Chapter 2
SVA SIMULATION METHODOLOGY

In Chapter 1, SVA language constructs were discussed in detail with
examples. All examples were illustrated as relationships between two or
more generic signals without any design details. In Chapter 2, a dummy
system is used to present a real situation. The process of protocol extraction
and assertion development will be discussed step by step. Various simulation
methodologies that can significantly increase the productivity of assertion
based verification will be discussed. Functional coverage and reactive
testbench development will be discussed in detail.

2.1 A sample system under verification

The sample system under consideration is shown in Figure 2-1. The
system has 3 master devices and 2 target devices. A link is established
between the master and the target devices by the mediator. At a given time,
only one master can conduct a transaction and with only one target device.
Any master device can conduct a transaction with any target device. The
transaction can be a read or a write. The mediator contains arbiter logic that
decides which master will be allowed to conduct a transaction. The arbiter
uses a simple round robin technique. The mediator also contains glue logic
that actually decodes the master information for the target device and vice
versa. The glue logic helps establish the link between a specific master
device and target device to conduct the transaction successfully.

2.1.1 The Master device

The block diagram of the master device along with input and output ports
is shown in Figure 2-2. The master device can perform a read and a write
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transaction. It can support 2 target devices in a single system. When the
master device gets the instruction “ask_for it,” it is ready to perform a
transaction. It sends an active low pulse on the “req” signal and waits for a
“gnt.” The “gnt” signal is an active low signal. If the “gnt” signal does not
come within 2 to 5 clock cycles, then the master will retry to get access at a
later time. If the “gnt” is acquired, then the master will immediately assert
the “frame” and “irdy” signals acknowledging the arrival of the “gnt” signal
(“frame” and “irdy” are active low signals). In the same clock cycle it also
selects the target device it will have the transaction with. The master uses the
output signal “rsel” to indicate this. If signal “rsel” is set to 1, then the
master will to have a transaction with target device 1. If the signal “rsel” is
set to 0, then the master will have a transaction with target device 0.

Masterl K——

<—— Target1

Master2 ——] Mediator

<——> TargetO

Master3 [K——

Figure 2-1. A sample system

Once the signal “rsel” is updated, the target device is expected to identify
itself to the master. The target device uses the signal “trdy” to acknowledge
its readiness. If the target does not acknowledge itself within 3 clock cycles
from the point when “rsel” is assigned, it is an error condition. If the target
does acknowledge itself, then the master decides whether to read or write.
The master sends the data and the instruction whether to read or write
through the “datac” bus.
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Figure 2-2. Sample master device
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Figure 2-3. Write transaction of a master device

The most significant bit is the instruction bit (shown as signal “rw” in
waveforms). If it is 1, the master will write and if it is a O then the master
will read. If it is a write transaction, the least significant 8 bits consist of the
data that needs to be written to the target device. If it is a read transaction,
then the data read from the target device appears on the “datao” input bus.
Each transaction of the master will last exactly 8 clock cycles. In other
words, a master can either read 8 bytes in a transaction or write 8 bytes in a
transaction. There is no specific address generation scheme. The master will
write to the most updated write pointer address existing within the target
device. Similarly, the master will read from the most updated read pointer
address within the target device. The sample waveform for a master write
transaction is shown in Figure 2-3. The sample waveform for a master read
transaction is shown in Figure 2-4.
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Figure 2-4. Sample read transaction of a master device

Once the read or write transaction is complete, the master indicates
completion by de-asserting the signals “frame” and “irdy” in the next clock
cycle. It also sets the “rsel” signal to tri-state. The arbiter acknowledges this
and de-asserts the “gnt” signal in the next clock cycle. Once the arbiter
removes the “gnt” signal, the target device acknowledges completion of the
transaction by de-asserting the “trdy” signal.

2.1.2 The Mediator

The block diagram of the mediator along with input and output ports is
shown in Figure 2-5. The mediator performs two important tasks:

1. Provide arbitration logic that decides which master will get access
to conduct a transaction with a target device.

2. Establish the link between a specific master device and a target
device. At a given time any number of masters can ask for access
by asserting their respective “req” signal.

The arbiter uses a round robin algorithm and decides which master will
get access. When the arbiter makes a decision, it will assert the “gnt” signal
of the respective master device. The arbiter can take anywhere between 2 to
5 clock cycles to make a decision. The internal logic for the arbiter is
described with a simple zero one-hot state machine.
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Figure 2-5. Sample mediator device

After the master selects the target it will have a transaction with, the
mediator will provide that information to the specific target device. Since
three masters are capable of having a transaction with any of the target
devices, the mediator has to monitor the “rsel” signals from all three masters.
At any given time, either all the three “rsel” signals are tri-stated or
definitely two of them are tri-stated. If all three “rsel” signals are tri-stated,
then there is no transaction request at that point. If there is a transaction, then
one of the “rsel” signals will have a value of 0 or 1, depending on which
target device will be used. If signal “rsel” is 1 then, the MSB of signal “sel”
is set high indicating that target device 1 is selected. If signal “rsel” is O then,
the LSB of signal “sel” is set high indicating that target device 0 is selected.
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Figure 2-6. Waveform for mediator functionality

The mediator also selects the correct data signals for both write and read
transactions. If it is a write transaction, then the mediator monitors which
master’s “rsel” signal is active and assigns the data value relevant to that
master to the selected target device input. For example, if master 1 is asking
for a write transaction with target device zero, then the signal “rsell” will be
set to low and the bus “datal” will be assigned to the mediator output bus
“data.” This output is fed to the input of the selected target device. The
mediator also assigns the correct output data from the target device back to
the master device in a read transaction. For example, if target 1 is involved
in the read transaction, then the bus “dataoutl” will be assigned to the bus
“datao.” The sample waveform for the mediator is shown in Figure 2-6.

2.1.3 The Target device
The block diagram of the target device along with input and output ports

is shown in Figure 2-7. The target device has a first-in-first-out type memory
that can store up to 64 bytes of data.
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Figure 2-8. Target write transaction

The target device waits for the signal “sel bit” to be asserted. Once
signal “sel bit” is asserted, the target has to acknowledge by asserting the
signal “trdy” after 2 clock cycles. After asserting signal “trdy” the target
device waits for a valid data and a valid write signal if it is a write
transaction. Once a valid write signal is detected, the incoming data is stored
in the target device in locations starting from the most updated value of the
write pointer (wi) register. If it is a read transaction, then the target device
reads out 8 data points from its memory using the current read pointer
location (ri) as the starting address.

The type of transaction is indicated by the MSB of the bus “datain.” In a
read transaction, the data read appears on the bus vector “dataout.” When the
transaction is complete, the signal “sel_bit” is de-asserted and one clock
cycle after that the signal “trdy” is de-asserted. The sample waveform for a
target write transaction is shown in Figure 2-8. The sample waveform for a
target read transaction is shown in Figure 2-9.
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Figure 2-9. Target read transaction
2.2 Block level verification

As the individual design blocks get ready they should be tested
thoroughly. Exhaustive verification of the blocks will uncover the comer
case bugs ahead of time. Finding these bugs before integrating the system is
a must. Finding these bugs at the system level will be very difficult. Also,
system level failures provide a greater challenge for identifying and
debugging comer case bugs. SVA can be used efficiently to test the
individual blocks effectively. At the block level, the simulations are smaller
and hence the bugs can be traced easily and fixed promptly. There are 4
individual design blocks in the sample system that need to be verified:

1. Master
2. Target
3. Arbiter
4. Glue

There are also 2 block level interfaces that need to be tested thoroughly:

1. Master and Mediator
2. Target and Mediator

221 SVA in design blocks

The following tips are recommended for doing block level verification
with SVA:
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o All SVA checks written for a block level design should be in-
lined. Block level assertions often involve accessing internal
registers of a design and hence, in-lining the checks within the
design module is more efficient.

e The inclusion of SVA checks written at the block level should be
controlled by a parameter defined within the design module. This
gives the freedom to turn the checks on and off on a per
simulation basis.

¢ The severity level of the SVA checks written at the block level
should be controlled by a parameter defined within the design
module. The default severity in SVA is to print an error message
and continue simulating.

e Every block level SVA check written should be asserted and
covered. It is a must that all the block level checks must have at
least one real success.

2.2.2 Arbiter verification

Based on the protocol description of the arbiter from Section 2.1.2, the
following SVA checks can be extracted. Some of the common expressions
used repeatedly in the arbiter checks can be defined with “assign” statements
as shown below:

assign frame = framel && frame2 && frame3;
assign irdy = irdyl && irdy2 && irdy3;
assign gnt = igntl || lgnt2 || !gnt3;
assign req = !reql || !req2 || !reg3;

The “frame” and “irdy” signals are all active low signals. Each master
has a unique “frame” and “irdy” signal and these are inputs to the arbiter
module. If a master is active, it sets both the “frame” and “irdy” low. Hence,
by AND’ing the “frame” signals, we know that the bus is active if the
AND’ed value is low. Similarly, by AND’ing the “irdy” signals, we know
that the bus is active if the AND’ed value is low. If the AND’ed values of
“frame” and “irdy” signals are high, then none of the masters are active.

Each master has a unique “req” signal that requests the bus and the
arbiter provides a unique “gnt” signal. By OR’ing all the “req” signals we
know that even if one master has a valid request, the arbiter considers the
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request. Similarly, by OR’ing the “gnt” signals, we know that one master has
acquired the grant. Creating such intermediate expressions make the SVA
checkers more readable.

Arb_chkl: On any given clock edge, the internal state of the arbiter
should behave as a zero one-hot state machine.

property p_arb_onehot0;
@ (posedge clk) $onehotO(state);
endproperty

Arb_chk2: Upon a valid request by a master, the arbiter should provide a
grant within 2 to 5 clock cycles.

property p_req gnt;
@(posedge clk) $rose (req) |->
##[2:5] $rose (gnt);
endproperty

Arb_chk3: Once the grant is awarded, the master should acknowledge
acceptance in the same clock cycle by asserting the “frame” and “irdy”
signals.

property p _gnt frame;
@(posedge clk) $rose (gnt) |->
$fell (frame && irdy);
endproperty

Arb_chk4: Once the master completes the transaction it de-asserts the
“frame” and “irdy” signals, followed by that, the arbiter should de-assert the
“gnt” signal on the next clock cycle.

property p frame gnt;
@ (posedge clk) $rose(frame && irdy)
|=> $fell (gnt);
Endproperty

223 SVA Checks for arbiter in simulation
The four checks shown in Section 2.2.2 should be in-lined within the

arbiter module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.
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module arbiter(....);
// port declarations

parameter arb_sva = 1'bl;
parameter arb_sva severity = 1'bl;

// Arbiter design description
// SVA property description

// SVA Checks

always@ (posedge clk)
begin

if (arb_sva)

begin

a_arb_onehot0:
assert property(p_arb onehot0)
else if (arb_sva_severity) $fatal;

a_req_gnt:
assert property(p_reqg_gnt)
else if(arb_sva_severity) $fatal;

a_gnt_ frame
assert property(p gnt frame)
else if(arb_sva severity) $fatal;

a_frame gnt:
assert property(p frame gnt)
else if (arb_sva severity) $fatal;

c_arb onehot0: cover property(p_arb_onehot0);
c_reg_gnt: cover property(p_req gnt);
c_gnt_frame: cover property(p_gnt frame);
c¢_frame_gnt: cover property{p_frame gnt);

end
end

endmodule
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Figure 2-10. Arbiter checks in simulation

The parameter “arb_sva” will have to be set to 1 for the checks to be
included in a simulation. The parameter “arb_sva_severity” controls the
action to be taken during simulation. In this case, if the parameter is set to 1,
then the severity is set to $fatal. This means that upon a failure of any of
these checks, the simulation will exit. By setting the parameter to 0, the
checks will use the default condition, which is to print an error message on a
failure and continue simulating. A waveform from a sample simulation is
shown in Figure 2-10.

224 Master verification

Based on the protocol description of the master from Section 2.1.1, the
following SV A checks can be extracted. Note that each master has only one
“req,” “gnt,” “frame” and “irdy” signals. The mention of these signals in the
master checkers does not represent the expressions defined in the arbiter

checkers. They are just individual signals present in each master device.

Master_chkl: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal “r_sel” is high, then on the
same clock cycle, the master should assert the signals “frame” and “irdy.”
Three cycles later the target device one should acknowledge its selection by
asserting the signal “trdy.”

property p master_startl;
@ (posedge clk)
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($fell (req) ##[2:5] ($fell(gnt) && r_sel)) |->
(Yframe && lirdy) ##3 ltrdyI[1]:;
endproperty

Master_chk2: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal “r_sel” is low, then on the
same clock cycle, the master should assert the signals “frame” and “irdy.”
Three cycles later the target device zero should acknowledge its selection by
asserting the signal “trdy.”

property p master_ start2;
@ (posedge clk)
($fell (req) ##[2:5] ($fell(gnt) && !r sel))|->
. (tframe && !irdy) ##3 !ltxrdyl[0];
endproperty

Master_chk3: Once the target acknowledges its selection, the master
should complete its transaction within 10 clock cycles. It should indicate the
transaction completion by de-asserting the signals “frame” and “irdy.” One
cycle later the signal “gnt” should be de-asserted.

property p master_stopl;

@{posedge clk)
$fell (trdyl[1]l) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

property p master stop2;

@ (posedge clk)
$fell (trdy[0]) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

Note that two separate properties are written to check the transaction
completion, one for each target device.

Master_chk4: If the master is in a write transaction, then the bus data
(data_c) should not be tri-stated and should have valid data.

property p master datal;
@ (posedge clk)
($fell (trdylil) ##2 rw) |->
($isunknown (data) == 0) [*7];
endproperty
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property p master data2;
@ (posedge clk)
($fell (trdy[0]) ##2 rw) |->
($isunknown (data) == 0) [*7];
endproperty

e Note that two separate properties are written to check the validity
of data during write transaction, one for each target device.

e Note that if the signal “rw” is high, then the master is conducting
a write transaction.

Master_chkS: If the master is in a read transaction, then the bus data
(data_o) should not be tri-stated and should have valid data.

property p master dataol;
@(posedge clk)

($fell (trdy[1l]) ##3 lrw) |=>
($isunknown (data_o) == 0) [*7];
endproperty
property p _master datao2;
@(posedge clk)
($fell (trdy[0]l) ##3 !lrw) |=>
($isunknown (data_o) == 0) [*7];

endproperty
e Note that two separate properties are written to check the validity
of data during read transaction, one for each target device.
¢ Note that if the signal “rw” is low, then the master is conducting
a read transaction.
2.2.5 SVA Checks for the master in simulation
The five checks shown in Section 2.2.4 should be in-lined within the
master module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.
module master(....);

// port declarations

parameter master_sva = 1'bl;
parameter master sva_severity = 1'bl;
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// Master design description
// SVA property description
// SVA Checks
always@(posedge clk)

begin

if (master sva)

begin

a_master startl:
assert property(p master_ startl)
else if (master_sva_severity) $fatal;

a_master_ start2:
assert property(p master_start2)
else if (master_sva_severity) $fatal;

a_master stopl:
assert property(p_master_ stopl)
else if (master sva_severity) $fatal;

a_master stop2:
assert property(p_master stop2)
else if (master_sva_severity) $fatal;

a_master_datal:
assert property(p_master datal)
else if (master_sva_severity) $fatal;

a_master_data2:
assert property(p _master data2)
else if (master_sva severity) $fatal;

a_master dataol:
assert property(p_master dataol)
else if (master sva_ severity) $fatal;
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a_master_.

datao2:

assert property(p master_ datao2)

else if (master sva severity)

sfatal;

Chapter 2

c_master_startl: cover property(p master_startl);
¢_master_start2: cover property(p master start2);

c_master_
c_master_
c_master_
c_master_|

stopl: cover property(p master stopl);
stop2: cover property(p master_ stop2);
datal: cover property(p_master_datal);
data2: cover property(p master_data2);

¢_master_dataol: cover property(p master_dataol);
¢_master datao2: cover property(p master datao2);

end

end

endmodule

A waveform from a sample simulation of these master checks is shown

in Figure 2-11.
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Figure 2-11. Master checks in simulation for target 1
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2.2.6 Glue verification

Based on the protocol description of the glue logic from Section 2.1.2,
the following SVA checks can be extracted.

Glue_chkl: If any one of the master select signals “sell,” “sel2” or
“sel3” is high, then target device one should be selected.

property p sel 1;
@ (posedge clk)
(rsell || rsel2 || rsel3) |=> sel == 2'b10;
endproperty

Glue_chk2: If any one of the master select signals “sell,” “sel2” or
“sel3” is low, then target device zero should be selected.

property p sel 0;
@(posedge clk)
(trsell || trsel2 || 1rsel3) |=> sel == 2'b01;
endproperty

Glue_chk3: During a write transaction, if the signal “rsell” is not tri-
stated, then the data from master device one should be written to the
respective target device.

property p_rsell write;
@ (posedge clk)

((rsell || trsell) ##3 ($fell (txdyl(1l) ||
$fell (trdy[0])) ##3 datall8]) |->

(data == $past(datal)) [*7];
endproperty

* Note that we determine the nature of the transaction (read/write)
by using the most significant bit of the bus “data.”

e If the MSB of the bus “data” is high, then it is a write
transaction.
If the MSB of the bus “data” is low, then it is a read transaction.

¢  Within the master device, the nature of the transaction is
determined by the signal “rw.” This signal is a copy of the MSB
of the bus “data.” The signal “rw” is local to the master device.
The external interface should infer the nature of the transaction
by using the MSB of the bus “data.”
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Glue_chk4: During a write transaction, if the signal “rsel2” is not tri-
stated, then the data from master device two should be written to the

respective target device.

property p rsel2 write;
@ (posedge clk)
((rsel2 || trsel2) ##3 ($fell (trdyl1l) ||
$fell (trdy([0l)) ##3 data2(8]) |->
(data == $past(data2)) [*7];

endproperty

Glue_chk5: During a write transaction, if the signal “rsel3” is not tri-
stated, then the data from master device three should be written to the

respective target device.

property p rsel3 write;

@ (posedge clk)
1rsel3) ##3 ($fell (txdyl[1l) ||

((rsel3 ||

$fell (trdy[0])) ##3 data3[8]) |->
(data == $past(data3d)) [*7];

Endproperty

Glue_chk6: During a read transaction, if target device one is selected,
then data read from target one (dataoutl) should be fed back to the

respective master.

property p readl;
@(posedge clk)
($£ell (trdyl[1l]) ##4 tdataf8l) |->
(dataoutl == datao) [*7];
endproperty

Glue_chk7: During a read transaction, if target device zero is selected,
then data read from target zero (dataout2) should be fed back to the

respective master.
property p read0;
@ (posedge clk)
($£ell (trdy[0]) ##4 !datals]l) |->
(dataout2 == datao) [*7];

endproperty
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2.2.7 SVA Checks for the glue logic in simulation

The seven checks shown in Section 2.2.6 should be in-lined within the
glue module. There should be a provision to assert these properties on a need
basis. The following code shows how this can be achieved.

module glue(....);
// port declarations

parameter glue sva = 1'bl;
parameter glue_ sva_severity = 1'bl;

// glue design description
// glue SVA property description

// SVA Checks

always@(posedge clk)
begin

if (glue_sva)

begin

a_sel 1:
assert property(p sel 1)
else if(glue_sva_severity) $fatal;

a_sel 0:
assert property(p_sel 0)
else if(glue_sva_severity) $fatal;

a_rsell write:
assert property(p rsell write)
else if(glue_sva_severity) $fatal;

a_rsel2 write:
assert property(p_rsel2 write)
else if(glue_sva_severity) $fatal;

a_rsel3 write:
assert property(p_rsel3_write)
else if(glue_sva severity) $fatal;
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a_readl:
assert property(p readl)
else if(glue_sva_severity) $fatal;

a_read0:
assert property(p readO)
else if(glue_sva_severity) $fatal;

c_sel 1: cover property(p_sel_ 1):
c_sel 0: cover property(p sel 0};
c_rsell write: cover property(p_rsell write);
c_rsel2 write: cover property(p_rsel2 write);
c_rsel3 write: cover property(p_rsel3 write);
c_readl: cover property(p_readl):
c_read0: cover property(p_reado0):

end
end

endmodule

A waveform from a sample simulation of the glue checks is shown in
Figure 2-12.
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Figure 2-12. Glue checks in simulation

2.2.8 Target verification

Based on the protocol description of the target device from Section 2.1.3,
the following SV A checks can be extracted.

Target_chkl: If a target is selected, then it should assert the signal
“trdy” after 2 clock cycles.

property p sel trdy start;
@(posedge clk) $rose (sel_bit) |->
##1 trdy ##1 ltrdy:
endproperty

Target_chk2: At the end of a transaction, the “sel_bit” signal is de-
asserted. One clock cycle after that, the signal “trdy” should be de-asserted.
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property p_sel trdy stop;
@(posedge clk) $fell (sel_bit) |=> trdy;
endproperty

Target_chk3: In a write transaction, the write pointers should be
incremented by one after each clock cycle to complete a valid “write” to a
unique address every time.

property p_write;
@(posedge clk)
(datain[8] && sel_bit && (wi 1= 0)) |->
(wi == ($past(wi) + 1));
endproperty

e Note that the address pointer will roll over from 63 to 0. Hence,
this check cannot be applied if on a given clock edge the write
pointer is at 0.

e A different check can be written to verify that the pointer always
rolls over correctly from 63 to 0.

Target chk4: In a read transaction, the read pointers should be
incremented by one after each clock cycle to complete a valid “read” from a
unique address every time.

property p read;
@(posedge clk)
(1datain[8] && sel_bit && (ri != 63)) |=>
(ri == ($past(ri) + 1));
endproperty

¢ Note that in the case of read pointer, when the pointer is at 63
this check cannot be applied.

e The read operation has a latency of one clock cycle and hence we
use the Non-overlapping implication operator.

e Since a non-overlapping operator is used, the check moves
forward to one cycle and compares the address in the previous
cycle.

¢ For example, on a given clock edge, if the antecedent of the
implication is true, the check moves to the next clock cycle. If
the pointer is at 63, then the check moves to pointer 0 and
compares 63 and 0 for an increment of one. This is incorrect.
Hence, the check should not be performed if the value of the read
pointer is 63 on a given clock edge.
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e A separate check can be written to make sure that the pointer
rolls over from 63 to 0 accurately.

Target_chkS5: During a valid read or write transaction, the data read
from or written to the target should be valid.

property p_target_datain;
@ (posedge clk)

($fell (trdy) ##3 (datain([8])) |->
not ($isunknown (datain)) [*7];
endproperty

property p_target_ dataout;
@(posedge clk)

($fell (trdy) ##3 (ldatainl([8])) |=>
not ($isunknown (dataout)) [*7];
endproperty

2.2.9 SVA Checks for the Target in simulation

The five checks shown in Section 2.2.8 should be in-lined within the
target module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.

module target (....);
// port declarations

parameter target_sva = 1'bl;
parameter target_ sva_severity = 1'bl;

// target design description
// target SVA property description
// SVA Checks

always@ (posedge clk)
begin

if (target_sva)
begin

a_sel trdy start:
assert property(p_sel trdy start)
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else if(target sva severity) $fatal;
a_sel_trdy stop:

assert property(p_sel trdy stop)

else if(target sva severity) $fatal;

a_write:
assert property(p write)
else if (target_sva severity) $fatal;

a_read:
assert property(p read)
else if (target sva_severity) $fatal;

a_target_datain: ‘
assert property(p target_datain)
else if(target_sva_severity) $fatal;

a_target dataout:
assert property(p target dataout)
else if(target_sva_severity) $fatal;

c_sel trdy_ start:

cover property(p_sel trdy start):
¢_sel trdy stop: cover property(p_sel trdy stop):
c_write: cover property(p_write);
¢_read: cover property(p read);
c_target_datain: cover property(p_target datain);
¢_target dataout:

cover property (p_target dataout);

end
end
endmodule

A waveform from a sample simulation of the target checks is shown in
Figure 2-13.
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Figure 2-13. Target checks in simulation

2.3 System level verification

There are 3 masters and 2 targets in the system along with an instance of
the mediator. The top-level connection of the system is shown below.

Module top(.., .., ) ;
// port declarations

master ul {(ask[2], «clk, reql, gntl, framel,
irdyl, trdy, datal, rsell, datao):;

master u2 (ask([1], clk, reqg2, gnt2, frame2,
irdy2, trdy, data2, rsel2, datao):;

master u3 (ask[0], clk, zreg3, gnt3, frame3,
irdy3, trdy, data3, rsel3, datao);

arbiter u4 (clk, reset, frame, irdy, reql, req2,
reqg3, gntl, gnt2, gnt3);

glue ub (clk, framel, irdyl, frame2, irdy2,
frame3, irdy3, trdy, rsell, rsel2, rsel3, datal,
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data2, datasi, sel, data, dataoutl, dataout?2,
datao) ;

target u6 (clk, reset, sellll, txdyIll], data,
dataoutl) ;

target u7 (clk, reset, sell0], trdyI[0], data,
dataout2) ;

endmodule

The following tips are recommended for doing system level verification

with SVA:

231

Since the internal functionality of the individual blocks was
verified thoroughly, the block level assertions don’t have to be
included during the system level verification by default. The
main motive behind this is performance.

If performance is not a bottleneck, the block level assertions shall
be included in the system level verification by default. The
system interfaces provide a more realistic and unexpected set of
input conditions and block level assertions must be able to react
to them correctly.

The verification environment should provide the facility to turn
on block level assertions if there are any failures. For example,
in our sample system, if a failure occurs during a transaction
between master 1 and target 0, then the system level simulation
should be re-run by including the block level SVA checks
written for master 1 and target 0.

At the system level, a new set of assertions should be written that
verifies the connectivity of the system. More focus should be on

the interface rules rather than the internal block details.

SVA Checks for system level verification

The following set of checks can be written for the system level
verification based on the connectivity and protocol of the system.
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Ss_shkl: Only one “trdy” signal can be asserted at any given point. In
other words, only one target device can participate in a transaction at any
given time.

property p_target;
@(posedge clk) not (!trdy[0] && !trdylIll}l);

endproperty

Ss_chk2: Only one set of “frame” and “irdy” signals can be asserted at
any given clock cycle. In other words, only one master device can participate
in a transaction at any give time.

property p_ frame;
@(posedge clk)
$countones ({framel, frame2, frame3}) >1;

endproperty

property p_irdy:;
@ (posedge clk)
$countones ({irdyl, irdy2, irdy3}) »>1;
endproperty

Ss_chk3: Only one “gnt” signal shall be asserted at any given time. In
other words, the arbiter can provide access for only one master at a time to
pursue a transaction.

property p_gnt;
@ (posedge clk)
$countones ({gntl, gnt2, gnt3}) > 1;

endproperty

Ss_chk4: Only one “rw” signal shall be active at any given clock cycle,
the other “rw” signals should be tri-stated (“rw” signal is the MSB of the

masters data output bus).

property p_rw;
@ (posedge clk)

($isunknown (rwl) && $isunknown (rw2) &&
$isunknown (rw3) ) ||

({(rwl==1'bl || rwl==1'b0) && $isunknown (rw2)
&& $isunknown (rw3)) ||

)
((rw2==1'b1 || rw2==1'b0) && $isunknown (rwl)

r
&& $isunknown (rw3)) ||



116 Chapter 2

((rw3==1'bl || rw3==1'b0) && $isunknown (rw2)
&& S$Sisunknown (rw2));
endproperty

Ss_chk5: Only one “rsel” signal shall be active at any given clock cycle,
the other “rsel” signals should be tri-stated.

property p_rsel;
@(posedge clk)

$isunknown(rsell) && S$isunknown(rsel?2) &&
$isunknown (rsel3) ) ||

((rsell==1'bl || rsell==1'b0) && $isunknown
(rsel2) && S$isunknown(rsel3)) ||

((rsel2==1'bl || 1rsel2==1'b0) && $isunknown
(rsell) && $isunknown(rsel3d)) ||

({(rsel3==1'bl || 1rsel3==1'b0) && $isunknown
({rsel2) && $isunknown (rsell));
endproperty

Ss_chk6: Upon a valid request by a master, a valid “gnt” should arrive
within 2 to 5 clock cycles.

assign req

treql || !req2 || treq3:
assign gnt | | |

Igntl fgnt2 Ignt3;

property p_req gnt_w;
@(posedge clk)

$rose (req) |-> ##[2:5] $rose(gnt);
endproperty

Ss_chk7: At any given clock, if the “frame” and “irdy” signal of a master

are asserted, then the relevant “trdy” signal should be asserted after 3 clock
cycles.

assign frame = Iframel || !frame2 || !frame3;
assign irdy = tirdyl || tixdy2 || !irdy3;

property p_start_ frame;
@ (posedge clk)

$rose (frame && irdy_ ) |->##3 $rose(trdy );
endproperty
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Ss_chk8: At any given clock, if the “frame” and “irdy” signals of the
master are de-asserted, then the relevant “trdy” signal should be de-asserted
after 2 clock cycles.

assign trdyp = trdyl[l] && trdy[o];

property p end frame;
@(posedge clk)
$rose (frame && irdy) |->##2 $rose(trdyp):;
endproperty

Ss_chk9: If there is no valid transaction at any given clock, then the bus
“data” and “datao” should be tri-stated.

property p_bus_not_in_use;
@ (posedge clk)
trdyp |->
($isunknown (data) && $isunknown (datao));
endproperty

a_target : assert property(p_target);

a_frame: assert property(p frame);

a_irdy: assert property(p_irdy);

a_rsel: assert property(p_rsel);

a_rw: assert property(p Iw);

a_gnt: assert property(p gnt);

a_req gnt w : assert property(p_reqg gnt w);
a_start frame: assert property(p start frame);
a_end_frame: assert property(p_end frame);
a_bus_in use: assert property(p_bus not_in use);

c_target : cover property(p target);

c_frame: cover property(p_frame):

c_irdy: cover property(p irdy):;

c_rsel: cover property(p_rsel);

C_rw: cover property(p rw);

c_gnt: cover property(p gnt):

c_reqg_gnt w : cover property(p_req gnt_w);
c_start_frame: cover property(p_start frame):
c_end_frame: cover property(p_end_ frame);
c_bus_in use: cover property(p_bus not_in_use};
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During the system level simulation, the top-level module should be
configured with the parameter settings such that all block level assertions are
turned off. In our sample system, since each design block has a parameter
that allows including its relevant SVA checks on a need basis, we can
configure the top module for system level run easily as shown below.

Module top(..,.., )
// port declarations

master

#(.master_sva(l'b0), .master_sva_severity(1'b0))
ul (askl[2l, c¢lk, reqgl, gntl, framel, irdyl, trdy,
datal, rsell, datao):

master

#(.master_sva(l'b0), .master sva_severity{(1'b0))
u2 (askl1l}, clk, reqg2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master

#(.master_sva(l'b0), .master_ sva_severity(1'b0))
u3d (askI[0], clk, reqg3, gnt3, frame3, irdy3, trdy,
data3, rsel3, datao):;

arbiter .

#(.arb_sva(l'b0), .arb_sva_severity(1'b0))

u4 (clk, reset, frame, irdy, reql, reqg2, req3,
gntl, gnt2, gnt3);

glue

#(.glue sva(l'b0), .glue_sva severity(1’'b0))

us (clk, framel, irdyl, frame2, irdy2, frame3,
irdy3, trdy, rsell, rsel2, rsell3, datal, dataZ2,
data3, sel, data, dataoutl, dataout2, datao):

target
#(.target_sva(l'b0), .target_sva_severity(1'b0))
ué (clk, reset, selll]l, txdyI[l]l, data, dataoutl):

target
#(.target sva(l'b0}, .target_sva_severity(1'b0))
u7 (clk, reset, sell0], txrdyl[0], data, dataout2);



2. SVA SIMULATION METHODOLOGY 119
endmodule

Note that when each design block is instantiated, the parameter values
are passed. The first parameter “* sva” is set to 0 in all the individual
instantiations, which indicates that the block level assertions will not be
included. Now, the system level simulations can be run only with the system
level checks.

Let us assume that there are failures on “Ss_chk6” during the system
level simulation. This check looks for interface failures between the masters
and the arbiter module. To debug the errors, the simulation can be re-run by
including the block level checks relevant to the masters and the arbiter. The
top modules configuration for such a run is shown below:

Module top(..,.., )
// port declarations

master

#(.master sva(l'bl), .master sva_severity(1'b0))
ul (askl[2], clk, reqgl, gntl, framel, irdyl, trdy,
datal, rsell, datao):;

master

#(.master sva(l'bl), .master sva_severity(1'b0))
u2 (askl[1l]l, clk, reg2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master

#(.master sva(l'bl), .master sva_ severity(1'b0))
u3d (ask[0], clk, reqs, gnt3,nframe3, irdy3, trdy,
data3, rsel3, datao);

arbiter

#(.arb_sva(l'bl), .arb_sva_severity(1'b0))

ud (clk, reset, frame, irdy, reql, req2, reg3,
gntl, gnt2, gnt3);

glue

#(.glue sva(1l'b0), .glue sva_severity(1’'b0))

us (clk, framel, irdyl, frame2, irdy2, £frame3,
irdy3, trdy, rsell, rsel2, rsel3, datal, data2z,
data3, sel, data, dataoutl, dataout2, datao);
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target
#(.target_sva(l'b0), .target sva_severity(1'b0)})
u6 (clk, reset, selll]l, trdyl[l]l, data, dataoutl);

target
#(.target sva(l'b0), .target_sva_severity (1'b0))
u7 (clk, reset, sell0], trdyl0], data, dataout2);

endmodule

Note that the parameter “master_sva” and “arb_sva” are set to 1 in this
configuration. In the basic design blocks, SVA checks could also be
included conditionally using the “’ifdef - "endif” construct. By conditionally
compiling the SVA code, the user can either have the checks on all instances
of the module or on none of the instances of the module. The disadvantage
with this methodology is that, it is a global control mechanism. By using
parameters, this disadvantage can be overcome and the user gets more
flexibility in choosing the block level checks needed for a particular
simulation run.

2.4  Functional coverage

The system level checks written so far look for specific protocol
violations, if any. By making sure that these checks executed at least once in
the simulation, the confidence level on the functionality of the system
increases tremendously. The other aspect of functional coverage is covering
all possible scenarios of system functionality during simulation from the
testbench perspective. The scenarios to be covered during a simulation
should be part of the test plan.

The SVA checks written for dynamic simulation are only as good as the
input stimulus. If the input vectors do not force the system to execute certain
scenarios, then those remain untested. A lot of testbenches use random
techniques to generate input stimulus vectors. A very common approach is to
run a pre-determined number of transactions and measure coverage on
certain scenarios. By constraining the random generation of input stimulus,
the scenarios can be covered more efficiently. The key is to get the
maximum functional coverage in a minimum number of cycles. The
coverage information collected from SVA can be used effectively to create
reactive verification environments.
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241 Coverage plan for the sample system

The sample system discussed in this chapter has a lot of key functionality
that should be covered as part of the functional verification.

24.1.1 Request Scenario
“All possible request scenarios should be covered”

There are three masters that can ask for access at any given time. This
means that there are 7 possible combinations of the master “req” signals as
shown in Table 2-1.

Table 2-1. Master request scenarios

Reql Req2 Req3
0 1 1
1 0 1
1 1 0
0 0 1
1 0 0
0 1 0
0 0 0

A 0 in the table indicates that the master is requesting for the bus. The
testbench should create all these possible input combinations during
simulation.

The following code example shows how functional coverage data can be
used to control the simulation environment. Property definitions for all 7
possible request combinations should be created as follows.

property p_reql; // master 1 requesting
@(posedge clk) $fell (reql) && reqg2 && req3;
endproperty

property p_req2; // master 2 requesting
@(posedge clk) $fell (reqg2) && reql && req3;
endproperty

property p_req3; // master 3 requesting
@(posedge clk) $fell (reg3) && reql && reg2;
endproperty
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property p _reql2; // master 1&2 requesting
@ (posedge clk)
$fell (reqgl) && $fell(reqgl)&& reqg3;
endproperty

property p_req23; // master 2&3 rtequesting
@ (posedge clk)
$fell (req2) && $fell(req3) && reqgl;
endproperty

property p req3l; // master 1&3 requesting
@ (posedge clk)
$fell (reg3) && $fell(reql) && reqg2;
endproperty

property p_reql23; // master 1&2&3 requesting
@ (posedge clk)
$fell (reql) && $fell(reg2) && $fell(req3);
endproperty

Each property should have a cover statement associated with it as shown
below. The action block of the cover statement can be used to update register
flags. In this case, every time the property is covered, a local register count
is incremented. In the same clock, we check if the counter has reached a
value of 3. If so, then the flag associated to that property is asserted. In other
words, it is expected that each request combination occurs three times during
simulation and if and when it happens, a flag associated with that specific
request combination will be asserted.

c_reql: cover property(p_reql)
begin
cregl++;
if (creql == 3) creqgl flag
end

it
=
o
=
~

c_reqg2: cover property(p_reqg2)
begin
creq2++;
if (creg2 == 3) creqg2 flag
end

1'bl;

c_req3: cover property(p_reg3)
begin
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creqg3++;

if (creq3 == 3) creq3 flag = 1'bl;
end

c_reqgl2: cover property(p_reql2)

begin

creqgl2++;

if (creql2 == 3) creql2_flag = 1'bl;
end

¢_req23: cover property(p req23)
begin
creq23++;
if (cxeq23 == 3) creq23_flag = 1'bl;
end

c_reqg3l: cover property(p _req3l)

begin
creq3l++;
if (creq3l == 3) creq3l flag = 1'bl;
end
c_reql23: cover property(p reqgl23)
begin
creqgl23++;
if (creql23 == 3) creql23 flag = 1'bl;
end

This coverage information can be used effectively to control the
simulation environment. In a random testbench for the sample system, a pre-
determined number of transactions could be performed one after the other.
The simulation will finish when all transactions are completed. The
following code shows how the functional coverage information can be used
to terminate the simulation.

always@ (posedge clk)
begin

if(creql flag && creg2 flag && creg3 _flag &&
creql2_flag && creq23_flag && creqg3l flag &&
creql23_flag)

begin
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$display ("FC: All possible request scenarios
covered 3 times each\n");

Sfinish();

end
end

With this piece of code, there are two ways to terminate a simulation:

1. Run the pre-determined number of transactions randomly and exit.
2. Exit if all possible request scenarios are covered three times each.

Whichever occurs first will terminate the simulation.
24.1.2  Master to Target transactions

“Every master device should perform both a read and a write
transaction with every target device”

There are 3 master devices and 2 target devices in the system. This

creates 12 possible scenarios as shown in Table 2-2. Property definitions for
all 12 possible transaction combinations should be created as follows.

Table 2-2. Master to target transactions

Master Target Transaction
M1 T1 Read
Ml Tl Write
Mi TO Read
Mi TO Write
M2 T1 Read
M2 T1 Write
M2 TO Read
M2 TO Write
M3 T1 Read
M3 Tl Write
M3 TO Read
M3 TO Write

property p mltlr;

// masterl reading from target 1
@(posedge clk)
$fell (framel && irdyl) |->
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##3 ($fell (trdyl[1ll)) ##3 tdatal8];
endproperty

property p mltlw;
// master 1 writing to target 1
@ (posedge clk)
$fell (framel && irdyl) |->
##3 ($fell (trdyli]l)) ##3 datal8l;
endproperty

property p mltOr;
// master 1 reading from target 0
@(posedge clk)
$fell (framel && irdyl) |-»>
##3 ($fell (trdyl[0])) ##3 !datal8];
endproperty

property p_mltOw;
// master 1 writing to target 0
@(posedge clk)
$fell (framel && irdyl) |->
##3 ($fell(trdyl[0])) ##3 datals];
endproperty

property p m2tlr;
// master 2 reading from target 1
@ (posedge clk)
$fell (frame2 && irdy2) |->
##3 ($fell(trdyll]l)) ##3 !datal8];
endproperty

property p m2tlw;
// master 2 writing to target 1
@ (posedge clk)
$fell (frame2 && irdy2) |-»>
##3 ($fell (trdyl[11)) ##3 datal8l;
endproperty

property p m2t0xr;
// master 2 reading from target 0
@ (posedge clk)
$fell (frame2 && irdy2) |-»>
##3 ($felltrdy[0])) ##3 1datal8];
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endproperty

property p m2tOw;
// master 2 writing to target 0
@ (posedge clk)
$fell (frame2 && irdy2) |->
##3 ($fell (trdyl[0l)) ##3 datal8l;
endproperty

property p m3tlr;
// master 3 reading from target 1
@(posedge clk)
$fell (frame3 && irdy3) |-»>
##3 ($fell (trdyl[1])) ##3 !datal8];
endproperty

property p m3tlw;
// master 3 writing to target 1
@(posedge clk)
$fell (frame3 && irdy3) |->
##3 ($fell (trdyl1l)) ##3 datalsl;
endproperty

property p m3t0r;
// master 3 reading from target 0
@(posedge clk)
$fell (frame3 && irdy3) |->
##3 ($fell (trdyl[0l)) ##3 !datal8];
endproperty

property p m3tOw;
// master 3 writing to target 0
@(posedge clk)
$fell (frame3 && irdy3) |-»>
##3 ($fell (trdyl[0])) ##3 datals8l:
endproperty

Each property should have a cover statement associated with it as shown
below. The same technique used in Section 2.4.1.1 is used to keep count of
the number of occurrences of the scenario.

¢ mltlr: cover property(p mltlr)
begin
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ml tl r++;
if(ml_tl r == 3) ml_tl r flag = 1'bl;
end

c_mltlw: cover property(p mltlw)
begin
ml_tl we+;
if(ml_tl w == 3) ml _tl w flag = 1'bl;
end

c_mltOr: cover property(p _mltOr)
begin
ml _t0_r++;
if(ml_t0_r == 3) ml_t0_r flag = 1'bl;
end

c_mltOw: cover property(p _mitOw)
begin
ml t0_w++;
if(ml_t0_w == 3) ml_t0 _w_flag = 1'bl;
end

c_m2tlr: cover property(p m2tlr)
begin
m2_tl r++;
if(m2_tl r == 3) m2_tl_r_ flag = 1'bl;
end

c_m2tlw: cover property(p _m2tlw)
begin
m2_t1l we+;
if(m2_tl w == 3) m2_tl w _flag = 1'bl;
end

c_m2t0r: cover property(p m2tOr)
begin
m2_t0_r++;
if(m2_t0_ r == 3) m2 t0_r_ flag = 1'bl;
end

¢_m2tOw: cover property(p _m2tOw)
begin
m2 _t0_w++;
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if(m2_t0_w == 3) m2_to0_w_flag
end

1'bl;

c_m3tlr: cover property(p m3tlr)
begin
m3_tl Tr++;
if(m3_tl r == 3) m3_tl_r flag
end

1'bl;

c_m3tlw: cover property(p_m3tlw)
begin
m3_tl w++;
if(m3_tl_w == 3) m3_tl_w flag
end

1'bl;

¢_m3t0r: cover property(p m3tOr)
begin
m3_t0_xr++;
if(m3_t0 r == 3) m3_t0_r_ flag
end

1'bl;

c_m3tOw: cover property(p m3tOw)
begin
m3_t0_w++;
if(m3_t0_w == 3) m3_t0_w_£flag
end

1'bl;

This coverage information from both Sections 2.4.1.1 and 2.4.1.2 can be
used effectively to control the simulation environment. With the piece of
code shown below, there are two ways to terminate a simulation:

1. Run a pre-determined number of transactions randomly and exit.
If all possible request scenarios are covered three times and if all
possible “master to target” transactions are covered three times, then
exit the simulation.

Whichever occurs first will terminate the simulation.

always@(posedge clk)
begin

if(creql flag && creq2 flag && creq3_flag &&
creql2 flag && creq23_flag && creq3l_flag &&
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creql23_flag && ml_tl r flag && ml tl w flag &&
ml _t0_r flag && ml_t0 _w flag && m2 _tl r flag &&
m2_tl w flag && m2_tO0_r flag && m2_tO0_w_flag &&
m3_tl r flag && m3_tl w flag && m3_t0 r flag &&
m3_t0_w_flag)

begin

$display ("FC: All possible request scenarios
covered 3 times\n");

$display ("FC: All possible transactions covered
3 times\n");

$finish();

end
end

2.4.1.3  Advanced coverage options

There is another data point that can be used to measure the functional
coverage of the system.

“Every target memory location should be written to and read from at
least once by each master”

This information requires exhaustive testing. Every address space in the
target device should be monitored for usage by each master device. SVA is
not always the choice for performing functional coverage. Functional
coverage that involves exhaustive test plan coverage points can be done
more efficiently with a testbench language that supports object oriented
programming constructs. Such exhaustive functional coverage points
should be used while running long regression runs.

24.2 Functional coverage summary

Functional coverage measurement guarantees testing of all required
scenarios. The measure can be used effectively for controlling simulation
environments. One method is to terminate simulation upon achieving the
functional coverage goals. In the sample system, the following results were
observed:
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¢ Default number of random transactions set in the testbench was
500.

e Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 took 46 transactions.

e Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 and the “master to target” transactions shown
in Section 2.4.1.2 took 63 transactions.

The functional coverage data obtained can also be used to re-direct the
testbench dynamically. In random testbenches, constraints are used to
contro! the type of transactions generated. These constraints are assigned
certain weights for the random distribution in the beginning of a simulation.
Based on the functional coverage information obtained during the
simulation, these weights can be adjusted dynamically to achieve the
functional coverage goal quickly.

2.5 SVA for transaction log creation

SVA can be used to create excellent log files. The SVA checkers snoop
for any design property violation during simulation. The same checkers can
be called monitors if they log the information that they are snooping. In a
complex system, it really helps to create a chronological log of the
transactions. In our sample system, creating a log of all the read and write
transactions, between whom these happened and at what time will be a great
debugging asset.

SVA has the option to use a lot of the Verilog like capabilities within the
scope of the checker. The action block of each checker or cover staternent
can be used efficiently to create log files. While displaying information upon
the success of an assert or a cover statement is one way to create log files,
another way is to call a task or a function. The calling of a task or a function
expands the capabilities of the SVA checker. Apart from displaying
information within the task, data checking can also be done effectively. The
following code shows how a chronological transaction log is created for the
sample system.

// open a file to document transactions
integer h mt;

initial

begin



2. SVA SIMULATION METHODOLOGY 131

h mt = $fopen("mt.dat");
end

// calling task for documentation
“ifdef slv_doc

c_mltlw doc:

cover property(p_mltlw) master xaction(l,1);
¢_mltlr doc:

cover property(p_mitlr) master xaction(l,1);
c¢_mlt2w_doc:

cover property(p_mltOw) master xaction(l,0);
c_mlt2r doc: )

cover property(p_mltOr) master xaction{(l,0);
c_m2tlw_doc:

cover property(p_m2tlw) master xaction(2,1);
c_m2tlr_doc:

cover property(p_m2tlr) master xaction(2,1);
c_m2t2w_doc:

cover property(p_m2t0Ow) master xaction(2,0);
c_m2t2r_ doc:

cover property(p_m2tOr) master xaction(2,0);
c_m3tlw doc:

cover property(p_m3tlw) master xaction(3,1);
c_m3tlr doc:

cover property(p_m3tlr) master_ xaction(3,1);
¢_m3t2w_doc: .

cover property(p_m3tOw) master xaction(3,0);
c_m3t2r doc:

cover property(p_m3tOr) master_xaction(3,0);

“endif

task master xaction(
input int m_identity, input int t_identity):

integer 1i;
begin

if (datal8l)
begin
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for(i=0; i<8; i++)
begin

$fwrite(h_mt, "WRITE:

Master %0d writing to Target %04 = %0d at
$0t\n”,m_identity, t_identity, datal7:0],
Stime) ;

@(posedge clk);
end
end

if (ldatal[8])

begin

@(posedge clk);

for(i=0; i<8; i++)

begin

$fwrite (h_mt, "READ:

Master %0d reading from Target %0d = %0d at
$0t\n”, m_identity, t_ identity, datao, $time);

@(posedge clk);
end
end

end
endtask

The properties defined for functional coverage in Section 2.4.1.2 are
reused for creating transaction logs. If the cover statement succeeds, a task
called “master_xaction” is called. The task expects two input arguments, one
identifying the master and the other identifying the target device. By sending
these arguments, a generic task can be written to log the transactions
accurately.

The transactions are logged into a separate file called “mt.dat.” A $fopen
statement is used to open this file at the beginning of the simulation. Once
the task is called, the task executes either the read block of the code or the
write block of the code. Since our sample system does burst read or write in
sets of 8 bytes, a “for” loop is used within the task. The loop goes around
eight times and each time the relevant read or write data is logged into the
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file “mt.dat” using a $fwrite statement. A part of the log created for the
sample system using this code is shown below.

WRITE: Master 1 writing to Target 1 = 72 at 775
WRITE: Master 1 writing to Target 1 = 77 at 825
WRITE: Master 1 writing to Target 1 = 95 at 875
WRITE: Master 1 writing to Target 1 = 37 at 925
WRITE: Master 1 writing to Target 1 = 216 at 975
WRITE: Master 1 writing to Target 1 = 184 at 1025
WRITE: Master 1 writing to Target 1 = 198 at 1075
WRITE: Master 1 writing to Target 1 = 182 at 1125
READ: Master 3 reading from Target 1 = 72 at 1725
READ: Master 3 reading from Target 1 = 77 at 1775
READ: Master 3 reading from Target 1 = 95 at 1825

READ: Master 3 reading from Target 1 = 37 at 1875
READ:Master reading from Target 216 at 1925
READ:Master reading from Target 184 at 1975
READ:Master reading from Target = 198 at 2025
READ:Master reading from Target = 182 at 2075

Wwww
N
1

The transaction logs can be made a lot more fancy and debug friendly
depending on the user’s application. Note that this code is included within
the "ifdef - "endif block. This kind of a detailed transaction log might not be
needed during long regressions and hence should have the provision to be
included conditionally.

2.6 SVA for FPGA Prototyping

A variety of advanced verification methodologies exist today that can
help find bugs quickly. Constrained random testbenches and assertions are
an important piece in these methodologies. It is very common to write
thousands of tests to make sure that all possible functionality has been tested
correctly. While most of the bugs are found in the RTL verification, it is still
very common to find functional bugs during the verification of implemented
gates. Simulating gates has always been a performance bottleneck and will
always be. Running all the tests developed during RTL verification on gates
is not very practical. Gate level simulation is extremely slow and more and
more verification teams are depending on other verification methodologies
such as formal verification, FPGA prototyping, etc. as shown in Figure 2-14,
By running the verification on the actual silicon, the verification process can
be accelerated significantly. This allows running the regression suites
developed for RTL exhaustively on actual silicon.
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Regression Suite Regression Suite
F 3 A
SOC (RTL, Gates) SOC (FPGA Prototype)
A B

Figure 2-14. FPGA Prototyping

One major challenge in running tests on actual silicon prototype is
debugging. SVA can help in this area significantly. By synthesizing the
checkers along with the design, the debug process can be made a little easier.
The checkers are written against the functional specification and having
them monitor the design in real silicon adds great value. The design needs to
be altered slightly to accommodate these assertions. If an assertion fails, it
has to be notified to the external world using an output port. The output ports
can be updated with the results, using the action block of the assertions. In
most real-time testing, breakpoints can be set on these output ports and upon
a failure on one of these debug ports, the verification can be stopped for
further analysis. The master device used in the sample system is shown in
Figure 2-2. This contains only the default ports relevant to the design. The
sample Verilog code for the master device is shown below.

module master (ask_for it, clk, req, gnt, frame,
irdy, trdy, data_c, r_sel, data_o);

input clk, gnt, ask_for it;
input [1:0] trdy:
output req, frame, irdy, r sel;
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output [8:0] data_c;
input [7:0] data_o;

parameter master_sva = 1'bl;
parameter master_ sva_severity = 1'bl;

// functional description of master
// Block level SVA checks

endmodule
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The block level assertions should be made part of the design to help in
FPGA prototyping. Each block level assertion should be associated with a
debug output port. The debug output port should be asserted if the assertion

fails. The following code description shows how this can be achieved.

module master (ask_for_it, clk, req, gnt, frame,
irdy, trdy, data_c, r_sel, data_o,

a_master_startl_ flag, a_master_start2 flag,
a_master_stopl_flag, a_master_stop2_ flag,
a_master datal_flag, a master_data2 flag,
a_master dataol_flag, a_master datao2_flag);

input clk, gnt, ask_for it;
input [1:0] trdy;

output req, frame, irdy, r sel;
output [8:0] data_c;

input [7:0] data_o;

// debug pins for FPGA prototyping
output a_master_startl flag;
output a_master start2 flag:
output a master_stopl flag;

output a_master_ stop2 flag;

output a master_datal flag;

output a_master_data2_ flag;

output a master dataol flag;
output a_master_datao2_flag:;

parameter master_sva = 1'bl;
parameter master_sva_severity = 1'bl;



136 Chapter 2

// functional description of master
// Block level checks for prototype debugging
“ifdef master_ debug

d_a _master startl:
assert property(p master_ startl)
else
a_master_startl flag = 1'bl;
d_a master_start2:
assert property(p master_ start2)
else
a_master_ start2 flag = 1'bl;
d_a_master_stopl:
assert property(p master_stopl)
else
a_master stopl flag = 1'bl;
d _a master stop2:
assert property(p_master_stop2)
else
a_master_ stop2_ flag = 1'bl;
d_a master_ datal:
assert property(p master_ datal)
else
a_master_datal_flag = 1'bl;
d_a_master_data2:
assert property(p_master_data2)
else
a_master data2 flag = 1'bl;
d_a_master_dataol:
assert property(p master dataol)
else
a_master dataol flag = 1'bl;
d_a_master datao2:
assert property(p master_datao2)
else
a_master_datao2_flag = 1'bl;

“endif

endmodule
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Note that the respective output port flags will be asserted upon a failure.
Since these assertions are concurrent, they will look for a valid start on every
clock edge. If the silicon testing mechanism does not provide a way to set
breakpoints on an assertion failure, then it is required that the failure be
latched. Otherwise, the failure notification can be lost if the assertion
succeeds in future clock cycles.

2.7 Summary on SVA simulation methodologies

e The addition of SVA to testbench environment makes dynamic
simulation more productive.

e The designers are very familiar with the internal functionality of
the design and hence, they should in-line SVA checkers in their
respective design blocks.

e The verification engineer, who integrates and verifies the system,
should add system level assertions that thoroughly verify the
interface protocol.

e The verification engineer should be able to control/configure the
block level assertions from his verification environment (He
should be able to turn the assertions on and off on a need basis).

¢ Functional coverage metrics can be collected with little effort
using SVA. This information should be used effectively to create
reactive testbenches.

o SVA can be used to create informative log files since they are
monitoring the design protocols throughout the simulation.

e By writing SVA checkers that follow synthesis coding
guidelines, they can be made part of the net-list and used to
debug prototyping/emulation failures.
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