
Chapter 2

TRANSACTION LEVEL MODELING
An Abstraction Beyond RTL

Laurent Maillet-Contoz and Frank Ghenassia
STMicroelectronics, France

Abstract: Transaction level modeling (TLM) is put forward as a promising solution

above Register Transfer Level (RTL) in the SoC design flow. This chapter

formalizes TLM abstractions to offer untimed and timed models to tackle SoC

design activities ranging from early software development to architecture

analysis and functional verification. The most rewarding benefit of TLM is the

veritable hardware/software co-design founded on a unique reference,

culminating in reduced time-to-market and comprehensive cross-team design

methodology.

Key words: transaction; untimed model; timed model; initiator; target; channel; port;

concurrent processes; timing accuracy; data granularity; model of

computation; system synchronization; functional delay; annotated model;

standalone timed model.

1. THE REVOLUTION

1.1 Call for Raising Abstraction Level

Squeezed by the ever-increasing SoC design complexity, cost, and time-

to-market stress, the much-perturbed SoC industry is longing for a solution.

The key to this solution is to improve the design productivity through a more

reliable design methodology within a shorter design time-frame.

Forwarding critical software development earlier in the SoC design flow

is unquestionably helpful to reduce the design cycle time. Such advance

implies indeed a hardware/software co-design wherein the software is

developed in parallel with the hardware for earlier system integration.

To cope with the rising SoC complexity, a much more rigorous

methodology is sought after to assure the reliability of SoC performance at

23
F. Ghenassia (ed.), Transaction Level Modeling with SystemC, 23-55.

© 2005 Springer. Printed in the Netherlands.

24 Chapter 4 2

an earlier stage of the design cycle. A favorable approach is the architecture

exploration that analyzes the potential effect of the realistic traffic performed

by a system.

Pulling all these factors together, raising the level of abstraction above

RTL in the overall SoC design and verification flow has appeared to be a

promising solution for the SoC industry.

1.2 Attempts at Raising Abstraction Level

Bear in mind that any attempt made to raise the abstraction level is

always a game of balancing the trade-off between the speed and accuracy of

a potential simulation model. Our development effort has of course

witnessed this game from tip to toe. Before tackling the subject of

abstraction level, it is worth considering what the two extreme ends of the

SoC design flow could offer.

First, consider the algorithmic model at the highest end of the flow. A

complex design usually begins with the development of such a functional

model. As an example, a digital signal processing oriented design will have a

dataflow simulation engine as its algorithmic model. Since it only captures

the algorithm regardless of the implementation details, an algorithmic model

has a huge advantage in its high simulation speed. In spite of this, an

algorithmic model has no notion of hardware or software component; it

models neither registers nor system synchronizations related to SoC

architecture. This model therefore cannot fulfill the need of executing the

embedded software.

On the other end of the design flow, a pure logic simulation can take

place at the register transfer level (RTL). In a conventional SoC logic

simulation, RTL models written in hardware description language (HDL)

such as VHDL and Verilog are employed as the system hardware. If a

processor model is necessary, a design sign-off model (DSM) will typically

be used. The advantage of the logic simulation is evidently its great fidelity

to the real implementation, i.e. accurate SoC functional and performance

analysis. This is nonetheless a price too expensive to pay in terms of the

lengthy simulation time. The time consumption has actually further

worsened lately due to the high SoC complexity that requires a longer RTL

development phase. Moreover, a pure logic simulation cannot execute any

software in a reasonable amount of time. A system can only integrate its

associated software for observation and analysis rather late in the design

flow. Since the breadboard is usually almost ready at this point, any system

modification will certainly be too costly at this stage.

Transaction Level Modeling 25

In brief, an in-between solution has to be resolved for which three

fundamental criteria must always be respected as the doorway to early

software development and architecture exploration:

1. Speed. The potential model must simulate millions of cycles within a

reasonable time length. The target activities frequently involve a very

large scale of simulation cycles. Some of them may entail user

interactions that could probably slow down the process. It is unacceptable

and unaffordable to wait for even just a day to complete a simulation run.

2. Accuracy. Although speed is an interesting advantage to enhance, the

potential model should sustain a certain degree of accuracy to deliver

reliable simulation results. Some of the analyses may require full-cycle

accuracy to obtain adequate outcomes. As a rule of thumb, the potential

model should at least be detailed enough to run the related embedded

software.

3. Lightweight Modeling. Any other modeling effort in addition to the

compulsory RTL modeling for hardware synthesis must be kept

insubstantial to optimize the overall SoC project cost. The potential

model should be, for this reason, a quick-to-develop model at a

considerably low effort.

Collected here are some attempts to raising the abstraction level. Brief

descriptions are provided for these attempts, including hardware/software

co-verification, cycle-accurate model, and temporal model.

• Hardware/Software Co-Verification

The concept of hardware/software co-verification is suggested for

reducing the critical SoC design time and cost to overcome the limitation of

pure logic simulations. The underlying idea of this concept aims at leading

hardware/software integration, verification, and debugging to an early phase

of the design cycle before the real hardware is available.

RTL models remain the hardware models in a co-verification platform.

An obvious difference from pure logic simulation is that co-verification uses

a faster processor model, i.e. Instruction Set Simulator (ISS). This is an

instruction-accurate model developed in C language at a higher level of

abstraction.

The co-existence of hardware and software during the SoC verification

process is the essence of co-verification. While the hardware platform is

connected to a logic simulator, a symbolic debugger links the associated

software program to the ISS for its execution on the platform. Such co-

operation offers a simultaneous controllability and visibility over both

hardware and software to analyze the system behavior or performance. The

simulation speed is of orders of magnitude higher than the one of logic

26 Chapter 6 2

simulation. Since the breadboard is not manufactured yet, any modification

of the system hardware or software at this stage will be both time and cost-

efficient.

Despite the numerous benefits yielded by the co-verification, it is still too

long to wait for the development of RTL hardware models before the co-

verification can be conducted. The time pressure has pushed us to tackle

another approach: cycle-accurate model.

• Cycle-Accurate Model

This attempt tries to replace the non-processor hardware parts by a model

residing at higher level of abstraction. The prospective model could be

developed using high-level programming languages such as C. Compared to

RTL models, this model is less precise. It is sensitive to whatever happens at

the interval of each clock cycle, which is more than enough for software

verification but not providing any synthesizable description.

With the emerging C-based dialects that support hardware concepts, it

seems convincing that cycle-accurate models developed in a C-based

environment could meet the three criteria mentioned earlier for raising the

abstraction level. However, this hypothesis has stumbled upon a few

obstacles [1-4]:

a) Most of the information captured by cycle-accurate models is

unavailable in IP documentation but only in the designer’s very mind

and the RTL source code itself! Consequently, RTL designers have to

invest much time to keep modeling engineers informed; otherwise

modeling engineers must reverse-engineer the related RTL code.

Either way ends up being a tedious and time-consuming process

without actually solving the issue.

b) Cycle-accurate models can simulate merely an order of magnitude

faster than the equivalent RTL models, which is really just too close

to the speed of VHDL/Verilog models.

Not only is simulation speed too slow to run a significant amount of

embedded software in a given time-frame, the development cost is also too

dear to compensate for the negligible benefits of cycle-accurate models. In

addition, architects and software engineers do not require cycle-accuracy for

all of their activities; for instance, the software development may not involve

any cycle-accuracy until engineers work on the optimization.

• Temporal Model

Instead of balancing speed and accuracy, the temporal model is attempted

as quite a different approach to raise the abstraction level. This model is

mainly opted for the performance analysis of a system. While timing

analysis is the focus of temporal models, analytical accuracy is forgone.

Transaction Level Modeling 27

Some efforts were given in the development of the temporal model. The

resulted model provided extremely high simulation speed but with little or

virtually no functional accuracy guaranteed. The temporal model is thus far

from being the ideal solution to our need of raising the abstraction level.

1.3 Birth of Transaction Level Modeling

Through our different attempts for raising the abstraction level, we have

concluded that the most compelling resolution is to adopt the famous “divide

and conquer” approach. This approach counts on two complementary

environments as the best bid to balance the trade-off between simulation

speed and accuracy, i.e. transaction level modeling (TLM) platform and

register transfer level (RTL) platform.

• SoC TLM Platform

TLM platform is intended for early SoC exploration in the design flow at

a relatively lightweight development effort. It is a transaction-based

abstraction level residing between the bit-true cycle-accurate model and

the untimed algorithmic model. Our development work has demonstrated

that SoC TLM platform makes an excellent complement to RTL platform

as an adequate trade-off between simulation speed and accuracy. On top

of the untimed functional TLM, it is also possible to add timing

annotations to TLM platforms for early performance analysis without

paying the cost of cycle accurate models.

• SoC RTL Platform

RTL platform aims for fine-grain SoC simulations at the expense of

slower simulation speed and later availability. It applies cycle-accurate

HDL models for a detailed timing analysis.

The idea of “divide and conquer” proves itself an extremely efficient

modeling strategy. With the high modeling and simulation speed offered by

TLM platforms, potential users could quickly accomplish a systematic

analysis for a given SoC as the first approach. A comprehensive timing

analysis based on RTL platforms will follow afterward to provide results

that are more accurate. Hence, this complementary characteristic enables a

system-under-design to go through rapid methodical study as well as in-

depth exploration. Figure 2-1 gives the efficiency levels of the different

modeling strategies, including RTL, cycle-accurate model (CA), and TLM.

It shows clearly how TLM helps the concept of “divide and conquer”

become a success through its high modeling and simulation speed.

28 Chapter 8 2

Figure 2-1. Efficiency of Modeling Strategies

A question wondering in your mind now could probably be “Why would

TLM be so interesting compared to other rival propositions?” The answer is

that we have successfully identified the appropriate level of abstraction,

TLM, which has a description usable for embedded software development MM

and early architecture analysis thanks to its adequate trade-off between

simulation speed and accuracy.

Most of the propositions available in the field use proprietary C-based

languages such as SpecC, Hpascal or HardwareC to implement cycle

accurate models. High-level models, on the other hand, are either expensive

solutions sold by CAD vendors or limited versions reserved for academic

applications. Although these high-level models give temporal view of a

system, they are not precise enough to develop any embedded software.

Before considering the advantages that TLM has to offer, its very distinct

point from other propositions is the use of SystemC -an open-source

programming language- that suggests a free of charge development

environment for a tangible solution.

SystemC provides a foundation to model hardware and software of a

system based on a single language. It is an object-oriented approach built on

top of C++ as a set of classes. A system conceived by SystemC demonstrates

particular characteristics in concurrency, reactivity, distributiveness, timing,

and data types. Further details of TLM modeling techniques using System C

will be discussed in Chapter 3.

The remainder of this chapter presents a zoom-in discussion on TLM

ranging from its principles to its battle against the SoC design bottlenecks.

Transaction Level Modeling 29

2. PRINCIPLES OF TLM

2.1 Terminology

TLM offers a new SoC design methodology at a higher abstraction level

above RTL, i.e. a transaction-level modeling technique intended for digital

electronic systems.

In a digital electronic system, every single component is composed of a

finite set of states and a series of concurrent behavior. TLM models each of

these components as a module. The internal states of a component are

represented by a set of variables defined within the scope of the

corresponding TLM module, whereas the different behavior pieces of the

component are modeled by a collection of concurrent processes or threads,

which can be executed in parallel.

Just like the components of a SoC, TLM modules are gathered to form a

TLM system. Through a specific TLM communication structure, namely

channel or l interconnect, communications are established between modules.

Depending on the accuracy level required by the corresponding simulation, a

channel could be a simple router, an abstract bus model, a network-on-chip

model, or some other structures. This is essentially the very part that

separates communication from computation in TLM modeling.

Modules and channels are bound to each other by means of

communication ports. Once they are bound together, data can be exchanged

between them to perform the expected system behavior. Potentially, data can

also be communicated between modules and test-benches.

The term transaction denotes the set of data being exchanged. A master

or initiator is a module that initiates transactions in a system, while ar slave

or target is a module that receives and serves transactional requests. Anyt

consecutive transactions may have various sizes of data transfer. This

variable size corresponds to the amount of data being exchanged between

two occurrences of system synchronization.

System synchronization is an explicit action between at least two

modules (potentially test-benches) that need to coordinate or manage some

behavior distributed over them. Such co-operation of different modules is

vital to assure the predictable system behavior.

30 Chapter 0 2

Since it is the only mechanism available for synchronizing the different

processes in a system, the explicit system synchronization is compulsory to

ensure a proper deterministic SoC TLM behavior. An example of system

synchronization is the interrupt raised by a direct memory access (DMA) to

notify a transfer completion within a system.

2.2 Modeling Approach

The terms of TLM defined in the last section can be attained through an

appropriate electronic system level (ESL) modeling approach. The right

candidate to do this job is a high-level programming language that is capable

of developing not only a plain software program, but also of modeling

electronic hardware at the conceptual level without describing the real

implementation. The potential candidates include SystemC, SpecC, Hpascal,

System Verilog, HardwareC, and the like. In our opinion, SystemC is the

best candidate and we therefore rely on it for all of our TLM models.

As discussed earlier, a SoC component is modeled as a module in TLM.

The primary modeling effort lies in the internal computation of the given

hardware block at the functional or behavioral level. The input and output of

the block as well as its synchronization are to be modeled. None of the

micro-architectural implementation details should be included, i.e. neither

internal pipelines nor structures are modeled. To sum up, TLM modules

representing SoC hardware blocks or IPs must hold the three characteristics

stated below:

1. bit-true behavior of the component;

2. register-accurate interface of the component ;

3. system synchronizations managed by the component.

A complete SoC TLM platform is constructed by instantiating and

binding different modules and channels together. Once the platform is

integrated, SoC simulation is performed by executing the related embedded

software either as native or cross compilation. The earlier is executed on a

simulation workstation for fast simulation speed, while the latter is executed

on the embedded processor architecture, i.e. ISS, for precise simulation

accuracy.

To ensure a proper system functional behavior in TLM SoC simulation,

there are two essential points that deserve attention in the modeling process.

First, all the data transactions must be blocking i.e. the thread that initiates

the transaction will resume its execution only if the current transaction is

completed. Second, all the occurrences of the system synchronization must

be potential re-scheduling points in a simulation environment in order to

Transaction Level Modeling 31

guarantee an accurate simulation of the concurrency. The system

synchronization could be modeled by specific means such as event, signal,

and interrupt; or by data-exchanges such as polling. If any of these potential

system synchronizations causes a call to the simulation kernel, it enables the

scheduler to activate other modules. Hence, the simulated system will

behave correctly in line with its functional concurrency.

The essence of working out an appropriate model at transactional level

lies in the good sense of deciding where and when to implement system

synchronization. If too many synchronized points are inserted, the model

will tend to be too close to cycle-accurate or RTL models that will not help

to gain much simulation speed. Contrarily, if too few synchronized points

are implemented, the model may run the risk of having incorrect system

execution.

Figure 2-2. TLM vs RTL Simulation

Consider the two simulations depicted in Figure 2-2, which are

correspondingly the RTL and TLM simulations for a given system. The

evolution of the system from the first stable system state, S1, to the next

stable system state, S2, is represented by FRTL and FTLM respectively. Indeed,

S1 and S2 are two partial observation points in simulation, i.e. two

synchronization points.

FRTL is a collection of all necessary cycle-accurate computations to bring

S1 to S2. These calculations are implemented by a set of clocked processes

that represent the system micro-architecture. Upon each clock cycle, these

processes are activated in the simulation kernel for execution; and that will

consequently involve countless of context switches.

On the other hand, FTLM is an equivalent function to bring S1 to S2 but

without any clock implementation. Computations are defined by some high-

level programming languages such as C or C++. There is principally

32 Chapter 2 2

sequential execution of programming codes between S1 and S2. Compared

to RTL simulation, it involves much fewer parallel executions of processes.

As a result, there are relatively less context switches involved.

Recall the efficiency levels of different modeling techniques illustrated in

Figure 2-1, the simulation speed-up achieved by TLM is vastly ahead of

RTL up to a factor of 1000. Indeed, this speed-up correlates directly with the

number of processes and context switches activated between two

occurrences of system synchronization by RTL simulation but not by TLM

simulation kernel.

2.3 Modeling Accuracy

The modeling accuracy of a given modeling approach indicates the

precision or correctness of the model in replicating the intended behavior

and activities of a system-under-design. For any modeling strategy in the

SoC design flow, there are two decisive factors to determine the degree of

modeling accuracy:

1. Granularity of Communication Data.

This criterion reflects the fineness or coarseness of the data carried by

the communication structure of a model. The data granularity can

generally be categorized into three levels, i.e. application packet, bus

packet, and bus size, in the order of increasing accurateness. The

transfer of a video IP helps to illustrate the idea of data granularity. If

the IP has a frame-based algorithm, a coarse granularity at application

packet could be modeled as a frame-by-frame transfer. A finer

granularity at bus packet level can be represented by a line- or

column-based transfer, or a macro-block transfer consisting both lines

and columns. The finest grain at bus size level will be the pixel-based

transfer of the video.

2. Timing Accuracy.

Timing accuracy determines the fidelity of a model to the intended

timing behavior. It can be conceptually perceived as a scale of two

extremes, i.e. untimed level and cycle-accurate level. Moving from

the untimed end towards the cycle-accurate end will increase the

timing accuracy of a model. Any level falling in between the two ends

is considered as approximately timed level.

Just as any other modeling strategies in the SoC design flow do, the TLM

approach naturally revolves around the two factors above to decide its

modeling accuracy. Guided by these criteria, we have conceived two

fundamental classes of TLM to date through our development effort:

Transaction Level Modeling 33

• Timed TLM.

The untimed and timed TLM are models tailored for distinct purposes.

The ultimate goal is to create a unique platform that simulates two different

models according to user needs.

The untimed TLM is an architectural model targeted specifically at early

functional software development and functional verification where timing

annotations are not compulsory conditions. The high simulation speed is the

objective of this model. Since the untimed TLM serves primarily

programmers, it is hence given another name as programmer’s view (PV).

On the other hand, the timed TLM is a micro-architectural model

containing essential time annotations for behavioral and communication

specifications. It is relatively a less abstract model located lower in the SoC

design flow. The focus of timed TLM is the simulation accuracy required by

real-time embedded software development and architecture analysis. Hence,

the timed TLM is also known as programmer’s view plus timing (PVT). g

Figure 2-3 gives a glimpse at the modeling accuracy of the untimed and

timed TLM with respect to other conventional models in the SoC design

flow, including register transfer level (RTL), bus cycle accurate (BCA), and

cycle accurate (CA) models.

Figure 2-3. Modeling Accuracy of Various Approaches

• Untimed TLM.

Data Granularity

y

B

U t ed pp o ate y t ed Cyc e accu ate

34 Chapter 4 2

3. UNTIMED TLM

3.1 Introduction

The untimed TLM is a level particularly conceived for serving software

programmers and verification engineers in early functional software

development and functional verification. Timing annotations are

insignificant at this untimed level; thus, none of the information related to

the micro-architecture of the component or IP-under-design should be

included.

For the same reason, any information related to the interconnect topology

and arbitration law will not be captured in the untimed TLM. The internal

states of a component are modeled by using appropriate internal variables.

Certain information, for instance, the register bank or memory content of

a given component, is made available and accessible to the outside world

through a well-defined Application Programming Interface (API). The

communication API is a blocking API that provides a particular interface to

supervise full data transfer.

The granularity of the data transferred should correspond to the modeling

level related to the target application. For example, data transfer of an

image-processing block should be modeled at the frame level, i.e. one frame

being transferred at a time rather than creating transfers of the bus width.

3.2 Model of Computation

The untimed TLM has absolutely no timing information related to the

micro-architecture, i.e. there is no clock in an untimed TLM system. Since it

has no clocked timing regulation, all processes are executed concurrently to

access any of the system resources at the same time instant. Yet, the system

must demonstrate a correct behavior during the parallel execution of

concurrent processes. This implies that untimed TLM systems must respect a

certain degree of process execution order to guarantee a proper system

functional performance.

To fulfill this requirement, the untimed TLM employs a specific model

of computation with the following characteristics:

1. concurrent execution of independent processes;

2. respect for causal dependencies between processes using system

synchronization;

3. bit-true behavior;

4. bit-true communication.

Transaction Level Modeling 35

3.2.1 System Synchronization

A system must clearly characterize the causal relation between its

different processes in order to assure deterministic system behavior. The

explicit system synchronization is therefore implemented within a system to

respect such causal dependencies. The system synchronization only defines a

partial execution order for SoC internal events, i.e. a partial execution order

between the different processes in the whole system. In other words, any

particular execution order among all of the processes is permitted as long as

their causal dependencies are well respected.

To better illustrate this idea, consider three processes in a given system,

P1, P2, and P3, as depicted in Figure 2-4. Assume that each process denotes

a thread for a particular module in the system.

Figure 2-4. System Synchronization between Processes

The full execution order within each of these processes is represented by

their own internal synchronized events:

a) P11 P12 for process P1

b) P21 P22 for process P2

c) P31 P32 for process P3

Bear in mind that this “full” order is only a locally complete order within

each process. It is indeed a “partial” execution order from the point view of

the overall system execution. Besides, there are two occurrences of system

synchronization between P1 and P2, which give additional constraints to the

overall system execution order:

d) P11 P22

e) P22 P12

36 Chapter 6 2

The constraints of execution order stated from (a) to (e) clearly describe

the causal dependencies that must be respected within the system. The three

processes can be executed with any particular order as long as these causal

dependencies are followed. Here are some examples of the different overall

system execution order (which are also known as process interleaves):

f) P21 P11 P22 P12 P31 P32

g) P31 P32 P21 P11 P22 P12

h) P11 P21 P22 P31 P32 P12

The system synchronization is a mechanism to inform others or to get

informed by others about some system state changes when these changes

potentially influence the execution of some other parts of the system. In real

hardware circuits, system synchronizations are modeled by means of

interrupt signals, polling or mailbox. The TLM simulation will implement all

of the system synchronizations as interrupts, mailbox or polling in line with

the model of computation stated earlier. An abstract implementation of the

various synchronization mechanisms, however, could be provided to better

match with the considered level of abstraction.

According to its nature of informing or being informed, there are two

kinds of synchronization. First, “emit-synchronization”. This occurs when a

process sends out a synchronization that may influence the behavior or state

of other processes. Second, “receive-synchronization”. This is a point where

a process waits for an incoming event from the system that may influence its

behavior or state.

Picture this: every synchronization point is a traffic light in a given

system. Each of these “traffic lights” is associated to a certain condition; for

instance, the occurrence of an event or the computation of a particular value.

Once this condition is fulfilled, the green light will be on to allow the system

to proceed to the next execution point. Otherwise, the red light is there to

stop it. All these little “traffic lights” scattered in the system has a big

mission: work hand-in-hand to guarantee a proper predicted system

behavior.

An important employment of the system synchronization is the assurance

of memory or data consistency. Here, the system synchronization prevents

concurrent processes from reading data content at unknown state; it also

prevents them from writing data at temporarily inaccessible memory area.

A direct beneficial impact of the system synchronization is the capability

of executing any legal interleaves of processes without breaking the overall

system synchronization. The system synchronization also serves as an

efficient method to improve the validation of the system simulation model

by allowing more process interleaves to be tested. The model of computation

only requires the causal dependencies to be respected by the simulation.

Thus, it is possible to randomize the process selection as long as the system

Transaction Level Modeling 37

synchronization does not define a full order of process execution. This is

particularly useful in the case where simulation kernels do not provide

random process execution.

All of the system synchronization points in a system must be explicitly

modeled for a correct system behavior. If an untimed TLM system ever

generates any simulation deadlocks or failures, the explanation will be the

system synchronization not being explicitly modeled to the fullest, or simply

badly designed. By slight chances, a system with incomplete

synchronization modeling may appear to function as normal at certain values

of clock frequency. It will however fail to perform at other clock

frequencies. Undoubtedly, such incomplete modeling will adversely

jeopardize a safe chip execution.

3.2.2 Process Execution

The concurrent execution of independent processes is one of the major

characteristics of the untimed TLM. Simulation kernels are usually

implemented in such a way that they offer repeatable process executions to

simplify debug activities. Note that simulation kernels cannot give a

deterministic execution of concurrent processes (even the language reference

manuals cannot guarantee a deterministic execution of concurrent

processes). It means that we cannot predict which process that the simulation

kernel is going to start executing; but once the simulation is executed, the

kernel will repeat the same execution order.

Although the repetitive feature of simulation can facilitate the debugging

procedure, a single system execution order may not provide satisfactory

validation coverage. In our last example of system synchronization, the

overall system execution can start with any of the three processes. If the

simulation only covers a single execution order, we would probably miss

catching the bugs hidden in other execution orders! As an example, imagine

another synchronization that imposes a constraint of executing P21 before

P11. If the repetitive simulation kernel picks the system execution order of

(f) or (g), the simulation will pass without detecting any error. An error,

however, would have occurred in the system performance by following the

execution order of (h) where P21 is not executed before P11.

To tackle this limitation, we must make sure that any execution order will

conform to the system functional specification. An appropriate solution to

increase the coverage of system execution orders will be extending the

standard simulation kernel with a random function that shuffles all of the

legal process interleaves. With such mechanism, it is feasible to verify all of

the possible micro-architectures of a given architecture specification.

38 Chapter 8 2

This definition actually corresponds to the implementation of

asynchronous processes that use synchronization points to ensure a correct

execution of the system. If one expects to cover all of the possible process

interleaves as in the real-life system, it will obviously produce a huge

number of combinations with lots of them being meaningless. Hence, it is

worth-noticed that it is possible to reduce the indeterminism of concurrent

process execution by introducing successive constraints in the untimed

models based on their partial system execution orders.

A typical example is the integration of timing constraints that make sense

at the functional level. The objective is to reduce the number of potential

process interleaves by adding constraints in the selection of the various

processes for the simulation. Here, the timing information is only related to

functional constraints (e.g. a video application imposes to decode 30 frames

per second), but no information on the micro-architecture is incorporated

yet. The result is a decreased indeterminism, which reduces the simulation

variants to be considered for the system validation. This will be further

discussed in Section 4, Timed TLM.MM

3.2.3 Time-Independent Deterministic Behavior

This section explains how the computational model of the untimed TLM

handles the constraints of process execution order without implementing

timing characteristics.

Consider a fixed set of input stimuli for a given SoC. The system

synchronization points implemented among the different processes will

induce a deterministic behavior that is independent of any timing behavior

during the simulation. Each of these processes follows a particular sequence

as described in Table 2-1.

Table 2-1. Untimed Process Sequence

Step Action

1 Activate or resume a process.

2 Read input data for control flow and data processing.

3 Computation.

4 Write output data if there is any of them.

5 Return to step 2 if more computation is required.

6 Synchronization:

(a) if it is “emit-synchronization”, return to step 2;

(b) if it is “receive-synchronization”, the process will be suspended.

Transaction Level Modeling 39

When a process reaches step 6 in the untimed sequence, the component

state will have already been fully defined, and the memory state modified by

the process should be fully defined as well. Only when a process reaches

step 6(b) of “receive-synchronization”, it will be suspended. This is the only

situation where a process needs an update of the system state that might

influence its own behavior. As a result, the simulation kernel could by no

means suspend a process by itself, i.e. the simulation kernel is not pre-

emptive. This will definitely assure predictable process states and process

controls, which are independent of any specific implementation of the

simulation kernel.

Most of the time, a process could include many synchronization points

and that will produce a very complex control flow graph with many possible

activation-synchronization paths. Note that reducing the number of the

descheduling points in a system model to the “receive-synchronization” can

be very beneficial. While assuring a correct simulation of the SoC

architecture, such reduction can greatly minimize the number of context

switches compared to other computational models. Therefore, the kernel

overhead is minimal, leading to the simulation speed close to the one of pure

algorithm.

3.3 Modeling of Interrupts

Literally, interrupts mean disruptions that could result in certain

consequences. For electronic systems, an interrupt is considered as a system

event with side effects such as triggering a delayed management of

processes or updating registers of interrupt-status.

Recall that system synchronization is very often implemented by an

interrupt signal. In the untimed view, an interrupt is however an impulsive

system event without any persistence. It is therefore inappropriate to model

it using a signal. Instead, a dedicated TLM synchronization protocol with the

following features is employed:

a) immediate propagation of interrupts from an initiator to a target;

b) notice of potential IP internal state change, i.e. status register update.

While developing untimed interrupt models, the first-in-first-out (FIFO)

mechanism must not be implemented in the reception structure as it may

cause serialization of concurrent events undesirable at that level. Upon the

generation of an interrupt, the target IP may invoke a consequent effect out

of its own scope. In that case, meticulous care must be taken so that another

process but not the one generating the interrupt will handle the consequent t

effect. This will avoid changes in the system state caused by the process

generating the interrupt in the Remote Procedure Call (RPC) coding style.

40 Chapter 0 2

3.4 Insertion of Functional Delay

At the architectural level, it is still necessary to introduce some functional

timing information, i.e. functional delay, when these delays are part of the

system specification (e.g. a video decoder decodes 30 frames per second).

Sometimes, an untimed TLM IP is inserted with functional delay to

implement implicit synchronization points related to specific timing

information. As an example, a Liquid Crystal Display (LCD) controller with

a screen-refresh frequency of every 1/30-second can be modeled without any

explicit synchronization. It means that the untimed LCD controller can be

created with implicit timings by adding some delay information and wait

statements of specified time length into the model.

From the angle of computational model, such implicit timings bring

additional constraints to the execution order of processes in the simulation,

and thus reduce the set of possible process interleaves. As a result, the

untimed model inserted with functional delay is created as an intermediate

level between the purely untimed TLM and the timed TLM. Model

developers should guarantee a flexible manipulation of this intermediate

model by allowing users to easily enable or disable the annotated delay

information. It must leave users enough room to switch back to a purely

untimed model for validation purposes. Furthermore, this intermediate

model should never cover any functional information related to the micro-

architecture such as FIFO, Finite State Machine (FSM) related to cycle-

accurate behavior, or any other implementation-dependent features.

Figure 2-5 illustrates the typical timelines of a process execution

occurring in the untimed TLM. Two cases are demonstrated:

a) Simulation without functional delays based on a functional

specification that only defines sequences of actions.

b) Simulation with functional delays based on a functional specification

that defines some timing attributes such as UART baud rates.

Adding functional delays to an untimed model does not particularly

influence the model of computation. Processes will still have activation,

emit-synchronization, and receive-synchronization points. The execution

order of various processes will be more constrained because the inserted

functional delays restrict the set of potential process interleaves eligible for

simulation. In other words, there are fewer choices of process interleaves for

the simulation kernel at a given time instant.

Functional delays can suspend a process to induce the simulation kernel

to choose other eligible processes for execution. This cause-and-effect

phenomenon can influence the system state, but should never cause any r

system inconsistency from the perspective of computational model. The

Transaction Level Modeling 41

reason is that the system synchronization must fully and explicitly model ally

causal relations of a system. An error will otherwise arise in the system

synchronization scheme, and that is considered as a serious bug in the SoC

specification.

Figure 2-5. Simulation Timelines of Untimed TLM

Let us look into this statement more carefully through an example.

Consider a system that is modeled by a group of processes denoted from P1

to Pn. Assume that a functional delay is inserted into the codes of P1, and

that induces the simulation kernel to select another process, say P2, for

execution. The system state could potentially be affected by the execution of

P2. If that is the case, the global system state will have already changed

when P1 resumes its execution.

Such global change of the system state should not influence the

remaining execution of P1. This process should be able to continue its

activities until it reaches the next functional delay or receive-synchronization

point. If this interleaved execution of P1 and P2 happens to affect the

remaining execution of P1, there is certainly a missing part of system

synchronization somewhere between P1 and P2.

The adverse consequence of such incomplete modeling in the system

synchronization is the dreadful inconsistent simulation result. This is the

D

(

(

e

42 Chapter 2 2

reason why the computational model of the untimed TLM obliges explicit

modeling for every single system synchronization point in a given system.

Modeling engineers must insert functional delays into untimed models in

such a way that the system synchronization can still manage to capture all

the causal dependencies in a given system. This is a good modeling practice

to assure the system stability, despite the variations of the clock frequency

and the indeterminism of the micro-architecture (e.g. transaction latency on a

bus depends on the bus load) in the sub-systems of a SoC.

3.5 Recommendation for Modeling Practices

Collected hereafter are our general recommendations for the untimed

TLM modeling practices based on our experience in TLM development.

Advices on implementation concerns are provided in Chapter 3.

1. Consider the intended uses of IPs on the final platform to efficiently

determine how the corresponding TLM models should be written up.

2. To increase reusability, organize models in such a way that the algorithm

can easily be updated, and reuse readily available standalone C models as

much as possible. For the reason of code portability and management,

these C models should never be replicated as “hardwired” copies in the

TLM environment. Rather, they should be reused by means of wrappers

or external function calls.

3. Determine the data granularity of models according to the algorithmic

accuracy and the expected precision in terms of transfers. For example,

the model of a video IP expecting frame-level input should be modeled

with data granularity at frame level but not pixel level, despite the actual

capability of the interconnect in the silicon. However, if there is a

mismatch between the data granularity of the algorithm and the data

layout in the memory according to the memory map, it will be the job of

the TLM wrapper to generate the correct addresses so that the data is

stored and retrieved from the correct memory locations.

4. Model all sorts of communication interfaces at bit-accurate level,

particularly for register modeling.

5. Model all sorts of behavior at bit-accurate level.

6. Focus modeling with respect to the functional specification only, i.e.

including no micro-architectural and clock-based information, resources,

or details.

7. Model explicitly the system synchronization that affects the IP behavior.

8. Employ events within a model whenever that is appropriate for modeling

the inter-process synchronization.

Transaction Level Modeling 43

9. Utilize specific synchronization means such as synchronization protocols

to model the inter-module synchronization.

10.Avoid implementing the process-activation based on a regular basis; the

process-activation based on system activity is compulsory.

11.Ban uses of global variables.

12.Adopt good software implementation style to facilitate code debugging

and maintenance, e.g. add comments in codes.

4. TIMED TLM

4.1 Objective

As far as we have discussed for the untimed TLM, the system

synchronization only defines a partial order of the overall SoC internal

events. The identification of the full order of SoC events is hampered by an

indeterminism because the untimed TLM does not capture micro-

architectural details, i.e. the timing behavior of the implementation.

The timing behavior of a component specifies the delay between each

activation and synchronization-suspension. If this timing behavior is

incorporated into TLM, the resulted timed model will be able to determine a

full order of SoC events; hence leading to a complete specification of the

implementation.

The main objectives for developing the timed TLM are:

• benchmarking of the performance of a given micro-architecture;

• fine tuning the micro-architecture;

• optimizing the software for a given micro-architecture to meet real time

constraints.

Other objectives for implementing timed TLM models include:

• flexible modeling and refinement of timing accuracy according to

customized user needs;

• reuse of untimed models to reduce time-to-market of SoC products;

• ability to plug different timing models into the same untimed model;

• dynamic switch to turn timing on/off in a given model;

• legacy management of reusing cycle-accurate models;

• independent, concurrent yet integrated developments between untimed-

oriented verification team and timed-oriented architecture team.

44 Chapter 4 2

4.2 Modeling Approach

To develop a timed model at the transactional level, considerations must

be given to the time consumption of two aspects: computation and

communication.

The computational delay is the time amount required to perform specific

calculations in characterizing a given system behavior or function; whereas

the communication delay is the total time consumed in accessing and

transferring data or information. The various physical constraints that could

bring a significant impact on the system timing behavior such as bus size,

bus throughput, or memory size, must also be taken into account during the

timed TLM development.

We model the time consumption of a given component in timed TLM

through two different tactics:

1. Annotated model

2. Standalone timed model.

4.2.1 Annotated Model

The annotated model is a modeling approach where timing delays are

annotated, i.e. inserted, into an untimed model. These annotated delays are

the timing information of the micro-architecture level, which make the

annotated model distinct from the untimed TLM model inserted with

functional delay at architecture level (as described in Section 3.4).

Here, the delay of each possible set of activation-synchronization in a

process is defined based on the control flow of the concerning component.

This delay can be modeled with the values of the best, mean, or worst cases.

A process could sometimes include very complex control graphs that will

consequently entail a large set of timing attributes. If the modeling task

becomes too large to handle, a “lazy” approach could probably be adopted

by providing only the default conservative values for the unresolved

activation-synchronization path. These conservative values constitute the

minimum acceptable set of timing constraints that an implementation must

comply to.

In general, the annotation approach is well suited if the structure of the

untimed model already matches the structure of a micro-architectural model,

where annotations will be simple wait statements related to the computation

time of a specific functionality. We try to reuse untimed TLM models

without any alterations through this approach, although some adaptations

could be necessary in certain cases. It is essential to protect the timing

Transaction Level Modeling 45

annotations with preprocessing directives (e.g. #ifdef ANNOTATED_MODEL) in

order to select the appropriate execution mode (untimed or annotated)

according to user needs.

4.2.2 Standalone Timed Model

The standalone timed model is a different approach where the actual

timing behavior is modeled in such a way that delays are computed during

the execution of a standalone timing model. Our development results have

shown that this is applicable on hardware IPs and processor models.

A standalone timed model denotes a detached model incorporated with

the timing information. This model is suitable when the structure of the

algorithm is very different from the structure of the micro-architecture.

Indeed, annotations cannot lead to an accurate timing in such cases.

Consider the example of modeling a video application. If modeled at the

frame level, only those delays associated with decoding a frame can be

annotated. The micro-architecture of the application, on the other hand,

allows both the communication and computation to be interleaved.

Conceptually speaking, standalone timed models are high-level analytical

timing models without functional information. They can be built as traffic t

generators, which model the channel or interconnect traffic with some

timing information.

If the timing behavior of a component depends on its functional behavior,

the corresponding standalone timed model can be controlled externally, for

instance, by an untimed TLM model. In that case, all the functional events

occur during the functional execution of the untimed TLM model must be

traced and provided to the standalone timed model. A timing control unit is

used to manipulate this information between the untimed TLM and the

standalone timed model.

Figure 2-6 gives a better idea about the concept and structure of a

standalone timed TLM model combined with an untimed TLM model.

There are two general guidelines to realize the mixed model described

above for a given IP. First, develop a purely untimed TLM model describing

the functional behavior of the IP regardless of its timing characteristics.

Second, develop a timed module in charge of all timing and micro-

architecture related information of the IP, without duplicating the functional

codes already done in the untimed model. The overall mission of the mixed

model is characterized hereafter.

46 Chapter 6 2

Figure 2-6. Combination of Untimed TLM and Standalone Timed Models

Untimed TLM Model

a) The untimed TLM model executes the pure untimed behavior that will

consequently generate or receive transactions through its communication

ports. This model must be instrumented for generating traces of

functional events, which will trigger certain activities in the timed model.

Standalone Timed Model

a) The standalone timed model implements the mechanism to represent the

timing behavior. If the design schedule is too tight to allow developing a

very detailed and accurate model, the standalone timed model can be

modeled with coarse grains. For a precise implementation, it can be

modeled at the micro-architectural level with approximate cycle-

accuracy. Standalone timed models are normally controlled by using

functional traces generated in the untimed TLM model.

b) The standalone timed model declares communication ports to capture

transactions from the untimed model and to insert time delays according

to the traces of functional events. Transactions are exchanged through

both untimed and timed ports of the timed model. Untimed ports are

connected to an untimed communication channel/interconnect while

timed ports are connected to a timed channel/interconnect. Details on the

model of computation and rules to issue transactions on untimed/timed

interconnects are provided in Section 4.3.

Mi d U ti d d Ti d M d l

Transaction Level Modeling 47

• Concurrent development of functional and timing models facilitated by

the clear distinction between their modeling strategies.

• Multiple timing scenarios ranging from high-level to very accurate low

timing level can be defined, and they can coexist for a unique functional

model.

• Untimed models are reusable as the golden reference for functional

verification without modifications.

• Optimized speed granted by the dynamic switching between untimed and

timed models at the simulation run time.

• Mixed simulations involving timed and RTL models are feasible.

• Architecture and micro-architecture teams can work concurrently on

different but complementary models

4.3 Model of Computation

4.3.1 Inter-Execution of Untimed and Timed Models

The working concept of the timed TLM can be pictured as an inter-

execution of untimed TLM and standalone timed TLM models. Figure 2-7

illustrates the simulation timelines representing the activities of a process

execution in the timed TLM.

Figure 2-7 Inter-Execution of Untimed and Timed Models7

The mixed model offers numerous advantages as follows:

48 Chapter 8 2

Note that the functional behavior of the untimed model is executed until

it reaches a synchronization point. The execution is then passed to the

standalone timed model. The timing model will start simulating the delays

associated to the functional parts that have just been executed earlier.

Meanwhile, time delays of communications and computations are simulated

in the timing model as well. Once all of the relevant delays are simulated,

the untimed model will resume its execution until the end of its simulation.

The “inter-execution” of untimed and timed models is permissible as

long as the untimed model is fully modeled using explicit system

synchronizations. In this condition, read/write operations are generated only

when the data is ready within a stable system. Let us zoom in on the details

of such inter-executing mechanism by considering the platform depicted in

Figure 2-8. The initiator IP is the master while the target IP is the slave.

The untimed platform is composed of:

• the untimed model of the initiator (I);

• the untimed model of the target (S);

• an untimed communication channel (C).

The bindings for the untimed platform are as follows:

• the initiator port of I is connected to the target port of C;

• the initiator port of C is connected to the target port of S.

In addition, the following modules are instantiated in the platform to

support the “inter-execution”:

• the standalone timed model of the initiator (TI);

• the standalone timed model of the target (TS);

• a timed communication channel (TC)1.

1 Timed channel can be hierarchical to represent the internal topology of the interconnect.

Transaction Level Modeling 49

Figure 2-8. Mechanical Structure of Inter-Execution

The bindings related to the inter-execution are as follows:

• the initiator port of I is connected to the untimed target port of TI;

• the untimed initiator port of TI is connected to the target port of C;

• the timed initiator port of TI is connected to the target port of TC;

• the initiator port of TC is connected to the timed target port of TS;

• the initiator port of C is connected to the untimed target port of TS;

• the untimed initiator port of TS is connected to the target port of S.

All sorts of transactional accesses are set off from the initiator to the

target through the initiator port; and the functional information is passed to

the standalone timed model through the appropriate data structure.

Referring to Figure 2-8, TI traps transactions issued by I I. When II I meets a I

synchronization point, the standalone timed model TI will start its execution.

It computes all of the necessary delays as modeled in the timing model of the

micro-architecture, and it issues transactions. As I may have generated

transactions at a high level of abstraction (e.g. frame), TI will generate theI

appropriate number of transactions from the micro-architectural point of

view (e.g. pixel). TI may also reorder the transactions to represent read andI

write interleaves in cases like pipeline.

The overall communication mechanism is as follows:

1. Transactions are issued by TI onI C.

2. Transactions are received by TS fromS C. A careful analysis is diagnosed

on the transactional access to identify its nature. Depending on the nature

of the access, TS will handle the transaction accordingly. There are two S

kinds of accesses:

a) insensitive access - no impact on the IP synchronization scheme.

b) sensitive access - leave impact on the IP synchronization scheme.

For an insensitive access, the simulation continues directly in TS for any S

potential computational time delays associated with the transaction. Indeed,

50 Chapter 0 2

the TLM transaction is propagated “in advance” compared to the actual

event occurrence in the silicon. Such advance is permissible on condition

that the synchronization scheme can prevent the system consistency from

being corrupted by the access. For analysis purposes, the corresponding

communication delay from the initiator to the target is passed through the

timed channel TC, although they will be ignored by the target for the

simulation.

For a sensitive access, on the other hand, the transaction emitted from TI

is rejected by TS. Early accesses are not granted in this case because certain

behavior could be triggered earlier than what it should be. The adverse

consequence will be the undesirable system inconsistency. To prevent this

from occurring, TI must re-generate the transaction by transferring it through I

the timed channel, TC, in order to include the related communication time

delay. The transaction will now be received and accepted by TS with theS

correct time granularity at the right timing. Then, the access will be re-

generated by TI on C to actually read/write the data.

Any computational time delay closely related to the initiator or target IP

is managed locally by the timed models of the respective IP. Asynchronous

events such as interrupts are handled at every single activation boundary.

Fine-tuned behavior can be obtained in using pseudo synchronization points

as described in Section 4.3.3.

4.3.2 Discussion on Standalone Timed Model Techniques

The standalone timed model is a technique implying a strict compliance

with the modeling rules discussed earlier to ensure no micro-architectural

timing information is implemented in the untimed model. The key advantage

is the very neat separation of functional untimed models from micro-

architectural timing representations. Thus, it is straightforward to develop

several standalone timed models for a given functional model, which allow

investigating several micro-architecture scenarios.

With such techniques, the sequence of communication and computation

delays may not correspond to the associated functional sequence (while they

usually do). For example, an untimed model may grab a full image to

process it in one-shot while a timed model would process the data accesses

and computations as interleaves. In addition, communication and

computation delays can be interleaved in various manners, which could

probably be different from its sequence of functional behavior too, e.g.

pipeline characteristics. Compared to the functional model, validating the

standalone timed model should be handled more carefully to ensure that no

error is inserted.

Transaction Level Modeling 51

Since the functional and timing information are clearly separated

between untimed and standalone timed models, it is possible to couple

untimed models with traffic generators. Traffic generators connected to the

timed interconnect can act as standalone timed models. The untimed model

drives the traffic generator, which is not aware of the functionality but able

to generate meaningful bus sequences on the interconnect. This method is

particularly useful when traffic generators are developed before transactional

models, with the intention of reusing both of them in the future.

4.3.3 Pseudo Synchronization Points

Based on the principles of the system synchronization described so far

for the untimed TLM, asynchronous events such as interrupts are perceived

only at the activation “boundaries” of the untimed TLM. This is due to the

synchronization mechanism coupled to a non-preemptive simulation kernel.

As a process will suspend only on explicit synchronization points, no

other processes can execute in the background. While this is not an issue for

purely untimed models, it becomes a concern when mixing untimed and

standalone timed models. Indeed, asynchronous events may occur too late

during the suspended phase of a thread under certain circumstances.

Consequently, they may not be caught at the appropriate time.

To handle this problem, finer-grain pseudo synchronization points are

defined in untimed TLM models. These false synchronization points behave

as if many pre-emption points appear more frequently to check for

asynchronous event occurrences. They enable timed TLM threads to manage

incoming asynchronous events such as those for memory accesses in

between synchronization points.

4.3.4 Absolute Micro-Architectural Features

Most of the features for a given system can be modeled as a pure

functional model, and can be further refined as a timing model. Certain

features, however, are not represented in a pure functional model because

they are not relevant at that level of abstraction.

Modeling engineers should be aware of some complex micro-architecture

blocks that might be added at the micro-architectural level to optimize the

(timing) performance. While such blocks have no relevance to the functional

level, it becomes compulsory to model them in a standalone timed model.

The reasons are that these blocks definitely related to the micro-architectural

information of the system, and they have known impact on the system

performance.

52 Chapter 2 2

TLM can manage such features by integrating the micro-architectural

information as well as the related behavior into the timed module. An

excellent example to illustrate this idea is the modeling of memory cache.

By definition, a cache is an implementation to improve the performance

of the real system. It is not required to be included in the simulation to verify

the functional correctness of the design. For this reason, a cache should not

be conceived as an architectural model. What we wish to observe in the

simulation is the actual traffic of cache activities on the channel for

collecting its actual timing figures.

Therefore, the cache needs to be modeled accurately for its traffic and

timing changes in the timed simulation as the micro-architectural model. The

timed model of the memory cache includes not only timing information, but

also some code pieces that reflect the cache effect on the data amount

generated onto the channel.

The same approach applies to the reuse of an instruction-accurate ISS in

a timed platform. The modeling of the pipeline and cache features as micro-

architectural timed models is compulsory to obtain accurate timing figures.

5. ADVANTAGES OF TLM

Amongst the abundant endeavors proposing modeling techniques at

higher abstraction level, TLM has managed to sail its way through to offer a

promising solution to SoC industry. As a reliable methodology that can

rapidly improve the design productivity, TLM confronts the SoC design

bottlenecks in complexity and time pressure through three axes:

1. Early software development.

2. Architecture analysis.

3. Functional verification.

• Early Software Development

Software development activities, especially debugging and validation,

will have effect only if the software could be executed on its target platform.

Conventionally, a physical prototype such as emulator or FPGA board

prototype is considered as the starting point of software development. The

downside of this approach is obviously the late availability of such starting

point too close to the end of the hardware development. Not only is the time

a hindrance, any hardware issues revealed by the software execution at this

stage will be too costly to fix as well.

The hardware/software co-verification could of course start executing the

software earlier on the target hardware platform. But then again, it still needs

to wait quite long for RTL hardware models before running anything.

Transaction Level Modeling 53

Rather different from the two approaches mentioned above, TLM SoC

platform can be developed right after the delivery of system specifications.

The target platform is therefore available for the software development much

earlier in the SoC design cycle. In other words, the software development is

now conducted in parallel with the lengthy hardware development, i.e. a

veritable concurrent hardware/software design is attained.

With the “contract” of TLM platform signed between them, both

software and hardware teams cooperate in an independent but converging

manner. Software developers regard TLM platform as the reference to run

their codes while hardware designers consider it as the golden reference for

their RTL design.

In general, software developers employ TLM platform for two kinds of

software development:

a) functional software development using untimed TLM;

b) optimized software development using timed TLM.

The greatest advantage of having early software development based on

TLM platform is the reduced time-to-market of SoC products through

concurrent hardware/software design.

• Architecture Analysis

To increase the chances of first-time silicon success, a system must be

thoroughly controlled at each step of the design flow against the real-time

constraints stated in the initial system definition. An architecture exploration

allowing system performance analysis and verification will fulfill this

requirement. The timing information is often essential in such analysis.

System architects and RTL designers seek constantly a better solution for

the architecture exploration at an earlier SoC design phase. For this, TLM

offers a favorable approach by providing the possibility to explore a system

architecture shortly after the system specification is completed. Depending

on the user needs, either the untimed TLM inserted with functional delay or

the timed TLM can be used for this purpose.

Through an earlier architecture analysis, any system optimization or

modification could be handled in time- and cost-efficient way. Besides, it

helps to improve the design consistency between hardware and software

teams since they are both founded on the same TLM architectural model.

• Functional Verification

Functional verification is intended for assuring the compliance of a given

component or system implementation with its corresponding functional

specification. RTL models of the design-under-test are analyzed in a

functional verification environment by various test scenarios. These test

scenarios are developed by verification engineers referring to the paper

54 Chapter 4 2

specification. Most of the time, the engineers need to “manually” determine

the expected results of each scenario.

In fact, TLM is the actual functional specification of a component or

system. More precisely, TLM is the executable specification of a given

design that captures the intended behavior perceived by end-users, i.e.

architectural view; but not the implementation details of micro-architectural

view. Thus, TLM can replace the manual process undertaken by verification

engineers to generate the expected results of test scenarios as the golden

reference for functional verification.

Not only is TLM platform used for developing the reference output of

test scenarios, it is also reused to conduct functional verification of RTL

models with the same test scenarios. The outcomes of the RTL functional

verification will be compared to the reference output generated by TLM for

analyzing and verifying the design behavior.

As a result, TLM can really save the verification team a huge amount of

working time. In addition, it aligns their job constancy with those of

software and hardware design teams through referring to the same TLM

platform.

6. CONCLUSION

Concisely, TLM plays the role as the unique reference for different teams

all the way through the SoC design cycle. Such idea of centralized reference

is depicted in Figure 2-9.

Not only is TLM a reliable methodology to face SoC design bottlenecks,

it is essentially the single reference that puts into effect a “contract” among

the different teams to achieve three durable objectives:

• Work consistency across various teams.

• Rationalization of modeling efforts.

• Cross-team communication and interaction.

In conclusion, the ultimate goal of TLM is leading the SoC industry to a

cost- and time-efficient SoC project management in the long run.

Transaction Level Modeling 55

Figure 2-9. TLM as Unique Reference Model

REFERENCES

[1] A. Haverinen, M. Leclercq, N. Weyrich, and D. Wingard, “SystemC-based SoC

Communication Modeling for the OCP Protocol,” [Online document] 2002 Oct 14 (V 1.0),

[cited 2004 Nov 5], Available at HTTP: http://www.ocpip.org/socket/whitepapers/

[2] J. Gerlach and W. Rosenstiel, “System Level Design Using the SystemC Modeling

Platform,” in Proc. of the Forum on Specification & Design Languages (FDL’00), 2000.

[3] L. Semeria and A. Ghosh, “Methodology for Hardware/Software Co-verification in

C/C++,” in Proc. of the High-Level Design Validation and Test Workshop (HLDVT’99),

1999.

[4] A. Fin, F. Fummi, M. Martignano, and M. Signoretto, “SystemC: A Homogenous

Environment to Test Embedded Systems,” in Proc. of the IEEE International Symposium

on Hardware/Software Co-design (CODES’01), 2001.

http://www.springer.com/978-0-387-26232-1

