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Mathematical Preliminaries

2.1 Introduction

This chapter provides basic background materials needed in the subsequent
chapters of the book. It briefly reviews and summarizes related results
of random processes, including Markov chains in both discrete time and
continuous time, martingales, Gaussian processes, diffusions, and switching
diffusions.

Throughout the book, we work with a probability space (Ω,F , P ). A
collection of σ-algebras {Ft}, for t ≥ 0 or t = 1, 2, . . ., or simply Ft, is called
a filtration if Fs ⊂ Ft for s ≤ t. The Ft is complete in the sense that it
contains all null sets. A probability space (Ω,F , P ) together with a filtration
{Ft} is termed a filtered probability space, denoted by (Ω,F , {Ft}, P ).

2.2 Discrete-Time Markov Chains

Working with discrete time k ∈ {0, 1, . . .}, consider a sequence {xk} of
R

r vectors. If for each k, xk is a random vector (or an R
r-valued random

variable), we call {xk} a stochastic process and write it as xk, k = 0, 1, 2, . . .,
or simply xk if there is no confusion. A stochastic process is wide-sense (or
covariance) stationary, if it has finite second moments, a constant mean,
and a covariance that depends only on the time difference. The ergodicity
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of a stationary sequence {xk} refers to the convergence of the sequence

x1 + x2 + · · · + xn

n

to its expectation in the almost sure or some weak sense; see Karlin and
Taylor [78, Theorem 5.6, p. 487] for a strong ergodic theorem of a stationary
process. A stochastic process xk is adapted to a filtration {Fk}, if for each
k, xk is an Fk-measurable random vector.

Suppose that αk is a stochastic process taking values in M, which is
at most countable (i.e., it is either finite M = {1, 2, . . . , m0} or countable
M = {1, 2, . . .}). We say that αk is a Markov chain if

pij
k,k+1 = P (αk+1 = j|αk = i)

= P (αk+1 = j|α0 = i0, . . . , αk−1 = ik−1, αk = i),

for any i0, . . . , ik−1, i, j ∈ M.
Given i, j, if pij

k,k+1 is independent of time k, i.e., pij
k,k+1 = pij , we say

that αk has stationary transition probabilities. The corresponding Markov
chains are said to be stationary or time-homogeneous or temporally ho-
mogeneous or simply homogeneous. In this case, let P = (pij) denote the
transition matrix. Denote the n-step transition matrix by P (n) = (pij,(n)),
with

pij,(n) = P (xn = j|x0 = i).

Then P (n) = (P )n. That is, the n-step transition matrix is simply the
matrix P to the nth power. Note that

(a) pij ≥ 0,
∑

j pij = 1, and

(b) (P )k1+k2 = (P )k1(P )k2 , for k1, k2 = 1, 2, . . .

The last identity is commonly referred to as the Chapman–Kolmogorov
equation. In this book, we work with Markov chains with finite state spaces.
Thus we confine our discussion to such cases. Certain algebraic properties
of Markov chains will be used in the book, some of which are listed next.

Suppose that A is an r × r square matrix. Denote the collection of eigen-
values of A by Λ. Then the spectral radius of A, denoted by ρ(A), is defined
by ρ(A) = maxλ∈Λ |λ|. Recall that a matrix with real entries is said to be
a positive matrix if it has at least one positive entry and no negative en-
tries. If every entry of A is positive, we call the matrix strictly positive.
Similarly, for a vector x = (x1, . . . , xr), by x ≥ 0, we mean that xi ≥ 0 for
i = 1, . . . , r; by x > 0, we mean that all entries xi > 0.

Let P = (pij) ∈ R
m0×m0 be a transition matrix. Clearly, it is a positive

matrix. Then ρ(P ) = 1; see Karlin and Taylor [79, p. 3]. This implies that
all eigenvalues of P are on or inside the unit circle.
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For a Markov chain αk, state j is said to be accessible from state i if
pij,(k) = P (αk = j|α0 = i) > 0 for some k > 0. Two states i and j,
accessible from each other, are said to communicate. A Markov chain is
irreducible if all states communicate with each other. For i ∈ M, let d(i)
denote the period of state i, i.e., the greatest common divisor of all k ≥ 1
such that P (αk+n = i|αn = i) > 0 (define d(i) = 0 if P (αk+n = i|αn = i) =
0 for all k). A Markov chain is called aperiodic if each state has period one.
According to Kolmogorov’s classification of states, a state i is recurrent if,
starting from state i, the probability of returning to state i after some finite
time is 1. A state is transient if it is not recurrent. Criteria on recurrence
can be found in most standard textbooks of stochastic processes or Markov
chains.

Note that (see Karlin and Taylor [79, p. 4]) if P is a transition matrix
for a finite-state Markov chain, the multiplicity of the eigenvalue 1 is equal
to the number of recurrent classes associated with P . A row vector π =
(π1, . . . , πm0) with each πi ≥ 0 is called a stationary distribution of αk if
it is the unique solution to the system of equations

πP = π,
∑

i

πi = 1.

As demonstrated in [79, p. 85], for i in an aperiodic recurrent class, if
πi > 0, which is the limit of the probability of starting from state i and
then entering state i at the nth transition as n → ∞, then for all j in this
class of i, πj > 0, and the class is termed positive recurrent or strongly
ergodic. The following theorem, concerning the spectral gaps, will be used
in the asymptotic expansions.

Theorem 2.1. Let P = (pij) be the transition matrix of an irreducible
aperiodic finite-state Markov chain. Then there exist constants 0 < λ < 1
and c0 > 0 such that

|(P )k − P | ≤ c0λ
k for k = 1, 2, . . . ,

where P = 1lm0π, 1lm0 = (1, . . . , 1)′ ∈ R
m0×1, and π = (π1, . . . , πm0) is the

stationary distribution of αk. This implies, in particular,

lim
k→∞

P k = 1lm0π.

Suppose that αk is a Markov chain with transition probability matrix P .
One of the ergodicity conditions of Markov chains is the Doeblin’s condition
(see Doob [49, Hypothesis D, p. 192]; see also Meyn and Tweedie [115, p.
391]). Suppose that there is a probability measure µ with the property
that for some positive integer n, 0 < δ < 1, and ∆ > 0, µ(A) ≤ δ implies
that Pn(x, A) ≤ 1 − ∆ for all x ∈ A. In the above, Pn(x, A) denotes the
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transition probability starting from x reaches the set A in n steps. Note
that if αk is a finite-state Markov chain that is irreducible and aperiodic,
then the Doeblin’s condition is satisfied.

In the subsequent chapters, we often need to treat nonhomogeneous sys-
tems of linear equations. Given an m0 × m0 irreducible transition matrix
P and a vector G, consider

F (P − I) = G, (2.1)

where F is an unknown vector. Note that zero is an eigenvalue of the matrix
P −I and the null space of P −I is spanned by 1lm0 . Then by the Fredholm
alternative (see Lemma 14.36), (2.1) has a solution iff G1lm0 = 0, where
1lm0 = (1, . . . , 1)′ ∈ R

m0×1.

Define Qc = (P − I
...1lm0) ∈ R

m0×(m0+1). Consider (2.1) together with
the condition F1lm0 =

∑m0
i=1 Fi = F̂ , which may be written as FQc = Gc

where Gc = (G
...F̂ ). Since for each t, (2.12) has a unique solution, it follows

that Qc(t)Q′
c(t) is a matrix with full rank; therefore, the equation

F [QcQ
′
c] = GcQ

′
c (2.2)

has a unique solution, which is given by GcQ
′
c[QcQ

′
c]

−1. This observation
will be used later in this book.

2.3 Discrete-Time Martingales

Many applications involving stochastic processes depend on the concept of
martingale. The definition and properties of discrete-time martingales can
be found in Breiman [27, Chapter 5], Chung [38, Chapter 9], and Hall and
Heyde [67] among others. This section provides a brief review.

Definition 2.2. Suppose that {Fn} is a filtration, and {xn} is a sequence
of random variables. The pair {xn,Fn} is a martingale if for each n,

(a) xn is Fn-measurable;

(b) E|xn| < ∞;

(c) E(xn+1|Fn) = xn w.p.1.

It is a supermartingale (resp. submartingale) if (a) and (b) in the above
hold, and

E(xn+1|Fn) ≤ xn (resp. E(xn+1|Fn) ≥ xn) w.p.1.

In what follows if the sequence of σ-algebras is clear, we simply say that
{xn} is a martingale.
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Perhaps the simplest example of a discrete-time martingale is the sum
xn =

∑n
j=1 yj of a sequence of i.i.d. random variables {yn} with zero mean.

It is readily seen that

E[xn+1|y1, . . . , yn] = E[xn + yn+1|y1, . . . , yn]

= xn + Eyn+1 = xn w.p.1.

The above equation illustrates the defining relation of a martingale.
If {xn} is a martingale, we can define yn = xn −xn−1, which is known as

a martingale difference sequence. Suppose that {xn,Fn} is a martingale.
Then the following properties hold.

(a) Suppose ϕ(·) is an increasing and convex function defined on R, if
for each positive integer n, E|ϕ(xn)| < ∞, then {ϕ(xn),Fn} is a
submartingale.

(b) Let τ be a stopping time with respect to Fn (i.e., an integer-valued
random variable such that {τ ≤ n} is Fn-measurable for each n).
Then {xτ∧n,Fτ∧n} is also a martingale.

(c) The martingale inequality (see Kushner [96, p. 3]) states that for each
λ > 0,

P

(

max
1≤j≤n

|xj | ≥ λ

)

≤ 1
λ

E|xn|,

E max
1≤j≤n

|xj |2 ≤ 4E|xn|2, if E|xn|2 < ∞ for each n.
(2.3)

(d) The Doob’s inequality (see Hall and Heyde [67, p.15]) states that for
each p > 1,

E1/p|xn|p ≤ E1/p

(

max
1≤j≤n

|xj |
)p

≤ qE1/p|xn|p,

where p−1 + q−1 = 1;

(e) The Burkholder’s inequality (see Hall and Heyde [67, p.23]) is: For
1 < p < ∞, there exist constants K1 and K2 such that

K1E

∣
∣
∣
∣

n∑

j=1

y2
j

∣
∣
∣
∣

p/2

≤ E|xn|p ≤ K2E

∣
∣
∣
∣

n∑

i=j

y2
j

∣
∣
∣
∣

p/2

,

where yn = xn − xn−1.

Consider a discrete-time Markov chain {αn} with state space M (either
finite or countable) and one-step transition probability matrix P = (pij).
Recall that a sequence {f(i) : i ∈ M} is P -harmonic or right-regular
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(Karlin and Taylor [79, p. 48]), if (a) f(·) is a real-valued function such
that f(i) ≥ 0 for each i ∈ M, and (b)

f(i) =
∑

j∈M
pijf(j) for each i ∈ M. (2.4)

If the equality in (2.4) is replaced by ≥ (resp. ≤), {f(i) : i ∈ M} is said to
be P -superharmonic or right superregular (resp. P -subharmonic or right
subregular). Considering f = (f(i) : i ∈ M) as a column vector, (2.4) can
be written as f = Pf . Similarly, we can write f ≥ Pf for P -superharmonic
(resp. g ≤ Pf for P -subharmonic). Likewise, {f(i) : i ∈ M} is said to be
P left regular, if (b) above is replaced by

f(j) =
∑

i∈M
f(i)pij for each j ∈ M. (2.5)

Similarly, left superregular and subregular functions can be defined.
The following paragraph reveals the natural connection between a mar-

tingale and a discrete-time Markov chain. Following the idea presented in
Karlin and Taylor [78, p. 241], let {f(i) : i ∈ M} be a bounded P -harmonic
sequence. Define xn = f(αn). Then E|xn| < ∞. Moreover, owing to the
Markov property,

E(xn+1|Fn) = E(f(αn+1)|αn))

=
∑

j∈M
pαn,jf(j)

= f(αn) = xn w.p.1.

Therefore, {xn,Fn} is a martingale. Note that if M is finite, the bounded-
ness of {f(i) : i ∈ M} is not needed.

As pointed out in Karlin and Taylor [78], one of the widely used ways of
constructing martingales is through the utilization of eigenvalues and eigen-
vectors of a transition matrix. Again, let {αn} be a discrete-time Markov
chain with transition matrix P . Recall that a column vector f is a right
eigenvector of P associated with an eigenvalue λ ∈ C, if Pf = λf . Let f
be a right eigenvector of P satisfying E|f(αn)| < ∞ for each n. For λ 
= 0,
define xn = λ−nf(αn). Then {xn} is a martingale.

2.4 Continuous-Time Martingales and Markov
Chains

Denote the space of R
r-valued continuous functions defined on [0, T ] by

C([0, T ]; Rr), and the space of functions that are right continuous with
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left-hand limits endowed with the Skorohod topology by D([0, T ]; Rr); see
Definition 14.2. Consider x(·) = {x(t) ∈ R

r : t ≥ 0}. If for each t ≥ 0, x(t)
is an R

r random vector, we call x(·) a continuous-time stochastic process
and write it as x(t), t ≥ 0, or simply x(t) if there is no confusion.

A process x(·) is adapted to a filtration {Ft}, if for each t ≥ 0, x(t) is an
Ft-measurable random variable; x(·) is progressively measurable if for each
t ≥ 0, the process restricted to [0, t] is measurable with respect to the σ-
algebra B[0, t]×Ft in [0, t]×Ω, where B[0, t] denotes the Borel sets of [0, t].
A progressively measurable process is measurable and adapted, whereas
the converse is not generally true. However, any measurable and adapted
process with right-continuous sample paths is progressively measurable.

For many applications, we often need to work with a stopping time.
A stopping time τ on (Ω,F , P ) with a filtration {Ft} is a nonnegative
random variable such that {τ ≤ t} ∈ Ft, for all t ≥ 0. A stochastic process
{x(t) : t ≥ 0} (real or vector valued) is said to be a martingale on (Ω,F , P )
with respect to {Ft} if:

(a) For each t ≥ 0, x(t) is Ft-measurable,

(b) E|x(t)| < ∞, and

(c) E[x(t)|Fs] = x(s) w.p.1 for all t ≥ s.

If we only say that x(·) is a martingale without specifying the filtration
Ft, Ft is taken to be the natural filtration σ{x(s) : s ≤ t}. If there exists
a sequence of stopping times {τn} such that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤
τn+1 ≤ · · ·, τn → ∞ w.p.1 as n → ∞, and the process x(n)(t) := x(t ∧ τn)
is a martingale, then x(·) is a local martingale.

A jump process is a right-continuous stochastic process with piecewise-
constant sample paths. Let α(·) = {α(t) : t ≥ 0} be a jump process defined
on (Ω,F , P ) taking values in M. Then {α(t) : t ≥ 0} is a Markov chain
with state space M, if

P (α(t) = i|α(r) : r ≤ s) = P (α(t) = i|α(s)),

for all 0 ≤ s ≤ t and i ∈ M, with M being either finite or countable.
For any i, j ∈ M and t ≥ s ≥ 0, let pij(t, s) denote the transition

probability P (α(t) = j|α(s) = i), and P (t, s) the matrix (pij(t, s)). We
name P (t, s) the transition matrix of the Markov chain α(·), and postulate
that

lim
t→s+

pij(t, s) = δij ,
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where δij = 1 if i = j and 0 otherwise. It follows that for 0 ≤ s ≤ ς ≤ t,





pij(t, s) ≥ 0, i, j ∈ M,
∑

j∈M
pij(t, s) = 1, i ∈ M,

pij(t, s) =
∑

k∈M
pik(ς, s)pkj(t, ς), i, j ∈ M.

The last identity is usually referred to as the Chapman–Kolmogorov equa-
tion. If the transition probability P (α(t) = j|α(s) = i) depends only on
(t − s), then α(·) is said to be stationary or it is said to have station-
ary transition probabilities. In this case, we define pij(h) := pij(s + h, s)
for any h ≥ 0. Otherwise, the process is nonstationary. Suppose that α(t)
is a continuous-time Markov chain with stationary transition probability
P (t) = (pij(t)). It then naturally induces a discrete-time Markov chain. In
fact, for each h > 0, the transition matrix (pij(h)) is the transition matrix
of the discrete-time Markov chain αk = α(kh), which is called an h-skeleton
of the corresponding continuous-time Markov chain in Chung [38, p. 132].

Definition 2.3 (q-Property). A matrix-valued function Q(t) = (qij(t)),
for t ≥ 0, satisfies the q-Property, if

(a) qij(t) is Borel measurable for all i, j ∈ M and t ≥ 0;

(b) qij(t) is uniformly bounded. That is, there exists a constant K such
that |qij(t)| ≤ K, for all i, j ∈ M and t ≥ 0;

(c) qij(t) ≥ 0 for j 
= i and qii(t) = −∑

j �=i qij(t), t ≥ 0.

For any real-valued function f on M and i ∈ M, write

Q(t)f(·)(i) =
∑

j∈M
qij(t)f(j) =

∑

j �=i

qij(t)(f(j) − f(i)).

Let us now recall the definition of the generator of a Markov chain.

Definition 2.4 (Generator). A matrix Q(t), t ≥ 0, is an infinitesimal gen-
erator (or in short a generator) of α(·) if it satisfies the q-Property, and for
any bounded real-valued function f defined on M

f(α(t)) −
∫ t

0
Q(ς)f(·)(α(ς))dς (2.6)

is a martingale.
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Remark 2.5. Motivated by the applications we are interested in, a gen-
erator is defined for a matrix satisfying the q-Property above, where an
additional condition on the boundedness of the entries of the matrix is
posed. Different definitions, including other classes of matrices, may be de-
vised as in Chung [38]. To proceed, we give an equivalent condition for a
finite-state Markov chain generated by Q(·).
Lemma 2.6. Let M = {1, . . . , m0}. Then α(t) ∈ M, t ≥ 0, is a Markov
chain generated by Q(t) iff

(
I{α(t)=1}, . . . , I{α(t)=m0}

) −
∫ t

0

(
I{α(ς)=1}, . . . , I{α(ς)=m0}

)
Q(ς)dς (2.7)

is a martingale.

Proof: See Yin and Zhang [158, Lemma 2.4]. �

For any given Q(t) satisfying the q-Property, there exists a Markov chain
α(·) generated by Q(t). If Q(t) = Q, a constant matrix, the idea of Ethier
and Kurtz [55] can be utilized for the construction. For time-varying gen-
erator Q(t), we need to use the piecewise-deterministic process approach,
described in Davis [42], to define the Markov chain α(·).

Let 0 = τ0 < τ1 < · · · < τl < · · · be a sequence of jump times of α(·) such
that the random variables τ1, τ2 − τ1, . . ., τk+1 − τk, . . . are independent.
Let α(0) = i ∈ M. Then α(t) = i on the interval [τ0, τ1). The first jump
time τ1 has the probability distribution

P (τ1 ∈ B) =
∫

B

exp
{∫ t

0
qii(s)ds

}
(−qii(t)

)
dt,

where B ⊂ [0,∞) is a Borel set. The post-jump location of α(t) = j, j 
= i,
is given by

P (α(τ1) = j|τ1) =
qij(τ1)

−qii(τ1)
.

If qii(τ1) is 0, define P (α(τ1) = j|τ1) = 0, j 
= i. Then P (qii(τ1) = 0) = 0.
In fact, if Bi = {t : qii(t) = 0}, then

P (qii(τ1) = 0) = P (τ1 ∈ Bi)

=
∫

Bi

exp
{∫ t

0
qii(s)ds

}
(−qii(t)

)
dt = 0.

In general, α(t) = α(τl) on the interval [τl, τl+1). The jump time τl+1 has
the conditional probability distribution

P (τl+1 − τl ∈ Bl|τ1, . . . , τl, α(τ1), . . . , α(τl))

=
∫

Bl

exp
{∫ t+τl

τl

qα(τl)α(τl)(s)ds

} (

−qα(τl)α(τl)(t + τl)
)

dt.
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The post-jump location of α(t) = j, j 
= α(τl) is given by

P (α(τl+1) = j|τ1, . . . , τl, τl+1, α(τ1), . . . , α(τl)) =
qα(τl)j(τl+1)

−qα(τl)α(τl)(τl+1)
.

Theorem 2.7. Suppose that the matrix Q(t) satisfies the q-Property for
t ≥ 0. Then the following statements hold.

(a) The process α(·) constructed above is a Markov chain.

(b) The process

f(α(t)) −
∫ t

0
Q(ς)f(·)(α(ς))dς (2.8)

is a martingale for any uniformly bounded function f(·) on M. Thus
Q(t) is indeed the generator of α(·).

(c) The transition matrix P (t, s) satisfies the forward differential equa-
tion

dP (t, s)
dt

= P (t, s)Q(t), t ≥ s,

P (s, s) = I,

(2.9)

where I is the identity matrix.

(d) Assume further that Q(t) is continuous in t. Then P (t, s) also satisfies
the backward differential equation

dP (t, s)
ds

= Q(s)P (t, s), t ≥ s,

P (s, s) = I.

(2.10)

Proof. See Yin and Zhang [158, Theorem 2.5]. �

Suppose that α(t), t ≥ 0, is a Markov chain generated by an m0 × m0
matrix Q(t). The notions of irreducibility and quasi-stationary distribution
are given next.

Definition 2.8 (Irreducibility).

(a) A generator Q(t) is said to be weakly irreducible if, for each fixed
t ≥ 0, the system of equations

ν(t)Q(t) = 0,
m0∑

i=1

νi(t) = 1
(2.11)

has a unique solution ν(t) = (ν1(t), . . . , νm0(t)) and ν(t) ≥ 0.
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(b) A generator Q(t) is said to be irreducible, if for each fixed t ≥ 0 the
systems of equations (2.11) has a unique solution ν(t) and ν(t) > 0.

By ν(t) ≥ 0, we mean that for each i ∈ M, νi(t) ≥ 0. Similar inter-
pretation holds for ν(t) > 0. It follows from the definitions above that
irreducibility implies weak irreducibility. However, the converse is not true.
For example, the generator

Q =
( −1 1

0 0

)

is weakly irreducible, but it is not irreducible because it contains an ab-
sorbing state corresponding to the second row in Q. A moment of reflection
reveals that for a two-state Markov chain with generator

Q =
( −λ(t) λ(t)

µ(t) −µ(t)

)

the weak irreducibility requires only λ(t) + µ(t) > 0, whereas the irre-
ducibility requires that both λ(t) and µ(t) be positive. Such a definition
is convenient for many applications (e.g., the manufacturing systems men-
tioned in Khasminskii, Yin, and Zhang [85, p. 292]).

Definition 2.9 (Quasi-Stationary Distribution). For t ≥ 0, ν(t) is termed
a quasi-stationary distribution if it is the unique solution of (2.11) satisfying
ν(t) ≥ 0.

Remark 2.10. While studying homogeneous Markov chains, the station-
ary distributions play an important role. In the context of nonstation-
ary (non-homogeneous) Markov chains, they are replaced by the quasi-
stationary distributions, as defined above.

If ν(t) = ν > 0, it is termed a stationary distribution. In view of Def-
initions 2.8 and 2.9, if Q(t) is weakly irreducible, then there is a quasi-
stationary distribution. Note that the rank of a weakly irreducible m0 ×m0
matrix Q(t) is m0 − 1, for each t ≥ 0. The definition above emphasizes the
probabilistic interpretation. An equivalent definition pinpointing the alge-
braic properties of Q(t) is provided next. One can verify their equivalence
using the Fredholm alternative; see Lemma 14.36.

Definition 2.11. A generator Q(t) is said to be weakly irreducible if, for
each fixed t ≥ 0, the system of equations

f(t)Q(t) = 0,
m0∑

i=1

f i(t) = 0
(2.12)

has only the trivial (zero) solution.
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2.5 Gaussian, Diffusion, and Switching Diffusion
Processes

A Gaussian random vector x = (x1, x2, . . . , xr) is one whose characteristic
function has the form

φ(y) = exp
(

i〈y, µ〉 − 1
2
〈Σy, y〉

)

,

where µ ∈ R
r is a constant vector, 〈y, µ〉 is the usual inner product, i de-

notes the pure imaginary number satisfying i2 = −1, and Σ is a symmetric
nonnegative definite r × r matrix. In the above, µ and Σ are the mean
vector and covariance matrix of x, respectively.

Let x(t), t ≥ 0, be a stochastic process. It is a Gaussian process if for
any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . ., (x(t1), x(t2), . . . , x(tk)) is a
Gaussian vector. A random process x(·) has independent increments if for
any 0 ≤ t1 < t2 < · · · < tk and k = 1, 2, . . .,

(x(t1) − x(0)), (x(t2) − x(t1)), . . . , (x(tk) − x(tk−1))

are independent. A sufficient condition for a process to be Gaussian is given
next, whose proof can be found in Skorohod [139, p. 7].

Lemma 2.12. Suppose that the process x(·) has independent increments
and continuous sample paths with probability one. Then x(·) is a Gaussian
process.

An R
r-valued random process for t ≥ 0 is a Brownian motion, if

(a) B(0) = 0 w.p.1;

(b) B(·) is a process with independent increments;

(c) B(·) has continuous sample paths with probability one;

(d) the increments B(t)−B(s) have Gaussian distribution with E(B(t)−
B(s)) = 0 and Cov(B(t), B(s)) = Σ|t − s| for some nonnegative
definite r×r matrix Σ, where Cov(B(t), B(s)) denotes the covariance.

A process B(·) is said to be a standard Brownian motion if Σ = I.
By virtue of Lemma 2.12, a Brownian motion is necessarily a Gaussian
process. For an R

r-valued Brownian motion B(t), let Ft = σ{B(s) : s ≤
t}. Let h(·) be an Ft-measurable process taking values in R

r×r such that
∫ t

0 E|h(s)|2ds < ∞ for all t ≥ 0. Using B(·) and h(·), one can define a
stochastic integral

∫ t

0 h(s)dB(s) such that it is a martingale with mean 0
and

E
∣
∣
∣

∫ t

0
h(s)dB(s)

∣
∣
∣

2
=

∫ t

0
E

[

tr(h(s)h′(s))ds
]

.
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Suppose that b(·) and σ(·) are non-random Borel measurable functions.
A process x(·) defined as

x(t) = x(0) +
∫ t

0
b(s, x(s))ds +

∫ t

0
σ(s, x(s))dB(s) (2.13)

is called a diffusion. Then x(·) defined in (2.13) is a Markov process in the
sense that the Markov property

P (x(t) ∈ A|Fs) = P (x(t) ∈ A|x(s))

holds for all 0 ≤ s ≤ t and for any Borel set A. A slightly more general
definition allows b(·) and σ(·) to be Ft-measurable processes. However, the
current definition is sufficient for our purpose.

Associated with the diffusion process, there is an operator L, known as
the generator of the diffusion x(·), defined as follows. Let C1,2 be the class
of real-valued functions on (a subset of) R

r×[0,∞) whose first-order partial
derivative with respect to t and the second-order mixed partial derivatives
with respect to x are continuous. Define an operator L on C1,2 by

Lf(t, x) =
∂f(t, x)

∂t
+

r∑

i=1

bi(t, x)
∂f(t, x)

∂xi
+

1
2

r∑

i,j=1

aij(t, x)
∂2f(t, x)
∂xi∂xj

, (2.14)

where A(t, x) = (aij(t, x)) = σ(t, x)σ′(t, x). The well-known Ito’s lemma
(see Gihman and Skorohod [62], Kunita and Watanabe [92], and Liptser
and Shiryayev [105]) states that

df(t, x(t)) = Lf(t, x(t)) + f ′
x(t, x(t))σ(t, x(t))dB(t),

or in its integral form

f(t, x(t)) − f(0, x(0)) =
∫ t

0
Lf(s, x(s))ds

+
∫ t

0
f ′

x(s, x(s))σ(s, x(s))dB(s).

One of the consequences of the Ito’s lemma is that

Mf (t) = f(t, x(t)) − f(0, x(0)) −
∫ t

0
Lf(s, x(s))ds

is a square integrable Ft-martingale. Conversely, let x(·) be right contin-
uous. Using the notation of martingale problems given by Stroock and
Varadhan [143], x(·) is said to be a solution of the martingale problem
with operator L if Mf (·) is a martingale for each f(·, ·) ∈ C1,2

0 (the class of
C1,2 functions with compact support).
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Suppose that α(·) is a continuous-time Markov chain with finite-state
space M = {1, . . . , m0} and generator Q(t) and that α(·) is independent of
the standard r-dimensional Brownian motion B(·). Then the process x(·)

x(t) = x(0) +
∫ t

0
b(s, x(s), α(s))ds +

∫ t

0
σ(s, x(s), α(s))dB(s)

is called a switching diffusion or system of diffusions with regime switching.
The corresponding operator is defined as follows. For each ι ∈ M and each
f(·, ·, ι) ∈ C1,2,

Lf(t, x, ι) =
∂f(t, x, ι)

∂t
+

r∑

i=1

bi(t, x, ι)
∂f(t, x, ι)

∂xi

+
1
2

r∑

i,j=1

aij(t, x, ι)
∂2f(t, x, ι)

∂xi∂xj
+ Q(t)f(t, x, ·)(ι),

(2.15)

where A(t, x, ι) = (aij(t, x, ι)) = σ(t, x, ι)σ′(t, x, ι). Similar to the case of
diffusions, with the L defined in (2.15), for each i ∈ M and f(·, ·, i) ∈ C1,2,
a result known as generalized Ito’s lemma (see [19]) reads

df(t, x(t), α(t)) = Lf(t, x(t), α(t))

+f ′
x(t, x(t), α(t))σ(t, x(t), α(t))dB(t),

or in its integral form

f(t, x(t), α(t)) − f(0, x(0), α(0))

=
∫ t

0
Lf(s, x(s), α(s))ds +

∫ t

0
f ′

x(s, x(s), α(s))σ(s, x(s), α(s))dB(s).

In addition,

Mf (t) = f(t, x(t), α(t)) − f(0, x(0), α(0)) −
∫ t

0
Lf(s, x(s), α(s))ds

is a martingale. Similar to the case of diffusion processes, we can define the
corresponding notion of solution of martingale problem accordingly.

2.6 Notes

A nonmeasure theoretic introduction to stochastic processes can be found
in Ross [130]. The two volumes by Karlin and Taylor [78, 79] provide an
introduction to discrete-time and continuous-time Markov chains. More ad-
vanced treatments can be found in Chung [38] and Revuz [127]. A book that
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deals exclusively with finite-state Markov chain is Iosifescu [73]. The book
of Meyn and Tweedie [115] examines Markov chains and their stability.
The connection between generators of Markov processes and martingales is
explained in Ethier and Kurtz [55]. An account of piecewise-deterministic
processes is in Davis [42]. Results on basic probability theory may be found
in Chow and Teicher [37]; theory of stochastic processes can be found in
Gihman and Skorohod [62]. More detailed discussions regarding martin-
gales and diffusions can be found in Elliott [54]; in-depth study of stochas-
tic differential equations and diffusion processes can be found in Kunita
and Watanabe [92].
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