Chapter 2

Euclidean Rings

2.1 Preliminaries

We can discuss the concept of divisibility for any commutative ring R with
identity. Indeed, if a,b € R, we will write a | b (a divides b) if there exists
some ¢ € R such that ac = b. Any divisor of 1 is called a unit. We will
say that a and b are associates and write a ~ b if there exists a unit u € R
such that a = bu. It is easy to verify that ~ is an equivalence relation.

Further, if R is an integral domain and we have a,b # 0 with a | b and
b | a, then a and b must be associates, for then J¢,d € R such that ac = b
and bd = a, which implies that bdc = b. Since we are in an integral domain,
dc =1, and d, ¢ are units.

We will say that a € R is irreducible if for any factorization a = bc, one
of b or c is a unit.

Example 2.1.1 Let R be an integral domain. Suppose there is a map
n : R — N such that:

(i) n(ab) = n(a)n(b) Ya,b € R; and

(ii)) n(a) =1 if and only if a is a unit.

We call such a map a norm map, with n(a) the norm of a. Show that every
element of R can be written as a product of irreducible elements.

Solution. Suppose b is an element of R. We proceed by induction on the
norm of b. If b is irreducible, then we have nothing to prove, so assume that
b is an element of R which is not irreducible. Then we can write b = ac
where neither a nor ¢ is a unit. By condition (i),

n(b) = n(ac) = n(a)n(c)

and since a, ¢ are not units, then by condition (ii), n(a) < n(b) and n(c) <

n(b).

13
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If a,c are irreducible, then we are finished. If not, their norms are
smaller than the norm of b, and so by induction we can write them as
products of irreducibles, thus finding an irreducible decomposition of b.

Exercise 2.1.2 Let D be squarefree. Consider R = Z[v/D]. Show that every
element of R can be written as a product of irreducible elements.

Exercise 2.1.3 Let R = Z[\/—5]. Show that 2,3,1 4+ +/—5, and 1 — /=5 are
irreducible in R, and that they are not associates.

We now observe that 6 = 2-3 = (1 4+ +/—5)(1 — /—5), so that R does
not have unique factorization into irreducibles.
We will say that R, an integral domain, is a unique factorization domain

if:
(i) every element of R can be written as a product of irreducibles; and

(ii) this factorization is essentially unique in the sense that if a = 71 - - - 7,
and a = 71 - - - T4, then 7 = s and after a suitable permutation, m; ~ 7;.

Exercise 2.1.4 Let R be a domain satisfying (i) above. Show that (ii) is equiv-
alent to (ii*): if 7 is irreducible and 7 divides ab, then 7 | a or 7 | b.

An ideal I C R is called principal if it can be generated by a single
element of R. A domain R is then called a principal ideal domain if every
ideal of R is principal.

Exercise 2.1.5 Show that if 7 is an irreducible element of a principal ideal
domain, then (7) is a maximal ideal, (where (z) denotes the ideal generated by
the element x).

Theorem 2.1.6 If R is a principal ideal domain, then R is a unique fac-
torization domain.

Proof. Let S be the set of elements of R that cannot be written as a
product of irreducibles. If S is nonempty, take a; € S. Then a; is not
irreducible, so we can write a; = asbs where ao, by are not units. Then
(a1) G (a2) and (a1) S (b2). If both az,by ¢ S, then we can write a; as
a product of irreducibles, so we assume that as € S. We can inductively
proceed until we arrive at an infinite chain of ideals,

(a1) G (a2) G (az) &+ G (an) &

Now consider I = [J;2,(a;). This is an ideal of R, and because R is a
principal ideal domain, I = («) for some a € R. Since a € I, « € (ay,) for
some n, but then (a,) = (an+1). From this contradiction, we conclude that
the set S must be empty, so we know that if R is a principal ideal domain,
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every element of R satisfies the first condition for a unique factorization
domain.

Next we would like to show that if we have an irreducible element 7,
and 7 | ab for a,b € R, then 7 | a or w | b. If 7 { a, then the ideal (a,7) = R,
so dx,y such that

ar+7my = 1,
= abx + by = b.

Since 7 | abz and 7 | wby then 7 | b, as desired. By Exercise 2.1.4, we have
shown that R is a unique factorization domain. O

The following theorem describes an important class of principal ideal
domains:

Theorem 2.1.7 If R is a domain with a map ¢ : R — N, and given
a,b € R, 3¢, € R such that a = bg + r with v = 0 or ¢(r) < ¢(b), we
call R a Fuclidean domain. If a ring R is Fuclidean, it is a principal ideal
domain.

Proof. Given an ideal I C R, take an element a of I such that ¢(a) is
minimal among elements of I. Then given b € I, we can find ¢, € R such
that b = qa + r where r = 0 or ¢(r) < ¢(a). But then r = b — ga, and so
r € I, and ¢(a) is minimal among the norms of elements of I. So r = 0,
and given any element b of I, b = qa for some ¢ € R. Therefore a is a
generator for I, and R is a principal ideal domain. O

Exercise 2.1.8 If F'is a field, prove that F[z], the ring of polynomials in = with
coefficients in F', is Euclidean.

The following result, called Gauss’ lemma, allows us to relate factoriza-
tion of polynomials in Z[x] with the factorization in Q[z]. More generally,
if R is a unique factorization domain and K is its field of fractions, we will
relate factorization of polynomials in R[z] with that in K[x].

Theorem 2.1.9 If R is a unique factorization domain, and f(z) € Rx],
define the content of f to be the gcd of the coefficients of f, denoted by

C(f). For f(x), g(x) € Rlz], C(fg) = C(f)C(9)-

Proof. Cousider two polynomials f, g € R[z], with C(f) = ¢ and C(g) = d.
Then we can write

f(x) =cag + carz + -+ + capx™

and
g(x) = dby + dbrx + - - - + dbp,z™,
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where ¢, d, a;,b; € R, an, by, # 0. We define a primitive polynomial to be a
polynomial f such that C(f) = 1. Then f = ¢f* where f* = ag+ar1z+---+
anx™, a primitive polynomial, and g = dg*, with g* a primitive polynomial.
Since fg = cf*dg* = cd(f*g*), it will suffice to prove that the product of
two primitive polynomials is again primitive.
Let
f*g* _ kO +/€1£E+ ._.+km+nxm+n7

and assume that this polynomial is not primitive. Then all the coefficients
k; are divisible by some 7w € R, with 7 irreducible. Since f* and g* are
primitive, we know that there is at least one coefficient in each of f* and
g* that is not divisible by 7. We let a; and b; be the first such coefficients
in f* and g*, respectively.

Now,

ki+j = (aobi+j 4+ 4 ai,lijrl) + (Libj + ((Li+1bj,1 + -4 aiﬂ-bo).

We know that ki+j7 apg, a1, ... yA5—1, bo, bl, ey bj—l are all divisible by ™, SO
a;b; must also be divisible by 7. Since 7 is irreducible, then 7 | a; or 7 | b;,
but we chose these elements specifically because they were not divisible by
m. This contradiction proves that our polynomial f*g* must be primitive.

Then fg = cdf*g* where f*g* is a primitive polynomial, thus proving
that C(fg) = ed = C(f)C(g). a

Theorem 2.1.10 If R is a unique factorization domain, then R|x] is a
unique factorization domain.

Proof. Let k be the set of all elements a/b, where a,b € R, and b # 0,
such that a/b = ¢/d if ad — bc = 0. Tt is easily verified that k is a field; we
call k the fraction field of R. Let us examine the polynomial ring k[z]. We
showed in Exercise 2.1.8 that k[z] is a Euclidean domain, and we showed in
Theorem 2.1.7 that all Euclidean domains are unique factorization domains.
We shall use these facts later.

First notice that given any nonzero polynomial f(x) € k[x], we can write
this polynomial uniquely (up to multiplication by a unit) as f(z) = cf*(x),
where f*(x) € R[z] and f*(x) is primitive. We do this by first finding a
common denominator for all the coefficients of f and factoring this out. If
we denote this constant by 3, then we can write f = f'/3, where f’ € R|x].
We then find the content of f’ (which we will denote by «), and factor this
out as well. We let o/ = ¢ and write f = ¢f*, noting that f* is primitive.

We must prove the uniqueness of this expression of f. If

f(x) = cf*(x) = df'(x),

with both f*(z) and f/(z) primitive, then we can write

f'(@) = (c/d)f*(x) = (a/b) f* (),
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where ged(a, b) = 1. Since the coefficients of f’(x) are elements of R, then
b | ay; for all 4, where 7; are the coefficients of f*. But since ged(a, b) = 1,
then b | ; for all 4. Since f* is a primitive polynomial, then b must be
a unit of R. Similarly, we can write f*(x) = (b/a)f’(x), and by the same
argument as above, a must be a unit as well. This shows that f*(z) ~ f'(x).

Let us suppose that we have a polynomial f(z) € R[z]. Then we can
factor this polynomial as f(x) = g(z)h(x), with g(z),h(x) € k[z] (be-
cause k[z] is a unique factorization domain). We can also write cf*(z) =
dyg*(x)dah* (), where g*(x), h*(x) € R[z], and ¢g*(z), h*(x) are primitive.
We showed above that the polynomial g*(x)h*(z) is primitive, and we know
that this decomposition f(z) = c¢f*(z) is unique. Therefore we can write
f*(z) = g*(z)h*(x) and thus f(z) = cg*(x)h*(z). But both f(z) and
f*(x) = g*(x)h*(x) have coefficients in R, and f*(x) is primitive. So ¢
must be an element of R.

Thus, when we factored f(x) € k[z], the two factors were also in R[z].
By induction, if we decompose f into all its irreducible components in k|x],
each of the factors will be in R[z], and we know that this decomposition
will be essentially unique because k[z] is a unique factorization domain.
This shows that R[z] is a unique factorization domain. O

2.2 Gaussian Integers

Let Z[i] = {a+ bi| a,b € Z,i = /—1}. This ring is often called the ring of
Gaussian integers.

Exercise 2.2.1 Show that Z[:] is Euclidean.

Exercise 2.2.2 Prove that if p is a positive prime, then there is an element
x € F, := Z/pZ such that 2> = —1 (mod p) if and only if either p =2 or p =1
(mod 4). (Hint: Use Wilson’s theorem, Exercise 1.4.10.)

Exercise 2.2.3 Find all integer solutions to 3* + 1 = 2® with z,y # 0.

Exercise 2.2.4 If 7 is an element of R such that when 7 | ab with a,b € R, then
7| a or 7| b, then we say that 7 is prime. What are the primes of Z[i]?

Exercise 2.2.5 A positive integer a is the sum of two squares if and only if
a = b*c where c is not divisible by any positive prime p = 3 (mod 4).

2.3 Eisenstein Integers
Let p = (=1 + +/=3)/2. Notice that p> + p+1 = 0, and p*® = 1. Notice

also that p? = p. Define the Eisenstein integers as the set Z[p] = {a + bp :
a,b € Z}. Notice that Z[p| is closed under complex conjugation.
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Exercise 2.3.1 Show that Z[p] is a ring.

Exercise 2.3.2 (a) Show that Z[p] is Euclidean.
(b) Show that the only units in Z[p] are &1, +p, and 4p°.

Notice that (22 +2 + 1)(z — 1) = 22 — 1 and that we have

(@—p)a—7) = (@—p)a—p) =2 +a+1

so that
1=p(—=p*)=3=0+p(1—-p?=-p*(1-p?

Exercise 2.3.3 Let A =1 — p. Show that X is irreducible, so we have a factor-
ization of 3 (unique up to unit).

Exercise 2.3.4 Show that Z[p]/(\) has order 3.

We can apply the arithmetic of Z|[p] to solve 2% +y3 + 23 = 0 for integers
7,1, z. In fact we can show that a® + 3% + 2 = 0 for a, 3, € Z[p] has no
nontrivial solutions (i.e., where none of the variables is zero).

Example 2.3.5 Let A =1—p, 6 € Z[p|. Show that if A does not divide 6,
then 62 = +1 (mod A\*). Deduce that if o, 3,7 are coprime to A, then the
equation a® + 32 + 42 = 0 has no nontrivial solutions.

Solution. From the previous problem, we know that if A does not divide
0 then § = £1 (mod A). Set £ = 6 or —6 so that £ =1 (mod A). We write
¢ as 1+ dA. Then

+@*F1) = £-1
= E-1)(E-p(E—p)
= (dN)(d\+1—p)(1+d\— p?)
= d\(d\+ \)(d\ — \p?)
Nd(d+ 1)(d — p*).

Since p? = 1 (mod \), then (d — p?) = (d — 1) (mod \). We know from
the preceding problem that A\ divides one of d, d — 1, and d + 1, so we
may conclude that £2 —1 =0 (mod A*), so €2 =1 (mod A\*) and 0 = +1
(mod A\*). We can now deduce that no solution to a® + 33 + 3 = 0 is
possible with «, 3, and ~ coprime to A, by considering this equation mod
A%, Indeed, if such a solution were possible, then somehow the equation

+1+1+1=0 (mod \*)

could be satisfied. The left side of this congruence gives +1 or £3; certainly
+1 is not congruent to 0 (mod A*) since A* is not a unit. Also, +3 is not
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congruent to 0 (mod A\*) since A? is an associate of 3, and thus A\* is not.
Thus, there is no solution to a® + 32 +~3 = 0 if a, 3,y are coprime to .

Hence if there is a solution to the equation of the previous example, one
of a, B, is divisible by X. Say v = A"6, (5, \) = 1. We get o+ 33 +83\3" =
0, 6, a, B coprime to A.

Theorem 2.3.6 Consider the more general
a4+ 3+ X" =0 (2.1)

for a unit e. Any solution for §,c, 3 coprime to X must have n > 2, but if
(2.1) can be solved with n = m, it can be solved for n = m —1. Thus, there
are no solutions to the above equation with §,c, B coprime to .

Proof. We know that n > 1 from Example 2.3.5. Considering the equation
mod A\, we get that 14+14eA3" = 0 (mod A*). There are two possibilities:
if A3 = £2 (mod A*), then certainly n cannot exceed 1; but if n = 1, then
our congruence implies that A | 2 which is not true. The other possibility
is that A3" = 0 (mod \*), from which it follows that n > 2.

We may rewrite (2.1) as

—eN§ = P43
= (a+B)(a+pB)a+p’B).

We will write these last three factors as Ay, As, and As for convenience.
We can see that A6 divides the left side of this equation, since n > 2. Thus
A6| AjAsAg, and A2 | A; for some i. Notice that

A1 — Ay = A5,
A1 - A3 = /\BPQ7
and
A2 — Ag = )\ﬂp

Since A divides one of the A;, it divides them all, since it divides their
differences. Notice, though, that A\? does not divide any of these differences,
since A does not divide 8 by assumption. Thus, the A; are inequivalent
mod A2, and only one of the A; is divisible by A%. Since our equation is
unchanged if we replace § with p3 or p?#, then without loss of generality
we may assume that A\? | A;. In fact, we know that

)\3n—2 ‘ A1~
Now we write
By = A/
BQ = A2/>\7

B3 = A3/)\
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We notice that these B; are pairwise coprime, since if for some prime p, we
had p | By and p | By, then necessarily we would have

p|B1—By=0

and
p|)\B1+BQ—BleZ.

This is only possible for a unit p since ged(c, 5) = 1. Similarly, we can
verify that the remaining pairs of B; are coprime. Since A3"~2 | A;, we
have A\3"=3 | B;. So we may rewrite (2.1) as

_5A3n—363 = BlBng.

From this equation we can see that each of the B; is an associate of a cube,
since they are relatively prime, and we write

Bl = eiH,
3
By = ex(y,
_ 3
B; = e3C3,

for units e;, and pairwise coprime C;. Now recall that

Al = O‘+6a
A2 = a+pﬁ7
Az = a+p’B.

From these equations we have that

P’As+pAa+ A = al(p’+p+1)+BE +p+1)
=0

so we have that
0 = p?AB3 + pABy + \B;

and
0= p°B; + pBs + By.

We can then deduce that
pzegCg’ + peQCS’ + 61)\371736'{’ =0
so we can find units ey, e5 so that
C3 + e,C3 + es N3 207 = 0.

Considering this equation mod A3, and recalling that n > 2, we get that
+14+e4 =0 (mod \?) so e4 = F1, and we rewrite our equation as

C3 + (FC2)° + es 315 = 0.
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This is an equation of the same type as (2.1), so we can conclude that if
there exists a solution for (2.1) with n = m, then there exists a solution
with n =m — 1.

This establishes by descent that no nontrivial solution to (2.1) is possible
in Z[p]. |

2.4 Some Further Examples

Example 2.4.1 Solve the equation y? + 4 = 22 for integers z, y.

Solution. We first consider the case where y is even. It follows that x must
also be even, which implies that 2> = 0 (mod 8). Now, y is congruent to
0 or 2 (mod 4). If y = 0 (mod 4), then y?> + 4 = 4 (mod 8), so we can
rule out this case. However, if y = 2 (mod 4), then y?> + 4 = 0 (mod 8).
Writing y = 2Y with Y odd, and z = 2X, we have 4Y? 4+ 4 = 8X3, so that

Y2 +1=2x°

and
(Y +i)(Y —d) =2X3 = (1 +4)(1 — i) X3
We note that Y2+ 1 =2 (mod 4) and so X? is odd. Now,

Y +i)(Y —4)
1+i)(1—q)

14Y 1-Y\/1+Y 1-Y.
:(2+21)<2_2’>
(1Y 172
B (2) *(2) |

We shall write this last sum as a4 b2. Since Y is odd, a and b are integers.
Notice also that @ + b =1 so that gcd(a,b) = 1. We now have that

X3

X3 = (a+ bi)(a — bi).

We would like to establish that (a+bi) and (a—bi) are relatively prime. We
assume there exists some nonunit d such that d | (a + bi) and d | (a — bi).
But then d | [(a 4 bi) 4+ (a — bi)] = 2a and d | (a+ bi) — (a — bi) = 2bi. Since
ged(a,b) = 1, then d | 2, and thus d must have even norm. But then it is
impossible that d | (a+ bi) since the norm of (a + bi) is a? +b*> = X which
is odd. Thus (a+bi) and (a — bi) are relatively prime, and each is therefore
a cube, since Z[i] is a unique factorization domain. We write

a+bi = (s+ti)> = s® — 3st? + (3s%t — t3)i.
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Comparing real and imaginary parts yields

a = s°— 33152,

b = 3s%t—1t3.

Adding these two equations yields a+b = s —3st24+3s%t—t3. But a+b =1,
so we have

1 = $%—3st?+3s%t—1¢3
= (s —t)(s* +4st +t%).

Now, s,t € Z so (s —t) = £1 and (s* + 4st + t?) = £1. Subtracting the
second equation from the square of the first we find that —6st = 0 or 2.
Since s and t are integers, we rule out the case —6st = 2 and deduce that
either s =0 or t = 0. Thus eithera =1, b=0o0r a =0, b = 1. It follows
that Y = +1, so the only solutions in Z to the given equation with y even
are x = 2, y = +2.

Next, we consider the case where y is odd. We write 23 = (y+2i)(y—2i).
We can deduce that (y + 2i) and (y — 2i) are relatively prime since if d
divided both, d would divide both their sum and their difference, i.e., we
would have d | 2y and d | 4i. But then d would have even norm, and since
y is odd, (y + 2¢) has odd norm; thus d does not divide (y + 2i¢). Hence,
(y + 2i) is a cube; we write

y+2i = (q+1i) = ¢ — 3¢r® + (3¢%r — r?)i.

Comparing real and imaginary parts we have that 2 = 3¢?r — 73 so that
r | 2, and the only values r could thus take are +1 and +2. We get that
the only possible pairs (¢q,7) we can have are (1,1), (—1,1), (1,-2), and
(—1,—-2). Solving for y, and excluding the cases where y is even, we find
that x =5,y = £11 is the only possible solution when y is odd.

Exercise 2.4.2 Show that Z[v/—2] is Euclidean.
Exercise 2.4.3 Solve y*> +2 = 2 for z,y € Z.

Example 2.4.4 Solve y? + 1 = 2P for an odd prime p, and z,y € Z.

Solution. Notice that the equation 32 + 1 = 2 from an earlier problem is
a special case of the equation given here. To analyze the solutions of this
equation, we first observe that for odd y, y> = 1 (mod 4). Thus z would
need to be even, but then if we consider the equation mod 4 we find that it
cannot be satisfied; y? + 1 = 2 (mod 4), while 27 = 0 (mod 4). Thus y is
even; it is easy to see that x must be odd. If y = 0, then z = 1 is a solution
for all p. We call this solution a trivial solution; we proceed to investigate
solutions other than the trivial one. Now we write our equation as

(y+i)(y —i) = aP.
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If y # 0, then we note that if some divisor § were to divide both (y+14) and
(y — 1), then it would divide 2¢; if ¢ is not a unit, then § will thus divide
2, and also y, since y is even. But then it is impossible that § also divide
y + ¢ since 4 is a unit. We conclude that (y +14) and (y — i) are relatively
prime when y # 0. Thus (y + ) and (y — ¢) are both pth powers, and we
may write

(y +1) = e(a + bi)?

for some unit e and integers a and b. We have analyzed the units of Z[i];
they are all powers of 7, so we write

(y + 1) = i*(a + bi)P.

Now,
(y—i) = (y+1) = (—=)"(a — bi)".
Thus
(y+i)(y—1i) = i"(a+ bi)P(=i)*(a — bi)P
= (a®+b?)P

and it follows that = (a? + b?). We know that x is odd, so one of a and b
is even (but not both). We now have that

(y+i)—(y—i) = 2i
= if(a+bi)? — (—i)*(a — bi)P.

We consider two cases separately:

Case 1. k is odd.
In this case we use the binomial theorem to determine the imaginary
parts of both sides of the above equation. We get

2 = Im[(i)*((a+bi)? + (a — bi)P)]
= Im |(Q)* papfj )i (P papfj*ijp
= Im|() Z:jo (b><j>+j2_30 <b>(j>

= 2(_1)(’@*1)/2 Z apj(b)j(_l)jm(?)_

even j,
0<j<p

Thus

1= (—1)k-D/2 Z aP =3 (b)? (—1)3/2 (?)

even j,
0<j<p
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Since a divides every term on the right-hand side of this equation, then
a |1 and a = +1. We observed previously that only one of a, b is odd; thus
b is even. We now substitute a = +1 into the last equation above to get

s= 3 e (?)

even j, J
0<j<p

A=)

If the sign of 1 on the left-hand side of this equality were negative, we would
have that b? | 2; b is even and in particular b # 41, so this is impossible.

Thus o _62@) +b4(i) _...ibp_1<ppil>
)7

Now we notice that 2 | b, so 2 | (5). If p = 3 (mod 4), then we are
finished because 2 1 (g) Suppose in fact that 27 is the largest power of
2 dividing (g) We shall show that 291! will then divide every term in
b? (i) -t bp_3(pfl), and this will establish that no b will satisfy our
equation. We consider one of these terms given by ()72 (?), for an even
value of j; we rewrite this as b2 2 (;n ) (we are not concerned with the
sign of the term). We see that

P\ _ (pr=2)\_(MrE-1
2m 2m —2) 2m(2m — 1)
_ (pr=2)\(p 1
\2m—-2/\2)/m(2m —1)’
so we are considering a term
p— 2 D b2m—2
2m —2)\2) m(2m — 1)

Now, 27 | (1) by assumption. Recall that b is even; thus 22m~2 | p2m =2,
Now m > 2; it is easy to see then that 2m — 2 > m, so 22™~2 does not
divide m. Thus when we reduce the fraction

b2m—2
m(2m — 1)

to lowest terms, the numerator is even and the denominator is odd. There-

fore, y
221 (o) ()
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Thus 24+ divides every term in b? (%) —--- & (pfl)bp’?’ and we deduce that
no value of b can satisfy our equation.

Case 2. k is even.
This case is almost identical to the first case; we mention only the
relevant differences. When we expand

(y+i) — (y —1i) = 2i = i*(a + bi)? — (—i)"(a — bi)?
and consider imaginary parts, we get

1= (—1)k/2 Z aP=I (b) (—1)0—1/2 (p)

odd j, J
0<j<p

We are able to deduce that b = £1; substituting we get the equation

£ = a”(b)j<1><“>/2<p.)

odd 7, J

0<j<p

p 4P p -1
1—a? +a — -k aP™+,

(2> (4> (p - 1)

which we can see is identical to the equation we arrived at in Case 1, with b
replaced by a. Thus we can reproduce the proof of Case 1, with b replaced
by a, to establish that there are no nontrivial solutions with k£ even. We
conclude that the equation y2 + 1 = 2P has no nontrivial solution with

z,y € Z.

Exercise 2.4.5 Show that Z[+/2] is Euclidean.
Exercise 2.4.6 Let e = 14++/2. Write €™ = un+vnv/2. Show that u%fZU,QL = =+1.

Exercise 2.4.7 Show that there is no unit 1 in Z[v/2] such that 1 <7 < 1+ /2.
Deduce that every unit (greater than zero) of Z[v/2] is a power of € = 14 /2.

2.5 Supplementary Problems

Exercise 2.5.1 Show that R = Z[(1 + +/—7)/2] is Euclidean.
Exercise 2.5.2 Show that Z[(1 + /—11)/2] is Euclidean.

Exercise 2.5.3 Find all integer solutions to the equation z? + 11 = ¢°.
Exercise 2.5.4 Prove that Z[v/3] is Euclidean.

Exercise 2.5.5 Prove that Z[+/6] is Euclidean.
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Exercise 2.5.6 Show that Z[(1 + +/—19)/2] is not Euclidean for the norm map.
Exercise 2.5.7 Prove that Z[/—10] is not a unique factorization domain.

Exercise 2.5.8 Show that there are only finitely many rings Z[\/&] with d = 2
or 3 (mod 4) which are norm Euclidean.

Exercise 2.5.9 Find all integer solutions of 3% = z® + 1.
Exercise 2.5.10 Let z1,...,z, be indeterminates. Evaluate the determinant of

the n x n matrix whose (i, 7)-th entry is 27 ". (This is called the Vandermonde
determinant.)
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