Chapter 3

Resultants

In Chapter 2, we saw how Grobner bases can be used in Elimination Theory.
An alternate approach to the problem of elimination is given by resultants.
The resultant of two polynomials is well known and is implemented in many
computer algebra systems. In this chapter, we will review the properties
of the resultant and explore its generalization to several polynomials in
several variables. This multipolynomial resultant can be used to eliminate
variables from three or more equations and, as we will see at the end of the
chapter, it is a surprisingly powerful tool for finding solutions of equations.

§1 The Resultant of Two Polynomials
Given two polynomials f, g € k[x] of positive degree, say

f:aoxl—i-“-—i-al, ap#0, [ >0

(1.1)
g:bomererm, bo#o, m > 0.

Then the resultant of f and g, denoted Res(f, g), is the (I +m) x (I + m)
determinant
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72 Chapter 3. Resultants

where the blank spaces are filled with zeros. When we want to emphasize
the dependence on z, we will write Res(f, g, ) instead of Res(f,g). As a
simple example, we have

(1.3) Res(2® +4x—1,22% +32+7) = det = 159.
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Exercise 1. Show that Res(f, g) = (—1)!™Res(g, f). Hint: What happens
when you interchange two columns of a determinant?

Three basic properties of the resultant are:

¢ (Integer Polynomial) Res(f, g) is an integer polynomial in the coefficients
of f and g.

e (Common Factor) Res(f, g) = 0 if and only if f and g have a common
factor in k[z].

¢ (Elimination) There are polynomials A, B € k[z] such that A f + Bg =
Res(f, g). The coefficients of A and B are integer polynomials in the
coefficients of f and g.

Proofs of these properties can be found in [CLO], Chapter 3, §5. The Integer
Polynomial property says that there is a polynomial

Resim € Zlug, - . -, Ui, Vos - -« 5 Uy
such that if f, g are as in (1.1), then
Res(f, g) = Resym(ao, ..., a1, bo,. .., bm).

Over the complex numbers, the Common Factor property tells us that
f» g € C[z] have a common root if and only if their resultant is zero. Thus
(1.3) shows that #3 + 2 — 1 and 222 + 3z + 7 have no common roots in C
since 159 # 0, even though we don’t know the roots themselves.

To understand the Elimination property, we need to explain how resul-
tants can be used to eliminate variables from systems of equations. As an
example, consider the equations

f=2y—1=0
g=a>+y* —4=0.
Here, we have two variables to work with, but if we regard f and g as

polynomials in x whose coefficients are polynomials in y, we can compute
the resultant with respect to x to obtain

y 0 1
Res(f?.ga .’E) = det -1 Yy 0 — y4 _ 4y2 +1.
0 -1 92—14
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By the Elimination property, there are polynomials A, B € k[z, y] with
A-(xy—1)+ B- (22 +y?> — 4) = y* — 49? + 1. This means Res(f, g, )
is in the elimination ideal (f, g) N k[y] as defined in §1 of Chapter 2, and it
follows that y* — 4y? 4+ 1 vanishes at any common solution of f = g = 0.
Hence, by solving y* — 4y? + 1 = 0, we can find the y-coordinates of the
solutions. Thus resultants relate nicely to what we did in Chapter 2.

Exercise 2. Use resultants to find all solutions of the above equations f =
g = 0. Also find the solutions using Res(f, g,y). In Maple, the command
for resultant is resultant.

More generally, if f and g are any polynomials in k[z,y] in which x
appears to a positive power, then we can compute Res(f, g, z) in the same
way. Since the coefficients are polynomials in y, the Integer Polynomial
property guarantees that Res(f, g, z) is again a polynomial in y. Thus, we
can use the resultant to eliminate z, and as above, Res(f, g, ) is in the
elimination ideal (f, g) N k[y] by the Elimination Property. For a further
discussion of the connection between resultants and elimination theory, the
reader should consult Chapter 3 of [CLO] or Chapter XI of [vdW].

One interesting aspect of the resultant is that it can be expressed in
many different ways. For example, given f, g € k[z] as in (1.1), suppose
their roots are &1, ..., & and 11, . . ., 1, respectively (note that these roots
might lie in some bigger field). Then one can show that the resultant is
given by

Res(f, g) ag’bf) H ﬁ(fz — 1)
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A proof of this is given in the exercises at the end of the section.

Exercise 3.

a. Show that the three products on the right hand side of (1.4) are all
equal. Hint: g = bo(z — 1) - - - ( — 1m)-

b. Use (1.4) to show that Res(fi f2, g) = Res(f1, g)Res(f2, 9).

The formulas given in (1.4) may seem hard to use since they involve the
roots of f or g. But in fact there is a relatively simple way to compute
the above products. For example, to understand the formula Res(f, g) =
ay’ i=1 9(&), we will use the techniques of §2 of Chapter 2. Thus, consider
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the quotient ring Ay = k[z]/(f), and let the multiplication map my be
defined by

my([h]) = [g] - [h] = [gh] € Ay,

where [h] € Ay is the coset of h € k[z]. If we think in terms of remainders
on division by f, then we can regard A as consisting of all polynomials i
of degree < [, and under this interpretation, mgy(h) is the remainder of gh
on division by f. Then we can compute the resultant Res(f, ¢) in terms of
myg as follows.

(1.5) Proposition. Res(f,g) = af* det(my : Ay — Af).

PRrROOF. Note that A; is a vector space over k of dimension [ (this is clear
from the remainder interpretation of Ay). Further, as explained in §2 of
Chapter 2, my : Ay — Ay is a linear map. Recall from linear algebra that
the determinant det(mg) is defined to be the determinant of any matrix M
representing the linear map mg. Since M and m, have the same eigenvalues,
it follows that det(my) is the product of the eigenvalues of mgy, counted with
multiplicity.

In the special case when g(&1), ..., g(§) are distinct, we can prove our
result using the theory of Chapter 2. Namely, since {{1,...,&} = V(f), it
follows from Theorem (4.5) of Chapter 2 that the numbers g(&1), ..., g(&)
are the eigenvalues of mg,. Since these are distinct and Ay has dimension
I, it follows that the eigenvalues have multiplicity one, so that det(m,) =
g(&1) - - g(&), as desired. The general case will be covered in the exercises
at the end of the section. O

Exercise 4. For f = 23 + 2 — 1 and g = 222 + 32 + 7 as in (1.3), use the
basis {1, z,2?} of Ay (thinking of Ay in terms of remainders) to show

72 3
Res(f,g) = 1*det(my) =det | 3 5 —1 | = 159.
2 3 5

Note that the 3 x 3 determinant in this example is smaller than the 5 x 5
determinant required by the definition (1.2). In general, Proposition (1.5)
tells us that Res(f, g) can be represented as an [ x [ determinant, while the
definition of resultant uses an (I + m) x (I + m) matrix. The getmatrix
procedure from FExercise 7 of Chapter 2, §2 can be used to construct the
the smaller matrix. Also, by interchanging f and g, we can represent the
resultant using an m x m determinant.

For the final topic of this section, we will discuss a variation on Res(f, g)
which will be important for §2. Namely, instead of using polynomials in the
single variable x, we could instead work with homogenous polynomials in
variables z, y. Recall that a polynomial is homogeneous if every term has
the same total degree. Thus, if F, G € k[z, y] are homogeneous polynomials
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of total degrees [, m respectively, then we can write

I—

F =apz! + a1z~ Yy + - + a3

(16) m m—1 m
G:b0$ +b113 y++bmy

Note that ag or by (or both) might be zero. Then we define Res(F, G) € k
using the same determinant as in (1.2).

Exercise 5. Show that Res(z!,y™) = 1.

If we homogenize the polynomials f and g of (1.1) using appropriate
powers of y, then we get F' and G as in (1.6). In this case, it is obvious that
Res(f, g) = Res(F, G). However, going the other way is a bit more subtle,
for if F' and G are given by (1.6), then we can dehomogenize by setting
y = 1, but we might fail to get polynomials of the proper degrees since ag
or by might be zero. Nevertheless, the resultant Res(F, G) still satisfies the
following basic properties.

(1.7) Proposition. Fiz positive integers | and m.
a. There is a polynomial Res; ., € Zlag, . . ., a1, bo, - . ., by] such that

Res(F, G) = Resym(ag, ..., a1, b0,...,bm)

for all F, G as in (1.6).

b. Owver the field of complex numbers, Res(F,G) =
equations F' = G = 0 have a solution (z,y) #
called a nontrivial solution).

0 if and only if the
(0,0) in C? (this is

ProoOF. The first statement is an obvious consequence of the determinant
formula for the resultant. As for the second, first observe that if (u, v) € C2
is a nontrivial solution, then so is (Au, Av) for any nonzero complex number
A. We now break up the proof into three cases.

First, if ap = by = 0, then note that the resultant vanishes and that we
have the nontrivial solution (z,y) = (1, 0). Next, suppose that ay # 0 and
by # 0.If Res(F, G) = 0, then, when we dehomogenize by setting y = 1, we
get polynomials f, g € C[z] with Res(f, g) = 0. Since we’re working over
the complex numbers, the Common Factor property implies f and g must
have a common root = u, and then (x,y) = (u, 1) is the desired nontrivial
solution. Going the other way, if we have a nontrival solution (u, v), then
our assumption agby # 0 implies that v # 0. Then (u/v,1) is also a
solution, which means that u/v is a common root of the dehomogenized
polynomials. From here, it follows easily that Res(F, G) = 0.

The final case is when exactly one of ag, by is zero. The argument is a
bit more complicated and will be covered in the exercises at the end of the
section. O
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We should also mention that many other properties of the resultant,
along with proofs, are contained in Chapter 12 of [GKZ)].

ApbDITiIONAL EXERCISES FOR §1

Exercise 6. As an example of how resultants can be used to eliminate
variables from equations, consider the parametric equations

r=14+s+t+ st
y =2+ s+ st+t>
z:s+t+52.

Our goal is to eliminate s,¢ from these equations to find an equation

involving only x, y, 2.

a. Use Grobner basis methods to find the desired equation in x, vy, z.

b. Use resultants to find the desired equations. Hint: Let f =14+ s+ ¢ +
st—z,g=2+s5+st+t2—yand h = s+t + 52 — z. Then eliminate
t by computing Res(f, g,t) and Res(f, h, t). Now what resultant do you
use to get rid of s7

c. How are the answers to parts a and b related?

Exercise 7. Let f, g be asin (1.1). If we divide g by f, we get g = ¢ f +r,
where deg(r) < deg(g) = m. Then, assuming that r is nonconstant, show
that

Res(f, g) = agkdeg(r)Res(f, r).

Hint: Let gy = g — (bo/ag)z™ ' f and use column operations to subtract
bo/ap times the first [ columns in the f part of the matrix from the columns
in the g part. Expanding repeatedly along the first row gives Res(f, g) =
agkdeg(gl)Res(f, g1)- Continue this process to obtain the desired formula.

Exercise 8. Our definition of Res(f, g) requires that f, g have positive

degrees. Here is what to do when f or g is constant.

a. If deg(f) > 0 but g is a nonzero constant by, show that the determinant
(1.2) still makes sense and gives Res(f, by) = b}.

b. If deg(g) > 0 and ag # 0, what is Res(ag, g)? Also, what is Res(ag, bo)?
What about Res(f,0) or Res(0, g)?

c. Exercise 7 assumes that the remainder r has positive degree. Show that
the formula of Exercise 7 remains true even if r is constant.

Exercise 9. By Exercises 1, 7 and 8, resultants have the following three
properties: Res(f, g) = (—1)"™Res(g, f); Res(f, by) = b}; and Res(f, g) =
agkdeg(r)Res(f, r) when g = ¢ f + r. Use these properties to describe an
algorithm for computing resultants. Hint: Your answer should be similar
to the Euclidean algorithm.
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Exercise 10. This exercise will give a proof of (1.4).

a. Given f, g as usual, define res(f, g) = a’ Hi'=1 g9(&), where &1,...,&
are the roots of f. Then show that res(f, g) has the three properties of
resultants mentioned in Exercise 9.

b. Show that the algorithm for computing res(f, g) is the same as the
algorithm for computing Res(f, g), and conclude that the two are equal
for all f,g.

Exercise 11. Let f = aoz! + a;2'™! + -+ 4+ a; € k[z] be a polynomial

with ag # 0, and let Ay = klz]/(f). Given g € k[z], let mgy : Ay — Ay be

multiplication by g.

a. Use the basis {1,z,...,2!71} of A; (so we are thinking of A; as
consisting of remainders) to show that the matrix of m, is

0 0 0 —ai/ag

1 0 0 —al_l/ao
Cf - 101 0 _al—2/a0

o0 --- 1 —al/ao

This matrix (or more commonly, its transpose) is called the companion
matriz of f.
b. If g = bpz™ + - - - + by, then explain why the matrix of mg is given by

9(Cp) = boCF + b1CF o+ byl

where I is the | x [ identity matrix. Hint: By Proposition (2.4) of
Chapter 2, the map sending g € k[z] to my € M (k) is a ring
homomorphism.

c. Conclude that Res(f, g) = af* det(g(Cy)).

Exercise 12. In Proposition (1.5), we interpreted Res(f, g) as the de-

terminant of a linear map. It turns out that the original definition (1.2)

of resultant has a similar interpretation. Let P, denote the vector space

of polynomials of degree < n. Since such a polynomial can be written

apz™ + + - - + an, it follows that {z™,..., 1} is a basis of P,.

a. Given f, g asin (1.1), show that if (A, B) € P,,_1®F,_1,then A f+Byg
is in P4m—1. Conclude that we get a linear map ®¢ 4 : Pp—1 ® P—1 —

P)l+m—1~
b. If we use the bases {z™~!,... 1} of Py,_1, {2!71, ..., 1} of P,_; and
{xtHm=1 1} of Piiym_1, show that the matrix of the linear map

@, from part a is exactly the matrix used in (1.2). Thus, Res(f, g) =
det(®y 4), provided we use the above bases.

c. If Res(f, g) # 0, conclude that every polynomial of degree <1+ m — 1
can be written uniquely as A f+ B g where deg(A) < m and deg(B) < .
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Exercise 13. In the text, we only proved Proposition (1.5) in the special

case when g(&1), ..., (&) are distinct. For the general case, suppose f =

ap(z — &)™ -+ (x — & )%, where &, ..., & are distinct. Then we want to

prove that det(m,) = [Ti_; g(&)*.

a. First, suppose that f = (x — £)*. In this case, we can use basis of Ay
given by {(z—¢&)*™!, ..., x—¢&, 1} (as usual, we think of A as consisting
of remainders). Then show that the matrix of m, with respect to the
above basis is upper triangular with diagonal entries all equal to g(&).
Conclude that det(my) = g(£§)*. Hint: Write g = bpz™ + --- + by, in
the form g = co(x — &)™ + - - - + e¢m—1(x — &) + ¢ by replacing « with
(x — &) + & and using the binomial theorem. Then let © = £ to get
cm = g(&).

b. In general, when f = ag(x — &) -+ - (v — )%, show that there is a
well defined map

A — (k[z]/{(z — &)™) & - @ (k[z]/{(z — &)%)

which preserves sums and products. Hint: This is where working with
cosets is a help. It is easy to show that the map sending [h] € Ay to
[h] € klz]/{(x — &)™) is well-defined since (x — &;)* divides f.

c. Show that the map of part b is a ring isomorphism. Hint: First show
that the map is one-to-one, and then use linear algebra and a dimension
count to show it is onto.

d. By considering multiplication by g on

(klal/((z = &)™) ® --- @ (K[l /((z = &)™)

and using part a, conclude that det(m,) = []i_; g(&)* as desired.

Exercise 14. This exercise will complete the proof of Proposition (1.7).

Suppose that F, G are given by (1.6) and assume ag # 0 and by = - -+ =

b.—1 = 0 but b, # 0. If we dehomogenize by setting y = 1, we get

polynomials f, g of degree [, m — r respectively.

a. Show that Res(F, G) = ajRes(f, g).

b. Show that Res(F,G) = 0 if and only FF = G = 0 has a nontrivial
solution. Hint: Modify the argument given in the text for the case when
ag and by were both nonzero.

§2 Multipolynomial Resultants

In §1, we studied the resultant of two homogeneous polynomials F, G in
variables x, y. Generalizing this, suppose we are given n + 1 homogeneous
polynomials Fy, ..., F, in variables xg, ..., x,, and assume that each F;
has positive total degree. Then we get n + 1 equations in n + 1 unknowns:

(2.1) Fo(zg, ... xn) =+ = Fp(z0,...,2n) = 0.
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Because the F; are homogeneous of positive total degree, these equations
always have the solution g = - -+ = x,, = 0, which we call the trivial solu-
tion. Hence, the crucial question is whether there is a nontrivial solution.
For the rest of this chapter, we will work over the complex numbers, so
that a nontrivial solution will be a point in C"*\ {(0,...,0)}.

In general, the existence of a nontrivial solution depends on the coef-
ficients of the polynomials Fy, ..., F},: for most values of the coefficients,
there are no nontrivial solutions, while for certain special values, they exist.

One example where this is easy to see is when the polynomials F; are all
linear, i.e., have total degree 1. Since they are homogeneous, the equations
(2.1) can be written in the form:

Fy = cooro + -+ + conTy = 0
(2.2)

Fn:Cn0x0+"'+Cnnxn:0-

This is an (n + 1) x (n + 1) system of linear equations, so that by linear
algebra, there is a nontrivial solution if and only if the determinant of the
coefficient matrix vanishes. Thus we get the single condition det(c;;) = 0
for the existence of a nontrivial solution. Note that this determinant is a
polynomial in the coefficients c;;.

Exercise 1. There was a single condition for a nontrivial solution of (2.2)
because the number of equations (n + 1) equaled the number of unknowns
(also n + 1). When these numbers are different, here is what can happen.
a. If we have r < n + 1 linear equations in n + 1 unknowns, explain why
there is always a nontrivial solution, no matter what the coefficients are.
b. When we have r > n + 1 linear equations in n + 1 unknowns, things
are more complicated. For example, show that the equations
Fo = coor + cory = 0
F1 = C10T + c11Yy = 0
Fy = coor + c21y =0

have a nontrivial solution if and only if the three conditions

c C C c c c
det 00 01 ) _ det 00 0L ) _ det 10 1) _
€10 C11 C20 C21 C20 C21

are satisfied.

In general, when we have n + 1 homogeneous polynomials Fy, ..., F, €
Clzo, . . -, Tn], we get the following Basic Question: What conditions must
the coefficents of Fy, ..., Fy satisfy in order that Fy = --- = F, = 0 has

a nontrivial solution? To state the answer precisely, we need to introduce
some notation. Suppose that d; is the total degree of F;, so that F; can be
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written

Fi = E Ci’a{Ea.

la|=d;

For each possible pair of indices ¢, a, we introduce a variable w; o. Then,
given a polynomial P € Clu; o], we let P(Fy, ..., F,) denote the number
obtained by replacing each variable u; o in P with the corresponding coef-
ficient ¢; . This is what we mean by a polynomial in the coefficients of the
F;. We can now answer our Basic Question.

(2.3) Theorem. If we fix positive degrees dy,...,d,, then there is a

unique polynomial Res € Zlu; o] which has the following properties:

a. If Fy,...,F, € Clxy,...,x,] are homogeneous of degrees do, . . .,dn,
then the equations (2.1) have a nontrivial solution over C if and only if
Res(Fo, ..., Fp) = 0.

b. Res(zd, ... zd) =1.

c. Res is irreducible, even when regarded as a polynomial in Clu; o).

PrROOF. A complete proof of the existence of the resultant is beyond the
scope of this book. See Chapter 13 of [GKZ] or §78 of [vdW] for proofs.
At the end of this section, we will indicate some of the intuition behind
the proof when we discuss the geometry of the resultant. The question of

uniqueness will be considered in Exercise 5. O

We call Res(Fy, .. ., F,) the resultant of Fy, . . ., F,. Sometimes we write
Resq,.....q, instead of Res if we want to make the dependence on the degrees
more explicit. In this notation, if each F; = Y I ¢;jx; is linear, then

discussion following (2.2) shows that
Resl’..,,l(Fo, ey Fn) = det(cij).

Another example is the resultant of two polynomials, which was discussed in
§1. In this case, we know that Res(Fy, F1) is given by the determinant (1.2).
Theorem (2.3) tells us that this determinant is an irreducible polynomial
in the coefficients of Fy, Fj.

Before giving further examples of multipolynomial resultants, we want to
indicate their usefulness in applications. Let’s consider the implicitization
problem, which asks for the equation of a parametric curve or surface. For
concreteness, suppose a surface is given parametrically by the equations

x = f(s,t)
(2.4) y =g(s,1)
z = h(s,t),

where f(s,t), g(s, t), h(s, t) are polynomials (not necessarily homogeneous)
of total degrees dg, d1, ds. There are several methods to find the equation
p(z,y, z) = 0 of the surface described by (2.4). For example, Chapter 3 of
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[CLO] uses Grobner bases for this purpose. We claim that in many cases,
multipolynomial resultants can be used to find the equation of the surface.

To use our methods, we need homogeneous polynomials, and hence we
will homogenize the above equations with respect to a third variable u. For
example, if we write f(s,t) in the form

f(s,t) = fao(8,t) + fag—1(s,t) + -+ fo(s, 1),
where f; is homogeneous of total degree j in s, ¢, then we get
F(s,t,u) = fa(s,t) + fao_1(s,)u+ -+ fo(s, t)u,
which is now homogeneous in s,t,u of total degree dy. Similarly, g(s,t)

and h(s, t) homogenize to G(s,t,u) and H(s,t,u), and the equations (2.4)
become

(2.5)  F(s,t,u) — zu® = G(s,t,u) — yu® = H(s,t,u) — zu®™ = 0.

Note that x, y, z are regarded as coefficients in these equations.
We can now solve the implicitization problem for (2.4) as follows.

(2.6) Proposition. With the above notation, assume that the system of
homogeneous equations

fao(s,t) = ga,(s,t) = hq,(s,t) =0

has only the trivial solution. Then, for a given triple (z,y,z) € C3, the
equations (2.4) have a solution (s,t) € C? if and only if

Resdg,d, ,dy (F - xud07 G — yudl,H — zud2> =0.

PRrROOF. By Theorem (2.3), the resultant vanishes if and only if (2.5) has
a nontrivial solution (s, ¢, u). If u # 0, then (s/u,t/u) is a solution to
(2.4). However, if u = 0, then (s, t) is a nontrivial solution of fg,(s,t) =
9d, (8,t) = ha,(s,t) = 0, which contradicts our hypothesis. Hence, u = 0
can’t occur. Going the other way, note that a solution (s, t) of (2.4) gives
the nontrivial solution (s, t, 1) of (2.5). O

Since the resultant is a polynomial in the coefficients, it follows that
(2.7) p(x,y, 2) = Resay.dy ., (F — 2u®, G — yu™, H — zu™)

is a polynomial in x,y, z which, by Proposition (2.6), vanishes precisely
on the image of the parametrization. In particular, this means that the
parametrizaton covers all of the surface p(z,y,z) = 0, which is not
true for all polynomial parametrizations—the hypothesis that fq,(s,t) =
9d, (S,t) = ha,(s,t) = 0 has only the trivial solution is important here.

Exercise 2.

a. If fq,(s,t) = ga,(s,t) = hg,(s,t) = 0 has a nontrivial solution, show
that the resultant (2.7) vanishes identically. Hint: Show that (2.5) always
has a nontrivial solution, no matter what x, y, z are.
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b. Show that the parametric equations (z,y, 2) = (st, st, st?) define the
surface 3 = yz. By part a, we know that the resultant (2.7) can’t be
used to find this equation. Show that in this case, it is also true that
the parametrization is not onto—there are points on the surface which
don’t come from any s, t.

We should point that for some systems of equations, such as

r=14+s+1t+ st
y=24+s+3t+ st
z=8—1+4 st,

the resultant (2.7) vanishes identically by Exercise 2, yet a resultant can
still be defined—this is one of the sparse resultants which we will consider
in Chapter 7.

One difficulty with multipolynomial resultants is that they tend to be
very large expressions. For example, consider the system of equations given
by 3 quadratic forms in 3 variables:

Fo = co1x® + coay® + c032® + coary + cosr2z + copyz = 0
F = C11£IC2 + c12y2 + 61322 + crawy + c1522 + c16yz = 0

By = cq12® + 62292 + co32” + €247y + C2572 + co6yz = 0.

Classically, this is a system of “three ternary quadrics”. By Theorem (2.3),
the resultant Resg 2 2(Fo, F1, F>) vanishes exactly when this system has a
nontrivial solution in z, y, 2.

The polynomial Resg 22 is very large: it has 18 variables (one for each
coefficient ¢;;), and the theory of §3 will tell us that it has total degree
12. Written out in its full glory, Resa 22 has 21,894 terms (we are grateful
to Bernd Sturmfels for this computation). Hence, to work effectively with
this resultant, we need to learn some more compact ways of representing
it. We will study this topic in more detail in §3 and §4, but to whet the
reader’s appetite, we will now give one of the many interesting formulas for
ReSQQ,g.

First, let J denote the Jacobian determinant of Fy, Fy, Fb:

oFy O0Fy O0F,

9 oy 0z

B OF,  OF, OF

A R e v o K
ox Jy 0z

which is a cubic homogeneous polynomial in x, y, z. This means that the
partial derivatives of J are quadratic and hence can be written in the
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following form:

oJ

Frl bo12? + boay® + bos2z? + boawy + boszz + bosyz
os _ bi1z? + biay? + bigz® + b b b

oy 1127 + 012y~ + 01327 + 0142Y + 01522 + 016Y2
5_J _ 2 2 2

9 bo12” 4 baoy” + bazz” + basxy + baswz + bosyz.

Note that each b;; is a cubic polynomial in the ¢;;. Then, by a classical for-
mula of Salmon (see [Sal], Art. 90), the resultant of three ternary quadrics
is given by the 6 x 6 determinant

Co1 Co2 Co3 Coa Cos5 Coe
C11 €12 €13 Cig4 Ci5 Ci6

-1 )
(2.8) Resano(Fo, Fi, o) = —= det C21 C22 C23 C24 C25 C26

512 bor boz boz bos bos bos
bir biz biz bia bis bis

b21 b22 b23 b24 b25 b26

Exercise 3.

a.

b.

Use (2.8) to explain why Ress 22 has total degree 12 in the variables
Co1; - - -5 C26-
Why is the fraction —1/512 needed in (2.8)? Hint: Compute the
resultant Ress 2 2(22, 32, 22).
Use (2.7) and (2.8) to find the equation of the surface defined by the
equations

r=1+s+1t+ st

y =2+ 5+ st +t

z=s+1t+ s
Note that st = st + > = s> = 0 has only the trivial solution, so that

Proposition (2.6) applies. You should compare your answer to Exercise 6
of §1.

In §4 we will study the general question of how to find a formula for a

given resultant. Here is an example which illustrates one of the methods
we will use. Consider the following system of three homogeneous equations
in three variables:

Fo=a1x+ay+asz=0

(29) F1 = bll' + bgy + b3Z =0

Fy = c12® + 02y2 + 832’2 + cazy + csxz + cgyz = 0.

Since Fy and Fj are linear and F5 is quadratic, the resultant involved is
Resy,1,2(Fo, F1, F>). We get the following formula for this resultant.
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(2.10) Proposition. Resy 12(Fo, F1, F2) is given by the polynomial
a%b%c;g — a%b2b306 + a%b%@ — 2a1a9b1bacs + aiasbibsce
+ ajasbsbscs — a1a2b§C4 + ajasbibacg — 2a1a3b1bzcy — a1a3b305
+ ajasbobscy + a%b%c?, — a%blbgcg, + agbgcl — U/Qa,gb%CG
+ agaszbibocs + asazbibscy — 2asa3bobscy + a%b%cz — a§b1b204 + agbgcl.

PROOF. Let R denote the above polynomial, and suppose we have a non-
trivial solution (x,y, z) of (2.9). We will first show that this forces a slight
variant of R to vanish. Namely, consider the six equations

(211) .CC'F‘O:y'F‘O:Z'F‘Oiy'F‘l:Z'F‘l:1'1‘7‘2:07
which we can write as
wmx® + 0 + 0 + asry + azxrz + 0 = 0
0 + axy? + 0 + azy + 0 + azyz = 0
0 + 0 + a3z® + 0 4+ aixzz + ayz = O
0 + by? + 0 + bizy + 0 4+ byyz = 0
0 + 0 + b32d + 0 4+ bixz + byz = 0
clxz + 02y2 + 0322 + cry 4+ csrz + cgyz = 0.

N

If we regard 22,42, 22, 2y, vz, yz as “unknowns”, then this system of six
linear equations has a nontrivial solution, which implies that the determi-
nant D of its coefficient matrix is zero. Using a computer, one easily checks
that the determinant is D = —a R.

Thinking geometrically, we have proved that in the 12 dimensional space
C'? with aq, ..., cg as coordinates, the polynomial D vanishes on the set

(2.12) {(a1,...,cq) : (2.9) has a nontrivial solution} c C*2.

However, by Theorem (2.3), having a nontrival solution is equivalent to the
vanishing of the resultant, so that D vanishes on the set

V(Resl,lg) C (Clz.

This means that D € I(V(Res1,1,2)) = /(Res1,1,2), where the last equality
is by the Nullstellensatz (see §4 of Chapter 1). But Resq 1,2 is irreducible,
which easily implies that /(Res1,1,2) (Res1,1,2). This proves that D €
(Resy1,2), so that D = —a1 R is a multlple of RGSLLQ. Irreducibility then
implies that Res; 12 divides either a; or R. The results of §3 will tell us
that Res; 1,2 has total degree 5. It follows that Res; 1,2 divides R, and since
R also has total degree 5, it must be a constant multiple of Res; 1,2. By
computing the value of each when (Fy, Fy, Fb) = (z,y, 22), we see that the
constant must be 1, which proves that R = Res; 1,2, as desired. O

Exercise 4. Verify that R = 1 when (Fy, F1, F») = (z,y, 22).

The equations (2.11) may seem somewhat unmotivated. In §4 we will see
that there is a systematic reason for chosing these equations.
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The final topic of this section is the geometric interpretation of the resul-
tant. We will use the same framework as in Theorem (2.3). This means that
we consider homogeneous polynomials of degree dy, ..., d,, and for each
monomial z¢ of degree d;, we introduce a variable u; . Let M be the total
number of these variables, so that C is an affine space with coordinates
Ui o for all 0 < i < n and |a| = d;. A point of CM will be written (c¢; q)-
Then consider the “universal” polynomials

o
F, = E Ujor®, 1=0,...,n.
lal=d;

Note that the coefficients of the z® are the variables u; . If we evaluate
Fo,...,F, at (¢c;o) € CM, we get the polynomials Fy, . .., F},, where F; =
Z|a\:di ¢i,ox®. Thus, we can think of points of CM as parametrizing all
possible (n + 1)-tuples of homogeneous polynomials of degrees dy, . . ., d,.

To keep track of nontrivial solutions of these polynomials, we will use
projective space P"(C), which we write as P for short. Recall the following:

e A point in P has homogeneous coordinates (aq, . . ., a,), where a; € C
are not all zero, and another set of coordinates (by,...,b,) gives the
same point in P” if and only if there is a complex number A # 0 such
that (bo,...,bn) = Aao, ..., an).

o If F(xg,...,x,) is homogeneous of degree d and (by,...,b,) =
Aag, - .., a,) are two sets of homogeneous coordinates for some point
p € P", then

F(by,...,by) = XF(ag, ..., an).

Thus, we can’t define the value of F' at p, but the equation F(p) = 0
makes perfect sense. Hence we get the projective variety V(F) C P*,
which is the set of points of P" where F' vanishes.

For a homogeneous polynomial F', notice that V(F) C P" is determined
by the nontrivial solutions of F' = 0. For more on projective space, see
Chapter 8 of [CLO].

Now consider the product CM x P™. A point (Cias @0y - - -y Gp) € CM x pr
can be regarded as n+ 1 homogenegous polynomials and a point of P". The
“yniversal” polynomials F; are actually polynomials on CM x P", which
gives the subset W = V(Fy, ..., F,). Concretely, this set is given by

W = {(cia, a0, - - -, an) € CM x P" : (ag, ...,a,) is a
nontrivial solution of Fy = --- = F,, = 0, where
(2.13) Fo, ..., F, are determined by (¢; o)}
= {all possible pairs consisting of a set of equations
Fy=---=F, =0 of degrees dy, ..., d, and

a nontrivial solution of the equations}.
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Now comes the interesting part: there is a natural projection map
7:CM xpr — CcM

defined by 7(¢iq,a0,-.-,an) = (Cia), and under this projection, the
variety W C CM x P™ maps to

7(W) = {(ci.a) € CM : there is (ag,...,a,) € P"
such that (¢; o, ag,...,a,) € W}
= {all possible sets of equations Fy = --- = F,, = 0 of

degrees dy, . .., d, which have a nontrivial solution}.

Note that when the degrees are (do, d1,d2) = (1,1,2), 7(W) is as in (2.12).
The essential content of Theorem (2.3) is that the set 7(WW) is defined
by the single irreducible equation Resgq,,. . 4, = 0. To prove this, first note

that (W) is a variety in CM by the following result of elimination theory.

¢ (Projective Extension Theorem) Given a variety W C CM x P" and the
projection map 7w : CM x P* — CM the image w(W) is a variety in CM.

(See, for example, §5 of Chapter 8 of [CLO].) This is one of the key reasons
we work with projective space (the corresponding assertion for affine space
is false in general). Hence w(W) is defined by the vanishing of certain
polynomials on CM. In other words, the existence of a nontrivial solution
of Ffy = .-+ = F, = 0 is determined by polynomial conditions on the
coefficients of Fy, ..., F,.

The second step in the proof is to show that we need only one polynomial
and that this polynomial is irreducible. Here, a rigorous proof requires
knowing certain facts about the dimension and irreducible components of
a variety (see, for example, [Shal, §6 of Chapter I). If we accept an intuitive
idea of dimension, then the basic idea is to show that the variety 7(W) C
CM is irreducible (can’t be decomposed into smaller pieces which are still
varieties) of dimension M — 1. In this case, the theory will tell us that 7 (V)
must be defined by exactly one irreducible equation, which is the resultant
Resq,,....d, = 0.

To prove this, first note that C™ x P has dimension M + n. Then
observe that W Cc CM x P" is defined by the n + 1 equations Fg = --- =
F, = 0. Intuitively, each equation drops the dimension by one, though
strictly speaking, this requires that the equations be “independent” in an
appropriate sense. In our particular case, this is true because each equation
involves a disjoint set of coeflicient variables w; o. Thus the dimension of
Wis (M +n)—(n+1) = M — 1. One can also show that W is irreducible
(see Exercise 9 below). From here, standard arguments imply that 7(1V)
is irreducible. The final part of the argument is to show that the map
W — m(W) is one-to-one “most of the time”. Here, the idea is that if
Fy = --- = F, = 0 do happen to have a nontrivial solution, then this
solution is usually unique (up to a scalar multiple). For the special case
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when all of the F; are linear, we will prove this in Exercise 10 below. For the
general case, see Proposition 3.1 of Chapter 3 of [GKZ]. Since W — «(W)
is onto and one-to-one most of the time, m(W) also has dimension M — 1.

ApDiTiIONAL EXERCISES FOR §2

Exercise 5. To prove the uniqueness of the resultant, suppose there are

two polynomials Res and Res’ satisfing the conditions of Theorem (2.3).

a. Adapt the argument used in the proof of Proposition (2.10) to show that
Res divides Res’ and Res’ divides Res. Note that this uses conditions a
and c of the theorem.

b. Now use condition b of Theorem (2.3) to conclude that Res = Res'.

Exercise 6. A homogeneous polynomial in Clx] is written in the form
az?. Show that Resy(az?) = a. Hint: Use Exercise 5.

Exercise 7. When the hypotheses of Proposition (2.6) are satisfied, the
resultant (2.7) gives a polynomial p(z, y, z) which vanishes precisely on the
parametrized surface. However, p need not have the smallest possible total
degree: it can happen that p = ¢¢ for some polynomial ¢ of smaller total
degree. For example, consider the (fairly silly) parametrization given by
(x,y,2) = (s,s,t?). Use the formula of Proposition (2.10) to show that in
this case, p is the square of another polynomial.

Exercise 8. The method used in the proof of Proposition (2.10) can be
used to explain how the determinant (1.2) arises from nontrival solutions
F = G = 0, where F, G are as in (1.6). Namely, if (z,y) is a nontrivial
solution of (1.6), then consider the | + m equations

g™t F =0
™2y F =0
y" Tt F =0
Hl.ag=0
272y -G =0
y'l.G =o.

Regarding this as a system of linear equations in unknowns z!tm~—1,

g tm=2y .yl show that coefficient matrix is exactly the trans-
pose of (1.2), and conclude that the determinant of this matrix must vanish
whenever (1.6) has a nontrivial solution.
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Exercise 9. In this exercise, we will give a rigorous proof that the set W
from (2.13) is irreducible of dimension M — 1. For convenience, we will
write a point of CM as (Fy, ..., Fy,).

a. If p = (ag,...,a,) are fixed homogeneous coordinates for a point
p € P show that the map CM — C"*! defined by (Fp,...,F,) —
(Fo(p), ..., Fn(p)) is linear and onto. Conclude that the kernel of this
map has dimension M — n — 1. Denote this kernel by K (p).

b. Besides the projection 7 : CM x P* — CM used in the text, we also
have a projection map C™ x P* — P", which is projection on the second
factor. If we restrict this map to W, we get a map 7 : W — P defined
by 7(Fy, ..., F,,p) = p. Then show that

7 '(p) = K(p) x {p},

where as usual 7~ !(p) is the inverse image of p € P™ under 7, i.e., the
set of all points of W which map to p under 7. In particular, this shows
that 7 : W — P" is onto and that all inverse images of points are
irreducible (being linear subspaces) of the same dimension.

c. Use Theorem 8 of [Sha], §6 of Chapter 1, to conclude that W is
irreducible.

d. Use Theorem 7 of [Sha], §6 of Chapter 1, to conclude that W has di-
mension M — 1 = n (dimension of P*) + M — n — 1 (dimension of the
inverse images).

Exercise 10. In this exercise, we will show that the map W — (W) is

usually one-to-one in the special case when Fy, . .., F}, have degree 1. Here,

we know that if F; = Z;.Z:O ¢ijxj, then Res(Fy, ..., F,) = det(A), where

A = (c¢;j). Note that Aisa (n + 1) x (n + 1) matrix.

a. Show that Fy = --- = F,, = 0 has a nontrivial solution if and only if A
has rank < n + 1.

b. If A has rank n, prove that there is a unique nontrivial solution (up to
a scalar multiple).

c. Given 0 < 4,5 < n, let A% be the n x n matrix obtained from A by
deleting row i and column j. Prove that A has rank < n if and only if
det(A%7) = 0 for all 4, . Hint: To have rank > n, it must be possible
to find n columns which are linearly independent. Then, looking at the
submatrix formed by these columns, it must be possible to find n rows
which are linearly independent. This leads to one of the matrices A%J.

d. Let Y = V(det(4%) : 0 < 4,5 < n). Show that Y C 7(W) and that
Y # n(W). Since 7(W) is irreducible, standard arguments show that Y’
has dimension strictly smaller than w(W) (see, for example, Corollary 2
to Theorem 4 of [Sha], §6 of Chapter I).

e. Show that if a,b € W and n(a) = 7(b) € (W) \ Y, then a = b. Since
Y has strictly smaller dimension than 7(W), this is a precise version of
what we mean by saying the map W — 7(W) is “usually one-to-one”.
Hint: Use parts b and c.
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§3 Properties of Resultants

In Theorem (2.3), we saw that the resultant Res(Fy, ..., F),) vanishes if
and only if Fy = --- = F, = 0 has a nontrivial solution, and is irreducible
over C when regarded as a polynomial in the coefficients of the F;. These
conditions characterize the resultant up to a constant, but they in no way
exhaust the many properties of this remarkable polynomial. This section
will contain a summary of the other main properties of the resultant. No
proofs will be given, but complete references will be provided.

Throughout this section, we will fix total degrees dy, ..., d, > 0 and let
Res = Resq,,....d4, € Z[u; o] be the resultant polynomial from §2.

We begin by studying the degree of the resultant.

(3.1) Theorem. For a fized j between 0 and n, Res is homogeneous in
the variables u; o, |a| = d;, of degree do - --d;j_1d;41 - - dyn. This means
that

Res(Fy, ..., AFj, ..., F,) = \odimidividuReg(Fy .. F,).
Furthermore, the total degree of Res is Z;L:O do---dj_1djtq---dy.
PROOF. A proof can be found in §2 of [Jou] or Chapter 13 of [GKZ]. O
Exercise 1. Show that final assertion of Theorem (3.1) is an immediate

consequence of the formula for Res(Fy,...,AF},..., F,). Hint: What is
Res(AFo, ..., AFy,)?

Exercise 2. Show that formulas (1.2) and (2.8) for Res;,, and Ress 2
satisfy Theorem (3.1).

We next study the symmetry and multiplicativity of the resultant.

(3.2) Theorem.
a. Ifi < j, then
RGS(F(),...7Fi,...,Fj,...,Fn) =
(—1)dodnRes(Fy, ..., Fj, ..., Fy, ..., F,),

where the bottom resultant is for degrees dy, ..., d;,...,d;, ..., dy.
b. If Fj = FjF} is a product of homogeneous polynomials of degrees d;

and dj, then

Res(Fo, ..., Fj,..., F,) =
Res(Fo, ..., Fj, ..., F) - Res(Fo, ..., F/, ..., Fy),

where the resultants on the bottom are for degrees dg, . ..,d’, ..., d, and

’]7
!
do,...,d!, ..., dy.

» 0
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PROOF. A proof of the first assertion of the theorem can be found in §5 of
[Jou]. As for the second, we can assume j = n by part a. This case will be
covered in Exercise 9 at the end of the section. O

Exercise 3. Prove that formulas (1.2) and (2.8) for Res;,, and Ress 2
satisfy part a of Theorem (3.2).

Our next task is to show that the analog of Proposition (1.5) holds
for general resultants. We begin with some notation. Given homogeneous

polynomials Fy, ..., F, € Clxo, ..., z,] of degrees dy, . .., d,, let
i(zo,...,xn_1) = Fi(xg,...,Tn_1,1
(3.3) Jilao 1) = Filwo bl
Fi(xo, e ,l'n,1) = Fi(.’ﬂo, ey Tp—1, 0)
Note that Fo,..., F,_1 are homogeneous in Clxog, ..., z,—1] of degrees
Clo7 ey dp_1.
(3.4) Theorem. If Res(Fy,...,F,_1) # 0, then the quotient ring A =
Clzoy -y Zn-1]/{fo, - - s fn_1) has dimensiondy - - - d,,—1 as a vector space
over C, and
Res(Fy, ..., Fy) = Res(Fo, ..., Fp_1)® det(my, : A — A),

where my, : A — A is the linear map given by multiplication by f,.

PROOF. Although we will not prove this result (see [Jou], §§2, 3 and 4 for a
complete proof), we will explain (non-rigorously) why the above formula is
reasonable. The first step is to show that the ring A is a finite dimensional
vector space over C when Res(Fy, ..., F,_1) # 0. The crucial idea is to
think in terms of the projective space P". We can decompose P™ into two
pieces using x,: the affine space C* C P" defined by z,, = 1, and the
“hyperplane at infinity” P"~' C P" defined by z,, = 0. Note that the
other variables g, . .., x,—1 play two roles: they are ordinary coordinates
for C* C P™, and they are homogeneous coordinates for the hyperplane at
infinity.

The equations Fy = - -- = F,,_1 = 0 determine a projective variety V C
P". By (3.3), fo = - -+ = fu—1 = 0 defines the “affine part” C" NV C V,
while Fig = -+ = F,_1 = 0 defines the “part at infinity” PNV cV.

Hence, the hypothesis Res(Fo, ..., F,_1) # 0 implies that there are no
solutions at infinity. In other words, the projective variety V is contained in
C™ C P". Now we can apply the following result from algebraic geometry:

¢ (Projective Varieties in Affine Space) If a projective variety in P™ is
contained in an affine space C™ C P™, then the projective variety must
consist of a finite set of points.

(See, for example, [Shal, §5 of Chapter I.) Applied to V, this tells us that V'
must be a finite set of points. Since C is algebraically closed and V' C C"
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is defined by fo = --- = f,—1 = 0, the Finiteness Theorem from §2
of Chapter 2 implies that A = Clzo,...,xn-1]/{fo, ..., fn—1) is finite
dimensional over C. Hence det(my, : A — A) is defined, so that the
formula of the theorem makes sense.

We also need to know the dimension of the ring A. The answer is provided
by Bézout’s Theorem:

® (Bézout’s Theorem) If the equations Fy = --- = F,_; = 0 have de-
gree dy, . . . ,d,—1 and finitely many solutions in P™, then the number of
solutions (counted with multiplicity) is do - - - dp—1.-

(See [Sha], §2 of Chapter II.) This tells us that V has dp---dp—1
points, counted with multiplicity. Because V' C C" is defined by fy =

= fan-1 = 0, Theorem (2.2) from Chapter 4 implies that the
number of points in V, counted with multiplicity, is the dimension of
A = Clzo, ...y Zn-1]/{fo, -+, frn—1). Thus, Bézout’s Theorem shows that
dimA=dg---dp_;.

We can now explain why Res(Fo, ..., F,,_1)% det(my,) behaves like a
resultant. The first step is to prove that det(my, ) vanishes if and only if
Fy = -+ = F, = 0 has a solution in P". If we have a solution p, then
p € V since Fy(p) = -+ = Fr—1(p) = 0. But V. C C", so we can write
p = (ao,...,an-1,1), and f,(ao,...,an—1) = 0 since F,(p) = 0. Then
Theorem (2.6) of Chapter 2 tells us that f,(ag,...,a,—1) = 0is an eigen-
value of my, , which proves that det(my, ) = 0. Conversely, if det(my, ) = 0,
then one of its eigenvalues must be zero. Since the eigenvalues are f,(p)
for p € V (Theorem (2.6) of Chapter 2 again), we have f,(p) = 0 for some
p. Writing p in the form (ag,...,a,—1,1), we get a nontrivial solution of
Fy=---=F, =0, as desired.

Finally, we will show that Res(F, ..., F,,—1)% det(my,) has the homo-
geneity properties predicted by Theorem (3.1). If we replace F; by AF; for
some j < nand A € C\ {0}, then \F; = AF;, and neither A nor my, are
affected. Since

RQS(F(), ceey )\Fj, c aFn—l) =
No-dsadin-dnaRes(Fy, . Fy, ..., Ful),

we get the desired power of A because of the exponent d, in the for-
mula of the theorem. On the other hand, if we replace F), with AF,,, then

Res(Fo,. .., Fy—1) and A are unchanged, but my, becomes myys, = Amy, .
Since

det(Amy,) = A4 A det(my,)

it follows that we get the correct power of A because, as we showed above,
A has dimension dg - - - dy_1.

This discussion shows that the formula Res(Fo, ..., F,,—1)% det(my, )
has many of the properties of the resultant, although some important points
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were left out (for example, we didn’t prove that it is a polynomial in the
coefficients of the F;). We also know what this formula means geometrically:
it asserts that the resultant is a product of two terms, one coming from

the behavior of Fp,..., F,_1 at infinity and the other coming from the
behavior of f, = F,(zg,...,2Zn-1,1) on the affine variety determined by
vanishing of fo, ..., fn—1. O

Exercise 4. When n = 2, show that Proposition (1.5) is a special case
of Theorem (3.4). Hint: Start with f, g as in (1.1) and homogenize to get
(1.6). Use Exercise 6 of §2 to compute Res(F).

Exercise 5. Use Theorem (3.4) and getmatrix to compute the resultant
of the polynomials 22 + y? + 22, 2y + zz + yz, xy=2.

The formula given in Theorem (3.4) is sometimes called the Poisson
Formula. Some further applications of this formula will be given in the
exercises at the end of the section.

In the special case when Fyp, ..., F, all have the same total degree d > 0,
the resultant Resg,.. 4 has degree d™ in the coefficients of each F;, and its
total degree is (n + 1)d". Besides all of the properties listed so far, the
resultant has some other interesting properties in this case:

(3.5) Theorem. Res = Resq,.. 4 has the following properties:
a. If F; are homogeneous of total degree d and G; = Z?:o ai; Fy, where
(aij) is an invertible matriz with entries in C, then

Res(Go, ..., Gp) = det(aij)anes(Fo, o ).

b. If we list all monomials of total degree d as z®M, ... z*WN) and pick
n + 1 distinct indices 1 < ig < -+ < i, < N, the bracket [i; ...1,] is
defined to be the determinant

[Z'() e Zn] = det(ui,a(ij)) S Z[uz,a(j)]
Then Res is a polynomial in the brackets [ig . . . in].

PROOF. See Proposition 5.11.2 of [Jou] for a proof of part a. For part b,
note that if (a;;) has determinant 1, then part a implies Res(Go, ..., Gy) =
Res(Fy, ..., F,), so Res is invariant under the action of SL(n 4+ 1,C) =
{A € M@q1)yx(mn+1)(C) : det(A) = 1} on (n + 1)-tuples of homogenous
polynomials of degree d. If we regard the coefficients of the universal poly-
nomials F; as an (n + 1) x N matrix (u;(;)), then this action is matrix
multiplication by elements of SL(n+ 1, C). Since Res is invariant under this
action, the First Fundamental Theorem of Invariant Theory (see [Stul],
Section 3.2) asserts that Res is a polynomial in the (n + 1) x (n + 1)
minors of (u; o(;)), which are exactly the brackets [ig . . . iy]. O
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Exercise 6. Show that each bracket [ig . .. 14,] = det(u; q(;;)) is invariant
under the action of SL(n + 1, C).

We should mention that the expression of Res in terms of the brackets
[i0 - - . 1y] is not unique. The different ways of doing this are determined
by the algebraic relations among the brackets, which are described by
the Second Fundamental Theorem of Invariant Theory (see Section 3.2
of [Stul]).

As an example of Theorem (3.5), consider the resultant of three ternary
quadrics

Fy = co12? + coay® + co32% + coary + o5z + copyz = 0
Fi = c12® + e12y® + c132% + cuzy + c1572 + cieyz = 0
By = c2® + 022y2 + €932 + Co4xY + Ca5T2 + Ccoeyz = 0.

In §2, we gave a formula for Resg 2 2(Fo, F1, F2) as a certain 6 x 6 determi-
nant. Using Theorem (3.5), we get quite a different formula. If we list the
six monomials of total degree 2 as 22, 4%, 22, 2y, 2, yz, then the bracket
[igi1i2] is given by

Coig  C0iy  COig

[ioilig] = det Ch‘o cli1 017;2

C2i,  C2iy;  C2iy
By [KSZ], the resultant Resa 2 2(Fy, F1, F3) is the following polynomial in
the brackets [igi1ia):

[145][246][356][456] — [146][156][246][356] — [145][245][256][356]
— [145][246][346][345] + [125][126][356][456] — 2[124][156][256][356]
— [134][136][246][456] — 2[135][146][346][246] + [235][234][145][456]
— 2[236][345][245][145] — [126]?[156][356] — [125]*[256][356]
— [134]%[246][346] — [136]%[146][246] — [145][245][235]
5[345][234)% + 2[123][124][356][456] — [123][125][346][456]
3][134][256][456] + 2[123][135][246][456] — 2[123][145][246][356]
4)%[356)% + 2[124][125][346][356] — 2[124][134][256] [356]
— 3[124][135][236][456] — 4[124][135][246][356] — [125]*[346]?
+ 2[125][135][246][346] — [134]%[256]% + 2[134][135][246][256]
— 2[135)%[246]% — [123][126][136][456] + 2[123][126][146][356]
— 2[124][136]%[256] — 2[125][126][136][346] + [123][125][235][456]

— 2[123][125][245][356] — 2[124][235]%[156] — 2[126][125][235][345]
— [123][234][134][456] + 2[123][234][346][145] — 2[236][134][245]
— 2[235][234][134][146] + 3[136][125][235][126] — 3[126][135][236][125]
— [136][125]2[236] — [126]%[135][235] — 3[134][136][126][234]
+ 3[124][134][136][236] + [134]%[126][236] + [124][136]%[234]

14
— 12
12
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— 3[124][135][234][235] + 3[134][234][235][125] —
[124][235]2[134] — [136]2[126]> — [125]%[235]?

— [134]%[234] + 3[123][124][135][236] + [123][134][235][126]

+ [123][135][126][234] + [123][134][236][125] + [123][136][125][234]
+ [123][124][

—2

[135][234]%[125]

][124][235][136] — 2[123]%[126][136] + 2[123][125][235]
[123]%[134][234] — [123]*.

This expression for Resz 22 has total degree 4 in the brackets since the
resultant has total degree 12 and each bracket has total degree 3 in the c;;.
Although this formula is rather complicated, its 68 terms are a lot simpler
than the 21,894 terms we get when we express Ress 2 2 as a polynomial in
the Cij!

Exercise 7. When Fy = agz? + ajzy + azy? and Fy = box? + byay + boy?,
the only brackets to consider are [01] = agb; — aibg, [02] = agba — a2by
and [12] = a1bs — asb; (why?). Express Ress 2 as a polynomial in these
three brackets. Hint: In the determinant (1.2), expand along the first row
and then expand along the column containing the zero.

Theorem (3.5) also shows that the resultant of two homogeneous poly-
nomials Fy(xz,y), Fi(x,y) of degree d can be written in terms of the
brackets [ij]. The resulting formula is closely related to the Bézout Formula
described in Chapter 12 of [GKZ].

For further properties of resultants, the reader should consult Chapter 13
of [GKZ] or Section 5 of [Jou].

ApDITiIONAL EXERCISES FOR §3

Exercise 8. The product formula (1.4) can be generalized to arbi-
trary resultants. With the same hypotheses as Theorem (3.4), let V =
V(fo,..., fn—1) be as in the proof of the theorem. Then

RGS(F(), Ce ,Fn) = RQS(Fo, Ce ,Fn_l)d" H fn(p)m(p),
peV

where m(p) is the multiplicity of p in V. This concept is defined in [Shal, §2
of Chapter II, and §2 of Chapter 4. For this exercise, assume that V consists
of dy - -d,—1 distinct points (which means that all of the multiplicities
m(p) are equal to 1) and that f,, takes distinct values on these points.
Then use Theorem (2.6) of Chapter 2, together with Theorem (3.4), to
show that the above formula for the resultant holds in this case.
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Exercise 9. In Theorem (3.4), we assumed that the field was C. It turns
out that the result is true over any field k. In this exercise, we will use this
version of the theorem to prove part b of Theorem (3.2) when F,, = F, F)'.
The trick is to chose k appropriately: we will let k£ be the field of rational
functions in the coefficients of Fy, ..., F,,_1, F),, F/'. This means we regard
each coefficient as a separate variable and then k is the field of rational
functions in these variables with coefficients in Q.

a. Explain why F,..., F,_1 are the “universal” polynomials of degrees
do,...,dp—1 in zg,...,x,_1, and conclude that Res(Fy,..., Fp_1) is
nonzero.

b. Use Theorem (3.4) (over the field k) to show that
Res(Fy, ..., F,) = Res(Fo, ..., F)) - Res(Fo, ..., F).

Notice that you need to use the theorem three times. Hint: my, =
My, O Mgy

Exercise 10. The goal of this exercise is to generalize Proposition (2.10)
by giving a formula for Res; ; 4 for any d > 0. The idea is to apply Theo-
rem (3.4) when the field k consists of rational functions in the coefficients
of Fy, F1, F5 (so we are using the version of the theorem from Exercise 9).
For concreteness, suppose that

Foy =aiz+ay+aszz =0
Fy = bz + boy + bz = 0.
a. Show that Res(Fy, F1) = ajby — azb; and that the only solution of
fo=fi=0is
o asbs — asby _ a1bg —agh
0= (l1b2 — G,le Yo = albg — agbl
b. By Theorem (3.4), k[z,y]/{fo, f1) has dimension one over C. Use
Theorem (2.6) of Chapter 2 to show that
det(my,) = fa(xo, yo)-
c. Since fa(z,y) = Fa(z,y,1), use Theorem (3.4) to conclude that
Resy 1,a(Fo, F1, F2) = Fa(az2bs — azba, —(a1bs — azbi), a1ba — azb1).

Note that asbs — asbs, a1bs — asbi, a1bs — asby are the 2 x 2 minors of

the matrix
ay az ag
bi by b3 )

d. Use part ¢ to verify the formula for Res; 1,2 given in Proposition (2.10).
e. Formulate and prove a formula similar to part ¢ for the resultant
....1,d- Hint: Use Cramer’s Rule. The formula (with proof) can be
found in Proposition 5.4.4 of [Jou].
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Exercise 11. Consider the elementary symmetric functions o4, ...,0, €
Clz1, ..., zp]. These are defined by

01 =21+ +Tn

Or = E Liy Tiy ** * L,

11 <ip < <ip

Op = T1X2 Ty

Since o; is homogeneous of total degree i, the resultant Res(oy,...,04)

is defined. The goal of this exercise is to prove that this resultant equals

—1 for all n > 1. Note that this exercise deals with n polynomials and n

variables rather than n + 1.

a. Show that Res(z + y, zy) = —1.

b. To prove the result for n > 2, we will use induction and Theorem (3.4).
Thus, let

g; = Ji(xl, ey Tp—1, 0)

g; = 0'7;(131, ey Tp—1, 1)

as in (3.3). Prove that &; is the ith elementary symmetric function in
T1,...,Tn_1 and that 6; = 7; + 7;_1 (Where o9 = 1).

c. f A=Clxy,...,20-1]/{F1,...,0n-1), then use part b to prove that
the multiplication map mgs, : A — A is multiplication by (—1)". Hint:
Observe that 7,, = G,,_1.

d. Use induction and Theorem (3.5) to show that Res(oq,...,0,) = —1
for all n > 1.

Exercise 12. Using the notation of Theorem (3.4), show that
Res(Fy, ..., Fh_1, xfll) = Res(Fo, . .. ,Fn,l)d.

§4 Computing Resultants

Our next task is to discuss methods for computing resultants. While Theo-
rem (3.4) allows one to compute resultants inductively (see Exercise 5 of §3
for an example), it is useful to have other tools for working with resultants.
In this section, we will give some further formulas for the resultant and
then discuss the practical aspects of computing Resq,,... q,. We will begin
by generalizing the method used in Proposition (2.10) to find a formula for
Resy 1,2. Recall that the essence of what we did in (2.11) was to multiply
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each equation by appropriate monomials so that we got a square matrix
whose determinant we could take.

To do this in general, suppose we have Fy, ..., F, € Clzg,...,z,] of
total degrees do, ..., d,. Then set
d=> (di—1)+1=> di—n.
i=0 i=0

For instance, when (dg, d1,d2) = (1,1, 2) as in the example in Section 2,
one computes that d = 2, which is precisely the degree of the monomials
on the left hand side of the equations following (2.11).

Exercise 1. Monomials of total degree d have the following special prop-
erty which will be very important below: each such monomial is divisible
by a:fl7 for at least one i between 0 and n. Prove this. Hint: Argue by
contradiction.

Now take the monomials z* = z(° - - - 2% of total degree d and divide
them into n sets as follows:

So = {z% : |a| = d, zd divides z*}

Sy = {z: |a| = d, x> doesn’t divide z® but z{* does}

dn o
S, = {z%:|a| = d, zd, ... 2" don’t divide z® but 2% does}.

By Exercise 1, every monomial of total degree d lies in one of Sy, ..., S,.
Note also that these sets are mutually disjoint. One observation we will
need is the following:

if x* € .S;, then we can write z® = xf" : xa/xf".

Notice that xa/x‘iii is a monomial of total degree d — d; since z% € S;.

Exercise 2. When (dg, d1,ds) = (1,1,2), show that So = {22, zy, 2},
S1 = {y* yz}, and Sy = {z?}, where we are using z,y, z as variables.
Write down all of the z¢ /x‘j in this case and see if you can find these
monomials in the equations (2.11).

Exercise 3. Prove that the number of monomials in S, is exactly
do -+ dp—1. This fact will play an extremely important role in what fol-
lows. Hint: Given integers ag, ..., a,—1 with 0 < a; < d; — 1, prove that
there is a unique a, such that z3° - .-z € S,. Exercise 1 will also be
useful.
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Now we can write down a system of equations that generalizes (2.11).
Namely, consider the equations

xo‘/xgo - Fy =0 forall z® € S
(4.1)

% /xdn . F, =0 forall z* € S,.

Exercise 4. When (dp,dy,d2) = (1,1,2), check that the system of
equations given by (4.1) is ezactly what we wrote down in (2.11).

Since F; has total degree d;, it follows that z*/ xfi - F; has total degree
d. Thus each polynomial on the left side of (4.1) can be written as a linear
combination of monomials of total degree d. Suppose that there are N such
monomials. (In the exercises at the end of the section, you will show that NV
equals the binomial coefficient (dZ") .) Then observe that the total number
of equations is the number of elements in Sy U - -- U S,,, which is also V.
Thus, regarding the monomials of total degree d as unknowns, we get a

system of N linear equations in N unknowns.

(4.2) Definition. The determinant of the coefficient matrix of the N x N
system of equations given by (4.1) is denoted D,,.

For example, if we have

Foy =a1z 4+ ay+asz =0
(4.3) Fy =bix+ by + b3z =0

Fy = clx2 + 62y2 + 03,22 + caxy + cszz + cgyz = 0,
then the equations following (2.11) imply that

a1 0 0 s ag 0
0 as 0 ay 0 as
0 0 as 0 a; ag
0 b 0 b 0 b3
0 0 b3 0 by by

Ci C2 C3 C4 C5 Cp

(4.4) Dy = det

Exercise 5. When we have polynomials Fy, F; € Clz, y] as in (1.6), show
that the coefficient matrix of (4.1) is exactly the transpose of the matrix
(1.2). Thus, D; = Res(Fp, F1) in this case.

Here are some general properties of D,,:
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Exercise 6. Since D, is the determinant of the coefficient matrix of (4.1),

it is clearly a polynomial in the coefficients of the F;.

a. For a fixed i between 0 and n, show that D, is homogeneous in the
coeflicients of F; of degree equal to the number u; of elements in S;.
Hint: Show that repacing F; by A\F; has the effect of multplying a certain
number (how many?) equations of (4.1) by A\. How does this affect the
determinant of the coefficient matrix?

b. Use Exercise 3 to show that D,, has degree dy - - - d,,—1 as a polynomial
in the coefficents of F,. Hint: If you multiply each coefficient of F,, by
X € C, show that D,, gets multiplied by \9odn-1,

c. What is the total degree of D, 7 Hint: Exercise 19 will be useful.

Exercise 7. In this exercise, you will prove that D,, is divisible by the
resultant.

a. Prove that D,, vanishes whenever F = --- = F,, = 0 has a nontrivial
solution. Hint: If the F; all vanish at (co,...,cn) # (0,...,0), then
show that the monomials of total degree d in cg, . . . , ¢, give a nontrivial

solution of (4.1).

b. Using the notation from the end of §2, we have V(Res) C CV, where CV
is the affine space whose variables are the coefficients u; o, of Fy, ..., F,.
Explain why part a implies that D,, vanishes on V(Res).

c. Adapt the argument of Proposition (2.10) to prove that D,, € (Res), so
that Res divides D,,.

Exercise 7 shows that we are getting close to the resultant, for it enables
us to write

(4.5) D,, = Res - extraneous factor.

We next show that the extraneous factor doesn’t involve the coefficients of
F,, and in fact uses only some of the coefficients of Fy, ..., F,,_1.

(4.6) Proposition. The extrancous factor in (4.5) is an integer polyno-
mial in the coefficients of Fo, ..., F,_1, where F'; = F;(xg,...,2pn-1,0).

PRrROOF. Since D,, is a determinant, it is a polynomial in Z[u; o], and we
also know that Res € Z[u; o). Exercise 7 took place in Clu; ] (because of
the Nullstellensatz), but in fact, the extraneous factor (let’s call it E,,) must
lie in Q[u;,q] since dividing D,, by Res produces at worst rational coeffi-
cients. Since Res is irreducible in Z[u; o], standard results about polynomial
rings over Z imply that E,, € Z[u; ] (see Exercise 20 for details).

Since D,, = Res- F,, is homogeneous in the coefficients of F;,, Exercise 20
at the end of the section implies that Res and F,, are also homogeneous
in these coefficients. But by Theorem (3.1) and Exercise 6, both Res and
D,, have degree dy - - - d,—1 in the coefficients of F},. It follows immediately
that F, has degree zero in the coefficients of F),, so that it depends only
on the coefficients of Fp, ..., F,_1.



100 Chapter 3. Resultants

To complete the proof, we must show that F,, depends only on the coef-
ficients of the F';. This means that coefficients of Fy, ..., F,,_1 with z, to
a positive power don’t appear in F,. To prove this, we use the following
clever argument of Macaulay (see [Macl]). As above, we think of Res, D,
and E,, as polynomials in the u; o, and we define the weight of u; o to be
the exponent a, of x, (where a = (ag,...,ay)). Then, the weight of a
monomial in the u; o, say U?f,lal' - uZLfm, is defined to be the sum of the
weights of each u;; o, multiplied by the corresponding exponents. Finally, a
polynomial in the u; , is said to be isobaric if every term in the polynomial
has the same weight.

In Exercise 23 at the end of the section, you will prove that every term
in D,, has weight dy - - - d,,, so that D, is isobaric. The same exercise will
show that D,, = Res- F,, implies that Res and F,, are isobaric and that the
weight of D,, is the sum of the weights of Res and E,,. Hence, it suffices to
prove that E,, has weight zero (be sure you understand this). To simplify
notation, let u; be the variable representing the coefficient of ajfl in Fj.
Note that wug,...,u,—1 have weight zero while u, has weight d,. Then
Theorems (2.3) and (3.1) imply that one of the terms of Res is

:l:ughmdn,ucliodz“'dn L. ui{)“'dn—l

(see Exercise 23). This term has weight dy - - - d,,, which shows that the
weight of Res is dj - - - d,,. We saw above that D,, has the same weight, and
it follows that E,, has weight zero, as desired. O

Although the extraneous factor in (4.5) involves fewer coefficients than
the resultant, it can have a very large degree, as shown by the following
example.

Exercise 8. When d; = 2 for 0 < 7 < 4, show that the resultant has total
degree 80 while D4 has total degree 420. What happens when d; = 3 for
0 < ¢ < 47 Hint: Use Exercises 6 and 19.

Notice that Proposition (4.6) also gives a method for computing the
resultant: just factor D, into irreducibles, and the only irreducible factor
in which all variables appear is the resultant! Unfortunately, this method
is wildly impractical owing to the slowness of multivariable factorization
(especially for polynomials as large as D),).

In the above discussion, the sets Sy, ..., S, and the determinant D,, de-
pended on how the variables xg, . . ., z,, were ordered. In fact, the notation
D,, was chosen to emphasize that the variable x,, came last. If we fix ¢
between 0 and n — 1 and order the variables so that x; comes last, then
we get slightly different sets Sp, ..., .S, and a slightly different system of
equations (4.1). We will let D; denote the determinant of this system of
equations. (Note that there are many different orderings of the variables
for which z; is the last. We pick just one when computing D;.)
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Exercise 9. Show that D; is homogeneous in the coefficients of each F}
and in particular, is homogeneous of degree dy - --d;—1d;+1 ---d, in the
coefficients of F;.

We can now prove the following classical formula for Res.

(4.7) Proposition. When Fy, ..., F,, are universal polynomials as at the
end of §2, the resultant is the greatest common divisor of the polynomials
Dy, ..., D, in the ring Zu; ], i-e.,

Res = £GCD(Dy, . .., D,).

PROOF. For each i, there are many choices for D; (corresponding to the
(n — 1)! ways of ordering the variables with x; last). We need to prove that
no matter which of the various D; we pick for each i, the greatest common

divisor of Dy, ..., D, is the resultant (up to a sign).
By Exercise 7, we know that Res divides D,,, and the same is clearly
true for Dy, ..., D,_1. Furthermore, the argument used in the proof of

Proposition (4.6) shows that D; = Res - E;, where E; € Zu; ] doesn’t
involve the coefficients of F;. It follows that

GCD(Dy, ..., D,) = Res - GCD(Ey, . .., E,).

Since each E; doesn’t involve the variables u; o, the GCD on the right
must be constant, i.e., an integer. However, since the coefficients of D,, are
relatively prime (see Exercise 10 below), this integer must be +1, and we
are done. Note that GCD’s are only determined up to invertible elements,
and in Z[u; o], the only invertible elements are £1. O

Exercise 10. Show that Dn(xgo, ...,z") = 41, and conclude that as
a polynomial in Zu; o], the coefficients of D,, are relatively prime. Hint:
If you order the monomials of total degree d appropriately, the matrix of
(4.1) will be the identity matrix when F; = z%.

While the formula of Proposition (4.7) is very pretty, it is not particularly
useful in practice. This brings us to our final resultant formula, which will
tell us exactly how to find the extraneous factor in (4.5). The key idea,
due to Macaulay, is that the extraneous factor is in fact a minor (i.e., the
determinant of a submatrix) of the N x N matrix from (4.1). To describe
this minor, we need to know which rows and columns of the matrix to
delete. Recall also that we can label the rows and columns the matrix of

n

(4.1) using all monomials of total degree d = »°." ) d; — n. Given such a
monomial %, Exercise 1 implies that xfi divides = for at least one 3.

(4.8) Definition. Let dy,...,d, and d be as usual.
a. A monomial x% of total degree d is reduced if xf divides xz* for ezactly
one .
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b. D}, is the determinant of the submatrix of the coefficient matrix of (4.1)
obtained by deleting all rows and columns corresponding to reduced
monomials z¢.

Exercise 11. When (dy, d1,d2) = (1,1,2), we have d = 2. Show that all
monomials of degree 2 are reduced except for zy. Then show that the D} =
ay corresponding to the submatrix (4.4) obtained by deleting everything
but row 2 and column 4.

Exercise 12. Here are some properties of reduced monomials and D),.
a. Show that the number of reduced monomials is equal to

ZdO"'dj—ldj+1"'dn-
j=0

Hint: Adapt the argument used in Exercise 3.

b. Show that D!, has the same total degree as the extraneous factor in (4.5)
and that it doesn’t depend on the coefficients of F;,. Hint: Use part a
and note that all monomials in S,, are reduced.

Macaulay’s observation is that the extraneous factor in (4.5) is exactly
D!, up to a sign. This gives the following formula for the resultant as a
quotient of two determinants.

(4.9) Theorem. When Fy,...,F, are universal polynomials, the resul-
tant is given by

D,
RES = =+ F .
Further, if k is any field and Fy, ..., F, € kl[zo,...,xy], then the above
formula for Res holds whenever D), # 0.

PROOF. The only proof we are aware of is in Macaulay’s original paper
[Mac2]. O

Exercise 13. Using zg, x1, €2 as variables with xy regarded as last, write
Resi12.2 as a quotient Dy/D{, of two determinants and write down the
matrices involved (of sizes 10 x 10 and 2 x 2 respectively). The reason for
using Do/ Dj, instead of Do/D) will become clear in Exercise 2 of §5. A
similar example is worked out in detail in [BGW].

While Theorem (4.9) applies to all resultants, it has some disadvantages.
In the universal case, it requires dividing two very large polynomials, which
can be very time consuming, and in the numerical case, we have the awk-
ward situation where both D] and D,, vanish, as shown by the following
exercise.
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Exercise 14. Give an example of polynomials of degrees 1, 1, 2 for which
the resultant is nonzero yet the determinants Dy and D) both vanish. Hint:
See Exercise 10.

Because of this phenomenon, it would be nice if the resultant could be
expressed as a single determinant, as happens with Res; ,,. It is not known
if this is possible in general, though many special cases have been found. We
saw one example in the formula (2.8) for Resg 2 2. This can be generalized
(in several ways) to give formulas for Res;;; and Res;;;; when [ > 2 (see
[GKZ], Chapter 3, §4 and Chapter 13, §1, and [Sal], Arts. 90 and 91). As an
example of these formulas, the following exercise will show how to express
Res;;; as a single determinant of size 212 — | when [ > 2.

Exercise 15. Suppose that Fy, Fy, F» € C[z, y, 2] have total degree | > 2.
Before we can state our formula, we need to create some auxilliary equa-
tions. Given nonnegative integers a, b, ¢ with a + b + ¢ = [ — 1, show that
every monomial of total degree [ in x, y, z is divisible by either 221, y*+1,
or z¢T1, and conclude that we can write Fy, Fi, F» in the form

FO _ :Ea+1P0 + berlQO + Zc+1RO
(4.10) Fy =a"'P+ " Qr + 2T Ry
F2 xa-‘rlPQ + yb+1Q2 + Zc+1R2.

There may be many ways of doing this. We will regard Fy, Fy, F> as univeral
polynomials and pick one particular choice for (4.10). Then set

Py Qo Ry
Fa,b,c = det Pl Ql Rl
P, Q2 R

You should check that Fy p . has total degree 21 — 2.
Then consider the equations
x% - Fy =0, % of total degree | — 2
- F =0, x® of total degree [ — 2
(4.11)
x® - Fy =0, x® of total degree [ — 2

Fope =0, x%°2¢ of total degree | — 1.

Each polynomial on the left hand side has total degree 2] — 2, and you

should prove that there are 212 — [ monomials of this total degree. Thus we

can regard the equations in (4.11) as having 2% — [ unknowns. You should

also prove that the number of equations is 21> — I. Thus the coefficient

matrix of (4.11), which we will denote Cj, is a (2% — [) x (2% — ) matrix.
In the following steps, you will prove that the resultant is given by

Resy 1,1(Fo, F1, F) = £ det(CY).
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a. If (u,v,w) # (0,0,0) is a solution of Fy = F; = F» = 0, show that
F, .. vanishes at (u, v, w). Hint: Regard (4.10) as a system of equations
in unknowns z¢+1, b+l zotl,

b. Use standard arguments to show that Res;;; divides det(C).

c. Show that det(C;) has degree [? in the coefficients of Fyy. Show that the
same is true for F; and Fs.

d. Conclude that Res;;; is a multiple of det(C}).

e. When (Fy, Fy, Fy) = (2,4, 2!), show that det(C;) = £1. Hint: Show
that Fyp . = xlil’“ylfl’bzl’lfc and that all monomials of total degree
21 —2 not divisible by z!, 4/, 2! can be written uniquely in this form. Then
show that Cj is the identity matrix when the equations and monomials
in (4.11) are ordered appropriately.

f. Conclude that Res; ;;(Fo, F1, Fo) = £ det(CY).

Exercise 16. Use Exercise 15 to compute the following resultants.

a. Res(2? + y? + 22, vy + 22 + yz, 2% + 222 + 392).

b. Res(st+su+tu+u?(1—x), st+ su+t> +u?(2—y), s> + su+tu —u?z),
where the variables are s,t,u, and x,y, z are part of the coefficients.
Note that your answer should agree with what you found in Exercise 3
of §2.

We will end this section with a brief discussion of some of the practical
aspects of computing resultants. All of the methods we’'ve seen involve
computing determinants or ratios of determinants. Since the usual formula
for a N x N determinant involves N! terms, we will need some clever
methods for computing large determinants.

As Exercise 16 illustrates, the determinants can be either numerical,
with purely numerical coefficients (as in part a of the exercise), or sym-
bolic, with coefficients involving other variables (as in part b). Let’s begin
with numerical determinants. In most cases, this means determinants whose
entries are rational numbers, which can be reduced to integer entries by
clearing denominators. The key idea here is to reduce modulo a prime p and
do arithmetic over the finite field IF,, of the integers mod p. Computing the
determinant here is easier since we are working over a field, which allows
us to use standard algorithms from linear algebra (using row and column
operations) to find the determinant. Another benefit is that we don’t have
to worry how big the numbers are getting (since we always reduce mod p).
Hence we can compute the determinant mod p fairly easily. Then we do this
for several primes pq, ..., p, and use the Chinese Remainder Theorem to
recover the original determinant. Strategies for how to choose the size and
number of primes p; are discussed in [CM] and [Man2], and the sparseness
properties of the matrices in Theorem (4.9) are exploited in [CKL].

This method works fine provided that the resultant is given as a single
determinant or a quotient where the denominator is nonzero. But when we
have a situation like Exercise 14, where the denominator of the quotient
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is zero, something else is needed. One way to avoid this problem, due to
Canny [Canl], is to prevent determinants from vanishing by making some
coefficients symbolic. Suppose we have Fy, ..., F, € Zlxq,...,z,]. The
determinants D,, and D!, from Theorem (4.9) come from matrices we will
denote M,, and M, . Thus the formula of the theorem becomes
det(M,,)
Res(Fy, ..., Fp) =+ —F——%
es(Fo ) = )
provided det(M)) # 0. When det(M)) = 0, Canny’s method is to
introduce a new variable u and consider the resultant

4.12 Res Fo—uxdo,...7Fn—uacd"L .
0 n

Exercise 17. Fix an ordering of the monomials of total degree d. Since

each equation in (4.1) corresponds to such a monomial, we can order the

equations in the same way. The ordering of the monomials and equations

determines the matrices M,, and M. Then consider the new system of

equations we get by replacing F; by F; — uz% in (4.1) for 0 < i < n.

a. Show that the matrix of the new system of equations is M,, — u I, where
I is the identity matrix of the same size as M,,.

b. Show that the matrix we get by deleting all rows and columns corre-
sponding to reduced monomials, show that the matrix we get is M/ —u I
where I is the appropriate identity matrix.

This exercise shows that the resultant (4.12) is given by

det(M,, — ul)

det(M!, — ul)

since det(M) — uI) # 0 (it is the characteristic polynomial of M]). Tt
follows that the resultant Res(Fp, . .., F},) is the constant term of the poly-
nomial obtained by dividing det(M,, — w I) by det(M, — w I). In fact, as
the following exercise shows, we can find the constant term directly from
these polynomials:

Res(Fy —uzl, . .. F, —uzi) =+

n

Exercise 18. Let I’ and G be polynomials in u such that F'is a multiple
of G. Let G = b,u" + higher order terms, where b, # 0. Then F' = a,u” +
higher order terms. Prove that the constant term of F'/G is a,/b,.

It follows that the problem of finding the resultant is reduced to comput-
ing the determinants det(M,, — u I) and det(M/ — u I). These are called
generalized characteristic polynomials in [Canl].

This brings us to the second part of our discussion, the computation
of symbolic determinants. The methods described above for the numerical
case don’t apply here, so something new is needed. One of the most interest-
ing methods involves interpolation, as described in [CM]. The basic idea is
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that one can reconstruct a polynomial from its values at a sufficiently large
number of points. More precisely, suppose we have a symbolic determinant,
say involving variables ug, ..., u,. The determinant is then a polynomial
D(ug, ..., uy,). Substituting u; = a;, where a; € Z for 0 < i < n,
we get a numerical determinant, which we can evaluate using the above
method. Then, once we determine D(ay,...,a,) for sufficiently many
points (ag, . . ., a,), we can reconstruct D(ug, . . ., u,). Roughly speaking,
the number of points chosen depends on the degree of D in the variables
U, . . ., Up. There are several methods for choosing points (ag, ..., a,),
leading to various interpolation schemes (Vandermonde, dense, sparse,
probabilistic) which are discussed in [CM]. We should also mention that
in the case of a single variable, there is a method of Manocha [Man2] for
finding the determinant without interpolation.

Now that we know how to compute resultants, it’s time to put them to
work. In the next section, we will explain how resultants can be used to
solve systems of polynomial equations. We should also mention that a more
general notion of resultant, called the sparse resultant, will be discussed in
Chapter 7.

ApDITIONAL EXERCISES FOR §4

Exercise 19. Show that the number of monomials of total degree d in
n + 1 variables is the binomial coefficient (d:”).

Exercise 20. This exercise is concerned with the proof of Proposi-

tion (4.6).

a. Suppose that E € Z[u; o] is irreducible and nonconstant. If F' € Q[u;,q]
is such that D = EF € Z[u; ], then prove that F' € Z[u;|. Hint:
We can find a positive integer m such that mF € Z[u; o]|. Then apply
unique factorization to m - D = E - mF.

b. Let D = EF in Z[u; ] ,and that assume that for some j, D is ho-
mogenous in the u;q, || = d;. Then prove that E and F are also
homogeneous in the u; q, |@| = d;.

Exercise 21. In this exercise and the next we will prove the formula for
Resg 2.2 given in equation (2.8). Here we prove two facts we will need.

a. Prove Euler’s formula, which states that if FF € Ek[xo,...,z,] is
homogeneous of total degree d, then
. OF
dF = P —

Hint: First prove it for a monomial of total degree d and then use
linearity.
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b. Suppose that

Ay Ay Aj
M = det Bl Bg B3 s
Cy Cy Cs
where Ay, ..., C5 are in k[zg, ..., z,]. Then prove that
OM E)Al/(’)ml AQ A3 A1 8142/8371 A3
) = det 8B1 /81'1 B2 B3 + det B1 832/8501 Bg
i 0Cy/0x; Cy Cs C1 9Cy/0x; Cs

Al A2 6143/(956‘z
+ det Bl BQ 833/8%‘,‘
01 02 803/8.171

Exercise 22. We can now prove formula (2.8) for Resg 2 2. Fix Fy, Fy, Fy €
Clx, y, 2] of total degree 2. As in §2, let J be the Jacobian determinant

8F0/8x 8F0/8y 6F0/8,z
J =det | OF;/0x OF1/0y OF/0z
3F2/8$ 8F2/6y an/az

a. Prove that J vanishes at every nontrivial solution of Fy = F; = F> = 0.
Hint: Apply Euler’s formula (part a of Exercise 21) to Fy, Fy, Fs.
b. Show that

FO 6F0/8y 8F0/3z
x-J=2det | Fy OF/0y OF/0z |,
F2 8F2/8y 6F2/8z

and derive similar formulas for y - J and z - J. Hint: Use column
operations and Euler’s formula.

c. By differentiating the formulas from part b for « - J, y - J and z - J
with respect to x, ¥y, z, show that the partial derivatives of J vanish at
all nontrival solutions of Fy = F} = F5 = 0. Hint: Part b of Exercise 21
and part a of this exercise will be useful.

d. Use part ¢ to show that the determinant in (2.8) vanishes at all nontrival
solutions of Fy = F} = Fy, = 0.

e. Now prove (2.8). Hint: The proof is similar to what we did in parts b—f
of Exercise 15.

Exercise 23. This exercise will give more details needed in the proof of

Proposition (4.6). We will use the same terminology as in the proof. Let

the weight of the variable u; o be w(u; o).

a. Prove that a polynomial P(u; ) is isobaric of weight m if and only if
PAvWie)y, ) = N P(u; ) for all nonzero A € C.

b. Prove that if P = QR is isobaric, then so are Q and R. Also show that
the weight of P is the sum of the weights of @) and R. Hint: Use part a.
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c¢. Prove that D, is isobaric of weight dj - - - d,,. Hint: Assign the variables
ZQ, ..., Tn_1, %y respective weights 0,...,0,1. Let 27 be a monomial
with |y| = d (which indexes a column of D), and let o € S; (which
indexes a row in D,,). If the corresponding entry in D, is ¢y q,i, then
show that

w(ey i) = w(@?) —w(@®/zf)
0 i<n
= 7Y — @
w(z?) — w(z )+{dn i
Note that ¥ and x® range over all monomials of total degree d.

d. Use Theorems (2.3) and (3 1) to prove that if u; represents the coefficient
of & in F;, then :l:u . ~un°” “dn=1 45 in Res.

§5 Solving Equations Via Resultants

In this section, we will show how resultants can be used to solve polynomial

systems. To start, suppose we have n homogeneous polynomials Fy, ..., F,
of degree d1, . . ., d, in variables zg, . . ., . We want to find the nontrivial
solutions of the system of equations

(5.1) Fi=---=F,=0.

But before we begin our discussion of finding solutions, we first need to
review Bézout’s Theorem and introduce the important idea of genericity.
As we saw in §3, Bézout’s Theorem tells us that when (5.1) has finitely
many solutions in P™, the number of solutions is d; - - - d,,, counting multi-
picities. In practice, it is often convenient to find solutions in affine space.
In §3, we dehomogenized by setting z,, = 1, but in order to be compatible
with Chapter 7, we now dehomogenize using o = 1. Hence, we define:

fi(l’l, .. .,In) = Fz(l, Ty ,1'“)
Fi(l‘l, e ,.I‘n) = FI(O, L1y - ,l‘n).

Note that f; has total degree at most d;. Inside P™, we have the affine space
C™ C P" defined by zy = 1, and the solutions of the affine equations

(53) fi==fa=0

are precisely the solutions of (5.1) which lie in C* C P". Similarly, the
nontrivial solutions of the homogeneous equations

Fr=--=Fp=0

(5.2)

may be regarded as the solutions which lie “at co”. We say that (5.3) has
no solutions at oo if F; = --- = F,, = 0 has no nontrivial solutions. By
Theorem (2.3), this is equivalent to the condition

(5.4) Resq, ..a,(F1,...,Fy) # 0.
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The proof of Theorem (3.4) implies the following version of Bézout’s
Theorem.

(5.5) Theorem (Bézout’s Theorem). Assume that fi,..., f, are de-
fined as in (5.2) and that the affine equations (5.3) have no solutions at co.
Then these equations have dy - - - d,, solutions (counted with multiplicity),
and the ring

A:(C[J,‘l,---axn]/<f17“'afn>

has dimension dy - - - d,, as a vector space over C.

Note that this result does not hold for all systems of equations (5.3). In
general, we need a language which allows us to talk about properties which
are true for most but not necessarily all polynomials f1, ..., f,. This brings
us to the idea of genericity.

(5.6) Definition. A property is said to hold generically for polynomials
fi, ..., fn of degree at most dy, ..., d, if there is a nonzero polynomial in
the coefficients of the f; such that the property holds for all fy,..., f, for
which the polynomial is nonvanishing.

Intuitively, a property of polynomials is generic if it holds for “most”
polynomials fi,..., fn. Our definition makes this precise by defining
“most” to mean that some polynomial in the coefficients of the f; is non-
vanishing. As a simple example, consider a single polynomial az? 4 bz + c.
We claim that the property “az? + bz 4+ ¢ = 0 has two solutions, counting
multiplicity” holds generically. To prove this, we must find a polynomial
in the coeflicients a, b, ¢ whose nonvanishing implies the desired property.
Here, the condition is easily seen to be a # 0 since we are working over the
complex numbers.

Exercise 1. Show that the property “ax? + bx + ¢ = 0 has two distinct
solutions” is generic. Hint: By the quadratic formula, a(b?> — 4ac) # 0
implies the desired property.

A more relevant example is given by Theorem (5.5). Having no solutions
at co is equivalent to the nonvanishing of the resultant (5.4), and since
Resq,....d, (Fy,...,F,) is a nonzero polynomial in the coefficients of the
fi, it follows that this version of Bézout’s Theorem holds generically. Thus,
for most choices of the coefficients, the equations f; = --- = f, = 0
have d; - - - d,, solutions, counting multiplicity. In particular, if we choose
polynomials f1, ..., f, with random coefficients (say given by some random
number generator), then, with a very high probability, Bézout’s Theorem
will hold for the corresponding system of equations.
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In general, genericity comes in different “flavors”. For instance, consider
solutions of the equation ax? + bx + ¢ = 0:

® Generically, az? + bz + ¢ = 0 has two solutions, counting multiplicity.
This happens when a # 0.

o Generically, ax? + bx + ¢ = 0 has two distinct solutions. By Exercise 1,
this happens when a(b? — 4ac) # 0.

Similarly, there are different versions of Bézout’s Theorem. In particular,
one can strengthen Theorem (5.5) to prove that generically, the equations
fi =+ = fn = 0 have dy - - - d, distinct solutions. This means that
generically, (5.3) has no solutions at oo and all solutions have multiplicity
one. A proof of this result will be sketched in Exercise 6 at the end of the
section.

With this genericity assumption on f1, ..., f,, we know the number of
distinct solutions of (5.3), and our next task is to find them. We could
use the methods of Chapter 2, but it is also possible to find the solutions
using resultants. This section will describe two closely related methods,
u-resultants and hidden variables, for solving equations. The next section
will discuss further methods which use eigenvalues and eigenvectors.

The u-Resultant

The basic idea of van der Waerden’s u-resultant (see [vdW]) is to start with
the homogeneous equations F; = --- = F,, = 0 of (5.1) and add another
equation Fy = 0 to (5.1), so that we have n + 1 homogeneous equations in
n + 1 variables. We will use

Fo = ugzo + - + UpTn,

where wug,...,u, are independent variables. Because the number of
equations equals the number of variables, we can form the resultant

Resi,d,,....d, (Fo, F1, ..., Fp),

which is called the u-resultant. Note that the u-resultant is a polynomial
in ug, ..., Up.

As already mentioned, we will sometimes work in the affine situa-
tion, where we dehomogenize Fy, ..., F,, to obtain fy,..., f,. This is the
notation of (5.2), and in particular, observe that

(5.7) fo=1uo +uiT1 + -+ UpTp.
Because fy, ..., fn and Fy, ..., F, have the same coefficients, we write the
u-resultant as Res(fo, ..., fn) instead of Res(Fy, ..., Fy,) in this case.

Before we work out the general theory of the wu-resultant, let’s do an
example. The following exercise will seem like a lot of work at first, but its
surprising result will be worth the effort.
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Exercise 2. Let
Fy =22 + 22 — 1022 = 0
Fy = .Z‘? + 129 + 233% — 1633(2) =0

be the intersection of a circle and an ellipse in P2. By Bézout’s Theorem,
there are four solutions. To find the solutions, we add the equation

Fo = uoxg + urr1 + usrs = 0.

a. The theory of §4 computes the resultant using 10 x 10 determinants Dy,
D and Ds. Using Dy, Theorem (4.9) implies

Dy

I/

If the variables are ordered xs, 21, g, show that Dy = det(Mj), where

My is the matrix

Resi 2,2(Fo, F1, Fp) = £

(') U1 U 0 0 0 0 0 0 0

0 Uo 0 Ug Uy 0 0 0 0 0

0 0 U (5% 0 u2 0 0 0 0

0 0 0 Uug 0 0 0 u;p U 0

My = —-10 O 0 0 1 1 0 0 0 O
0 =10 O 0O 0 O 1 0 1 O

0 0 -1 0 0 0 0 1 0 1

-16 0 0 11 2 0 0 0 O

0 -—-16 O 0o 0 0 1 1 2 0

0 O -16 0 0 0 o0 1 1 2

Also show that D{j = det(M]), where M| is given by

1 1
M(’]—(l 2).

Hint: Using the order s, 1,7 gives Sy = {x}, 2321, 28w2, Toz122},
Sy = {wox?, 23, 2229} and So = {wox3, 123, 23}. The columns in My
correspond to the monomials x%, x%xl, x%xg, ToT1X2, :roac%7 xox%, xz{’,
2319, m123, 23, Exercise 13 of §4 will be useful.

b. Conclude that

Resy 2.2(Fo, F1, F2) = + (2uy + 16u] + 36u; — 80ubus + 120uqul
— 18udu? — 22ulu2 + 52udul — duduius).
c. Using a computer to factor this, show that Resy 2 2(Fo, Fi, F2) equals
(uo + u1 — 3uz)(ug — u1 + 3ug)(ug — 8ut — 2u3 — Sujuy)

up to a constant. By writing the quadratic factor as u3 — 2(2u; + usg)?,
conclude that Res; 2 2(Fp, F1, F») equals

(UO —+ Uy — SUQ)(UO — Ul —+ 3U2)(U0 + 2\/5’11,1 —+ \/5’11,2)(11,0 — 2\/§U1 — \/§U2)
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times a nonzero constant. Hint: If you are using Maple, let the resul-
tant be res and use the command factor(res). Also, the command
factor(res,Root0f (x~2-2)) will do the complete factorization.

d. The coefficients of the linear factors of Resy 22(Fo, F1, F2) give four
points

(1,1,-3), (1,-1,3), (1,2v2,v2), (1,-2V2, —v2)

in P2. Show that these points are the four solutions of the equations
F, = F, = 0. Thus the solutions in P? are precisely the coefficients of
the linear factors of Res; 2 2(Fo, Fi, F2)!

In this exercise, all of the solutions lay in the affine space C2 C P?
defined by x¢p = 1. In general, we will study the u-resultant from the affine
point of view. The key fact is that when all of the multiplicities are one,
the solutions of (5.3) can be found using Resy 4, ,....a, (fo,- -, fn)-

(5.8) Proposition. Assume that fi = --- = f, = 0 have total degrees
bounded by dy, . .., d,, no solutions at oo, and all solutions of multiplicity
one. If fo = ug + w1y + - -+ + upxy, where ug, ..., u, are independent
variables, then there is a nonzero constant C' such that

Resia,,....a, (fo,. .- fn) = C H fo(p)-

pGV(fh..»,fn)

PRrROOF. Let C' = Resgq, .4, (Fl, ..., F,)), which is nonzero by hypothesis.
Since the coefficients of fjy are the variables ug, . . . , u,, we need to work over
the field K = C(uo, . .., u,) of rational functions in uy, . . ., u,. Hence, in
this proof, we will work over K rather than over C. Fortunately, the results
we need are true over K, even though we proved them only over C.
Adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8) yields

Resia,,....a, (fo, .-, fn) = C det(my,),

where myg, : A — A is the linear map given by multiplication by fy on the
quotient ring

A:K[.I‘l,...,l‘n}/<f1,...,fn>.

By Theorem (5.5), A is a vector space over K of dimension d; - - - d,,, and
Theorem (4.5) of Chapter 2 implies that the eigenvalues of my, are the

values fo(p) for p € V(f1,..., fn). Since all multiplicities are one, there
are dy - - - d,, such points p, and the corresponding values fo(p) are distinct
since fo = ug+uir1+- - -+ unT, and ug, . . . , u, are independent variables.

Thus my, has dy - - - d,, distinct eigenvalues fy(p), so that

det(mg) = [T folw):

PEV(f1,.-5fn)

This proves the proposition. O



§5. Solving Equations Via Resultants 113

To see more clearly what the proposition says, let the points of
V(fi,...,fn) be p; for 1 < ¢ < dy---d,. If we write each point as
pi = (@i, ..., ain) € C" then (5.7) implies

fo(pi) = wo + ainur + -+ + Qinlin,
so that by Proposition (5.8), the u-resultant is given by

dy-dp
(5.9)  Resia,,..d,(fo,-- s fn) = C H (Uo + ajiug -+ ainun)'
i=1
We see clearly that the u-resultant is a polynomial in ug, . .., u,. Further-
more, we get the following method for finding solutions of (5.3): compute
Res1,dy,...d, (fo, - - -y fn), factor it into linear factors, and then read off the

solutions! Hence, once we have the u-resultant, solving (5.3) is reduced to
a problem in multivariable factorization.

To compute the w-resultant, we use Theorem (4.9). Because of our
emphasis on fy, we represent the resultant as the quotient

Dy

Dy’

This is the formula we used in Exercise 2. In §4, we got the determinant Dy
by working with the homogenizations F; of the f;, regarding zo as the last
variable, and decomposing monomials of degree d =1+dy +---+d, — n

into disjoint subsets Sy, ..., S,. Taking xy last means that Sy consists of
the d; - - - d,, monomials

(5.11) Sp = {zglzit -+ afm 1 0<a; <d; —1fori>0, > ja; = d}.

(5.10) Resi ..., (fo, -5 fn) = &

Then Dy is the determinant of the matrix My representing the system of
equations (4.1). We saw an example of this in Exercise 2.
The following exercise simplifies the task of computing u-resultants.

Exercise 3. Assuming that Dj # 0 in (5.10), prove that D{ does not
involve uy, . . ., u, and conclude that Resy 4, ....4, (fo, - - ., fn) and Dy differ
by a constant factor when regarded as polynomials in Clug, . . ., uy].

We will write Dy as Do(ug, ..., u,) to emphasize the dependence on
UQ, - - -, Upn. We can use Do(ug, - . ., uy) only when Dj # 0, but since Dy is
a polynomial in the coefficients of the f;, Exercise 3 means that generically,
the linear factors of the determinant Dg(ug, . .., u,) give the solutions of
our equations (5.3). In this situation, we will apply the term w-resultant to
both Resi 4,....a, (fo, .., fn) and Do(uo, .. ., uy).

Unfortunately, the u-resultant has some serious limitations. First, it is
not easy to compute symbolic determinants of large size (see the discussion
at the end of §4). And even if we can find the determinant, multivariable
factorization as in (5.9) is very hard, especially since in most cases, floating
point numbers will be involved.
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There are several methods for dealing with this situation. We will de-
scribe one, as presented in [CM]. The basic idea is to specialize some of the
coefficients in fy = ug + urx1 + - - - + upx,. For example, the argument of
Proposition (5.8) shows that when the x,,-coordinates of the solution points
are distinct, the specialization u; = -+ - = u,_1 = 0, u,, = —1 transforms
(5.9) into the formula

dy-dn
(5.12) Resta,...d, (U0 — Tn, fr. -5 ) = C J] (w0 — ain),
i=1
where a;,, is the x,,-coordinate of p; = (a1, ..., ain) € V(f1,..., fn). This

resultant is a univariate polynomial in ug whose roots are precisely the x,,-
coordinates of solutions of (5.3). There are similar formulas for the other
coordinates of the solutions.

If we use the numerator Dg(ug, - - . , uy,) of (5.10) as the u-resultant, then
setting u; = -+ = u, = 0,u, = —1 gives Dg(uo,0,...,0,—1), which
is a polynomial in ug. The argument of Exercise 3 shows that generically,
Dy (up,0,...,0,—1) is a constant multiple Res(uo — =, f1, ..., fn), so that
its roots are also the z,,-coordinates. Since Dg(ug, 0, ...,0, —1) is given by
a symbolic determinant depending on the single variable ug, it is much
easier to compute than in the multivariate case. Using standard techniques
(discussed in Chapter 2) for finding the roots of univariate polynomials
such as Dg(ug, 0, ...,0, —1), we get a computationally efficient method for
finding the x,-coordinates of our solutions. Similarly, we can find the other
coordinates of the solutions by this method.

Exercise 4. Let Dg(ug, u1, u2) be the determinant in Exercise 2.

a. Compute Dg(ug, —1,0) and Dg(ug, 0, —1).

b. Find the roots of these polynomials numerically. Hint: Try the Maple
command fsolve. In general, fsolve should be used with the complex
option, though in this case it’s not necessary since the roots are real.

c¢. What does this says about the coordinates of the solutions of the equa-
tions 2% + 23 = 10, 22 + w122 + 223 = 167 Can you figure out what
the solutions are?

As this exercise illustrates, the univariate polynomials we get from the
u-resultant enable us to find the individual coordinates of the solutions,
but they don’t tell us how to match them up. One method for doing this
(based on [CM]) will be explained in Exercise 7 at the end of the section.
We should also mention that a different u-resultant method for computing
solutions is given in [Can2].

All of the u-resultant methods make strong genericity assumptions on
the polynomials fy, ..., f,. In practice, one doesn’t know in advance if a
given system of equations is generic. Here are some of the things that can go
wrong when trying to apply the above methods to non-generic equations:
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® There might be solutions at infinity. This problem can be avoided by
making a generic linear change of coordinates.

® If too many coefficients are zero, it might be necessary to use the sparse
resultants of Chapter 7.

¢ The equations (5.1) might have infinitely many solutions. In the language
of algebraic geometry, the projective variety V(Fy, ..., F,) might have
components of positive dimension, together with some isolated solutions.
One is still interested in the isolated solutions, and techniques for finding
them are described in Section 4 of [Canl].

e The denominator D} in the resultant formula (5.10) might vanish. When
this happens, one can use the generalized characteristic polynomials
described in §4 to avoid this difficulty. See Section 4.1 of [CM] for details.

® Distinct solutions might have the same x;-coordinate for some i. The
polynomial giving the x;-coordinates would have multiple roots, which
are computationally unstable. This problem can be avoided with a
generic change of coordinates. See Section 4.2 of [CM] for an example.

Also, Chapter 4 will give versions of (5.12) and Proposition (5.8) for the
case when f; = --- = f, = 0 has solutions of multiplicity > 1.

Hidden Variables

One of the better known resultant techniques for solving equations is the
hidden variable method. The basic idea is to regard one of variables as a
constant and then take a resultant. To illustrate how this works, consider

the affine equations we get from Exercise 2 by setting o = 1:
(5.13) fi=al+23-10=0
' f2:$%+x1w2+2x%—16:0.

If we regard x5 as a constant, we can use the resultant of §1 to obtain
Res(f1, fo) = 2z4 — 2222 + 36 = 2(z2 — 3)(x2 + 3)(z2 — V2)(z2 + V2).

The resultant is a polynomial in x5, and its roots are precisely the zo-
coordinates of the solutions of the equations (as we found in Exercise 2).
To generalize this example, we first review the affine form of the resultant.

Given n + 1 homogeneous polynomials Gy, . .., G, of degrees dy, . . ., d, in
n + 1 variables zg, . . . , Tn, we get Resg, .. 4, (Go, - .., Gy). Setting zg = 1
gives

gi(xla e 7xn) = G1(17 L1, .. 7xn)a

and since the g; and G; have the same coefficients, we can write the re-
sultant as Resq,, .4, (g0, - - -, gn)- Thus, n + 1 polynomials go, ..., g, in n
variables z1, ..., x, have a resultant. It follows that from the affine point
of view, forming a resultant requires that the number of polynomials be one
more than the number of variables.
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Now, suppose we have n polynomials fi, ..., f, of degrees dy,...,d, in
n variables x1, ..., z,. In terms of resultants, we have the wrong numbers
of equations and variables. One solution is to add a new polynomial, which
leads to the u-resultant. Here, we will pursue the other alternative, which
is to get rid of one of the variables. The basic idea is what we did above:
we hide a variable, say x,, by regarding it as a constant. This gives n

polynomials fi, ..., f, in n — 1 variables x1, ..., x,_1, which allows us to
form their resultant. We will write this resultant as
(5.14) Resyr 4 (fi,--oy fn)-

The superscript x,, reminds us that we are regarding x, as constant.
Since the resultant is a polynomial in the coefficients of the f;, (5.14) is a
polynomial in z,,.

We can now state the main result of the hidden variable technique.

(5.15) Proposition. Generically, Resy” a, (f15 -5 fn) is a polynomial
in x, whose roots are the x,-coordinates of the solutions of (5.5).

PROOF. The basic strategy of the proof is that by (5.12), we already know
a polynomial whose roots are the x,-coordinates of the solutions, namely

Resi,d,,....d, (0 = Zn, f1, -5 fn)-

We will prove the theorem by showing that this polynomial is the same as
the hidden variable resultant (5.14). However, (5.14) is a polynomial in ,,,
while Res(ug — Zn, f1, - - -, fn) is @ polynomial in ug. To compare these two
polynomials, we will write

Resgr ", (f1, -5 fn)

to mean the polynomial obtained from (5.14) by the substitution x,, = ug.
Using this notation, the theorem will follow once we show that

Resgfffgn (fl, cey fn) = iReSl,dl,“.,dn (uo — Tn, fl, e, fn)-

We will prove this equality by applying Theorem (3.4) separately to the
two resultants in this equation.

Beginning with Res(ug — n, f1,.- ., fn), first recall that it equals the
homogeneous resultant Res(ugzo — @, F1, ..., Fy) via (5.2). Since uyg is
a coefficient, we will work over the field C(ug) of rational functions in wug.
Then, adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8), we

see that Res(uoxo — xn, F1, ..., F,) equals
(516) Resl,dl,...,dnfl(_xna Fl) s aFn—l)d” det(mfn)7
where —z,,, F1, ..., F,_1 are obtained from ugzg — Tn, F1, ..., Fo_1 by

setting zo = 0, and my, : A — A is multiplication by f,, in the ring
A=Cw[z1,...,zn)/{(u—xn, f1,.. ., fu)
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Next, consider Res®”="°(f1, ..., fn), and observe that if we define
filzy, o opo1) = fil@r, .o 21, vo),

then Res™ =" (fy, ..., f») = Res(f1, ..., fn). If we apply Theorem (3.4)
to the latter resultant, we see that it equals

(5.17) Resa,.....d,_, (F1, ..., Fooy)®™ det(my ),

where E is obtained from fl by first homogenizing with respect to xo and
then setting zo = 0, and mj A — A is multiplication by f, in

A = Cuo)[w1, . xn_1l/F1, - Fo)

To show that (5.16) and (5.17) are equal, we first examine (5.17). We
claim that if f; homogenizes to F;, then F; in (5.17) is given by

(518) E(ml,...,xn,l) = Fi(07371;---737n7170)-
To prove this, take a term of Fj, say
cx® - xer, ag+ -+ an = d;.

Sing:e zo = 1 gives f; and x, = ug then gives fi, the corresponding term
in fz is

an—1

ap .01 An—1_ QAn __ a ay
c1®x{t -z, " ugt = cug™ - xyt -x,t

When homogenizing fi with respect to zg, we want a term of total degree

d; in xg, ..., Tp_1. Since cug™ is a constant, we get
2% aptan a1 An—1 __ ao Ap—1 a,
cug™ - x ittt = xg® - x, T (uome)

It follows that the homogenization of fl is Fi(xo, ..., Tn—1, UoZp), and since
F; is obtained by setting zo = 0 in this polynomial, we get (5.18).
Once we know (5.18), Exercise 12 of §3 shows that

Reslydl,wdnfl(—acn, Fl, - ;Fn—l) = iReSdh,,, d7L71(’PV11, e ﬁn—l)

since F;(z1,...,7,) = Fi(0,21,...,7,). Also, the ring homomorphism
(C(Uo)[l‘l, e 7x7l] - C(UO)[xla .. 7xn—1]

defined by x, +— wug carries f; to jl It follows that this homomorphism
induces a ring isomorphism A = A (you will check the details of this in
Exercise 8). Moreover, multiplication by f, and f,, give a diagram

A =

— )

(5.19) mfnl

A

My

n

12
o)
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In Exercise 8, you will show that going across and down gives the same map
A — A as going down and across (we say that (5.19) is a commutative
diagram). From here, it is easy to show that det(my,) = det(m; ), and it
follows that (5.16) and (5.17) are equal. O

The advantage of the hidden variable method is that it involves re-
sultants with fewer equations and variables than the wu-resultant. For
example, when dealing with the equations f; = fo = 0 from (5.13), the u-
resultant Resy 2 2(fo, f1, f2) uses the 10 x 10 matrix from Exercise 2, while
Resy%(f1, f2) only requires a 4 x 4 matrix.

In general, we can compute Res™ (f1, ..., fn) by Theorem (4.9), and as
with the u-resultant, we can again ignore the denominator. More precisely,
if we write

(5.20) Resg' 4 (f1,-s fo) = £ =,

then ﬁ{) doesn’t involve x,,. The proof of this result is a nice application of
Proposition (4.6), and the details can be found in Exercise 10 at the end
of the section. Thus, when using the hidden variable method, it suffices
to use the numerator Dp—when fi, ..., f,, are generic, its roots give the
xn-coordinates of the affine equations (5.3).

Of course, there is nothing special about hiding x,,—we can hide any of
the variables in the same way, so that the hidden variable method can be
used to find the z;-coordinates of the solutions for any i. One limitation of
this method is that it only gives the individual coordinates of the solution
points and doesn’t tell us how they match up.

Exercise 5. Consider the affine equations

flzx%—l—x%—l—xg—?)
fo w%+x§—2

fs

a. If we compute the u-resultant with fy = ug + w121 + usxe + usxs, show
that Theorem (4.9) expresses Resi 22.2(fo, f1, f2, f3) as a quotient of
determinants of sizes 35 x 35 and 15 x 15 respectively.

b. If we hide x3, show that Resy?, »(f1, f2, f3) is a quotient of determinants
of sizes 15 x 15 and 3 x 3 respectively.

c. Hiding x3 as in part b, use (2.8) to express Resy% 5(f1, f2, f3) as the
determinant of a 6 x 6 matrix, and show that up to a constant, the
resultant is (z2 + 223 — 3)*. Explain the signficance of the exponent 4.
Hint: You will need to regard x3 as a constant and homogenize the f;
with respect to xg. Then (2.8) will be easy to apply.

x% + x% — 2z3.
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The last part of Exercise 5 illustrates how formulas such as (2.8) allow
us, in special cases, to represent a resultant as a single determinant of
relatively small size. This can reduce dramatically the amount of compu-
tation involved and explains the continuing interest in finding determinant
formulas for resultants (see, for example, [SZ]).

ApbpiTioNAL EXERCISES FOR §5

Exercise 6. In the text, we claimed that generically, the solutions of n
affine equations f; = --- = f,, = 0 have solutions of multiplicity one.
This exercise will prove this result. Assume as usual that the f; come from
homogeneous polynomials F; of degree d; by setting o = 1. We will also

use the following fact from multiplicity theory: if F} = --- = F,, = 0 has
finitely many solutions and p is a solution such that the gradient vectors
OF; OF;
VE; :< : ey . ), 1 <1<
) =55, @) oz, P <i<n

are linearly independent, then p is a solution of multiplicity one.

a. Consider the affine space CM consisting of all possible coefficients of the
F;. As in the discussion at the end of §2, the coordinates of C* are Ci,as
where for fixed i, the ¢; o are the coefficients of F;. Now consider the set
W C CM x P x P! defined by

W = {(Ciarps a1, a,) €ECY x P x P :pisa
nontrivial solution of Fy = --- = F,, = 0 and
a VFi(p)+ -+ a,VF,(p) = 0}.

Under the projection map 7 : CM x P* x P»~1 — CM | explain why
a generalization of the Projective Extension Theorem from §2 would
imply that 7(W) C CM is a variety.

b. Show that 7(W) C CM is a proper variety, i.e., find F,..., F, such
that (Fy,...,F,) € CM \ x(W). Hint: Let F; = II{", (x; — jxo) for
1<i<n.

c. By part ¢, we can find a nonzero polynomial G in the coefficients of the
F; such that G vanishes on 7(W). Then consider G - Res(F1, ..., F,,).
We can regard this as a polynomial in the coefficients of the f;. Prove
that if this polynomial is nonvanishing at f, ..., f,, then the equations
fo == fn = 0 have d; - - - d, many solutions in C™, all of which
have multiplicity one. Hint: Use Theorem (5.5).

Exercise 7. As we saw in (5.12), we can find the z,-coordinates of the
solutions using Res(u — @, f1, - - ., fn), and in general, the x;-coordinates
can be found by replacing u — x,, by u — x; in the resultant. In this exercise,
we will describe the method given in [CM] for matching up coordinates to
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get the solutions. We begin by assuming that we’ve found the z;- and x»-
coordinates of the solutions. To match up these two coordinates, let a and
8 be randomly chosen numbers, and consider the resultant

Ri2(u) = Resi q,,..a,(u — (az1 + Bz2), f1, ..., fn)
a. Use (5.9) to show that

dy-dy

Rlﬁg(u) =’ H (u — (aail + ﬂaiz)),
i=1
where C’ is a nonzero constant and, as in (5.9), the solutions are p; =
(ail, e ,am).
b. A random choice of a and 3 will ensure that for solutions p;, p;, i, we
have aa; + Baj2 # aapy + Pare except when p; = p; = pi. Conclude
that the only way the condition

« - (an zq-coordinate) 4+ 3 - (an xp-coordinate) = root of Ry 2(u)

can hold is when the zj-coordinate and zs-coordinate come from the
same solution.

c. Explain how we can now find the first two coordinates of the solutions.

d. Explain how a random choice of «, 8, v will enable us to construct a poly-
nomial Ry 2 3(w) which will tell us how to match up the z3-coordinates
with the two coordinates already found.

e. In the affine equations f; = fo = 0 coming from (5.13), compute
Res(u — x1, f1, f2), Res(u — w2, f1, f2) and (in the notation of part a)
Ri2(u), using @ = 1 and § = 2. Find the roots of these polynomials
numerically and explain how this gives the solutions of our equations.
Hint: Try the Maple command fsolve. In general, £solve should be
used with the complex option, though in this case it’s not necessary
since the roots are real.

Exercise 8. This exercise is concerned with Proposition (5.15).

a. Explain what Theorem (3.4) looks like if we use (5.2) instead of (3.3),
and apply this to (5.16), (5.17) and Proposition (5.8).

b. Show carefully that the the ring homomorphism

C(u)[z1, ..., xn] — Clu)[z1, ..., Tpn1]

defined by z,, — wu carries f; to fl and induces a ring isomorphism
A=A,

c. Show that the diagram (5.19) is commutative and use it to prove that
det(my,) = det(mj ).

Exercise 9. In this exercise, you will develop a homogeneous version of
hidden variable method. Suppose that we have homogeneous polynomials
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Fi,...,F,in xq,...,x, such that
f,;(xl, . e ,l‘n) = Fl(l, L1y, [En)

We assume that F; has degree d;, so that f; has degree at most d;. Also
define

fi(l‘l, . ,.fl?n_l) = f,’(l‘l, ceey Tn—1, U)

As we saw in proof of Proposition (5.15), the hidden variable resultant can

be regarded as the affine resultant Resq, ... 4, (f1,..., fn) To get a homoge-
neous resultant, we homogenize f; with respect to z to get a homogenous
polynomial F;(zg,...,x,—1) of degree d;. Then

~ ~ ~

Resdl,...,dn (fl, ey fn) = Resdl,...,dn (ﬁl, e 7‘Fn)

a. Prove that

~

Fi(il,'o, e ,xn,l) = Fi(l'o, L1y ,l’ou).

Hint: This is done in the proof of Proposition (5.15).

b. Explain how part a leads to a purely homogeneous construction of the
hidden variable resultant. This resultant is a polynomial in u.

c. State a purely homogeneous version of Proposition (5.15) and explain
how it follows from the affine version stated in the text. Also explain why
the roots of the hidden variable resultant are a, /ag as p = (ag, - . ., ay)
varies over all homogeneous solutions of F; = --- = F,, = 0 in P™.

Exercise 10. In (5.20), we expressed the hidden variable resultant as a
quotient of two determinants +Dg/D{. If we think of this resultant as a
polynomial in u, then use Proposition (4.6) to prove that the denominator
D{, does not involve w. This will imply that the numerator Dy can be
regarded as the hidden variable resultant. Hint: By the previous exercise,
we can write the hidden variable resultant as Res(F, ..., Fy,). Also note
that Proposition (4.6) assumed that x,, is last, while here Dy and Dj mean
that xo is taken last. Thus, applying Proposition (4.6) to the F; means
setting z9p = 0 in F;. Then use part a of Exercise 9 to explain why u
disappears from the scene.

Exercise 11. Suppose that fi,..., f, are polynomials of total degrees

di, ..., dp in klxy, ..., 2]

a. Use Theorem (2.10) of Chapter 2 to prove that the ideal (fi,..., f,) is
radical for f1,..., fn generic. Hint: Use the notion of generic discussed
in Exercise 6.

b. Explain why Exercise 16 of Chapter 2, §4, describes a lex Grobner basis
(assuming x,, is the last variable) for the ideal (f1, ..., f,) when the f;
are generic.
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§6 Solving Equations via Eigenvalues

In Chapter 2, we learned that solving the equations f; = --- = f,, = 0 can
be reduced to an eigenvalue problem. We did this as follows. The monomials
not divisible by the leading terms of a Grébner basis G for (f1, ..., fn) give
a basis for the quotient ring

(6.1) A=Clzy,...,z.)/{f1,- - [n)

(see §2 of Chapter 2). Using this basis, we find the matrix of a multiplication
map my, by taking a basis element z* and computing the remainder of
x® fo on division by G (see §4 of Chapter 2). Once we have this matrix, its
eigenvalues are the values fo(p) for p € V(f1,..., fn) by Theorem (4.5)
of Chapter 2. In particular, the eigenvalues of the matrix for m,, are the
x;-coordinates of the solution points.

The amazing fact is that we can do all of this using resultants! We first
show how to find a basis for the quotient ring.

(6.2) Theorem. If fi,..., fn are generic polynomials of total degree
di,...,dy,, then the cosets of the monomials

it -xpr, where 0 < a; <d; —1 fori=1,...,n

form a basis of the ring A of (6.1).

ProoOF. Note that these monomials are precisely the monomials obtained
from Sp in (5.11) by setting o = 1. As we will see, this is no accident.
By fi,..., fn generic, we mean that there are no solutions at oo, that all
solutions have multiplicity one, and that the matrix M;; which appears
below is invertible.

Our proof will follow [ER] (see [PS1] for a different proof). There are
dy -+ - d, monomials x7* ---z% with 0 < a; < d; — 1. Since this is the
dimension of A in the generic case by Theorem (5.5), it suffices to show
that the cosets of these polynomials are linearly independent.

To prove this, we will use resultants. However, we have the wrong number
of polynomials: since fi, ..., f, are not homogeneous, we need n + 1 poly-
nomials in order to form a resultant. Hence we will add the polynomial
fo = up + wixy + -+ + upz,, where ug,...,u, are independent vari-
ables. This gives the resultant Res1 4,.... 4, (fo, - - - » fn), Which we recognize
as the u-resultant. By (5.10), this resultant is the quotient Dy/DY{), where
Dy = det(Mp) and My is the matrix coming from the equations (4.1).

We first need to review in detail how the matrix M, is constructed.
Although we did this in (4.1), our present situation is different in two ways:
first, (4.1) ordered the variables so that x,, was last, while here, we want
Zo to be last, and second, (4.1) dealt with homogeneous polynomials, while
here we have dehomogenized by setting zo = 1. Let’s see what changes this
makes.
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As before, we begin in the homogeneous situation and consider monomi-
als 27 = xg° - - - 2% of total degree d = 1+ dy + - - - + d,, — n (remember
than the resultant is Resy 4,.... 4, ) Since we want to think of zy as last, we

divide these monomials into n disjoint sets as follows:
S, = {27 : |a| = d, 2% divides 27}

Sp_1 = {27 : |a| = d, 2% doesn’t divide 27 but xd"’ll does}

n—

So = {z7 : ol =d, zi, ... &% don’t divide 27 but ¢ does}

(remember that dyp = 1 in this case). You should check that Sy is precisely
as described in (5.11). The next step is to dehomogenize the elements of
S; by setting g = 1. If we denote the resulting set of monomials as S,
then S{ U S U .-+ US!, consists of all monomials of total degree < d in
x1,...,Tn. Furthermore, we see that S, consists of the d; - - - d, monomials
in the statement of the theorem.

Because of our emphasis on S, we will use * to denote elements of S}
and 2 to denote elements of S| U --- U S’,. Then observe that

if z* € S, then z* has degree < d — 1,
if 27 € S!, i > 0, then /2% has degree < d — d;.
Then consider the equations:

z* fo =0 forall z* € S
(2%/z) fL =0 forall 27 € S

(2P Jxdn) f, =0 for all 7 € S,

Since the z® fy and zf /xf fi have total degree < d, we can write these
polynomials as linear combinations of the z* and x%. We will order these
monomials so that the elements z® € S| come first, followed by the
elements 2 € S; U --- U S/. This gives a square matrix My such that

T zt fy
o2 2 f
MO wﬁl = xﬁl/xdl fl )

xﬁz 3552 /xl 1 fl

where, in the column on the left, the first two elements of Sj) and the first
two elements of S} are listed explicitly. This should make it clear what the
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whole column looks like. The situation is similar for the column on the

right.
For p € V(flyn~7fn)7 we have fl(p) = = fn(p) = 0. Thus,
evaluating the above equation at p yields
P P fo(p
P p** fo(p)
My pﬁl = 0 )

To simplify notation, we let p® be the column vector (p®*, p*2,...)T given
by evaluating all monomials in S, at p (and 7" means transpose). Similarly,
we let p? be the column vector (p®,p%,...)T given by evaluating all
monomials in S U --- U S), at p. With this notation, we can rewrite the
above equation more compactly as

W () ()

The next step is to partition My so that the rows and columns of M
corresponding to elements of S| lie in the upper left hand corner. This
means writing Mj in the form

My Moy
MO_(Mw My )

where Myg is a p X p matrix for p = dy - - - dy,, and My is also a square
matrix. With this notation, (6.3) can be written

(6.4) <M00 M01> (PO‘) _ <fo(P) Pa> .
My My p’B 0
By Lemma 4.4 of [Emil], M is invertible for most choices of fi, ..., fn.

Note that this condition is generic since it is given by det(M71) # 0 and
det(Mji1) is a polynomial in the coefficients of the f;. Hence, for generic

fi, -, fn, we can define the p X g matrix
(6.5) M = Moy — Moy My, M.
Note that the entries of M are polynomials in ug, ..., u, since these vari-

ables only appear in Myg and M. If we multiply each side of (6.4) on the

left by the matrix
I —My M
0 I ’
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then an easy computation gives
M0 p*\ _ (folp)p™ )
My M p’ 0

This implies

(6.6) Mp® = fo(p) P°,

so that for each p € V(f1,..., fn), fo(p) is an eigenvalue of M with p® as
the corresponding eigenvector. Since fy = ug+uix1+- - - +u,,, the eigen-
values fo(p) are distinct for p € V(f1,..., fn). Standard linear algebra
implies that the corresponding eigenvectors p® are linearly independent.

We can now prove the theorem. Write the elements of S as 2, ..., 2%,
where as usual y = dy, ..., d,, and recall that we need only show that the
cosets [z], ..., [x“*] are linearly independent in the quotient ring A. So
suppose we have a linear relation among these cosets, say

ci[z®] 4 - 4 cpfz®] = 0.

Evaluating this equation at p € V(f1,..., f,) makes sense by Exercise 12
of Chapter 2, §4 and implies that c¢;p®* + - - - + ¢,p** = 0. In the generic
case, V(f1,..., fn) has p = dy---d, points pi,...,p,, which gives p
equations

Clp?l + “ e + C}jp?ZM — O

clpﬁl + -+ cupg# =

In the matrix of these equations, the ith row is (p{*,...,p;*), which in
the notation used above, is the transpose of the column vector p§* obtained
by evaluating the monomials in Sj at p;. The discussion following (6.6)
showed that the vectors p§* are linearly independent. Thus the rows are
linearly independent, so ¢; = --- = ¢, = 0. We conclude that the cosets
[x*1], ..., [x®=] are linearly independent. O

Now that we know a basis for the quotient ring A, our next task it to find
the matrix of the multiplication map m y, relative to this basis. Fortunately,
this is easy since we already know the matrix!

(6.7) Theorem. Let fi,..., fn be generic polynomials of total degrees
di,...,dn, and let fo = ug + wixy + -+ + upx,. Using the basis of
A = Clz1, ..., z0)/{f1,. .., fu) from Theorem (6.2), the matriz of the
multiplication map my, is the transpose of the matriz

M = Mgy — Moy M My
from (6.5).
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PROOF. Let My, = (m;;) be the matrix of my, relative to the basis
[z*1], ..., [z*] of A from Theorem (6.2), where y = dj - - - d,,. The proof
of Proposition (4.7) of Chapter 2 shows that for p € V(f1,..., fn), we
have

Jo@) (@™, ..., p™) = (p™*, ..., p™*) My,.

Letting p® denote the column vector (p®,...,p% )T as in the previous

proof, we can take the transpose of each side of this equation to obtain

@ (e Xy T
folp) p* = (fop) (@™, ..., p™))
T
= ((p™,...,p™") My,)
= (Mfo)T P,
where (My,)T is the transpose of My,. Comparing this to (6.6), we get
(Mfo)T p = ,Mpa
for all p € V(f1,..., fn). Since fi,..., fn are generic, we have p points
p € V(f1,..., fn), and the proof of Theorem (6.2) shows that the corre-
sponding eigenvectors p® are linearly independent. This implies (M fO)T =
M, and then My, = M7 follows easily. O
Since fo = up + urx1 + - - - + upxy,, Corollary (4.3) of Chapter 2 implies
Mg =ugl +uy My, + -+ up My,

where M, is the matrix of m,, relative to the basis of Theorem (6.2). By
Theorem (6.7), it follows that if we write

(6.8) M =gl +uy My + -+ un My,
where each Ml has constant entries, then My, = MT implies that M, =

(M;)T for all i. Thus M simultaneously computes the matrices of the n
multiplication maps mg,, ..., My, .

Exercise 1. For the equations
fi=a24+23-10=0
fo =22 +x1m0 +225 —16 =0

(this is the affine version of Exercise 2 of §5), show that M is the matrix

Uo Uy U2 0
M . 4U1 UuQ 0 Ul + U2
6U2 0 ug U — U

0 3U1 + 3U2 2u1 — 2u2 ()

Use this to determine the matrices M,, and M,,. What is the basis of
Clz1, x2]/{f1, f2) in this case? Hint: The matrix My of Exercise 2 of §5 is
already partitioned into the appropriate submatrices.
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Now that we have the matrices M,,, we can find the x;-coordinates of
the solutions of (5.3) using the eigenvalues methods mentioned in Chap-
ter 2 (see especially the discussion following Corollary (4.6)). This still
leaves the problem of finding how the coordinates match up. We will follow
Chapter 2 and show how the right eigenvectors of My, , or equivalently, the
left eigenvectors of M = (M 7,)T, give the solutions of our equations.

Since M involves the variables uy, ..., u,, we need to specialize them
before we can use numerical methods for finding eigenvectors. Let

!
fo=co+cazi+ -+ cptp,

where ¢y, . .., ¢, are constants chosen so that the values f{j(p) are distinct
for p € V(f1,..., fn). In practice, this can be achieved by making a ran-
dom choice of ¢y, . .., c,. If we let M’ be the matrix obtained from M by

letting u; = ¢;, then (6.6) shows that p® is a left eigenvector for M’ with
eigenvalue f{j(p). Since we have y = d; - - - d,, distinct eigenvalues in a vec-
tor space of the same dimension, the corresponding eigenspaces all have
dimension 1.

To find the solutions, suppose that we've used a standard numerical
method to find an eigenvector v of M’. Since the eigenspaces all have
dimension 1, it follows that v = A p® for some solution p € V(f1,..., fn)
and nonzero constant A. This means that whenever z® is a monomial in
S}, the corresponding coordinate of v is Ap®. The following exercise shows
how to reconstruct p from the coordinates of the eigenvector v.

Exercise 2. As above, let p = (a1,...,a,) € V(f1,..., fn) and let v be

an eigenvector of M’ with eigenvalue f{(p). This exercise will explain how

to recover p from v when dy, ..., d, are all > 1, and Exercise 5 at the end

of the section will explore what happens when some of the degrees equal 1.

a. Show that 1,z1,...,x, € S), and conclude that for some A # 0, the
numbers A, Aaq, ..., Aa, are among the coordinates of v.

b. Prove that a; can be computed from the coordinates of v by the formula

Ady
A

This shows that the solution p can be easily found using ratios of certain
coordinates of the eigenvector v.

a; = forj=1,...,n.

Exercise 3. For the equations f; = f, = 0 of Exercise 1, consider the
matrix M’ coming from (ug,u1,uz,uz) = (0,1,0,0). In the notation of
(6.8), this means M’ = M; = (M,,)T. Compute the eigenvectors of this
matrix and use Exercise 2 to determine the solutions of fi = fo = 0.

While the left eigenvectors of M relate to the solutions of fLi=-=
fn = 0, the right eigenvectors give a nice answer to the interpolation prob-
lem. This was worked out in detail in Exercise 17 of Chapter 2, §4, which
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applies without change to the case at hand. See Exercise 6 at the end of
this section for an example.

Eigenvalue methods can also be applied to the hidden variable resul-
tants discussed earlier in this section. We will discuss this very briefly.
In Proposition (5.15), we showed that the z,-coordinates of the solutions
of the equations f; = --- = f, = 0 could be found using the resul-
tant Resy” , (f1,..., fn) obtained by regarding x,, as a constant. As we
learned in (5.20),

Resgf’y..,dn (fl, cee fn) ==+ =,

and if M, is the corresponding matrix (so that /lAzo = det(ﬁo)), one could
ask about the eigenvalues and eigenvectors of My. It turns out that this
is not quite the right question to ask. Rather, since M depends on the
variable x,, we write the matrix as

(6.9) M, = Ay +xy Ay + -+ 2h Ay,

where each A; has constant entries and A; # 0. Suppose that ﬂo and the
A; are m x m matrices. If A; is invertible, then we can define the generalized
companion matrix

0 I, 0 0
0 0 I, 0
¢ = : : : . : )
0 0 0 I,
~ATTAy —ATTAL —ATMAy - —ATTAL

where I,,, is the m x m identity matrix. Then the correct question to pose
concerns the eigenvalues and eigenvectors of C'. One can show that the
eigenvalues of the generalized companion matrix are precisely the roots of
the polynomial Dy = det(My), and the corresponding eigenvectors have a
nice interpretation as well. Further details of this technique can be found
in [Man2] and [Man3|.

Finally, we should say a few words about how eigenvalue and eigenvector
methods behave in the non-generic case. As in the discussion of u-resultants
in §5, there are many things which can go wrong. All of the problems listed
earlier are still present when dealing with eigenvalues and eigenvectors, and
there are two new difficulties which can occur:

® In working with the matrix My as in the proof of Theorem (6.2), it can
happen that Mj; is not invertible, so that M = Myy — MOlMﬁle
doesn’t make sense. -

¢ In working with the matrix My as in (6.9), it can happen that the leading
term A; is not invertible, so that the generalized companion matrix C'
doesn’t make sense.
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Techniques for avoiding both of these problems are described in [Emi2],
[Manl], [Man2] and [Man3].

Exercise 4. Express the 6 x 6 matrix of part ¢ of Exercise 5 of §5 in the
form Ag + w341 + 23 A5 and show that Aj is not invertible.

The idea of solving equations by a combination of eigenvalue methods
and resultants goes back to the work of Auzinger and Stetter [AS]. This has
now become an active area of research, not only for the resultants discussed
here but also for the sparse resultants to be introduced in Chapter 7.

AppiTioNAL EXERCISES FOR §6

Exercise 5. This exercise will explain how to recover the solution p =

(a1, ..., ay) from an eigenvector v of the matrix M’ in the case when some

of the degrees di,...,d, are equal to 1. For simplicity, we will assume

di=---=dp=1and d; > 1fori > k.

a. Show that Sy has no monomials involving x1, . . . , ;. Then explain why
the eigenvector v enables you to determine a; for ¢ > k but gives no
information about aq, ..., ag.

b. By substitiuting «; = a; for ¢ > kinto f; = --- = f,, = 0, show that in
the generic case, we can find the remaining k& coordinates of p by solving
a system of k linear equations in k unknowns.

Exercise 6. The equations f; = f» = 0 from Exercise 1 have solutions
D1, P2, D3, P4 (they are listed in projective form in Exercise 2 of §5). Apply
Exercise 17 of Chapter 2, §4, to find the polynomials g1, g2, g3, g4 such that
gi(p;j) = 1if i = j and 0 otherwise. Then use this to write down explicitly
a polynomial i which takes preassigned values A1, A2, A3, Ay at the points
P1, P2, P3, P4. Hint: Since the xi-coordinates are distinct, it suffices to find
the eigenvectors of M,,. Exercise 1 will be useful.
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