mediator

The block diagram of the mediator along with input and output ports is
shown in Figure 2-5. The mediator performs two important tasks:

1. Provide arbitration logic that decides which master will get access
to conduct a transaction with a target device.

2. Establish the link between a specific master device and a target
device. At a given time any number of masters can ask for access
by asserting their respective "req" signal.

The arbiter uses a round robin algorithm and decides which master will
get access. When the arbiter makes a decision, it will assert the "gnt" signal
of the respective master device. The arbiter can take anywhere between 2 to
5 clock cycles to make a decision. The internal logic for the arbiter is
described with a simple zero one-hot state machine.

2. SVA SIMULATION METHODOLOGY 93

elk reql req2 req3

franiel

framed

framed

irdyl

iidy2

inlyS

rsel

rsaB

iseB

datal

data2

data3

dataoutl

dataDU(2

»
•

•

»

- » •

>•

" 1 J [1

Round robin
Arbiter

Glue linker

^
•

• •

~ ^

gntl

gntz

gnts

data

Figure 2-5. Sample mediator device

After the master selects the target it will have a transaction with, the
mediator will provide that information to the specific target device. Since
three masters are capable of having a transaction with any of the target
devices, the mediator has to monitor the "rsel" signals from all three masters.
At any given time, either all the three "rsel" signals are tri-stated or
definitely two of them are tri-stated. If all three "rsel" signals are tri-stated,
then there is no transaction request at that point. If there is a transaction, then
one of the "rsel" signals will have a value of 0 or 1, depending on which
target device will be used. If signal "rsel" is 1 then, the MSB of signal "sel"
is set high indicating that target device 1 is selected. If signal "rsel" is 0 then,
the LSB of signal "sel" is set high indicating that target device 0 is selected.

94 Chapter 2

tofflxsl I i I I

wyi I I 1 r

^*»"'* -^nmm mnm~
bximl

wel2 '—' ^ ' ——-—.—™-. , ' ' '

ftxmi I I
Wj3 ' " ^ ^ ~~\„ i "
fcM tSsO) _ _ . J ~ ~ L- _—^

«dW I I I
•dp]

MytU ^ I f I

irtMirtip*! r rn]

4.̂ i.:w I rrrTrrm r t e r - > c n n n D -
'^'"^•''' fTrrrrm

Figure 2-6. Waveform for mediator functionality

The mediator also selects the correct data signals for both write and read
transactions. If it is a write transaction, then the mediator monitors which
master's "rsel" signal is active and assigns the data value relevant to that
master to the selected target device input. For example, if master 1 is asking
for a write transaction with target device zero, then the signal "rsell" will be
set to low and the bus "datal" will be assigned to the mediator output bus
"data." This output is fed to the input of the selected target device. The
mediator also assigns the correct output data from the target device back to
the master device in a read transaction. For example, if target 1 is involved
in the read transaction, then the bus "dataoutl" will be assigned to the bus
"datao." The sample waveform for the mediator is shown in Figure 2-6.

2.1.3 The Target device

The block diagram of the target device along with input and output ports
is shown in Figure 2-7. The target device has a first-in-first-out type memory
that can store up to 64 bytes of data.

2. SVA SIMULATION METHODOLOGY 95

elk

reset

sel_bit

datain [8:0]
Target device

trdy

dataout [7:01

Figure 2-7. Sample target device

JU
reset

s e l b i t

triy

W l

lataiit [8:0]

n

dataout HM

ummi
1

1

(II)

1 f*i f™i r™i r"i n n n i™̂ r*i n ^̂ ^ j—i r"

L J L J U U U U L i w w w w w L J

1
j

""ilffllTITIlos IWlM
|*8|*d|*f % % ^\'i\%\

N

Lrmiirir
_ j

1 .

Figure 2-8. Target write transaction

The target device waits for the signal "sel_bit" to be asserted. Once
signal "sel_bit" is asserted, the target has to acknowledge by asserting the
signal "trdy" after 2 clock cycles. After asserting signal "trdy" the target
device waits for a valid data and a valid write signal if it is a write
transaction. Once a valid write signal is detected, the incoming data is stored
in the target device in locations starting fi-om the most updated value of the
write pointer (wi) register. If it is a read transaction, then the target device
reads out 8 data points from its memory using the current read pointer
location (ri) as the starting address.

The type of transaction is indicated by the MSB of the bus "datain." In a
read transaction, the data read appears on the bus vector "dataout." When the
transaction is complete, the signal "sel_bit" is de-asserted and one clock
cycle after that the signal "trdy" is de-asserted. The sample waveform for a
target write transaction is shown in Figure 2-8. The sample waveform for a
target read transaction is shown in Figure 2-9.

96 Chapter 2

c^ '\mimi\immnmr\j\Ym
wsel

»>_*« —f
ttiy

wi

datata 18:0|

rw
ri

datasvt [7:H

1
1 1

n

1 , , ,„! "

iH|tt|(s|e3|oi{ns|i)s|ii7|(«
IfflUitlwI{«II#IMII»(;I M •

Figure 2-9. Target read transaction

2.2 Block level verification

As the individual design blocks get ready they should be tested
thoroughly. Exhaustive verification of the blocks will uncover the comer
case bugs ahead of time. Finding these bugs before integrating the system is
a must. Finding these bugs at the system level will be very difficult. Also,
system level failures provide a greater challenge for identifying and
debugging comer case bugs. SVA can be used efficiently to test the
individual blocks effectively. At the block level, the simulations are smaller
and hence the bugs can be traced easily and fixed promptly. There are 4
individual design blocks in the sample system that need to be verified:

1. Master
2. Target
3. Arbiter
4. Glue

There are also 2 block level interfaces that need to be tested thoroughly:

1. Master and Mediator
2. Target and Mediator

2.2.1 SVA in design bloclis

The following tips are recommended for doing block level verification
with SVA:

file://'/mimi/immnmr/j/Ym

2. SVA SIMULATION METHODOLOGY 97

• All SVA checks written for a block level design should be in-
lined. Block level assertions often involve accessing internal
registers of a design and hence, in-lining the checks within the
design module is more efficient.

• The inclusion of SVA checks written at the block level should be
controlled by a parameter defined within the design module. This
gives the freedom to tum the checks on and off on a per
simulation basis.

• The severity level of the SVA checks written at the block level
should be controlled by a parameter defined within the design
module. The default severity in SVA is to print an error message
and continue simulating.

• Every block level SVA check written should be asserted and
covered. It is a must that all the block level checks must have at
least one real success.

2.2.2 Arbiter verification

Based on the protocol description of the arbiter firom Section 2.1.2, the
following SVA checks can be extracted. Some of the common expressions
used repeatedly in the arbiter checks can be defined with "assign" statements
as shown below:

assign frame = framel && frame2 && frames;
assign irdy = irdyl && irdy2 && irdy3;
assign gnt = Jgntl || !gnt2 || !gnt3;
assign req = !regl || !req2 || !req3;

The "fi-ame" and "irdy" signals are all active low signals. Each master
has a unique "frame" and "irdy" signal and these are inputs to the arbiter
module. If a master is active, it sets both the "frame" and "irdy" low. Hence,
by AND'ing the "frame" signals, we know that the bus is active if the
AND'ed value is low. Similarly, by AND'ing the "irdy" signals, we know
that the bus is active if the AND'ed value is low. If the AND'ed values of
"frame" and "irdy" signals are high, then none of the masters are active.

Each master has a unique "req" signal that requests the bus and the
arbiter provides a unique "gnt" signal. By OR'ing all the "req" signals we
know that even if one master has a valid request, the arbiter considers the

98 Chapter 2

request. Similarly, by OR'ing the "gnt" signals, we know that one master has
acquired the grant. Creating such intermediate expressions make the SVA
checkers more readable.

Arb_chkl: On any given clock edge, the internal state of the arbiter
should behave as a zero one-hot state machine.

property p_arb_onehotO;

©(posedge elk) $onehotO(state);
endproperty

Arb_chk2: Upon a valid request by a master, the arbiter should provide a
grant within 2 to 5 clock cycles.

property p_req_gnt;
©(posedge elk) $rose (req) |->

##[2:5] $rose (gnt);
endproperty

Arb_chk3: Once the grant is awarded, the master should acknowledge
acceptance in the same clock cycle by asserting the "frame" and "irdy"
signals.

property p_gnt_frame;
©(posedge elk) $rose (gnt) |->

$fell (frame && irdy);
endproperty

Arb_chk4: Once the master completes the transaction it de-asserts the
"frame" and "irdy" signals, followed by that, the arbiter should de-assert the
"gnt" signal on the next clock cycle.

property p_frame_gnt;
©(posedge elk) $rose(frame && irdy)

|=> $fell(gnt);
Endp r op e r ty

2.2.3 SVA Checks for arbiter in simulation

The four checks shown in Section 2.2.2 should be in-lined within the
arbiter module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.

2. SVA SIMULATION METHODOLOGY 99

module arbiter();

// port declarations

parameter arb_sva = I'bl;
parameter arb_sva_severity = I'bl;

// Arbiter design description
// SVA property description

// SVA Checks

always®(posedge elk)
begin
if{arb_sva)
begin

a_arb_onehotO:
assert property{p_arb_onehotO)
else if(arb_sva_severity) $fatal;

a_req_gnt:
assert property(p_req_gnt)
else if{arb_sva_severity) $fatal;

a_gnt_frame :
assert property(p_gnt_frame)
else if{arb_sva_severity) $fatal;

a_frame_gnt:
assert property{p_frame_gnt)
else if(arb_sva_severity) $fatal;

c_arb_onehotO: cover property(p_arb_onehotO);
c_req_gnt: cover property(p_req_gnt);
c_gnt_frame: cover property{p_gnt_frame);
c_frame_gnt: cover property{p_frame_gnt);

end
end

endmodule

100 Chapter!

JlPMlMlllIbTililPJlJlllWiMlllJlJljWlMlfir^^
J

M luiloffi m\ fi 1 lit m\ l i |

f H1}t f I f 111f m f tt t r1 ! It 11111 f 1M n f 1 n 11 f
I I M I I I I I I I M I M I I I M I I I t l M I I I M i n i l l M l f
i i M i i i i n i i i i i i i i i i i i i i i i f i i i i i i i i i i i i i i i i
11 1 11 I 11111111 I 11111 M 1 111 1 11 M 11 11111tlM 1

elk

reset

state

frmm

iidy

req

a_framBjBnt

Figure 2-10. Arbiter checks in simulation

The parameter "arb_sva" will have to be set to 1 for the checks to be
included in a simulation. The parameter "arb_sva_severity" controls the
action to be taken during simulation. In this case, if the parameter is set to 1,
then the severity is set to Sfatal. This means that upon a failure of any of
these checks, the simulation will exit. By setting the parameter to 0, the
checks will use the default condition, which is to print an error message on a
failure and continue simulating. A waveform from a sample simulation is
shown in Figure 2-10.

2.2.4 Master verification

Based on the protocol description of the master from Section 2.1.1, the
following SVA checks can be extracted. Note that each master has only one
"req," "gnt," "frame" and "irdy" signals. The mention of these signals in the
master checkers does not represent the expressions defined in the arbiter
checkers. They are just individual signals present in each master device.

Master_chkl: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal "r_sel" is high, then on the
same clock cycle, the master should assert the signals "frame" and "irdy."
Three cycles later the target device one should acknowledge its selection by
asserting the signal "trdy."

property p_master_startl;
©(posedge elk)

2.SVA SIMULA TION METHODOLOGY 101

($ f e l l (r e q) # # [2 : 5] ($ f e l l { g n t) & & r _ s e l)) | - >
(I f r a m e && l i r d y) ##3 ! t r d y [l] ;

e n d p r o p e r t y

Master_chk2: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal "r_sel" is low, then on the
same clock cycle, the master should assert the signals "frame" and "irdy."
Three cycles later the target device zero should acknowledge its selection by
asserting the signal "trdy."

property p_master_start2;
©(posedge elk)
($fell (req) ##[2:5] ($fell(gnt) && !r_sel))|->

(Iframe && lirdy) ##3 !trdy[0];
endproperty

Master_chk3: Once the target acknowledges its selection, the master
should complete its transaction within 10 clock cycles. It should indicate the
fransaction completion by de-asserting the signals "frame" and "irdy." One
cycle later the signal "gnt" should be de-asserted.

property p_master_stopl;
©(posedge elk)

$fell (trdy[l]) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

property p_master_stop2;

©(posedge elk)
$fell (trdy[0]) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

Note that two separate properties are written to check the fransaction
completion, one for each target device.

Master_chk4: If the master is in a write transaction, then the bus data
(datac) should not be tri-stated and should have valid data.

property p_master_datal;
©(posedge elk)

($fell (trdy[l]) ##2 rw) |->
($isunknown(data) == 0) [*7] ;

endproperty

102 Chapter 2

p r o p e r t y p _ m a s t e r _ d a t a 2 ;
©(posedge e l k)

{ $ f e l l (t r d y [0]) ##2 rw) | - >
($isunknowii(data) == 0) [*7] ;

endproperty

• Note that two separate properties are written to check the validity
of data during write transaction, one for each target device.

• Note that if the signal "rw" is high, then the master is conducting
a write transaction.

Master_chk5: If the master is in a read transaction, then the bus data
(data_o) should not be tri-stated and should have valid data.

p r o p e r t y p _ n i a s t e r _ d a t a o l ;
©(posedge e l k)

($ f e l l (t r d y [l]) ##3 !rw) |=>
($isunknown{data_o) == 0) [*7];

endproperty

property p_master_datao2;
©(posedge elk)

{$fell (trdy[0]) ##3 !rw) |=>
($isunknown(data_o) == 0) [*7] ;

endproperty

• Note that two separate properties are written to check the validity
of data during read transaction, one for each target device.

• Note that if the signal "rw" is low, then the master is conducting
a read transaction.

2.2.5 SVA Checks for the master in simulation

The five checks shown in Section 2.2.4 should be in-lined within the
master module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.

module master();

// port declarations

parameter master_sva = I'bl;
parameter .master_sva_severity = I'bl;

2. SVA SIMULA TION METHODOLOGY 103

// Master design description

// SVA property description

// SVA Checks

always®(posedge elk)

begin

if{master_sva)

begin

a_master_startl:
assert property(p_master_startl)
else if{master_sva_severity) $fatal;

a_master_start2:
assert property(p_master_start2)
else if(master_sva_severity) $fatal;

a_master_stopl:
assert property{p_master_stopl)
else if{master_sva_severity) $fatal;

a_master_stop2:
assert property(p_master_stop2)
else if(master_sva_severity) $fatal;

a_master_datal:
assert property{p_master_datal)
else if(master_sva_severity) $fatal;

a_master_data2:
assert property(p_master_data2)
else if(master_sva_severity) $fatal;

a_master_dataol:
assert property(p_master_dataol)
else if(master_sva_severity) $fatal;

104 Chapter 2

a_master_datao2:
assert property(p_master_datao2)
else if{master_sva_severity) $fatal;

c_master_startl: cover property{p_master_startl);
c_master_start2: cover property{p_master_start2);
c_master_stopl: cover property(p_master_stopl)
c_master_stop2: cover property(p_master_stop2)
c_master_datal: cover property(p_master_datal)
c_master_data2: cover property(p_master_data2)
c_master_dataol: cover property(p_master_dataol);
c_master_datao2: cover property(p_master_datao2);

end

end

endmodule

A waveform from a sample simulation of these master checks is shown
in Figure 2-11.

IWJ

r_sd

trssxe

irdy

triyll l
trdylOl

rw

data

data_o

a_niasterj!tartl

ajKias«arjrtopl

a_iwsla-jla4al

a master dataol

jijijirinjinj¥iiij¥¥ijajmnjijmnji^^

1 !

llSUdlff 1* liBIM'-rflM '•

\ 1 111! 1,1,1 111,,! 1 LI 1 1 1 1 I I 1 1 I I I 1

I I 1 1 1 M 1 1 I I f 1 M 1 1 1 1 1 1 1 1 i 1 M I
I I M 1 1 M 1 1 1 1 1 1 1 1 1 M 1 I I M I I M

Figure 2-11. Master checks in simulation for target 1

2. SVA SIMULA TION METHODOLOGY 105

2.2.6 Glue verification

Based on the protocol description of the glue logic from Section 2.1.2,
the following SVA checks can be extracted.

Glue_chkl: If any one of the master select signals "sell," "sel2" or
"sel3" is high, then target device one should be selected.

property p_sel_l;
©(posedge elk)

(rsell II rsel2 || rsel3) |=> sel == 2'blO;
endproperty

Glue_chk2: If any one of the master select signals "sell," "sel2" or
"sel3" is low, then target device zero should be selected.

property p_sel_0;
©(posedge elk)

(Irsell II !rsel2 || !rsel3) |=> sel == 2'bOl;
endproperty

Glue_chk3: During a write transaction, if the signal "rsell" is not tri-
stated, then the data from master device one should be written to the
respective target device.

property p_rsell_write;
©(posedge elk)

((rsell II Irsell) ##3 ($fell (trdy[l]) ||
$fell(trdy[0])) ##3 datal[8]) |->

(data == $past(datal)) [*7];
endproperty

• Note that we determine the nature of the transaction (read/write)
by using the most significant bit of the bus "data."

• If the MSB of the bus "data" is high, then it is a write
transaction.

• If the MSB of the bus "data" is low, then it is a read transaction.
• Within the master device, the nature of the transaction is

determined by the signal "rw." This signal is a copy of the MSB
of the bus "data." The signal "rw" is local to the master device.
The external interface should infer the nature of the transaction
by using the MSB of the bus "data."

106 Chapter!

Glue_chk4: During a write transaction, if the signal "rsel2" is not tri-
stated, then the data from master device two should be written to the
respective target device.

property p_rsel2_write;
©(posedge elk)
((rsel2 II !rsel2) ##3 ($fell (trdy[l]) ||
$fell(trdy[0])) ##3 data2[8]) |->

(data == $past(data2)) [*7] ;
endproperty

Glue_chk5: During a write transaction, if the signal "rsel3" is not tri-
stated, then the data from master device three should be written to the
respective target device.

property p_rsel3_write;
©(posedge elk)
((rsel3 II !rsel3) ##3 ($fell (trdy[l]) ||
$fell(trdy[0])) ##3 data3[8]) |->

(data == $past(data3)) [*7];
Endproperty

Glue_chk6: During a read transaction, if target device one is selected,
then data read from target one (dataoutl) should be fed back to the
respective master.

property p_readl;
©(posedge elk)
($fell (trdy[l]) ##4 !data[8]) |->

(dataoutl == datao) [*7];
endproperty

Glue_chk7: During a read transaction, if target device zero is selected,
then data read from target zero (dataout2) should be fed back to the
respective master.

property p_readO;
©(posedge elk)
($fell (trdy[0]) ##4 !data[8]) |->

(dataout2 == datao) [*7] ;
endproperty

2. SVA SIMULA TION METHODOLOGY 107

2.2.7 SVA Checks for the glue logic in simulation

The seven checks shown in Section 2.2.6 should be in-hned within the
glue module. There should be a provision to assert these properties on a need
basis. The following code shows how this can be achieved.

module g l u e () ;

// port declarations

parameter glue_sva = I'bl;
parameter glue_sva_severity = I'bl;

// glue design description

// glue SVA property description

// SVA Checks

always®(posedge elk)

begin
if(glue_sva)
begin
a_sel_l:

assert property(p_sel_l)
else if{glue_sva_severity) $fatal;

a_sel_0:
assert property(p_sel_0)
else if{glue_sva_severity) $fatal;

a_rsell_write:
assert property(p_rsell_write)
else if(glue_sva_severity) $fatal;

a_rsel2_write:
assert property{p_rsel2_write)
else if(glue_sva_severity) $fatal;

a_rsel3_write:
assert property{p_rsel3_write)
else if(glue_sva_severity) $fatal;

108 Chapter!

a _ r e a d l :
a s s e r t property{p_readl)
e l s e i f (g l u e _ s v a _ s e v e r i t y) $ f a t a l ;

a_readO:
assert property{p_readO)
else if(glue_sva_severity) $fatal;

c_sel_l: cover property(p_sel_l);
c_sel_0: cover property(p_sel_0);
c_rsell_write: cover property(p_rsell_write);
c_rsel2_write: cover property(p_rsel2_write);
c_rsel3_write: cover property{p_rsel3_write);
c_readl: cover property(p_readl);
c_readO: cover property(p_readO);

end
end

endmodule

A waveform from a sample simulation of the glue checks is shown in
Figure 2-12.

2. SVA SIMULATION METHODOLOGY 109

(bkte3

•jrndOijwjcilft

ap 0 2

J"
20 0 2

L

2 0 0 1

iiiiniiiiiiiiiniiiimimiMiniiiiniiniiiiimmi

Figure 2-12. Glue checks in simulation

2.2.8 Target verification

Based on the protocol description of the target device from Section 2.1.3,
the following SVA checks can be extracted.

Target_chkl: If a target is selected, then it should assert the signal
"trdy" after 2 clock cycles.

property p_sel_trdy_start;
©(posedge elk) $rose {sel_bit) |->

##1 trdy ##1 Itrdy;
endproperty

Target_chk2: At the end of a transaction, the "sel_bit" signal is de-
asserted. One clock cycle after that, the signal "trdy" should be de-asserted.

110 Chapter!

property p _ s e l _ t r d y _ s t o p ;
©(posedge elk) $ f e l l (s e l _ b i t) |=> t r d y ;

endproperty

Target_chk3: In a write transaction, the write pointers should be
incremented by one after each clock cycle to complete a valid "write" to a
unique address every time.

property p_write;
©(posedge elk)
(datain[8] && sel_bit && (wi != 0)) |->

(wi == ($past(wi) + 1)) ;
endproperty

• Note that the address pointer will roll over from 63 to 0. Hence,
this check cannot be applied if on a given clock edge the write
pointer is at 0.

• A different check can be written to verify that the pointer always
rolls over correctly from 63 to 0.

Target_chk4: In a read transaction, the read pointers should be
incremented by one after each clock cycle to complete a valid "read" from a
unique address every time.

property p_read;
©(posedge elk)
(!datain[8] && sel_bit && (ri != 63)) |=>

(ri == ($past(ri) + 1));
endproperty

• Note that in the case of read pointer, when the pointer is at 63
this check cannot be applied.

• The read operation has a latency of one clock cycle and hence we
use the Non-overlapping implication operator.

• Since a non-overlapping operator is used, the check moves
forward to one cycle and compares the address in the previous
cycle.

• For example, on a given clock edge, if the antecedent of the
implication is true, the check moves to the next clock cycle. If
the pointer is at 63, then the check moves to pointer 0 and
compares 63 and 0 for an increment of one. This is incorrect.
Hence, the check should not be performed if the value of the read
pointer is 63 on a given clock edge.

2. SVA SIMULA TION METHODOLOGY 111

• A separate check can be written to make sure that the pointer
rolls over from 63 to 0 accurately.

Target_chk5: During a valid read or write transaction, the data read
from or written to the target should be valid.

property p_target_datain;
©(posedge elk)
($fell (trdy) ##3 (datain[8])) |->

not ($isunknown (datain)) [*7];
endproperty

property p_target_dataout;
©(posedge elk)
($fell (trdy) ##3 (!datain[8])) |=>

not {$isunknown(dataout)) [*7];
endproperty

2.2.9 SVA Checks for the Target in simulation

The five checks shown in Section 2.2.8 should be in-lined within the
target module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.

module target();

// port declarations

parameter target_sva = I'bl;
parameter target_sva_severity = I'bl;

// target design description
// target SVA property description
// SVA Checks

always©(posedge elk)
begin
if(target_sva)
begin

a_sel_trdy_start:
assert property(p_sel_trdy_start)

112 Chapter 2

e l s e i f (t a r g e t _ s v a _ s e v e r i t y) $ f a t a l ;
a _ s e l _ t r d y _ s t o p :

a s s e r t proper ty (p_se l_ t rdy_s top)
e l s e i f (t a r g e t _ s v a _ s e v e r i t y) $ f a t a l ;

a_write:
assert property{p_write)
else if(target_sva_severity) $fatal;

a_read:
assert property{p_read)
else if(target_sva_severity) $fatal;

a_target_datain:
assert property(p_target_datain)
else if(target_sva_severity) $fatal;

a_target_dataout:
assert property(p_target_dataout)
else if{target_sva_severity) $fatal;

c_sel_trdy_start:
cover property(p_sel_trdy_start);

c_sel_trdy_stop: cover property(p_sel_trdy_stop);
c_write: cover property(p_write);
c_read: cover property(p_read);
c_target_datain: cover property(p_target_datain);
c_target_dataout:

cover property(p_target_dataout);

end
end
endmodule

A waveform from a sample simulation of the target checks is shown in
Figure 2-13.

2. SVA SIMULATION METHODOLOGY 113

njumjijmriJirijiriJijinnjijiJ¥iJiRnjiJ¥¥^

dataftt|S| 1 ' "" — • —\

wi M|illlC2|ll3|M||6lM|8?;W .«

rt i 00 m|ot|is|g}[ti|ft
datafti i 'S l yh f l ^ l ' ghS l ' f i 'Si Ifci

ditafmt U'lUilKf i?*il^

a.«i_«y_^ n 1 1 M M 1 t i 1 i 1 i 1 1 1 1 t 1 1 M 1 M 1 1
a..M.Wy.M0P 1 1 1 1 1 1 1 1 1 M 1 M f 1 1 i M 1 M 1 1 I i 1 1
awrte ! M 1 M t 1 t t t ! 1 t 1 1 1 1 1 1 1 M 1 1 1 1 1 1
a«ad i 1 1 1 1 1 M 1 ! 1 1 M 1 1 1 1 1 1 1 M 11 1 f t t
a*.*^ i M 1 M i 1 1 1 1 1 M I I I 1 1 I I I I I I I I 1 1
ada«»* I J 1 1 IJ 1 ! I I J 1,1 1 1 1,1 LL l „ l 1 1, l „ „ l l 1 1 1,

Figure 2-13. Target checks in simulation

2.3 System level verification

There are 3 masters and 2 targets in the system along with an instance of
the mediator. The top-level connection of the system is shown below.

Module t o p (. . , . . ,) ;

// port declarations

master ul (ask[2], elk, reql, gntl, framel,
irdyl, trdy, datal, rsell, datao);

master u2 (ask[l], elk, req2, gnt2, frame2,
irdy2, trdy, data2, rsel2, datao);

master u3 (ask[0], elk, req3, gnt3, frames,
irdy3, trdy, dataS, rsel3, datao);

arbiter u4 (elk, reset, frame, irdy, reql, req2,
req3, gntl, gnt2, gnt3);

glue u5 (elk, framel, irdyl, frame2, irdy2,
frames, irdyS, trdy, rsell, rsel2, rsel3, datal.

114 Chapter!

data2, dataS, sel, data, dataoutl, dataout2,
datao);

target u6 (elk, reset, sel [1], trdy[l], data,
dataoutl);

target u7 (elk, reset, sel [0] , trdy[0], data,
dataout2);

endmodule

The following tips are recommended for doing system level verification
with SVA:

• Since the internal functionality of the individual blocks was
verified thoroughly, the block level assertions don't have to be
included during the system level verification by default. The
main motive behind this is performance.

• If performance is not a bottleneck, the block level assertions shall
be included in the system level verification by default. The
system interfaces provide a more realistic and unexpected set of
input conditions and block level assertions must be able to react
to them correctly.

• The verification environment should provide the facility to turn
on block level assertions if there are any failures. For example,
in our sample system, if a failure occurs during a transaction
between master 1 and target 0, then the system level simulation
should be re-run by including the block level SVA checks
written for master 1 and target 0.

• At the system level, a new set of assertions should be written that
verifies the connectivity of the system. More focus should be on
the interface rules rather than the internal block details.

2.3.1 SVA Checks for system level verification

The following set of checks can be written for the system level
verification based on the connectivity and protocol of the system.

2. SVA SIMULA TION METHODOLOGY 115

Ss_shkl: Only one "trdy" signal can be asserted at any given point. In
other words, only one target device can participate in a transaction at any
given time.

property p_target;
©(posedge elk) not (!trdy[0] && !trdy[l]);

endproperty

Ss_chk2: Only one set of "frame" and "irdy" signals can be asserted at
any given clock cycle. In other words, only one master device can participate
in a transaction at any give time.

property p_frame;
©(posedge elk)

$countones({framel, frame2, frames}) >1;
endproperty

property p_irdy;
©(posedge elk)

$countones({irdyl, irdy2, irdyS}) >1;
endproperty

Ss_chk3: Only one "gnt" signal shall be asserted at any given time. In
other words, the arbiter can provide access for only one master at a time to
pursue a transaction.

property p_gnt;
©(posedge elk)

$countones({gntl, gnt2, gnts}) > 1;
endproperty

Ss_chk4: Only one "rw" signal shall be active at any given clock cycle,
the other "rw" signals should be tri-stated ("rw" signal is the MSB of the
masters data output bus).

property p_rw;
©(posedge elk)
($isunknown(rwl) && $isunknown(rw2) &&
$isunknown(rw3)) ||
((rwl==l'bl II rwl==l'bO) && $isunknovm (rw2)
&& $isunknown(rw3)) ||
((rw2==l'bl II rw2==l'b0) && $isunknown (rwl)
&& $isunknown(rw3)) | j

116 Chapter 2

{{rw3==l'bl II rw3==l'b0) && $isunknown (rw2)
&& $isunknown(rw2));

endproperty

Ss_chk5: Only one "rsel" signal shall be active at any given clock cycle,
the other "rsel" signals should be tri-stated.

property p_rsel;
©(posedge elk)

$isunknowii (rsell) && $isunknown(rsel2) &&
$isunknown(rsel3)) ||
{(rsell==l'bl II rsell==l'bO) && $isunknowii

(rsel2) && $isunknown(rselB)) ||
{(rsel2==l'bl || rsel2==l'b0) && $isunknovm

(rsell) && $isunknowii(rsel3)) | |
((rsel3 = = l'bl || rsel3 = = l'b0) &.&. $isunknovm

{rsel2) && $isunknown(rsell));
endproperty

Ss_chk6: Upon a valid request by a master, a valid "gnt" should arrive
within 2 to 5 clock cycles.

assign req = !reql || !req2 || !req3;
assign gnt = Igntl || !gnt2 || !gnt3;

property p_req_gnt_w;
©(posedge elk)

$rose (req) |-> ##[2:5] $rose(gnt);
endproperty

Ss_chk7: At any given clock, if the "frame" and "irdy" signal of a master
are asserted, then the relevant "trdy" signal should be asserted after 3 clock
cycles.

assign frame_ = Iframel || !frame2 || !frame3;
assign irdy_ = !irdyl || !irdy2 || !irdy3;

property p_start_frame;
©(posedge elk)

$rose (frame_ && irdy_) |->##3 $rose(trdy_);
endproperty

2. SVA SIMULA TION METHODOLOGY 117

Ss_chk8: At any given clock, if the "frame" and "irdy" signals of the
master are de-asserted, then the relevant "trdy" signal should be de-asserted
after 2 clock cycles.

assign trdyp = trdy[l] && trdy[0];

property p_end_frame;
©(posedge elk)

$rose (frame && irdy) |->##2 $rose(trdyp);
endproperty

Ss_chk9: If there is no valid transaction at any given clock, then the bus
"data" and "datao" should be tri-stated.

property p_bus_not_in_use;
©(posedge elk)
trdyp I->

($isunknown(data) && $isunknown(datao));
endproperty

a_target : assert property(p_target);
a_frame: assert property(p_frame);
a_irdy: assert property(p_irdy);
a_rsel: assert property(p_rsel);
a_rw: assert property(p_rw);
a_gnt: assert property(p_gnt);
a_req_gnt_w : assert property(p_req_gnt_w);
a_start_frame: assert property(p_start_frame);
a_end_frame: assert property(p_end_frame);
a_bus_in_use: assert property(p_bus_not_in_use);

c_target : cover property(p_target);
c_frame: cover property(p_frame);
c_irdy: cover property(p_irdy);
c_rsel: cover property(p_rsel);
c_rw: cover property(p_rw);
c_gnt: cover property(p_gnt);
c_req_gnt_w : cover property(p_req_gnt_w);
c_start_frame: cover property(p_start_frame);
c_end_frame: cover property(p_end_frame);
c_bus_in_use: cover property(p_bus_not_in_use);

118 Chapter 2

During the system level simulation, the top-level module should be
configured with the parameter settings such that all block level assertions are
turned off. In our sample system, since each design block has a parameter
that allows including its relevant SVA checks on a need basis, we can
configure the top module for system level run easily as shown below.

Module t o p (. . , . . ,) ;

// port declarations

master
#{.master_sva(1'bO), .master_sva_severity(1'bO))
ul (ask[2], elk, reql, gntl, framel, irdyl, trdy,
datal, rsell, datao);

master
#{.master_sva(1'bO), .master_sva_severity(1'bO))
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master
#(.master_sva(1'bO), .master_sva_severity(1 'bO))
u3 (ask[0], elk, req3, gnt3, frames, irdyS, trdy,
data3, rsel3, datao);

arbiter
#(.arb_sva(1'bO), .arb_sva_severity(1'bO))
u4 (elk, reset, frame, irdy, reql, req2, reqS,
gntl, gnt2, gnt3);

glue
#{.glue_sva{1'bO), .glue_sva_severity{1'bO))
u5 (elk, framel, irdyl, frame2, irdy2, frame3,
irdy3, trdy, rsell, rsel2, rsel3, datal, data2,
data3, sel, data, dataoutl, dataout2, datao);

target
#(.target_sva{1'bO), .target_sva_severity(1'bO))
u6 (elk, reset, sel [1], trdy[l], data, dataoutl);

target
#(.target_sva(1'bO), .target_sva_severity(1'bO))
u7 (elk, reset, sel[0], trdy[0], data, dataout2);

2. SVA SIMULATION METHODOLOGY

endraodule

119

Note that when each design block is instantiated, the parameter values
are passed. The first parameter "*_sva" is set to 0 in all the individual
instantiations, which indicates that the block level assertions will not be
included. Now, the system level simulations can be run only with the system
level checks.

Let us assume that there are failures on "Ss_chk6" during the system
level simulation. This check looks for interface failures between the masters
and the arbiter module. To debug the errors, the simulation can be re-run by
including the block level checks relevant to the masters and the arbiter. The
top modules configuration for such a run is shown below:

Module t o p (. . , . . ,) ;

// port declarations

master
#(.master_sva(1'bl), . master_sva_severity(1'bO))
ul {ask[2], elk, reql, gntl, framel, irdyl, trdy,
datal, rsell, datao);

master
#{.master_sva{1'bl), .master_sva_severity{1'bO))
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master
#(.master_sva(1'bl), .master_sva_severity(1' bO))
u3 (ask[0], elk, req3, gnt3, frameS, irdyS, trdy,
data3, rsel3, datao);

arbiter
#(.arb_sva{1'bl), .arb_sva_severity(1'bO))
u4 (elk, reset, frame, irdy, reql, req2,
gntl, gnt2, gnt3);

req3,

glue
#(.glue_sva(1'bO), .glue_sva_severity(1'bO))
u5 (elk, framel, irdyl, frame2, irdy2, frame3,
irdy3, trdy, rsell, rsel2, rsel3, datal, data2,
data3, sel, data, dataoutl, dataout2, datao);

120 Chapter 2

t a r g e t
{ . t a r g e t _ s v a (1 ' b O) , . t a r g e t _ s v a _ s e v e r i t y (1 ' b O))

u6 (e lk , r e s e t , s e l [1] , t r d y [l] , d a t a , d a t a o u t l) ;

target
#(.target_sva(1'bO), .target_sva_severity(1'bO))
u7 (elk, reset, sel[0], trdy[0], data, dataout2);

endmodule

Note that the parameter "master_sva" and "arb_sva" are set to 1 in this
configuration. In the basic design blocks, SVA checks could also be
included conditionally using the ""ifdef - "endif construct. By conditionally
compiling the SVA code, the user can either have the checks on all instances
of the module or on none of the instances of the module. The disadvantage
with this methodology is that, it is a global control mechanism. By using
parameters, this disadvantage can be overcome and the user gets more
flexibility in choosing the block level checks needed for a particular
simulation run.

2.4 Functional coverage

The system level checks written so far look for specific protocol
violations, if any. By making sure that these checks executed at least once in
the simulation, the confidence level on the functionality of the system
increases tremendously. The other aspect of functional coverage is covering
all possible scenarios of system functionality during simulation from the
testbench perspective. The scenarios to be covered during a simulation
should be part of the test plan.

The SVA checks written for dynamic simulation are only as good as the
input stimulus. If the input vectors do not force the system to execute certain
scenarios, then those remain untested. A lot of testbenches use random
techniques to generate input stimulus vectors. A very common approach is to
run a pre-determined number of transactions and measure coverage on
certain scenarios. By constraining the random generation of input stimulus,
the scenarios can be covered more efficiently. The key is to get the
maximum functional coverage in a minimum number of cycles. The
coverage information collected from SVA can be used effectively to create
reactive verification environments.

2.SVA SIMULA TION METHODOLOGY 121

2.4.1 Coverage plan for the sample system

The sample system discussed in this chapter has a lot of key functionality
that should be covered as part of the functional verification.

2.4.1.1 Request Scenario

"All possible request scenarios should be covered"

There are three masters that can ask for access at any given time. This
means that there are 7 possible combinations of the master "req" signals as
shown in Table 2-1.

Table 2-1. Master request scenarios

Reql
0
1
1
0
1
0
0

Req2
1
0
1
0
0
1
0

Req3
1
1
0
1
0
0
0

A 0 in the table indicates that the master is requesting for the bus. The
testbench should create all these possible input combinations during
simulation.

The following code example shows how functional coverage data can be
used to control the simulation environment. Property definitions for all 7
possible request combinations should be created as follows.

property p_reql; // master 1 requesting
©(posedge elk) $fell (reql) && req2 && req3;

endproperty

property p_req2; // master 2 requesting
©(posedge elk) $fell (req2) && reql && req3;

endproperty

property p_req3; // master 3 requesting
©(posedge elk) $fell (req3) && reql && req2;

endproperty

122 Chapter 2

property p _ r e q l 2 ; / / mas te r 1&2 r e q u e s t i n g
©(posedge elk)
$fell (reql) && $fell(req2)&& req3;

endproperty

property p_req2 3; // master 2&3 rtequesting
©(posedge elk)
$fell {req2) && $fell(req3) && reql;

endproperty

property p_req31; // master 1&3 requesting
©(posedge elk)
$fell (req3) && $fell(reql) && req2;

endproperty

property p_reql23; // master 1&2&3 requesting
©(posedge elk)
$fell (reql) && $fell{req2) && $fell(req3);

endproperty

Each property should have a cover statement associated with it as shown
below. The action block of the cover statement can be used to update register
flags. In this case, every time the property is covered, a local register count
is incremented. In the same clock, we check if the counter has reached a
value of 3. If so, then the flag associated to that property is asserted. In other
words, it is expected that each request combination occurs three times during
simulation and if and when it happens, a flag associated with that specific
request combination will be asserted.

c_reql: eover property(p_reql)
begin

creql++;
if(creql == 3) creql_flag = I'bl;

end

c_req2: cover property(p_req2)
begin

creq2++;

if(creq2 == 3) creq2_flag = I'bl;
end

c_req3: eover property(p_req3)
begin

2. SVA SIMULATION METHODOLOGY 123

creq3++;
if{creg3 == 3) creq3_flag = I'bl;

end
c_reql2: cover property(p_reql2)

begin
creql2++;
if{creql2 == 3) creql2_flag = I'bl;

end

c_req23: cover property{p_req23)
begin

creq23++;
if(creq23 == 3) creq23_flag = I'bl;

end

c_req31: cover property{p_req31)
begin

creq31++;
if(creq31 == 3) creq31_flag = I'bl;

end

c_reql23: cover property(p_reql23)
begin

creql23++;
if(creql23 == 3) creql23_flag = I'bl;

end

This coverage information can be used effectively to control the
simulation environment. In a random testbench for the sample system, a pre­
determined number of transactions could be performed one after the other.
The simulation will finish when all transactions are completed. The
following code shows how the functional coverage information can be used
to terminate the simulation.

always®(posedge elk)
begin

If{creql_flag && creq2_flag && creq3_flag &&
creql2_flag && creq23_flag && creq31_flag &&
creql23_flag)

begin

124 Chapter 2

$display{"FC: All possible request scenarios
covered 3 times each\n");
$finish();

end
end

With this piece of code, there are two ways to terminate a simulation:

1. Run the pre-determined number of transactions randomly and exit.

2. Exit if all possible request scenarios are covered three times each.

Whichever occurs first will terminate the simulation.

2.4.1.2 Master to Target transactions

"Every master device should perform both a read and a write
transaction with every target device"

There are 3 master devices and 2 target devices in the system. This
creates 12 possible scenarios as shown in Table 2-2. Property definitions for
all 12 possible transaction combinations should be created as follows.

Table 2-2. Master to target transactions

Master Target Transaction
Ml
Ml
Ml
Ml
M2
M2
M2
M2
M3
M3
M3
MS

Tl
Tl
TO
TO
Tl
Tl
TO
TO
Tl
Tl
TO
TO

Read
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
Write

property p_mltlr;
// masterl reading from target 1
©(posedge elk)
$fell (framel && irdyl) |->

2. SVA SIMULATION METHODOLOGY 125

##3 { $ f e l l { t r d y [l])) ##3 ! d a t a [8] ;
endproperty

property p_mltlw;
// master 1 writing to target 1
©(posedge elk)
$fell (framel && irdyl) |->

##3 {$fell (trdy[l])) ##3 data[8];
endproperty

property p_mltOr;
// master 1 reading from target 0
©(posedge elk)
$fell (framel && irdyl) |->

##3 ($fell (trdy[0])) ##3 !data[8];
endproperty

property p_mltOw;
// master 1 writing to target 0
©(posedge elk)
$fell(framel && irdyl) |->

##3 ($fell(trdy[0])) ##3 data[8];
endproperty

property p_m2tlr;
// master 2 reading from target 1
©(posedge elk)
$fell (frame2 && irdy2) |->

##3 ($fell(trdy[l])) ##3 !data[8];
endproperty

property p_m2tlw;
// master 2 writing to target 1
©(posedge elk)
$fell (frame2 && irdy2) |->

##3 ($fell (trdy[l])) ##3 data[8];
endproperty

property p_m2t0r;
// master 2 reading from target 0
©(posedge elk)
$fell (frame2 && irdy2) |->

##3 ($felltrdy[0])) ##3 'data [8];

126 Chapter 2

endproperty

property p_m2t0w;
// master 2 writing to target 0
@(posedge elk)
$fell {frame2 && irdy2) |->

##3 ($fell {trdy[0])) ##3 data[8];
endproperty

property p_m3tlr;
// master 3 reading from target 1
©(posedge elk)
$fell (frame3 && irdy3) |->

##3 ($fell {trdy[l])) ##3 !data[8];
endproperty

property p_m3tlw;
// master 3 writing to target 1
©(posedge elk)
$fell (frame3 && irdy3) |->

##3 {$fell (trdy[l])) ##3 data[8];
endproperty

property p_m3t0r;
// master 3 reading from target 0
©(posedge elk)
$fell (frame3 && irdy3) |->

##3 ($fell {trdy[0])) ##3 !data[8];
endproperty

property p_m3t0w;
// master 3 writing to target 0
©(posedge elk)
$fell (frame3 && irdy3) |->

##3 ($fell (trdy[0])) ##3 data[8];
endproperty

Each property should have a cover statement associated with it as shown
below. The same technique used in Section 2.4.1.1 is used to keep count of
the number of occurrences of the scenario.

c _ m l t l r : e o v e r p r o p e r t y (p _ m l t l r)
begin

2. SVA SIMULA TION METHODOLOGY 127

m l _ t l _ r + + ;
i f (m l _ t l _ r == 3) m l _ t l _ r _ f l a g = I ' b l ;

end

c_raltlw: cover property(p_mltlw)
begin
ml_tl_w++;
if(ml_tl_w == 3) ml_tl_w_flag = I'bl;

end

c_mltOr: cover property{p_mltOr)
begin
ml_tO_r++;
if{ml_tO_r == 3) ml_tO_r_flag = I'bl;

end

C_mltOw: cover property(p_mltOw)
begin
ml_tO_w++;
if(ml_tO_w == 3) ml_tO_w_flag = I'bl;

end

c_m2tlr: cover property{p_m2tlr)
begin
m2_tl_r++;
if{m2_tl_r == 3) m2_tl_r_flag = I'bl;

end

c_m2tlw: cover property(p_m2tlw)
begin
m2_tl_w++;
if{m2_tl_w == 3) m2_tl_w_flag = I'bl;

end

C_m2t0r: cover property(p_m2t0r)
begin
m2_t0_r++;
if{m2_t0_r == 3) m2_t0_r_flag = I'bl;

end

C_m2t0w: cover property(p_m2t0w)
begin
m2 to W++;

128 Chapter 2

if(m2_t0_w == 3) m2_t0_w_flag = I ' b l ;
end

c_m3t l r : cover property (p_m3tl r)
begin

m3_tl_r++;
i f (m 3 _ t l _ r == 3) m3_ t l_ r_ f l ag = I ' b l ;

end

c_m3tlw: cover property(p_m3tlw)
begin
m3_tl_w++;
if{m3_tl_w == 3) m3_tl_w_flag = I'bl;

end

c_m3t0r: cover property(p_m3tOr)
begin
m3_t0_r++;
if(m3_t0_r == 3) m3_t0_r_flag = I'bl;

end

c_m3t0w: cover property(p_m3t0w)
begin
m3_t0_w++;
if(m3_t0_w == 3) m3_t0_w_flag = I'bl;

end

This coverage information from both Sections 2.4.1.1 and 2.4.1.2 can be
used effectively to control the simulation environment. With the piece of
code shown below, there are two ways to terminate a simulation:

1. Run a pre-determined number of transactions randomly and exit.
2. If all possible request scenarios are covered three times and if all

possible "master to target" transactions are covered three times, then
exit the simulation.

Whichever occurs first will terminate the simulation.

always®(posedge elk)
begin

if(creql_flag && creq2_flag && creq3_flag &&
creql2_flag && creq23_flag && creq31_flag &&

2. SVA SIMULA TION METHODOLOGY 129

c r e q l 2 3 _ f l a g && m l _ t l _ r _ f l a g && m l _ t l _ w _ f l a g &&
m l _ t O _ r _ f l a g && ml_ tO_w_f l ag && m 2 _ t l _ r _ f l a g &&
m 2 _ t l _ w _ f l a g && m 2 _ t 0 _ r _ f l a g && m 2 _ t 0 _ w _ f l a g &&
m 3 _ t l _ r _ f l a g && m 3 _ t l _ w _ f l a g && m 3 _ t 0 _ r _ f l a g &&
m3_tO_w_flag)

b e g i n

$display("FC: All possible request scenarios
covered 3 times\n");

$display("FC: All possible transactions covered
3 times\n");

$finish{);

end
end

2.4.1.3 Advanced coverage options

There is another data point that can be used to measure the functional
coverage of the system.

"Every target memory location sliould be written to and read from at
least once by eacli master"

This information requires exhaustive testing. Every address space in the
target device should be monitored for usage by each master device. SVA is
not always the choice for performing functional coverage. Functional
coverage that involves exhaustive test plan coverage points can be done
more efficiently with a testbench language that supports object oriented
programming constructs. Such exhaustive functional coverage points
should be used while running long regression runs.

2.4.2 Functional coverage summary

Functional coverage measurement guarantees testing of all required
scenarios. The measure can be used effectively for controlling simulation
environments. One method is to terminate simulation upon achieving the
functional coverage goals. In the sample system, the following results were
observed:

130 Chapter!

• Default number of random transactions set in the testbench was
500.

• Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 took 46 transactions.

• Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 and the "master to target" transactions shown
in Section 2.4.1.2 took 63 transactions.

The functional coverage data obtained can also be used to re-direct the
testbench dynamically. In random testbenches, constraints are used to
control the type of transactions generated. These constraints are assigned
certain weights for the random distribution in the beginning of a simulation.
Based on the functional coverage information obtained during the
simulation, these weights can be adjusted dynamically to achieve the
functional coverage goal quickly.

2.5 SVA for transaction log creation

SVA can be used to create excellent log files. The SVA checkers snoop
for any design property violation during simulation. The same checkers can
be called monitors if they log the information that they are snooping. In a
complex system, it really helps to create a chronological log of the
transactions. In our sample system, creating a log of all the read and write
transactions, between whom these happened and at what time will be a great
debugging asset.

SVA has the option to use a lot of the Verilog like capabilities within the
scope of the checker. The action block of each checker or cover statement
can be used efficiently to create log files. While displaying information upon
the success of an assert or a cover statement is one way to create log files,
another way is to call a task or a function. The calling of a task or a function
expands the capabilities of the SVA checker. Apart fi^om displaying
information within the task, data checking can also be done effectively. The
following code shows how a chronological transaction log is created for the
sample system.

// open a file to document transactions

integer h_mt;
initial
begin

2, SVA SIMULATION METHODOLOGY 131

h_mt = $ f o p e n { " m t . d a t ") ;
end

/ / c a l l i n g t a s k f o r d o c u m e n t a t i o n

" i f d e f s l v doc

c _ m l t l w _ d o c :
c o v e r p r o p e r t y { p _ m l t l w

c _ m l t l r _ d o c :
c o v e r p r o p e r t y { p _ m l t l r

c _ m l t 2 w _ d o c :
c o v e r proper ty{p_ml tOw

c _ m l t 2 r _ d o c :
c o v e r p r o p e r t y { p _ m l t O r

c_m2t lw_doc :
c o v e r p r o p e r t y { p _ m 2 t l w

c _ m 2 t l r _ d o c :
c o v e r p r o p e r t y (p _ m 2 t l r

c_m2t2w_doc:
c o v e r p r o p e r t y (p _ m 2 t 0 w

c _ m 2 t 2 r _ d o c :
c o v e r p r o p e r t y { p _ m 2 t 0 r

c _ m 3 t l w _ d o c :
c o v e r p r o p e r t y { p _ m 3 t l w

c _ m 3 t l r _ d o c :
c o v e r p r o p e r t y (p _ m 3 t l r

c_m3t2w_doc:
c o v e r proper ty{p_m3t0w

c _ m 3 t 2 r _ d o c :
c o v e r p r o p e r t y { p _ m 3 t O r

"endif

master_xaction(l,1);

master_xaction(l,1);

master_xaction{l,0);

master_xaction{l,0);

master_xaction(2,1);

master_xaction(2,1);

master_xaction(2,0);

master_xaction(2,0);

master_xaction{3,1);

master_xaction(3,1);

master_xaction(3,0);

master xaction(3,0);

task master_xaction{
input int m_identity, input int t_identity);

integer i;

begin

if(data[8])
begin

132 Chapter 2

f o r { i = 0 ; i < 8 ; i++)
b e g i n

$ fwr i te (h_mt ,"WRITE:
Master %0d writing to Target %0d = %0d at
%Ot\n",m_identity, t_identity, data[7:0],
$time);

©(posedge elk);
end
end

if(!data[8])
begin
©(posedge elk) ;
for{i=0; i<8; i++)
begin
$fwrite(h_mt,"READ:
Master %0d reading from Target %0d = %0d at
%Ot\n", m_identity, t_identity, datao, $time);

©{posedge elk);
end
end

end

endtask

The properties defined for fanctional coverage in Section 2.4.1.2 are
reused for creating transaction logs. If the cover statement succeeds, a task
called "master_xaction" is called. The task expects two input arguments, one
identifying the master and the other identifying the target device. By sending
these arguments, a generic task can be written to log the transactions
accurately.

The transactions are logged into a separate file called "mt.dat." A Sfopen
statement is used to open this file at the beginning of the simulation. Once
the task is called, the task executes either the read block of the code or the
write block of the code. Since our sample system does burst read or write in
sets of 8 bytes, a "for" loop is used within the task. The loop goes around
eight times and each time the relevant read or write data is logged into the

2. SVA SIMULATION METHODOLOGY 133

file "mt.dat" using a Sfwrite statement. A part of the log created for the
sample system using this code is shown below.

WRITE: Master
WRITE: Master
WRITE: Master
WRITE: Master
WRITE: Master
WRITE: Master
WRITE: Master
WRITE: Master
READ: Master 3
READ: Master 3
READ: Master 3
READ: Master 3
READ:Master 3
READ:Master 3
READ:Master 3
READ:Master 3

1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
1 writing to Target 1 =
reading from Target 1
reading from Target 1
reading from Target 1
reading from Target 1

reading from Target 1 =
reading from Target 1 =
reading from Target 1 =
reading from Target 1 =

72 at 775
77 at 825
95 at 875
37 at 925
216 at 975
184 at 1025
198 at 1075
182 at 1125

= 72 at 1725
= 77 at 1775
= 95 at 1825
= 37 at 1875
216 at 1925
184 at 1975
198 at 2025
182 at 2075

The transaction logs can be made a lot more fancy and debug fiiendly
depending on the user's application. Note that this code is included within
the 'ifdef - 'endif block. This kind of a detailed transaction log might not be
needed during long regressions and hence should have the provision to be
included conditionally.

2.6 SVA for FPGA Prototyping

A variety of advanced verification methodologies exist today that can
help find bugs quickly. Constrained random testbenches and assertions are
an important piece in these methodologies. It is very common to write
thousands of tests to make sure that all possible functionality has been tested
correctly. While most of the bugs are found in the RTL verification, it is still
very common to find functional bugs during the verification of implemented
gates. Simulating gates has always been a performance bottleneck and will
always be. Running all the tests developed during RTL verification on gates
is not very practical. Gate level simulation is extremely slow and more and
more verification teams are depending on other verification methodologies
such as formal verification, FPGA prototyping, etc. as shown in Figure 2-14.
By running the verification on the actual silicon, the verification process can
be accelerated significantly. This allows running the regression suites
developed for RTL exhaustively on actual silicon.

134 Chapter 2

Regression Suite Regression Suite

SOC (RTL, Gates) SOC(FPG A Prototype)

A B

Figure 2-14. FPGA Prototyping

One major challenge in running tests on actual silicon prototype is
debugging. SVA can help in this area significantly. By synthesizing the
checkers along with the design, the debug process can be made a little easier.
The checkers are written against the functional specification and having
them monitor the design in real silicon adds great value. The design needs to
be altered slightly to accommodate these assertions. If an assertion fails, it
has to be notified to the external world using an output port. The output ports
can be updated with the results, using the action block of the assertions. In
most real-time testing, breakpoints can be set on these output ports and upon
a failure on one of these debug ports, the verification can be stopped for
further analysis. The master device used in the sample system is shown in
Figure 2-2. This contains only the default ports relevant to the design. The
sample Verilog code for the master device is shown below.

module t t i a s t e r { a s k _ f o r _ i t , e l k , r e q ,
i r d y , t r d y , d a t a _ c , r _ s e l , d a t a _ o) ;

gnt, frame,

input elk, gnt, ask_for_it;
input [1:0] trdy;
output req, frame, irdy, r_sel;

2. SVA SIMULATION METHODOLOGY 135

o u t p u t [8 : 0] d a t a _ c ;
i n p u t [7 : 0] d a t a _ o ;

parameter m a s t e r _ s v a = I ' b l ;
parameter m a s t e r _ s v a _ s e v e r i t y = I ' b l ;

/ / f u n c t i o n a l d e s c r i p t i o n of m a s t e r

/ / B l o c k l e v e l SVA c h e c k s

endmodule

The block level assertions should be made part of the design to help in
FPGA prototyping. Each block level assertion should be associated with a
debug output port. The debug output port should be asserted if the assertion
fails. The following code description shows how this can be achieved.

module master (ask_for_it, elk, req, gnt, frame,
irdy, trdy, data_c, r_sel, data_o,
a_master_startl_flag, a_master_start2_flag,
a_master_stopl_flag, a_master_stop2_flag,
a_master_datal_flag, a_master_data2_flag,
a_master_dataol_flag, a_master_datao2_flag);

input e l k , gn t , a s k _ f o r _ i t ;
input [1:0] t r d y ;
output req, frame, irdy, r_sel;
output [8:0] data_c;
input [7:0] data_o;

// debug pins for FPGA prototyping
output a_master_startl_flag;
output a_master_start2_flag;
output a_master_stopl_flag;
output a_master_stop2_flag;
output a_master_datal_flag;
output a_master_data2_flag;
output a_master_dataol_flag;
output a_master_datao2_flag;

parameter master_sva = I'bl;
parcuneter master_sva_severity = I'bl;

136 Chapter 2

II functional description of master

// Block level checks for prototype debugging

~ifdef master_debug

d_a_master_startl:
assert property(p_master_startl)
else
a_master_startl_flag = I'bl;

d_a_master_start2:
assert property(p_master_start2)
else
a_master_start2_flag = I'bl;

d_a_master_stopl:
assert property{p_master_stopl)
else
a_master_stopl_flag = I'bl;

d_a_master_stop2:
assert property(p_master_stop2)
else
a_master_stop2_flag = I'bl;

d_a_master_datal:
assert property{p_master_datal)
else
a_master_datal_flag = I'bl;

d_a_master_data2:
assert property{p_master_data2)
else
a_master_data2_flag = I'bl;

d_a_master_dataol:
assert property{p_master_dataol)
else
a_master_dataol_flag = I'bl;

d_a_master_datao2:
assert property(p_master_datao2)
else
a_master_datao2_flag = I'bl;

~endif

endmodule

2. SVA SIMULATION METHODOLOGY 137

Note that the respective output port flags will be asserted upon a failure.
Since these assertions are concurrent, they will look for a valid start on every
clock edge. If the silicon testing mechanism does not provide a way to set
breakpoints on an assertion failure, then it is required that the failure be
latched. Otherwise, the failure notification can be lost if the assertion
succeeds in future clock cycles.

2.7 Summary on SVA simulation methodologies

• The addition of SVA to testbench environment makes dynamic
simulation more productive.

• The designers are very familiar with the internal functionality of
the design and hence, they should in-line SVA checkers in their
respective design blocks.

• The verification engineer, who integrates and verifies the system,
should add system level assertions that thoroughly verify the
interface protocol.

• The verification engineer should be able to control/configure the
block level assertions from his verification environment (He
should be able to tum the assertions on and off on a need basis).

• Functional coverage metrics can be collected with little effort
using SVA. This information should be used effectively to create
reactive testbenches.

• SVA can be used to create informative log files since they are
monitoring the design protocols throughout the simulation.

• By writing SVA checkers that follow synthesis coding
guidelines, they can be made part of the net-list and used to
debug prototyping/emulation failures.

http://www.springer.com/978-0-387-26049-5

