
Chapter 2 

SVA SIMULATION METHODOLOGY 

In Chapter 1, SVA language constructs were discussed in detail with 
examples. All examples were illustrated as relationships between two or 
more generic signals without any design details. In Chapter 2, a dummy 
system is used to present a real situation. The process of protocol extraction 
and assertion development will be discussed step by step. Various simulation 
methodologies that can significantly increase the productivity of assertion 
based verification will be discussed. Functional coverage and reactive 
testbench development will be discussed in detail. 

2.1 A sample system under verification 

The sample system under consideration is shown in Figure 2-1. The 
system has 3 master devices and 2 target devices. A link is established 
between the master and the target devices by the mediator. At a given time, 
only one master can conduct a transaction and with only one target device. 
Any master device can conduct a transaction with any target device. The 
transaction can be a read or a write. The mediator contains arbiter logic that 
decides which master will be allowed to conduct a transaction. The arbiter 
uses a simple round robin technique. The mediator also contains glue logic 
that actually decodes the master information for the target device and vice 
versa. The glue logic helps establish the link between a specific master 
device and target device to conduct the transaction successfully. 

2.1.1 The Master device 

The block diagram of the master device along with input and output ports 
is shown in Figure 2-2. The master device can perform a read and a write 
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transaction. It can support 2 target devices in a single system. When the 
master device gets the instruction "ask_for_it," it is ready to perform a 
transaction. It sends an active low pulse on the "req" signal and waits for a 
"gnt." The "gnt" signal is an active low signal. If the "gnt" signal does not 
come within 2 to 5 clock cycles, then the master will retry to get access at a 
later time. If the "gnt" is acquired, then the master will immediately assert 
the "frame" and "irdy" signals acknowledging the arrival of the "gnt" signal 
("frame" and "irdy" are active low signals). In the same clock cycle it also 
selects the target device it will have the transaction with. The master uses the 
output signal "rsel" to indicate this. If signal "rsel" is set to 1, then the 
master will to have a fransaction with target device 1. If the signal "rsel" is 
set to 0, then the master will have a transaction with target device 0. 

Masterl <; - 1 / 

Master2 C ^^ 

Masters c 

C: 

Mediator 

<? 

Figure 2-1. A sample system 

Once the signal "rsel" is updated, the target device is expected to identify 
itself to the master. The target device uses the signal "trdy" to acknowledge 
its readiness. If the target does not acknowledge itself within 3 clock cycles 
from the point when "rsel" is assigned, it is an error condition. If the target 
does acknowledge itself, then the master decides whether to read or write. 
The master sends the data and the instruction whether to read or write 
through the "datac" bus. 
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Figure 2-2. Sample master device 
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Figure 2-3. Write transaction of a master device 

The most significant bit is the instruction bit (shown as signal "rw" in 
waveforms). If it is 1, the master will write and if it is a 0 then the master 
will read. If it is a write transaction, the least significant 8 bits consist of the 
data that needs to be written to the target device. If it is a read transaction, 
then the data read fi-om the target device appears on the "datao" input bus. 
Each transaction of the master will last exactly 8 clock cycles. In other 
words, a master can either read 8 bytes in a transaction or write 8 bytes in a 
transaction. There is no specific address generation scheme. The master will 
write to the most updated write pointer address existing within the target 
device. Similarly, the master will read from the most updated read pointer 
address within the target device. The sample waveform for a master write 
transaction is shown in Figure 2-3. The sample waveform for a master read 
transaction is shown in Figure 2-4. 
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Figure 2-4. Sample read transaction of a master device 

Once the read or write transaction is complete, the master indicates 
completion by de-asserting the signals "frame" and "irdy" in the next clock 
cycle. It also sets the "rsel" signal to tri-state. The arbiter acknowledges this 
and de-asserts the "gnt" signal in the next clock cycle. Once the arbiter 
removes the "gnt" signal, the target device acknowledges completion of the 
transaction by de-asserting the "trdy" signal. 

2.1.2 The Mediator 

The block diagram of the mediator along with input and output ports is 
shown in Figure 2-5. The mediator performs two important tasks: 

1. Provide arbitration logic that decides which master will get access 
to conduct a transaction with a target device. 

2. Establish the link between a specific master device and a target 
device. At a given time any number of masters can ask for access 
by asserting their respective "req" signal. 

The arbiter uses a round robin algorithm and decides which master will 
get access. When the arbiter makes a decision, it will assert the "gnt" signal 
of the respective master device. The arbiter can take anywhere between 2 to 
5 clock cycles to make a decision. The internal logic for the arbiter is 
described with a simple zero one-hot state machine. 
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Figure 2-5. Sample mediator device 

After the master selects the target it will have a transaction with, the 
mediator will provide that information to the specific target device. Since 
three masters are capable of having a transaction with any of the target 
devices, the mediator has to monitor the "rsel" signals from all three masters. 
At any given time, either all the three "rsel" signals are tri-stated or 
definitely two of them are tri-stated. If all three "rsel" signals are tri-stated, 
then there is no transaction request at that point. If there is a transaction, then 
one of the "rsel" signals will have a value of 0 or 1, depending on which 
target device will be used. If signal "rsel" is 1 then, the MSB of signal "sel" 
is set high indicating that target device 1 is selected. If signal "rsel" is 0 then, 
the LSB of signal "sel" is set high indicating that target device 0 is selected. 
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Figure 2-6. Waveform for mediator functionality 

The mediator also selects the correct data signals for both write and read 
transactions. If it is a write transaction, then the mediator monitors which 
master's "rsel" signal is active and assigns the data value relevant to that 
master to the selected target device input. For example, if master 1 is asking 
for a write transaction with target device zero, then the signal "rsell" will be 
set to low and the bus "datal" will be assigned to the mediator output bus 
"data." This output is fed to the input of the selected target device. The 
mediator also assigns the correct output data from the target device back to 
the master device in a read transaction. For example, if target 1 is involved 
in the read transaction, then the bus "dataoutl" will be assigned to the bus 
"datao." The sample waveform for the mediator is shown in Figure 2-6. 

2.1.3 The Target device 

The block diagram of the target device along with input and output ports 
is shown in Figure 2-7. The target device has a first-in-first-out type memory 
that can store up to 64 bytes of data. 
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Figure 2-8. Target write transaction 

The target device waits for the signal "sel_bit" to be asserted. Once 
signal "sel_bit" is asserted, the target has to acknowledge by asserting the 
signal "trdy" after 2 clock cycles. After asserting signal "trdy" the target 
device waits for a valid data and a valid write signal if it is a write 
transaction. Once a valid write signal is detected, the incoming data is stored 
in the target device in locations starting fi-om the most updated value of the 
write pointer (wi) register. If it is a read transaction, then the target device 
reads out 8 data points from its memory using the current read pointer 
location (ri) as the starting address. 

The type of transaction is indicated by the MSB of the bus "datain." In a 
read transaction, the data read appears on the bus vector "dataout." When the 
transaction is complete, the signal "sel_bit" is de-asserted and one clock 
cycle after that the signal "trdy" is de-asserted. The sample waveform for a 
target write transaction is shown in Figure 2-8. The sample waveform for a 
target read transaction is shown in Figure 2-9. 
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Figure 2-9. Target read transaction 

2.2 Block level verification 

As the individual design blocks get ready they should be tested 
thoroughly. Exhaustive verification of the blocks will uncover the comer 
case bugs ahead of time. Finding these bugs before integrating the system is 
a must. Finding these bugs at the system level will be very difficult. Also, 
system level failures provide a greater challenge for identifying and 
debugging comer case bugs. SVA can be used efficiently to test the 
individual blocks effectively. At the block level, the simulations are smaller 
and hence the bugs can be traced easily and fixed promptly. There are 4 
individual design blocks in the sample system that need to be verified: 

1. Master 
2. Target 
3. Arbiter 
4. Glue 

There are also 2 block level interfaces that need to be tested thoroughly: 

1. Master and Mediator 
2. Target and Mediator 

2.2.1 SVA in design bloclis 

The following tips are recommended for doing block level verification 
with SVA: 

file://'/mimi/immnmr/j/Ym
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• All SVA checks written for a block level design should be in-
lined. Block level assertions often involve accessing internal 
registers of a design and hence, in-lining the checks within the 
design module is more efficient. 

• The inclusion of SVA checks written at the block level should be 
controlled by a parameter defined within the design module. This 
gives the freedom to tum the checks on and off on a per 
simulation basis. 

• The severity level of the SVA checks written at the block level 
should be controlled by a parameter defined within the design 
module. The default severity in SVA is to print an error message 
and continue simulating. 

• Every block level SVA check written should be asserted and 
covered. It is a must that all the block level checks must have at 
least one real success. 

2.2.2 Arbiter verification 

Based on the protocol description of the arbiter firom Section 2.1.2, the 
following SVA checks can be extracted. Some of the common expressions 
used repeatedly in the arbiter checks can be defined with "assign" statements 
as shown below: 

assign frame = framel && frame2 && frames; 
assign irdy = irdyl && irdy2 && irdy3; 
assign gnt = Jgntl || !gnt2 || !gnt3; 
assign req = !regl || !req2 || !req3; 

The "fi-ame" and "irdy" signals are all active low signals. Each master 
has a unique "frame" and "irdy" signal and these are inputs to the arbiter 
module. If a master is active, it sets both the "frame" and "irdy" low. Hence, 
by AND'ing the "frame" signals, we know that the bus is active if the 
AND'ed value is low. Similarly, by AND'ing the "irdy" signals, we know 
that the bus is active if the AND'ed value is low. If the AND'ed values of 
"frame" and "irdy" signals are high, then none of the masters are active. 

Each master has a unique "req" signal that requests the bus and the 
arbiter provides a unique "gnt" signal. By OR'ing all the "req" signals we 
know that even if one master has a valid request, the arbiter considers the 
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request. Similarly, by OR'ing the "gnt" signals, we know that one master has 
acquired the grant. Creating such intermediate expressions make the SVA 
checkers more readable. 

Arb_chkl: On any given clock edge, the internal state of the arbiter 
should behave as a zero one-hot state machine. 

property p_arb_onehotO; 

©(posedge elk) $onehotO(state); 
endproperty 

Arb_chk2: Upon a valid request by a master, the arbiter should provide a 
grant within 2 to 5 clock cycles. 

property p_req_gnt; 
©(posedge elk) $rose (req) |-> 

##[2:5] $rose (gnt); 
endproperty 

Arb_chk3: Once the grant is awarded, the master should acknowledge 
acceptance in the same clock cycle by asserting the "frame" and "irdy" 
signals. 

property p_gnt_frame; 
©(posedge elk) $rose (gnt) |-> 

$fell (frame && irdy); 
endproperty 

Arb_chk4: Once the master completes the transaction it de-asserts the 
"frame" and "irdy" signals, followed by that, the arbiter should de-assert the 
"gnt" signal on the next clock cycle. 

property p_frame_gnt; 
©(posedge elk) $rose(frame && irdy) 

|=> $fell(gnt); 
Endp r op e r ty 

2.2.3 SVA Checks for arbiter in simulation 

The four checks shown in Section 2.2.2 should be in-lined within the 
arbiter module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 
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module arbiter( ); 

// port declarations 

parameter arb_sva = I'bl; 
parameter arb_sva_severity = I'bl; 

// Arbiter design description 
// SVA property description 

// SVA Checks 

always®(posedge elk) 
begin 
if{arb_sva) 
begin 

a_arb_onehotO: 
assert property{p_arb_onehotO) 
else if(arb_sva_severity) $fatal; 

a_req_gnt: 
assert property(p_req_gnt) 
else if{arb_sva_severity) $fatal; 

a_gnt_frame : 
assert property(p_gnt_frame) 
else if{arb_sva_severity) $fatal; 

a_frame_gnt: 
assert property{p_frame_gnt) 
else if(arb_sva_severity) $fatal; 

c_arb_onehotO: cover property(p_arb_onehotO); 
c_req_gnt: cover property(p_req_gnt); 
c_gnt_frame: cover property{p_gnt_frame); 
c_frame_gnt: cover property{p_frame_gnt); 

end 
end 

endmodule 
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Figure 2-10. Arbiter checks in simulation 

The parameter "arb_sva" will have to be set to 1 for the checks to be 
included in a simulation. The parameter "arb_sva_severity" controls the 
action to be taken during simulation. In this case, if the parameter is set to 1, 
then the severity is set to Sfatal. This means that upon a failure of any of 
these checks, the simulation will exit. By setting the parameter to 0, the 
checks will use the default condition, which is to print an error message on a 
failure and continue simulating. A waveform from a sample simulation is 
shown in Figure 2-10. 

2.2.4 Master verification 

Based on the protocol description of the master from Section 2.1.1, the 
following SVA checks can be extracted. Note that each master has only one 
"req," "gnt," "frame" and "irdy" signals. The mention of these signals in the 
master checkers does not represent the expressions defined in the arbiter 
checkers. They are just individual signals present in each master device. 

Master_chkl: Upon a valid request from a master, the grant shall come 
within 2 to 5 clock cycles. If so and if the signal "r_sel" is high, then on the 
same clock cycle, the master should assert the signals "frame" and "irdy." 
Three cycles later the target device one should acknowledge its selection by 
asserting the signal "trdy." 

property p_master_startl; 
©(posedge elk) 
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( $ f e l l ( r e q ) # # [ 2 : 5 ] ( $ f e l l { g n t ) & & r _ s e l ) ) | - > 
( I f r a m e && l i r d y ) ##3 ! t r d y [ l ] ; 

e n d p r o p e r t y 

Master_chk2: Upon a valid request from a master, the grant shall come 
within 2 to 5 clock cycles. If so and if the signal "r_sel" is low, then on the 
same clock cycle, the master should assert the signals "frame" and "irdy." 
Three cycles later the target device zero should acknowledge its selection by 
asserting the signal "trdy." 

property p_master_start2; 
©(posedge elk) 
($fell (req) ##[2:5] ($fell(gnt) && !r_sel))|-> 

(Iframe && lirdy) ##3 !trdy[0]; 
endproperty 

Master_chk3: Once the target acknowledges its selection, the master 
should complete its transaction within 10 clock cycles. It should indicate the 
fransaction completion by de-asserting the signals "frame" and "irdy." One 
cycle later the signal "gnt" should be de-asserted. 

property p_master_stopl; 
©(posedge elk) 

$fell (trdy[l]) |-> ##10 (frame && irdy) ##1 gnt; 
endproperty 

property p_master_stop2; 

©(posedge elk) 
$fell (trdy[0]) |-> ##10 (frame && irdy) ##1 gnt; 
endproperty 

Note that two separate properties are written to check the fransaction 
completion, one for each target device. 

Master_chk4: If the master is in a write transaction, then the bus data 
(datac) should not be tri-stated and should have valid data. 

property p_master_datal; 
©(posedge elk) 

($fell (trdy[l]) ##2 rw) |-> 
($isunknown(data) == 0) [*7] ; 

endproperty 
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p r o p e r t y p _ m a s t e r _ d a t a 2 ; 
©(posedge e l k ) 

{ $ f e l l ( t r d y [ 0 ] ) ##2 rw) | - > 
($isunknowii(data) == 0) [*7] ; 

endproperty 

• Note that two separate properties are written to check the validity 
of data during write transaction, one for each target device. 

• Note that if the signal "rw" is high, then the master is conducting 
a write transaction. 

Master_chk5: If the master is in a read transaction, then the bus data 
(data_o) should not be tri-stated and should have valid data. 

p r o p e r t y p _ n i a s t e r _ d a t a o l ; 
©(posedge e l k ) 

( $ f e l l ( t r d y [ l ] ) ##3 !rw) |=> 
($isunknown{data_o) == 0) [*7]; 

endproperty 

property p_master_datao2; 
©(posedge elk) 

{$fell (trdy[0]) ##3 !rw) |=> 
($isunknown(data_o) == 0) [*7] ; 

endproperty 

• Note that two separate properties are written to check the validity 
of data during read transaction, one for each target device. 

• Note that if the signal "rw" is low, then the master is conducting 
a read transaction. 

2.2.5 SVA Checks for the master in simulation 

The five checks shown in Section 2.2.4 should be in-lined within the 
master module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 

module master( ); 

// port declarations 

parameter master_sva = I'bl; 
parameter .master_sva_severity = I'bl; 
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// Master design description 

// SVA property description 

// SVA Checks 

always®(posedge elk) 

begin 

if{master_sva) 

begin 

a_master_startl: 
assert property(p_master_startl) 
else if{master_sva_severity) $fatal; 

a_master_start2: 
assert property(p_master_start2) 
else if(master_sva_severity) $fatal; 

a_master_stopl: 
assert property{p_master_stopl) 
else if{master_sva_severity) $fatal; 

a_master_stop2: 
assert property(p_master_stop2) 
else if(master_sva_severity) $fatal; 

a_master_datal: 
assert property{p_master_datal) 
else if(master_sva_severity) $fatal; 

a_master_data2: 
assert property(p_master_data2) 
else if(master_sva_severity) $fatal; 

a_master_dataol: 
assert property(p_master_dataol) 
else if(master_sva_severity) $fatal; 
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a_master_datao2: 
assert property(p_master_datao2) 
else if{master_sva_severity) $fatal; 

c_master_startl: cover property{p_master_startl); 
c_master_start2: cover property{p_master_start2); 
c_master_stopl: cover property(p_master_stopl) 
c_master_stop2: cover property(p_master_stop2) 
c_master_datal: cover property(p_master_datal) 
c_master_data2: cover property(p_master_data2) 
c_master_dataol: cover property(p_master_dataol); 
c_master_datao2: cover property(p_master_datao2); 

end 

end 

endmodule 

A waveform from a sample simulation of these master checks is shown 
in Figure 2-11. 
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2.2.6 Glue verification 

Based on the protocol description of the glue logic from Section 2.1.2, 
the following SVA checks can be extracted. 

Glue_chkl: If any one of the master select signals "sell," "sel2" or 
"sel3" is high, then target device one should be selected. 

property p_sel_l; 
©(posedge elk) 

(rsell II rsel2 || rsel3) |=> sel == 2'blO; 
endproperty 

Glue_chk2: If any one of the master select signals "sell," "sel2" or 
"sel3" is low, then target device zero should be selected. 

property p_sel_0; 
©(posedge elk) 

(Irsell II !rsel2 || !rsel3) |=> sel == 2'bOl; 
endproperty 

Glue_chk3: During a write transaction, if the signal "rsell" is not tri-
stated, then the data from master device one should be written to the 
respective target device. 

property p_rsell_write; 
©(posedge elk) 

((rsell II Irsell) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 datal[8]) |-> 

(data == $past(datal)) [*7]; 
endproperty 

• Note that we determine the nature of the transaction (read/write) 
by using the most significant bit of the bus "data." 

• If the MSB of the bus "data" is high, then it is a write 
transaction. 

• If the MSB of the bus "data" is low, then it is a read transaction. 
• Within the master device, the nature of the transaction is 

determined by the signal "rw." This signal is a copy of the MSB 
of the bus "data." The signal "rw" is local to the master device. 
The external interface should infer the nature of the transaction 
by using the MSB of the bus "data." 
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Glue_chk4: During a write transaction, if the signal "rsel2" is not tri-
stated, then the data from master device two should be written to the 
respective target device. 

property p_rsel2_write; 
©(posedge elk) 
((rsel2 II !rsel2) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 data2[8] ) |-> 

(data == $past(data2)) [*7] ; 
endproperty 

Glue_chk5: During a write transaction, if the signal "rsel3" is not tri-
stated, then the data from master device three should be written to the 
respective target device. 

property p_rsel3_write; 
©(posedge elk) 
((rsel3 II !rsel3) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 data3[8]) |-> 

(data == $past(data3)) [*7]; 
Endproperty 

Glue_chk6: During a read transaction, if target device one is selected, 
then data read from target one (dataoutl) should be fed back to the 
respective master. 

property p_readl; 
©(posedge elk) 
($fell (trdy[l]) ##4 !data[8]) |-> 

(dataoutl == datao) [*7]; 
endproperty 

Glue_chk7: During a read transaction, if target device zero is selected, 
then data read from target zero (dataout2) should be fed back to the 
respective master. 

property p_readO; 
©(posedge elk) 
($fell (trdy[0]) ##4 !data[8]) |-> 

(dataout2 == datao) [*7] ; 
endproperty 
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2.2.7 SVA Checks for the glue logic in simulation 

The seven checks shown in Section 2.2.6 should be in-hned within the 
glue module. There should be a provision to assert these properties on a need 
basis. The following code shows how this can be achieved. 

module g l u e ( ) ; 

// port declarations 

parameter glue_sva = I'bl; 
parameter glue_sva_severity = I'bl; 

// glue design description 

// glue SVA property description 

// SVA Checks 

always®(posedge elk) 

begin 
if(glue_sva) 
begin 
a_sel_l: 

assert property(p_sel_l) 
else if{glue_sva_severity) $fatal; 

a_sel_0: 
assert property(p_sel_0) 
else if{glue_sva_severity) $fatal; 

a_rsell_write: 
assert property(p_rsell_write) 
else if(glue_sva_severity) $fatal; 

a_rsel2_write: 
assert property{p_rsel2_write) 
else if(glue_sva_severity) $fatal; 

a_rsel3_write: 
assert property{p_rsel3_write) 
else if(glue_sva_severity) $fatal; 
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a _ r e a d l : 
a s s e r t property{p_readl) 
e l s e i f ( g l u e _ s v a _ s e v e r i t y ) $ f a t a l ; 

a_readO: 
assert property{p_readO) 
else if(glue_sva_severity) $fatal; 

c_sel_l: cover property(p_sel_l); 
c_sel_0: cover property(p_sel_0); 
c_rsell_write: cover property(p_rsell_write); 
c_rsel2_write: cover property(p_rsel2_write); 
c_rsel3_write: cover property{p_rsel3_write); 
c_readl: cover property(p_readl); 
c_readO: cover property(p_readO); 

end 
end 

endmodule 

A waveform from a sample simulation of the glue checks is shown in 
Figure 2-12. 
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Figure 2-12. Glue checks in simulation 

2.2.8 Target verification 

Based on the protocol description of the target device from Section 2.1.3, 
the following SVA checks can be extracted. 

Target_chkl: If a target is selected, then it should assert the signal 
"trdy" after 2 clock cycles. 

property p_sel_trdy_start; 
©(posedge elk) $rose {sel_bit) |-> 

##1 trdy ##1 Itrdy; 
endproperty 

Target_chk2: At the end of a transaction, the "sel_bit" signal is de-
asserted. One clock cycle after that, the signal "trdy" should be de-asserted. 
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property p _ s e l _ t r d y _ s t o p ; 
©(posedge elk) $ f e l l ( s e l _ b i t ) |=> t r d y ; 

endproperty 

Target_chk3: In a write transaction, the write pointers should be 
incremented by one after each clock cycle to complete a valid "write" to a 
unique address every time. 

property p_write; 
©(posedge elk) 
(datain[8] && sel_bit && (wi != 0)) |-> 

(wi == ($past(wi) + 1)) ; 
endproperty 

• Note that the address pointer will roll over from 63 to 0. Hence, 
this check cannot be applied if on a given clock edge the write 
pointer is at 0. 

• A different check can be written to verify that the pointer always 
rolls over correctly from 63 to 0. 

Target_chk4: In a read transaction, the read pointers should be 
incremented by one after each clock cycle to complete a valid "read" from a 
unique address every time. 

property p_read; 
©(posedge elk) 
(!datain[8] && sel_bit && (ri != 63)) |=> 

(ri == ($past(ri) + 1)); 
endproperty 

• Note that in the case of read pointer, when the pointer is at 63 
this check cannot be applied. 

• The read operation has a latency of one clock cycle and hence we 
use the Non-overlapping implication operator. 

• Since a non-overlapping operator is used, the check moves 
forward to one cycle and compares the address in the previous 
cycle. 

• For example, on a given clock edge, if the antecedent of the 
implication is true, the check moves to the next clock cycle. If 
the pointer is at 63, then the check moves to pointer 0 and 
compares 63 and 0 for an increment of one. This is incorrect. 
Hence, the check should not be performed if the value of the read 
pointer is 63 on a given clock edge. 
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• A separate check can be written to make sure that the pointer 
rolls over from 63 to 0 accurately. 

Target_chk5: During a valid read or write transaction, the data read 
from or written to the target should be valid. 

property p_target_datain; 
©(posedge elk) 
($fell (trdy) ##3 (datain[8])) |-> 

not ($isunknown (datain)) [*7]; 
endproperty 

property p_target_dataout; 
©(posedge elk) 
($fell (trdy) ##3 (!datain[8])) |=> 

not {$isunknown(dataout)) [*7]; 
endproperty 

2.2.9 SVA Checks for the Target in simulation 

The five checks shown in Section 2.2.8 should be in-lined within the 
target module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 

module target( ); 

// port declarations 

parameter target_sva = I'bl; 
parameter target_sva_severity = I'bl; 

// target design description 
// target SVA property description 
// SVA Checks 

always©(posedge elk) 
begin 
if(target_sva) 
begin 

a_sel_trdy_start: 
assert property(p_sel_trdy_start) 
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e l s e i f ( t a r g e t _ s v a _ s e v e r i t y ) $ f a t a l ; 
a _ s e l _ t r d y _ s t o p : 

a s s e r t proper ty (p_se l_ t rdy_s top ) 
e l s e i f ( t a r g e t _ s v a _ s e v e r i t y ) $ f a t a l ; 

a_write: 
assert property{p_write) 
else if(target_sva_severity) $fatal; 

a_read: 
assert property{p_read) 
else if(target_sva_severity) $fatal; 

a_target_datain: 
assert property(p_target_datain) 
else if(target_sva_severity) $fatal; 

a_target_dataout: 
assert property(p_target_dataout) 
else if{target_sva_severity) $fatal; 

c_sel_trdy_start: 
cover property(p_sel_trdy_start); 

c_sel_trdy_stop: cover property(p_sel_trdy_stop); 
c_write: cover property(p_write); 
c_read: cover property(p_read); 
c_target_datain: cover property(p_target_datain); 
c_target_dataout: 

cover property(p_target_dataout); 

end 
end 
endmodule 

A waveform from a sample simulation of the target checks is shown in 
Figure 2-13. 
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Figure 2-13. Target checks in simulation 

2.3 System level verification 

There are 3 masters and 2 targets in the system along with an instance of 
the mediator. The top-level connection of the system is shown below. 

Module t o p ( . . , . . , ) ; 

// port declarations 

master ul (ask[2], elk, reql, gntl, framel, 
irdyl, trdy, datal, rsell, datao); 

master u2 (ask[l], elk, req2, gnt2, frame2, 
irdy2, trdy, data2, rsel2, datao); 

master u3 (ask[0], elk, req3, gnt3, frames, 
irdy3, trdy, dataS, rsel3, datao); 

arbiter u4 (elk, reset, frame, irdy, reql, req2, 
req3, gntl, gnt2, gnt3); 

glue u5 (elk, framel, irdyl, frame2, irdy2, 
frames, irdyS, trdy, rsell, rsel2, rsel3, datal. 
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data2, dataS, sel, data, dataoutl, dataout2, 
datao); 

target u6 (elk, reset, sel [1], trdy[l], data, 
dataoutl); 

target u7 (elk, reset, sel [0] , trdy[0], data, 
dataout2); 

endmodule 

The following tips are recommended for doing system level verification 
with SVA: 

• Since the internal functionality of the individual blocks was 
verified thoroughly, the block level assertions don't have to be 
included during the system level verification by default. The 
main motive behind this is performance. 

• If performance is not a bottleneck, the block level assertions shall 
be included in the system level verification by default. The 
system interfaces provide a more realistic and unexpected set of 
input conditions and block level assertions must be able to react 
to them correctly. 

• The verification environment should provide the facility to turn 
on block level assertions if there are any failures. For example, 
in our sample system, if a failure occurs during a transaction 
between master 1 and target 0, then the system level simulation 
should be re-run by including the block level SVA checks 
written for master 1 and target 0. 

• At the system level, a new set of assertions should be written that 
verifies the connectivity of the system. More focus should be on 
the interface rules rather than the internal block details. 

2.3.1 SVA Checks for system level verification 

The following set of checks can be written for the system level 
verification based on the connectivity and protocol of the system. 



2. SVA SIMULA TION METHODOLOGY 115 

Ss_shkl: Only one "trdy" signal can be asserted at any given point. In 
other words, only one target device can participate in a transaction at any 
given time. 

property p_target; 
©(posedge elk) not (!trdy[0] && !trdy[l]); 

endproperty 

Ss_chk2: Only one set of "frame" and "irdy" signals can be asserted at 
any given clock cycle. In other words, only one master device can participate 
in a transaction at any give time. 

property p_frame; 
©(posedge elk) 

$countones({framel, frame2, frames}) >1; 
endproperty 

property p_irdy; 
©(posedge elk) 

$countones({irdyl, irdy2, irdyS}) >1; 
endproperty 

Ss_chk3: Only one "gnt" signal shall be asserted at any given time. In 
other words, the arbiter can provide access for only one master at a time to 
pursue a transaction. 

property p_gnt; 
©(posedge elk) 

$countones({gntl, gnt2, gnts}) > 1; 
endproperty 

Ss_chk4: Only one "rw" signal shall be active at any given clock cycle, 
the other "rw" signals should be tri-stated ("rw" signal is the MSB of the 
masters data output bus). 

property p_rw; 
©(posedge elk) 
($isunknown(rwl) && $isunknown(rw2) && 
$isunknown(rw3) ) || 
((rwl==l'bl II rwl==l'bO) && $isunknovm (rw2) 
&& $isunknown(rw3)) || 
((rw2==l'bl II rw2==l'b0) && $isunknown (rwl) 
&& $isunknown(rw3)) | j 
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{{rw3==l'bl II rw3==l'b0) && $isunknown (rw2) 
&& $isunknown(rw2)); 

endproperty 

Ss_chk5: Only one "rsel" signal shall be active at any given clock cycle, 
the other "rsel" signals should be tri-stated. 

property p_rsel; 
©(posedge elk) 

$isunknowii (rsell) && $isunknown(rsel2) && 
$isunknown(rsel3) ) || 
{(rsell==l'bl II rsell==l'bO) && $isunknowii 

(rsel2) && $isunknown(rselB)) || 
{(rsel2==l'bl || rsel2==l'b0) && $isunknovm 

(rsell) && $isunknowii(rsel3) ) | | 
( (rsel3 = = l'bl || rsel3 = = l'b0) &.&. $isunknovm 

{rsel2) && $isunknown(rsell)); 
endproperty 

Ss_chk6: Upon a valid request by a master, a valid "gnt" should arrive 
within 2 to 5 clock cycles. 

assign req = !reql || !req2 || !req3; 
assign gnt = Igntl || !gnt2 || !gnt3; 

property p_req_gnt_w; 
©(posedge elk) 

$rose (req) |-> ##[2:5] $rose(gnt); 
endproperty 

Ss_chk7: At any given clock, if the "frame" and "irdy" signal of a master 
are asserted, then the relevant "trdy" signal should be asserted after 3 clock 
cycles. 

assign frame_ = Iframel || !frame2 || !frame3; 
assign irdy_ = !irdyl || !irdy2 || !irdy3; 

property p_start_frame; 
©(posedge elk) 

$rose (frame_ && irdy_) |->##3 $rose(trdy_); 
endproperty 
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Ss_chk8: At any given clock, if the "frame" and "irdy" signals of the 
master are de-asserted, then the relevant "trdy" signal should be de-asserted 
after 2 clock cycles. 

assign trdyp = trdy[l] && trdy[0]; 

property p_end_frame; 
©(posedge elk) 

$rose (frame && irdy) |->##2 $rose(trdyp); 
endproperty 

Ss_chk9: If there is no valid transaction at any given clock, then the bus 
"data" and "datao" should be tri-stated. 

property p_bus_not_in_use; 
©(posedge elk) 
trdyp I-> 

($isunknown(data) && $isunknown(datao)); 
endproperty 

a_target : assert property(p_target); 
a_frame: assert property(p_frame); 
a_irdy: assert property(p_irdy); 
a_rsel: assert property(p_rsel); 
a_rw: assert property(p_rw); 
a_gnt: assert property(p_gnt); 
a_req_gnt_w : assert property(p_req_gnt_w); 
a_start_frame: assert property(p_start_frame); 
a_end_frame: assert property(p_end_frame); 
a_bus_in_use: assert property(p_bus_not_in_use); 

c_target : cover property(p_target); 
c_frame: cover property(p_frame); 
c_irdy: cover property(p_irdy); 
c_rsel: cover property(p_rsel); 
c_rw: cover property(p_rw); 
c_gnt: cover property(p_gnt); 
c_req_gnt_w : cover property(p_req_gnt_w); 
c_start_frame: cover property(p_start_frame); 
c_end_frame: cover property(p_end_frame); 
c_bus_in_use: cover property(p_bus_not_in_use); 
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During the system level simulation, the top-level module should be 
configured with the parameter settings such that all block level assertions are 
turned off. In our sample system, since each design block has a parameter 
that allows including its relevant SVA checks on a need basis, we can 
configure the top module for system level run easily as shown below. 

Module t o p ( . . , . . , ) ; 

// port declarations 

master 
#{.master_sva(1'bO), .master_sva_severity(1'bO)) 
ul (ask[2], elk, reql, gntl, framel, irdyl, trdy, 
datal, rsell, datao); 

master 
#{.master_sva(1'bO), .master_sva_severity(1'bO)) 
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy, 
data2, rsel2, datao); 

master 
#(.master_sva(1'bO), .master_sva_severity(1 'bO) ) 
u3 (ask[0], elk, req3, gnt3, frames, irdyS, trdy, 
data3, rsel3, datao); 

arbiter 
#(.arb_sva(1'bO), .arb_sva_severity(1'bO)) 
u4 (elk, reset, frame, irdy, reql, req2, reqS, 
gntl, gnt2, gnt3); 

glue 
#{.glue_sva{1'bO), .glue_sva_severity{1'bO)) 
u5 (elk, framel, irdyl, frame2, irdy2, frame3, 
irdy3, trdy, rsell, rsel2, rsel3, datal, data2, 
data3, sel, data, dataoutl, dataout2, datao); 

target 
#(.target_sva{1'bO), .target_sva_severity(1'bO)) 
u6 (elk, reset, sel [1], trdy[l], data, dataoutl); 

target 
#(.target_sva(1'bO), .target_sva_severity(1'bO)) 
u7 (elk, reset, sel[0], trdy[0], data, dataout2); 
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Note that when each design block is instantiated, the parameter values 
are passed. The first parameter "*_sva" is set to 0 in all the individual 
instantiations, which indicates that the block level assertions will not be 
included. Now, the system level simulations can be run only with the system 
level checks. 

Let us assume that there are failures on "Ss_chk6" during the system 
level simulation. This check looks for interface failures between the masters 
and the arbiter module. To debug the errors, the simulation can be re-run by 
including the block level checks relevant to the masters and the arbiter. The 
top modules configuration for such a run is shown below: 

Module t o p ( . . , . . , ) ; 

// port declarations 

master 
#(.master_sva(1'bl), . master_sva_severity(1'bO)) 
ul {ask[2], elk, reql, gntl, framel, irdyl, trdy, 
datal, rsell, datao); 

master 
#{.master_sva{1'bl), .master_sva_severity{1'bO) ) 
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy, 
data2, rsel2, datao); 

master 
#(.master_sva(1'bl), .master_sva_severity(1' bO) ) 
u3 (ask[0], elk, req3, gnt3, frameS, irdyS, trdy, 
data3, rsel3, datao); 

arbiter 
#(.arb_sva{1'bl), .arb_sva_severity(1'bO)) 
u4 (elk, reset, frame, irdy, reql, req2, 
gntl, gnt2, gnt3); 

req3, 

glue 
#(.glue_sva(1'bO), .glue_sva_severity(1'bO)) 
u5 (elk, framel, irdyl, frame2, irdy2, frame3, 
irdy3, trdy, rsell, rsel2, rsel3, datal, data2, 
data3, sel, data, dataoutl, dataout2, datao); 
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t a r g e t 
# { . t a r g e t _ s v a ( 1 ' b O ) , . t a r g e t _ s v a _ s e v e r i t y ( 1 ' b O ) ) 

u6 (e lk , r e s e t , s e l [ 1 ] , t r d y [ l ] , d a t a , d a t a o u t l ) ; 

target 
#(.target_sva(1'bO), .target_sva_severity(1'bO) ) 
u7 (elk, reset, sel[0], trdy[0], data, dataout2); 

endmodule 

Note that the parameter "master_sva" and "arb_sva" are set to 1 in this 
configuration. In the basic design blocks, SVA checks could also be 
included conditionally using the ""ifdef - "endif construct. By conditionally 
compiling the SVA code, the user can either have the checks on all instances 
of the module or on none of the instances of the module. The disadvantage 
with this methodology is that, it is a global control mechanism. By using 
parameters, this disadvantage can be overcome and the user gets more 
flexibility in choosing the block level checks needed for a particular 
simulation run. 

2.4 Functional coverage 

The system level checks written so far look for specific protocol 
violations, if any. By making sure that these checks executed at least once in 
the simulation, the confidence level on the functionality of the system 
increases tremendously. The other aspect of functional coverage is covering 
all possible scenarios of system functionality during simulation from the 
testbench perspective. The scenarios to be covered during a simulation 
should be part of the test plan. 

The SVA checks written for dynamic simulation are only as good as the 
input stimulus. If the input vectors do not force the system to execute certain 
scenarios, then those remain untested. A lot of testbenches use random 
techniques to generate input stimulus vectors. A very common approach is to 
run a pre-determined number of transactions and measure coverage on 
certain scenarios. By constraining the random generation of input stimulus, 
the scenarios can be covered more efficiently. The key is to get the 
maximum functional coverage in a minimum number of cycles. The 
coverage information collected from SVA can be used effectively to create 
reactive verification environments. 
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2.4.1 Coverage plan for the sample system 

The sample system discussed in this chapter has a lot of key functionality 
that should be covered as part of the functional verification. 

2.4.1.1 Request Scenario 

"All possible request scenarios should be covered" 

There are three masters that can ask for access at any given time. This 
means that there are 7 possible combinations of the master "req" signals as 
shown in Table 2-1. 

Table 2-1. Master request scenarios 

Reql 
0 
1 
1 
0 
1 
0 
0 

Req2 
1 
0 
1 
0 
0 
1 
0 

Req3 
1 
1 
0 
1 
0 
0 
0 

A 0 in the table indicates that the master is requesting for the bus. The 
testbench should create all these possible input combinations during 
simulation. 

The following code example shows how functional coverage data can be 
used to control the simulation environment. Property definitions for all 7 
possible request combinations should be created as follows. 

property p_reql; // master 1 requesting 
©(posedge elk) $fell (reql) && req2 && req3; 

endproperty 

property p_req2; // master 2 requesting 
©(posedge elk) $fell (req2) && reql && req3; 

endproperty 

property p_req3; // master 3 requesting 
©(posedge elk) $fell (req3) && reql && req2; 

endproperty 
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property p _ r e q l 2 ; / / mas te r 1&2 r e q u e s t i n g 
©(posedge elk) 
$fell (reql) && $fell(req2)&& req3; 

endproperty 

property p_req2 3; // master 2&3 rtequesting 
©(posedge elk) 
$fell {req2) && $fell(req3) && reql; 

endproperty 

property p_req31; // master 1&3 requesting 
©(posedge elk) 
$fell (req3) && $fell(reql) && req2; 

endproperty 

property p_reql23; // master 1&2&3 requesting 
©(posedge elk) 
$fell (reql) && $fell{req2) && $fell(req3); 

endproperty 

Each property should have a cover statement associated with it as shown 
below. The action block of the cover statement can be used to update register 
flags. In this case, every time the property is covered, a local register count 
is incremented. In the same clock, we check if the counter has reached a 
value of 3. If so, then the flag associated to that property is asserted. In other 
words, it is expected that each request combination occurs three times during 
simulation and if and when it happens, a flag associated with that specific 
request combination will be asserted. 

c_reql: eover property(p_reql) 
begin 

creql++; 
if(creql == 3) creql_flag = I'bl; 

end 

c_req2: cover property(p_req2) 
begin 

creq2++; 

if(creq2 == 3) creq2_flag = I'bl; 
end 

c_req3: eover property(p_req3) 
begin 
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creq3++; 
if{creg3 == 3) creq3_flag = I'bl; 

end 
c_reql2: cover property(p_reql2) 

begin 
creql2++; 
if{creql2 == 3) creql2_flag = I'bl; 

end 

c_req23: cover property{p_req23) 
begin 

creq23++; 
if(creq23 == 3) creq23_flag = I'bl; 

end 

c_req31: cover property{p_req31) 
begin 

creq31++; 
if(creq31 == 3) creq31_flag = I'bl; 

end 

c_reql23: cover property(p_reql23) 
begin 

creql23++; 
if(creql23 == 3) creql23_flag = I'bl; 

end 

This coverage information can be used effectively to control the 
simulation environment. In a random testbench for the sample system, a pre­
determined number of transactions could be performed one after the other. 
The simulation will finish when all transactions are completed. The 
following code shows how the functional coverage information can be used 
to terminate the simulation. 

always®(posedge elk) 
begin 

If{creql_flag && creq2_flag && creq3_flag && 
creql2_flag && creq23_flag && creq31_flag && 
creql23_flag) 

begin 



124 Chapter 2 

$display{"FC: All possible request scenarios 
covered 3 times each\n"); 
$finish(); 

end 
end 

With this piece of code, there are two ways to terminate a simulation: 

1. Run the pre-determined number of transactions randomly and exit. 

2. Exit if all possible request scenarios are covered three times each. 

Whichever occurs first will terminate the simulation. 

2.4.1.2 Master to Target transactions 

"Every master device should perform both a read and a write 
transaction with every target device" 

There are 3 master devices and 2 target devices in the system. This 
creates 12 possible scenarios as shown in Table 2-2. Property definitions for 
all 12 possible transaction combinations should be created as follows. 

Table 2-2. Master to target transactions 

Master Target Transaction 
Ml 
Ml 
Ml 
Ml 
M2 
M2 
M2 
M2 
M3 
M3 
M3 
MS 

Tl 
Tl 
TO 
TO 
Tl 
Tl 
TO 
TO 
Tl 
Tl 
TO 
TO 

Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 

property p_mltlr; 
// masterl reading from target 1 
©(posedge elk) 
$fell (framel && irdyl) |-> 
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##3 { $ f e l l { t r d y [ l ] ) ) ##3 ! d a t a [ 8 ] ; 
endproperty 

property p_mltlw; 
// master 1 writing to target 1 
©(posedge elk) 
$fell (framel && irdyl) |-> 

##3 {$fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_mltOr; 
// master 1 reading from target 0 
©(posedge elk) 
$fell (framel && irdyl) |-> 

##3 ($fell (trdy[0])) ##3 !data[8]; 
endproperty 

property p_mltOw; 
// master 1 writing to target 0 
©(posedge elk) 
$fell(framel && irdyl) |-> 

##3 ($fell(trdy[0])) ##3 data[8]; 
endproperty 

property p_m2tlr; 
// master 2 reading from target 1 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($fell(trdy[l])) ##3 !data[8]; 
endproperty 

property p_m2tlw; 
// master 2 writing to target 1 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_m2t0r; 
// master 2 reading from target 0 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($felltrdy[0])) ##3 'data [8]; 
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endproperty 

property p_m2t0w; 
// master 2 writing to target 0 
@(posedge elk) 
$fell {frame2 && irdy2) |-> 

##3 ($fell {trdy[0])) ##3 data[8]; 
endproperty 

property p_m3tlr; 
// master 3 reading from target 1 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell {trdy[l])) ##3 !data[8]; 
endproperty 

property p_m3tlw; 
// master 3 writing to target 1 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 {$fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_m3t0r; 
// master 3 reading from target 0 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell {trdy[0])) ##3 !data[8]; 
endproperty 

property p_m3t0w; 
// master 3 writing to target 0 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell (trdy[0])) ##3 data[8]; 
endproperty 

Each property should have a cover statement associated with it as shown 
below. The same technique used in Section 2.4.1.1 is used to keep count of 
the number of occurrences of the scenario. 

c _ m l t l r : e o v e r p r o p e r t y ( p _ m l t l r ) 
begin 
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m l _ t l _ r + + ; 
i f ( m l _ t l _ r == 3) m l _ t l _ r _ f l a g = I ' b l ; 

end 

c_raltlw: cover property(p_mltlw) 
begin 
ml_tl_w++; 
if(ml_tl_w == 3) ml_tl_w_flag = I'bl; 

end 

c_mltOr: cover property{p_mltOr) 
begin 
ml_tO_r++; 
if{ml_tO_r == 3) ml_tO_r_flag = I'bl; 

end 

C_mltOw: cover property(p_mltOw) 
begin 
ml_tO_w++; 
if(ml_tO_w == 3) ml_tO_w_flag = I'bl; 

end 

c_m2tlr: cover property{p_m2tlr) 
begin 
m2_tl_r++; 
if{m2_tl_r == 3) m2_tl_r_flag = I'bl; 

end 

c_m2tlw: cover property(p_m2tlw) 
begin 
m2_tl_w++; 
if{m2_tl_w == 3) m2_tl_w_flag = I'bl; 

end 

C_m2t0r: cover property(p_m2t0r) 
begin 
m2_t0_r++; 
if{m2_t0_r == 3) m2_t0_r_flag = I'bl; 

end 

C_m2t0w: cover property(p_m2t0w) 
begin 
m2 to W++; 
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if(m2_t0_w == 3) m2_t0_w_flag = I ' b l ; 
end 

c_m3t l r : cover property (p_m3tl r ) 
begin 

m3_tl_r++; 
i f ( m 3 _ t l _ r == 3) m3_ t l_ r_ f l ag = I ' b l ; 

end 

c_m3tlw: cover property(p_m3tlw) 
begin 
m3_tl_w++; 
if{m3_tl_w == 3) m3_tl_w_flag = I'bl; 

end 

c_m3t0r: cover property(p_m3tOr) 
begin 
m3_t0_r++; 
if(m3_t0_r == 3) m3_t0_r_flag = I'bl; 

end 

c_m3t0w: cover property(p_m3t0w) 
begin 
m3_t0_w++; 
if(m3_t0_w == 3) m3_t0_w_flag = I'bl; 

end 

This coverage information from both Sections 2.4.1.1 and 2.4.1.2 can be 
used effectively to control the simulation environment. With the piece of 
code shown below, there are two ways to terminate a simulation: 

1. Run a pre-determined number of transactions randomly and exit. 
2. If all possible request scenarios are covered three times and if all 

possible "master to target" transactions are covered three times, then 
exit the simulation. 

Whichever occurs first will terminate the simulation. 

always®(posedge elk) 
begin 

if(creql_flag && creq2_flag && creq3_flag && 
creql2_flag && creq23_flag && creq31_flag && 
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c r e q l 2 3 _ f l a g && m l _ t l _ r _ f l a g && m l _ t l _ w _ f l a g && 
m l _ t O _ r _ f l a g && ml_ tO_w_f l ag && m 2 _ t l _ r _ f l a g && 
m 2 _ t l _ w _ f l a g && m 2 _ t 0 _ r _ f l a g && m 2 _ t 0 _ w _ f l a g && 
m 3 _ t l _ r _ f l a g && m 3 _ t l _ w _ f l a g && m 3 _ t 0 _ r _ f l a g && 
m3_tO_w_flag) 

b e g i n 

$display("FC: All possible request scenarios 
covered 3 times\n"); 

$display("FC: All possible transactions covered 
3 times\n"); 

$finish{); 

end 
end 

2.4.1.3 Advanced coverage options 

There is another data point that can be used to measure the functional 
coverage of the system. 

"Every target memory location sliould be written to and read from at 
least once by eacli master" 

This information requires exhaustive testing. Every address space in the 
target device should be monitored for usage by each master device. SVA is 
not always the choice for performing functional coverage. Functional 
coverage that involves exhaustive test plan coverage points can be done 
more efficiently with a testbench language that supports object oriented 
programming constructs. Such exhaustive functional coverage points 
should be used while running long regression runs. 

2.4.2 Functional coverage summary 

Functional coverage measurement guarantees testing of all required 
scenarios. The measure can be used effectively for controlling simulation 
environments. One method is to terminate simulation upon achieving the 
functional coverage goals. In the sample system, the following results were 
observed: 
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• Default number of random transactions set in the testbench was 
500. 

• Terminating the simulation based on the request scenarios shown 
in Section 2.4.1.1 took 46 transactions. 

• Terminating the simulation based on the request scenarios shown 
in Section 2.4.1.1 and the "master to target" transactions shown 
in Section 2.4.1.2 took 63 transactions. 

The functional coverage data obtained can also be used to re-direct the 
testbench dynamically. In random testbenches, constraints are used to 
control the type of transactions generated. These constraints are assigned 
certain weights for the random distribution in the beginning of a simulation. 
Based on the functional coverage information obtained during the 
simulation, these weights can be adjusted dynamically to achieve the 
functional coverage goal quickly. 

2.5 SVA for transaction log creation 

SVA can be used to create excellent log files. The SVA checkers snoop 
for any design property violation during simulation. The same checkers can 
be called monitors if they log the information that they are snooping. In a 
complex system, it really helps to create a chronological log of the 
transactions. In our sample system, creating a log of all the read and write 
transactions, between whom these happened and at what time will be a great 
debugging asset. 

SVA has the option to use a lot of the Verilog like capabilities within the 
scope of the checker. The action block of each checker or cover statement 
can be used efficiently to create log files. While displaying information upon 
the success of an assert or a cover statement is one way to create log files, 
another way is to call a task or a function. The calling of a task or a function 
expands the capabilities of the SVA checker. Apart fi^om displaying 
information within the task, data checking can also be done effectively. The 
following code shows how a chronological transaction log is created for the 
sample system. 

// open a file to document transactions 

integer h_mt; 
initial 
begin 
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h_mt = $ f o p e n { " m t . d a t " ) ; 
end 

/ / c a l l i n g t a s k f o r d o c u m e n t a t i o n 

" i f d e f s l v doc 

c _ m l t l w _ d o c : 
c o v e r p r o p e r t y { p _ m l t l w 

c _ m l t l r _ d o c : 
c o v e r p r o p e r t y { p _ m l t l r 

c _ m l t 2 w _ d o c : 
c o v e r proper ty{p_ml tOw 

c _ m l t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m l t O r 

c_m2t lw_doc : 
c o v e r p r o p e r t y { p _ m 2 t l w 

c _ m 2 t l r _ d o c : 
c o v e r p r o p e r t y ( p _ m 2 t l r 

c_m2t2w_doc: 
c o v e r p r o p e r t y ( p _ m 2 t 0 w 

c _ m 2 t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m 2 t 0 r 

c _ m 3 t l w _ d o c : 
c o v e r p r o p e r t y { p _ m 3 t l w 

c _ m 3 t l r _ d o c : 
c o v e r p r o p e r t y ( p _ m 3 t l r 

c_m3t2w_doc: 
c o v e r proper ty{p_m3t0w 

c _ m 3 t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m 3 t O r 

"endif 

master_xaction(l,1); 

master_xaction(l,1); 

master_xaction{l,0); 

master_xaction{l,0); 

master_xaction(2,1); 

master_xaction(2,1); 

master_xaction(2,0); 

master_xaction(2,0); 

master_xaction{3,1); 

master_xaction(3,1); 

master_xaction(3,0); 

master xaction(3,0); 

task master_xaction{ 
input int m_identity, input int t_identity); 

integer i; 

begin 

if(data[8]) 
begin 
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f o r { i = 0 ; i < 8 ; i++) 
b e g i n 

$ fwr i te (h_mt ,"WRITE: 
Master %0d writing to Target %0d = %0d at 
%Ot\n",m_identity, t_identity, data[7:0], 
$time); 

©(posedge elk); 
end 
end 

if(!data[8]) 
begin 
©(posedge elk) ; 
for{i=0; i<8; i++) 
begin 
$fwrite(h_mt,"READ: 
Master %0d reading from Target %0d = %0d at 
%Ot\n", m_identity, t_identity, datao, $time); 

©{posedge elk); 
end 
end 

end 

endtask 

The properties defined for fanctional coverage in Section 2.4.1.2 are 
reused for creating transaction logs. If the cover statement succeeds, a task 
called "master_xaction" is called. The task expects two input arguments, one 
identifying the master and the other identifying the target device. By sending 
these arguments, a generic task can be written to log the transactions 
accurately. 

The transactions are logged into a separate file called "mt.dat." A Sfopen 
statement is used to open this file at the beginning of the simulation. Once 
the task is called, the task executes either the read block of the code or the 
write block of the code. Since our sample system does burst read or write in 
sets of 8 bytes, a "for" loop is used within the task. The loop goes around 
eight times and each time the relevant read or write data is logged into the 
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file "mt.dat" using a Sfwrite statement. A part of the log created for the 
sample system using this code is shown below. 

WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
READ: Master 3 
READ: Master 3 
READ: Master 3 
READ: Master 3 
READ:Master 3 
READ:Master 3 
READ:Master 3 
READ:Master 3 

1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
reading from Target 1 
reading from Target 1 
reading from Target 1 
reading from Target 1 

reading from Target 1 = 
reading from Target 1 = 
reading from Target 1 = 
reading from Target 1 = 

72 at 775 
77 at 825 
95 at 875 
37 at 925 
216 at 975 
184 at 1025 
198 at 1075 
182 at 1125 

= 72 at 1725 
= 77 at 1775 
= 95 at 1825 
= 37 at 1875 
216 at 1925 
184 at 1975 
198 at 2025 
182 at 2075 

The transaction logs can be made a lot more fancy and debug fiiendly 
depending on the user's application. Note that this code is included within 
the 'ifdef - 'endif block. This kind of a detailed transaction log might not be 
needed during long regressions and hence should have the provision to be 
included conditionally. 

2.6 SVA for FPGA Prototyping 

A variety of advanced verification methodologies exist today that can 
help find bugs quickly. Constrained random testbenches and assertions are 
an important piece in these methodologies. It is very common to write 
thousands of tests to make sure that all possible functionality has been tested 
correctly. While most of the bugs are found in the RTL verification, it is still 
very common to find functional bugs during the verification of implemented 
gates. Simulating gates has always been a performance bottleneck and will 
always be. Running all the tests developed during RTL verification on gates 
is not very practical. Gate level simulation is extremely slow and more and 
more verification teams are depending on other verification methodologies 
such as formal verification, FPGA prototyping, etc. as shown in Figure 2-14. 
By running the verification on the actual silicon, the verification process can 
be accelerated significantly. This allows running the regression suites 
developed for RTL exhaustively on actual silicon. 
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Regression Suite Regression Suite 

SOC (RTL, Gates) SOC(FPG A Prototype) 

A B 

Figure 2-14. FPGA Prototyping 

One major challenge in running tests on actual silicon prototype is 
debugging. SVA can help in this area significantly. By synthesizing the 
checkers along with the design, the debug process can be made a little easier. 
The checkers are written against the functional specification and having 
them monitor the design in real silicon adds great value. The design needs to 
be altered slightly to accommodate these assertions. If an assertion fails, it 
has to be notified to the external world using an output port. The output ports 
can be updated with the results, using the action block of the assertions. In 
most real-time testing, breakpoints can be set on these output ports and upon 
a failure on one of these debug ports, the verification can be stopped for 
further analysis. The master device used in the sample system is shown in 
Figure 2-2. This contains only the default ports relevant to the design. The 
sample Verilog code for the master device is shown below. 

module t t i a s t e r { a s k _ f o r _ i t , e l k , r e q , 
i r d y , t r d y , d a t a _ c , r _ s e l , d a t a _ o ) ; 

gnt, frame, 

input elk, gnt, ask_for_it; 
input [1:0] trdy; 
output req, frame, irdy, r_sel; 
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o u t p u t [ 8 : 0 ] d a t a _ c ; 
i n p u t [ 7 : 0 ] d a t a _ o ; 

parameter m a s t e r _ s v a = I ' b l ; 
parameter m a s t e r _ s v a _ s e v e r i t y = I ' b l ; 

/ / f u n c t i o n a l d e s c r i p t i o n of m a s t e r 

/ / B l o c k l e v e l SVA c h e c k s 

endmodule 

The block level assertions should be made part of the design to help in 
FPGA prototyping. Each block level assertion should be associated with a 
debug output port. The debug output port should be asserted if the assertion 
fails. The following code description shows how this can be achieved. 

module master (ask_for_it, elk, req, gnt, frame, 
irdy, trdy, data_c, r_sel, data_o, 
a_master_startl_flag, a_master_start2_flag, 
a_master_stopl_flag, a_master_stop2_flag, 
a_master_datal_flag, a_master_data2_flag, 
a_master_dataol_flag, a_master_datao2_flag); 

input e l k , gn t , a s k _ f o r _ i t ; 
input [1:0] t r d y ; 
output req, frame, irdy, r_sel; 
output [8:0] data_c; 
input [7:0] data_o; 

// debug pins for FPGA prototyping 
output a_master_startl_flag; 
output a_master_start2_flag; 
output a_master_stopl_flag; 
output a_master_stop2_flag; 
output a_master_datal_flag; 
output a_master_data2_flag; 
output a_master_dataol_flag; 
output a_master_datao2_flag; 

parameter master_sva = I'bl; 
parcuneter master_sva_severity = I'bl; 
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II functional description of master 

// Block level checks for prototype debugging 

~ifdef master_debug 

d_a_master_startl: 
assert property(p_master_startl) 
else 
a_master_startl_flag = I'bl; 

d_a_master_start2: 
assert property(p_master_start2) 
else 
a_master_start2_flag = I'bl; 

d_a_master_stopl: 
assert property{p_master_stopl) 
else 
a_master_stopl_flag = I'bl; 

d_a_master_stop2: 
assert property(p_master_stop2) 
else 
a_master_stop2_flag = I'bl; 

d_a_master_datal: 
assert property{p_master_datal) 
else 
a_master_datal_flag = I'bl; 

d_a_master_data2: 
assert property{p_master_data2) 
else 
a_master_data2_flag = I'bl; 

d_a_master_dataol: 
assert property{p_master_dataol) 
else 
a_master_dataol_flag = I'bl; 

d_a_master_datao2: 
assert property(p_master_datao2) 
else 
a_master_datao2_flag = I'bl; 

~endif 

endmodule 
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Note that the respective output port flags will be asserted upon a failure. 
Since these assertions are concurrent, they will look for a valid start on every 
clock edge. If the silicon testing mechanism does not provide a way to set 
breakpoints on an assertion failure, then it is required that the failure be 
latched. Otherwise, the failure notification can be lost if the assertion 
succeeds in future clock cycles. 

2.7 Summary on SVA simulation methodologies 

• The addition of SVA to testbench environment makes dynamic 
simulation more productive. 

• The designers are very familiar with the internal functionality of 
the design and hence, they should in-line SVA checkers in their 
respective design blocks. 

• The verification engineer, who integrates and verifies the system, 
should add system level assertions that thoroughly verify the 
interface protocol. 

• The verification engineer should be able to control/configure the 
block level assertions from his verification environment (He 
should be able to tum the assertions on and off on a need basis). 

• Functional coverage metrics can be collected with little effort 
using SVA. This information should be used effectively to create 
reactive testbenches. 

• SVA can be used to create informative log files since they are 
monitoring the design protocols throughout the simulation. 

• By writing SVA checkers that follow synthesis coding 
guidelines, they can be made part of the net-list and used to 
debug prototyping/emulation failures. 
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