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Optimal Procedures

2.1 Defining Optimal

As we saw in the preceding chapter, the professional statistician is responsible
for choosing both the test statistic and the testing procedure. An amateur
might hope to look up the answers in a book, or, as is all too commonly done,
use the same statistical procedure as was used the time before, regardless of
whether it continues to be applicable. But the professional is responsible for
choosing the best procedure, the optimal statistic. The statistic we selected
in the preceding chapter for testing the effectiveness of vitamin E seemed an
obvious, intuitive choice. But is it the best choice? And can we prove it is?
Intuition can so often be deceptive.

In this chapter, we examine the criteria that define an optimal testing
procedure and explore the interrelationships among them.

2.1.1 Trustworthy

The most obvious desirable property of a statistical procedure is that it be
trustworthy. If we are advised to make a particular decision, then we should be
correct in doing so. Alas, our observations are stochastic in nature, so there
may be more than one explanation for any given set of observations. The
result is we never can rely 100% on the decisions we make. At best, they can
be like politicians, trustworthy up to a point. We ask only that they confine
themselves to small bribes and rake-offs, that they not bankrupt or betray
the country.

In the example of the missing labels in the preceding chapter, we intro-
duced a statistical test based on the random assignment of labels to treat-

ments. Knowing in advance that the experiment could have any of
(
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)
= 20

possible outcomes, we will reject the null hypothesis only if the obtained
value of the test statistic is the maximum possible that could arise from only
one permutation of the results. The test we derive is valid under very broad
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assumptions. The data could have been drawn from a normal distribution or
they could have come from some quite different distribution. To be valid at a
given percent level, all that is required of our permutation test is that (under
the hypothesis) the population from which the data in the treatment group
are drawn be the same as that from which the untreated sample is taken.

This freedom from reliance on numerous assumptions is a big plus. The
fewer the assumptions, the fewer the limitations, and the broader the poten-
tial applications of a test. But before statisticians introduce a test into their
practice, they need to know a few more things about it, namely:

• Is it exact? That is, can we make an exact determination of the probability
that we might make an error in rejecting a true hypothesis?

• How powerful a test is it? That is, how likely is it to pick up actual differ-
ences between treated and untreated populations? Is this test as powerful
or more powerful than the test we are using currently?

• Is the test admissible? That is, is there no other test that is superior to it
under all circumstances?

• How robust is the new test? That is, how sensitive is it to violations in the
underlying assumptions and the conditions of the experiment?

2.1.2 Two Types of Error

It’s fairly easy to reason from cause to effect—that is, if you have a powerful
enough computer. Get the right formula (Boyle’s Law, say), plug in enough
values to enough decimal places, and out pops the answer. The difficulty with
reasoning in the opposite direction, from effect to cause, is that more than
one set of causes can be responsible for precisely the same set of effects. We
can never be completely sure which set of causes is responsible. Consider
the relationship between sex (cause) and height (effect). Boys are taller than
girls. True? So that makes this new 6′2′′ person in our lives . . . a starter on
the women’s volleyball team.

In real life, in real populations, there are vast differences from person to
person. Some women are tall and some women are short. In Lake Wobegone,
Minnesota, all the men are good looking and all the children are brighter than
average. But in most other places in the world there is a wide range of talent
and abilities. As a further example of this variation, consider that half an
aspirin will usually take care of one person’s headache while other people take
two or three aspirin at a time and get only minimal relief.

Figure 2.1 below depicts the results of an experiment in which two groups
were each given a “pain-killer.” The first group got buffered aspirin; the sec-
ond group received a new experimental drug. Each of the participants then
provided a subjective rating of the effects of the drug. The ratings ranged
from “got worse,” to “much improved,” depicted below on a scale of 0 to 4.
Take a close look at Figure 2.1. Does the new drug represent an improvement
over aspirin?
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Fig. 2.1. Response to treatment: Self-rating patient in (a) asprin-treated group,
(b) drug-‘x’-treated group.

Those who took the new experimental drug do seem to have done better
on average than those who took aspirin. Or are the differences we observe in
Figure 2.1 simply the result of chance? If it’s just a chance effect—rather than
one caused by the new drug—and we opt in favor of the new drug, we’ve made
an error. We also make an error if we decide there is no difference, when, in
fact, the new drug really is better. These decisions and the effects of making
them are summarized in Table 2.1a below.

We distinguish between the two types of error because they have quite
different implications. For example, Fears, Tarone, and Chu [1977] use per-
mutation methods to assess several standard screens for carcinogenicity.
Their Type I error, a false positive, consists of labeling a relatively innocu-
ous compound as carcinogenic. Such an action means economic loss for the
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Table 2.1a. Decision making under uncertainty.

The Facts Our Decision

No difference No difference New drug is better
Type I error

New drug is better Type II error

Table 2.1b. Decision making under uncertainty.

The Facts Fears et al’s Decision

Not a carcinogen Compound a carcinogen
Not a carcinogen Type I error:

(Alternative) manufacturer misses opportunity
for profit; public denied access to
effective treatment

Carcinogen Type II error:
(Hypothesis) patients die;

families suffer;
manufacturer sued

manufacturer and the denial of the compound’s benefits to the public. Neither
consequence is desirable. But a false negative, a Type II error, would mean
exposing a large number of people to a potentially lethal compound.

Because variation is inherent in nature, we are bound to make the occa-
sional error when we draw inferences from experiments and surveys, particu-
larly if, for example, chance hands us a completely unrepresentative sample.
When I toss a coin in the air six times, I can get three heads and three tails,
but I also can get six heads. This latter event is less probable, but it is not
impossible. Variation also affects the answer to the question, “Does the best
team always win?”

We can’t eliminate risk in making decisions, but we can contain risk through
the correct choice of statistical procedure. For example, we can require that
the probability of making a Type I error not exceed 5% (or 1% or 10%) and
restrict our choice to statistical methods that ensure we do not exceed this
level. If we have a choice of several statistical procedures, all of which restrict
the Type I error appropriately, we can choose the method that leads to the
smallest probability of making a Type II error.

2.1.3 Losses and Risk

The preceding discussion is greatly oversimplified. Obviously, our losses will
depend not merely on whether we guess right or wrong, but on how far our
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guesstimate is off the mark. For example, suppose you’ve developed a new
drug to relieve anxiety and are investigating its side effects. You ask, “Does
it raise blood pressure?” You do a study and find the answer is “no.” But the
truth is your drug raises systolic blood pressure an average of one millibar.
What is the cost to the average patient? Negligible, one millibar is a mere
fraction of the day-to-day variation in blood pressure.

Now, suppose your new drug actually raises blood pressure an average of
10 mb. What is the cost to the average patient? to the entire potential patient
population? to your company in law suits? Clearly, the cost of a Type II
error will depend on the magnitude of that error and the nature of the losses
associated with it.

Historically, much of the work in testing hypotheses has been limited to zero
or one loss function while that of estimation has focused on losses proportional
to the square of the error. The result may have been statistics that were
suboptimal in nature with respect to the true, underlying loss (see Mielke
[1986], Mielke and Berry [1997]).

Are we more concerned with the losses associated with a specific decision
or those we will sustain over time as a result of adhering to a specific decision
procedure? Which concerns our company the most: reducing average losses
over time or avoiding even the remote possibility of a single, catastrophic loss?
We return to this topic in Section 2.2.

2.1.4 Significance Level and Power

In selecting a statistical method, statisticians work with two closely related
concepts, significance level and power. The significance level of a test, denoted
throughout the text by the Greek letter α (alpha), is the probability of making
a Type I error; that is, α is the probability of deciding erroneously on the
alternative when, in fact, the hypothesis is true.

To test a hypothesis, we divide the set of possible outcomes into two or more
regions. We accept the primary hypothesis and risk a Type I error when our
test statistic lies in the rejection region R; we reject the primary hypothesis
and risk a Type II error when our test statistic lies in the acceptance region
A; and we may take additional observations when our test statistic lies in the
boundary region of indifference I. If H denotes the hypothesis, then

α = Pr{X ∈ R|H}.

The power of a test, denoted throughout the text by the Greek letter β

(beta), is the complement of the probability of making a Type II error; that
is, β is the probability of deciding on the alternative when the alternative is
the correct choice. If K denotes the alternative, then

β = Pr{X ∈ R|K}.
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The ideal statistical test would have a significance level α of zero and a
power β of 1, or 100%. But unless we are all-knowing, this ideal cannot be
realized. In practice, we will fix a significance level α > 0, where α is the
largest value we feel comfortable with, and choose a statistic that maximizes or
comes closest to maximizing the power for an alternative or set of alternatives
important to us.

2.1.4.1 Power and the Magnitude of the Effect

The relationship among power, significance level, and the magnitude of the
effect for a specific test is summarized in Figure 2.2, provided by Patrick
Onghena. For a fixed significance level, the power is an increasing function of
the magnitude of the effect. For a fixed effect, increasing the significance level
also increases the power.

2.1.4.2 Power and Sample Size

As noted in Section 2.1.3., the greater the discrepancy between the true alter-
native and our hypothesis, the greater the loss associated with a Type II error.

Fig. 2.2. Power of the two-tailed t-test with sample sizes of n1 = n2 = 20 as a
function of the effect size (EFFECT) and the significance level (ALPHA) under the
classical parametric assumptions.
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Fortunately, in most practical situations, we can devise a test where the larger
the discrepancy, the greater the power and the less likely we are to make a
Type II error.

The relationship among power, effect magnitude, and number of obser-
vations for a specific test is summarized in Figure 2.3, provided by Patrick
Onghena.

Figure 2.4a depicts the power as a function of the alternative for two tests
based on samples of size 6. In the example illustrated, the test ϕ1 is uniformly
more powerful than ϕ2, hence, using ϕ1 in preference to ϕ2 will expose us to
less risk.

Figure 2.4b depicts the power curve that results from using these same two
tests, but for different size samples; the power curve of ϕ1 is still based on
a sample of size 6, but that of ϕ1 now is based on a sample of size 12. The
two new power curves almost coincide, revealing the two tests now have equal
risks. But we will have to pay for twice as many observations if we use the
second test in place of the first.

Moral: A more powerful test reduces the costs of experimentation, and it
minimizes the risk.

Fig. 2.3. Power of the two-tailed t-test with p = 0.05 as a function of the effect
size (EFFECT) and the number of observations (NUMBER, n1 = n2) under the
classical parametric assumptions.
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Fig. 2.4a. Power as a function of the alternative. Tests have the same sample size.

Fig. 2.4b. Power as a function of the alternative. Tests have different sample sizes.

2.1.4.3 Power and the Alternative

If a test at a specific significance level α is more powerful against a specific
alternative than all other tests at the same significance level, we term it most
powerful. But as we see in Figure 2.5, a test that is most powerful for some
alternatives may be less powerful for others. When a test at a specific signif-
icance level is more powerful against all alternatives than all other tests at
the same significance level, we term such a test uniformly most powerful.

We term a test admissible, providing either a) it is uniformly most powerful
or b) no other test is more powerful against all alternatives.
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Fig. 2.5. Comparing power curves: For near alternatives, with θ close to zero, test
4 is the more powerful test; for far alternatives, with θ large, test 3 is more powerful.
Thus, neither test is uniformly most powerful.

Note: One can only compare the power of tests that have the same sig-
nificance level. For if the test ϕ1[α1] is less powerful than ϕ2[α2], where the
significance level α1 < α2, then it may be that the power of ϕ1[α2] is greater
than the power of ϕ2[α2].

The significance level and power may also depend upon how the variables
we observe are distributed. For example, does the population distribution
follow a bell-shaped normal curve with the most frequent values in the center,
as in Figure 2.1a? Or is the distribution something quite different? To protect
our interests, we may need to require that the Type I error be less than or
equal to some predetermined value for all possible distributions. When applied
correctly, permutation tests always have this property. The significance levels
of parametric tests and of tests based on the bootstrap are dependent on the
underlying distribution.

2.1.5 Exact, Unbiased, Conservative

In practice, we seldom know either the distribution of a variable or the values
of any of the distribution’s nuisance parameters.1 We usually want to test a
compound hypothesis, such as H: X has mean value 0. This latter hypothesis
includes several simple hypotheses, such as H1: X is normal with mean value

1 A good example of nuisance parameters is a distribution’s unknown means when
variances are being compared (see Section 3.7.1).



22 2 Optimal Procedures

0 and variance 1, H2: X is normal with mean 0 and variance 1.2, and H3: X
is a gamma distribution with mean zero and four degrees of freedom.2

A test is said to be exact with respect to a compound hypothesis if the
probability of making a Type I error is exactly α for each and every one of
the possibilities that make up the hypothesis. A test is said to be conservative
if the Type I error never exceeds α. Obviously, an exact test is conservative,
though the reverse may not be true.

The importance of an exact test cannot be overestimated, particularly a
test that is exact regardless of the underlying distribution. If a test that is
nominally at level α is actually at level c, we may be in trouble before we
start: If c > α, the risk of a Type I error is greater than we are willing to bear.
If c < α, then our test is suboptimal, and we can improve on it by enlarging
its rejection region.

A test is said to be unbiased and of level α providing its power function β

satisfies the following two conditions:

• β is conservative; that is, β ≤ α for every distribution that satisfies the
hypothesis;

• β ≥ α for every distribution that is an alternative to the hypothesis.

That is, a test is unbiased if you are more likely to reject a false hypothesis
than a true one when you use such a test. I find unbiasedness to be a natural
and desirable principle, but not everyone shares this view; see, for example,
Suissa and Shuster [1984].

Faced with some new experimental situation, our objective always is to
derive a uniformly most powerful unbiased test if one exists. But if we can’t
derive a uniformly most powerful test (and Figure 2.5 depicts just such a
situation), then we will look for a test that is most powerful against those
alternatives that are of immediate interest.

2.1.6 Impartial

Our methods should be impartial. Decisions should not depend on the acciden-
tal and quite irrelevant labeling of the samples; nor should decisions depend
on the units in which the measurements are made nor when they are made.

To illustrate, suppose we have collected data from two samples and our
objective is to test the hypothesis that the difference in location of the two
populations from which the samples are drawn is less than or equal to some
value. (This is called a one-tailed or one-sided test.) Suppose further that the
first sample includes the values a, b, c, d, and e and the second sample the
values f , g, h, i, j, k. If the observations are completely reversed, that is, if
the first sample includes the values f , g, h, i, j, k and the second sample the
values a, b, c, d, and e, then, if we rejected the hypothesis in the first instance,
we ought to reject it in the second.

2 In this example the variance is an example of a nuisance parameter.
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The units we use in our observations should not affect our decisions. We
should be able to take a set of measurements in feet, convert to inches, make
our estimate, convert back to feet, and get absolutely the same result as if
we’d worked in feet throughout. Similarly, where we locate the zero point
of our scale should not affect the conclusions. Measurements of temperature
illustrate both these points.

Finally, if our observations are independent of the time of day, the season,
and the day on which they were recorded (facts which ought to be verified
before proceeding further), then our decisions should be independent of the
order in which the observations were collected.

Such impartial tests are said to be invariant with respect to the transfor-
mations involved (the conversion of units or the permutation of subscripts).

2.1.7 Most Stringent Tests

Let βϕ(θ) denote the power of a test ϕ against the alternative θ. Let the
envelope power function β∗

α(θ) be the supremum of βϕ(θ) over all level-α tests
of the hypothesis. Then β∗

α(θ) − βϕ(θ) is the amount by which a specific test
ϕ falls short of the maximum power attainable. A test that minimizes its
maximum shortcoming over all alternatives θ is said to be most stringent.

2.2 Basic Assumptions

The parametric and bootstrap tests considered in this text rely on the
assumption that successive observations are independent of one another.
The permutation tests rely on the less inclusive assumption that they are
exchangeable. We provide formal definitions of these concepts in this section
and in Section 15.5.

2.2.1 Independent Observations

If you and I each flip separate coins, the results are independent of one another.
But if the two of us sit together at a table while a poll taker asks us about our
preferences, our responses are unlikely to be independent if you or I modify
our responses in an effort to please or placate one another.

We say that two observations X1 and X2 are independent of one another
with respect to a collection of events A if

Pr{X1 ∈ A and X2 ∈ B} = Pr{X1 ∈ A}Pr{X2 ∈ B}
where A and B are any two not necessarily distinct sets of outcomes belonging
to A.3

3 We formalize this definition of independence in Section 15.1.
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Suppose I choose to have my height measured by several individuals. These
observations may well have a normal distribution with mean µphil, my height
as measured by some “perfect” measuring device. With respect to the set
of events leading to such observations, the various measurements on me are
independent.

Suppose instead that several individuals including myself are selected from
a larger population, one that has a distribution F centered about the value
µ. Observations on me may be viewed as including two random components,
one that results from selecting me from F and the other the observational
error described in the previous paragraph. The result is to generate a much
larger set of events with respect to which the observations on my height are
no longer independent.4

Some additional examples of independent and dependent observations are
given in Exercise 5. Some additional properties of independent observations
are given in Section 4.1.

2.2.2 Exchangeable Observations

A sufficient condition for a permutation test such as the one outlined in the
preceding chapter to be exact and unbiased against shifts in the direction of
higher values is the exchangeability of the observations in the combined sam-
ple.5 Let G{x; y1, y2, . . . , yn−1} be a distribution function in x and symmetric
in its remaining arguments—that is, if the remaining arguments were permit-
ted, the value of G would not be affected. Let the conditional distribution
function of xi given x1, . . . , xi−1, xi+1, . . . , xn be G for all i. Then the {xi}
are exchangeable.

Independent, identically distributed observations are exchangeable. So are
samples without replacement from a finite population, termed Polya urn
models [Koch, 1982]. An urn contains b black balls, r red balls, y yellow
balls, and so forth. A series of balls is extracted from the urn. After the ith
extraction, the color of the ball Xi is noted and k balls of the same color are
added to the urn, where k can be any integer, positive, negative, or zero. The
set of random events {Xi} form an exchangeable sequence.6

Also exchangable are dependent normally distributed random variables
{Xi} for which the variance of Xi is a constant independent of i and the
covariance of Xi and Xj is a constant independent of i and j. An additional
example of dependent but exchangeable variables is given in Section 3.7.2.

Sometimes a simple transformation will ensure that observations are
exchangeable. For example, if we know that X comes from a population with

4 The student in search of greater clarity will find it in the formal exposition of
Section 15.1.

5 If an observation O consists of a deterministic part D and a stochastic part S,
O = D + S, only the stochastic parts need be exchangeable. We use this more
precise definition in Chapter 6.

6 See, also, Dubins and Freedman [1979].
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mean µ and distribution F (x − µ) and an independent observation Y comes
from a population with mean v and distribution F (x − v), then the indepen-
dent variables X ′ = X − µ and Y ′ = Y − v are exchangeable.

In deciding whether your own observations are exchangeable and a per-
mutation test applicable, the key question is the one we posed in the very
first chapter: Under the null hypothesis of no differences among the various
experimental or survey groups, can we exchange the labels on the observations
without significantly affecting the results?

2.3 Decision Theory

A statistical problem is defined by three elements:

1) the class F =(Fθ, θ∈Ω) to which the probability distribution of the obser-
vations belongs; for example, we might specify that this distribution is
either unimodal, or symmetric, or normal;

2) the set D of possible decisions {d} one can make on observing the sample
X = (X1, . . . , Xn);

3) the loss L(d, θ), expressed in dollars, persons’ lives or some other quantifi-
able measure, that results when we make the decision d when θ is true.

The problem is a statistical one when the investigator is not in a position
to say that X will take on exactly the value x, but only that X has some
probability P{A} of taking on values in the set A.

So far in this chapter we’ve limited ourselves to two-sided decisions in which
either we accept a hypothesis H and reject an alternative K or we reject the
hypothesis H and accept the alternative K.

One example is H: θ ≤ θ0 K: θ > θ0. In this example we would probably
follow up our decision to accept or reject with a confidence interval for the
unknown parameter θ. This would take the form of an interval (θmin, θmax)
and a statement to the effect that the probability that this interval covers the
true parameter value is not less than 1 − α. This use of an interval can rescue
us from the sometimes undesirable all-or-nothing dichotomy of hypothesis vs.
alternative.

Our objective is to come up with a decision rule D, such that when we
average out over all possible sets of observations, we minimize the associated
risk or expected loss,

R(θ, D) = EL(θ, D(X)).

In the first of the preceding examples, we might have

L(θ, d) = 1 if θ ∈ K and d = H (Type II error),
L(θ, d) = 10 if θ ∈ H and d = K (Type I error),
L(θ, d) = 0 otherwise.

Typically, losses L depend on some function of the difference between the
true (but unknown) value θ and our best guess θ∗ of this value, the absolute
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deviation L(θ, θ∗) = |θ∗ − θ|, for example. Other typical forms of the loss
function are the square deviation L(θ∗ − θ)2, and the jump, that is, no loss
occurs if |θ∗ − θ| < δ, and a big loss occurs otherwise.

Unfortunately, a testing procedure that is optimal for one value of the
parameter θ might not be optimal for another. This situation is illustrated
in Figure 2.5 with two decision curves that cross over each other. The risk
R depends on θ, and we don’t know what the true value of θ is! How are we
to choose the best decision? This is the topic we now discuss by considering
Bayes, mini-max, and generalized decisions.

2.3.1 Bayes’ Risk

One seldom walks blind into a testing situation. Except during one’s very first
preliminary efforts, one usually has some idea of the magnitude and likelihood
of the expected effect. This is particularly true of clinical trials that are usually
the culmination of years of experimental effort, first on the computer to elicit
a set of likely compounds, and then in the laboratory in experiments with
inbred mice and, later, dogs or monkeys. The large scale Phase III clinical
trial takes place only after several years. And even then after small numbers
of humans have been exposed to determine the maximum safe dose and the
minimum effective dose.

In the case of a simple alternative, we may start with the idea that the prior
probability that the null hypothesis is true is close to 1, while the probability of
the alternative is near 0. As we gain more knowledge through experimentation,
we can assign posterior odds to the null hypothesis with the aid of Bayes’
theorem:

Pr{(H)E1, . . . , En, En+1}

=
Pr{En+1|H}Pr{H|E1, . . . , En}

Pr{En+1|H}Pr{H|E1, . . . , En} + Pr{En+1|K}Pr{K|E1, . . . , En} ,

where E1, . . . , En+1 are the outcomes of various experiments.
We may actually have in mind an a prior probability density ρ(θ) over all

possible values of the unknown parameter, and so we use our experiment and
Bayes’ theorem to deduce a posterior probability density ρ′(θ).

Here is an example of this approach, taken from a report by D.A. Berry7:

A study reported by Freireich et al.8 was designed to evaluate the effective-
ness of a chemotherapeutic agent 6-mercaptopurine (6-MP) for the treat-
ment of acute leukemia. Patients were randomized to therapy in pairs. Let

7 The full report titled “Using a Bayesian approach in medical device develop-
ment” may be obtained from Donald A. Berry at the Institute of Statistics &
Decision Sciences and Comprehensive Cancer Center, Duke University, Durham
NC 27708–025.

8 Blood 1963; 21: 699–716.
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p be the population proportion of pairs in which the 6-MP patient stays
in remission longer than the placebo patient. (To distinguish probability
p from a probability distribution concerning p, I will call it a population
proportion or a propensity.) The null hypothesis H0 is p = 1/2: no effect
of 6-MP. Let H1 stand for the alternative hypothesis that p > 1/2. There
were 21 pairs of patients in the study, and 18 of them favored 6-MP.

Suppose that the prior probability of the null hypothesis is 70 percent
and that the remaining probability of 30 percent is on the interval (0,1)
uniformly. . . . So under the alternative hypothesis H1, p has a uniform(0,1)
distribution. This is a mixture prior in the sense that it is 70 percent discrete
and 30 percent continuous.

The uniform(0,1) distribution is also the beta(1,1) distribution. Updating
the beta(a, b) distribution after s successes and f failures is easy, namely,
the new distribution is beta(a + s, b + f). So for s = 18 and f = 3, the
posterior distribution under H1 is beta(19,4).

If our decision procedure is δ(X) and our loss function is L(θ, δ(X)), our
risk when θ is true is R(θ, δ) =L(θ, δ(X)), and our overall average loss is
r(ρ, δ) = R(θ, δ)ρ(θ)dθ. A decision procedure d that minimizes r(ρ, d) is called
a Bayes’ solution and the resultant r, the Bayes’ risk.

Suppose Θ, the unobservable parameter, has probability density ρ(θ),
and that the probability density of X when Θ= θ is pθ(x). Let p(x) = ρ(θ′)
pθ′(x)dθ′. Let π(θ|x) denote the a posteriori probability density of Θ given
x, which by Bayes’ theorem is ρ(θ)pθ(x)/p(x). Then Bayes’ risk can also be
written as L(θ, δ(x))π(θ|x)dθ]p(x)dx.

In the case of testing a simple alternative against a simple hypothesis, let
the cost of each observation be c. This cost could be only a few cents (if, say,
we are testing the tensile strength of condoms) or more than $10,000 in the
case of some clinical trials. Let c1 and c2 denote the costs associated with
Type I and Type II errors, respectively. Then the Bayes’ risk of a procedure
d is

r(ρ, d) = π[αc1 + cE0N ] + (1 − π)[(1 − β)c2 + cE1N ].

2.3.2 Mini-Max

An insurance company uses the expected risk in setting its rates, but those
of us who purchase insurance use a quite different criterion. We settle for a
fixed loss in the form of the insurance premium in order to avoid a much
larger catastrophic loss. Our choice of procedure is the decision rule d, here
the decision to pay the premium that minimizes the maximum risk for all
possible values of the parameter.

Other possible criteria fall somewhere in between these two. For example,
we could look for the decision rule that minimizes the Bayes’ risk among the
class of all decision rules for which R(θ, d) never exceeds some predetermined
upper bound.
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2.3.3 Generalized Decisions

The simple dichotomy of hypothesis versus alternative and the associated set
of decisions, accept or reject, covers only a few cases. More often, we will have
a choice among many decisions.

Recently, a promising treatment was found for a once certain fatal dis-
ease. Not all patients were cured completely; for some, there was a tempo-
rary remission of the disease, which allowed other cures to be tried, while
other patients could only report that they felt better, and, alas, there were
still many for whom the inevitable downward progress of the disease contin-
ued without interruption. The treatment was expensive and carried its own
separate risks for the patient. A university laboratory had come up with a
predictive method that could be employed prior to starting the treatment.
Still, this method wasn’t particularly reliable. The small company for whom
I worked as a consultant felt sure its technology would yield a far superior
predictive measure. The question for the statistician was how the company
could turn this feeling into something more substantial, something that could
be used to convince both venture capitalists and regulatory agencies of the
new method’s predictive value.

A committee was formed consisting of two physicians—specialists in the
disease and its treatment, a hospital administrator, and a former senior staff
member of a regulatory agency. Each was asked to provide their estimates of
the costs or losses, relative or absolute, that would be incurred if a measure
predicted one response, while the actual outcome was one of the three alter-
natives. The result, after converting all the costs to relative values and then
averaging them, was a loss matrix that looked like this:

Cured Remission Slight relief No effect

Cured 0 −1 −3 −6
Remission −2 0 −2 −4
Slight relief −5 −2 0 −1.2
No effect −10 −5 −1 0

We already had records for a number n of patients, including samples of frozen
blood that had been drawn prior to treatment. These were tested by each of
the proposed prediction methods. For each method, we then had an overall
risk given by the formula

∑
i L[di, δi], where the sum was taken over the entire

sample of patients. Since there were only four outcomes, we might also have
written this sum as

∑4
k=1

∑4
j=1 fn[k, j]L[dk, δj ], where fn[k, j] is the empirical

frequency distribution of outcomes for this sample of patients.
In situations where the objective is to estimate the value of a parameter θ,

the further apart the estimate θ∗ and the true value θ, the larger our losses are
likely to be. Typical forms of the loss function in such a case are the absolute
deviation |θ∗ −θ|; the square deviation (θ∗ −θ)2; and the jump, that is, no loss
if |θ∗ − θ| < δ; and a big loss otherwise. Or the loss function may resemble the
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square deviation but take the form of a step function increasing in discrete
increments.

Where estimation is our goal, our objective may be one of two: either to
find a decision procedure d[X] that minimizes the risk function R(θ, d) =Eθ

[L(θ, d[X]] or the average loss as in our prediction example, or to find a pro-
cedure that minimizes the maximum loss. Note that the risk is a function
of the unknown parameter θ, so that an optimal decision procedure based
on minimizing the risk may depend upon that parameter unless, as in the
example of hypothesis testing, there should exist a uniformly most power-
ful test.

2.4 Exercises

1. a) Power. Sketch the power curve β(θ) for one or both of the two-sample
comparisons described in this chapter. (You already know one of the
points for each power curve. What is it?)

b) Using the same set of axis, sketch the power curve of a test based on a
much larger sample.

c) Suppose that without looking at the data you
i) always reject;
ii) always accept;
iii) use a chance device so as to reject with probability α.
For each of these three tests, determine the power and the significance

level. Are any of these three tests exact? unbiased?
2. Suppose that we are testing a simple hypothesis H against a simple alter-

native K.

a) Show that if α1 ≤ α2 then β1 ≤ β2.
b) Show that if the test ϕ1[α1] is less powerful than ϕ2[α2] where the

significance level α1 < α2, it may be that ϕ1[α2] > ϕ2[α2].

3. a) The advertisement reads, “Safe, effective, faster than aspirin.” A picture
of a happy smiling woman has the caption, “My headache vanished
faster than I thought possible.” The next time you are down at the
pharmacy, the new drug is there at the same price as your favorite
headache remedy. Would you buy it? Why or Why not? Do you think
the ad is telling the truth? What makes you think it is?

b) In the United States, in early 1995, a variety of government agencies
and regulations would almost guarantee the ad is truthful—or, if not,
that it would not appear in print a second time. Suppose you are part
of the government’s regulatory team reviewing the evidence supplied by
the drug company. Looking into the claim of safety, you are told only
“we could not reject the null hypothesis.” Is this statement adequate?
What else would you want to know?
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4. Unbiasedness. Suppose a and m denote the arithmetic mean and median
of a random variable Y , respectively. Show that
a) For all real b, c such that a ≤ b ≤ c, E(Y − b)2 ≤ E(Y − c)2.
b) For all real d, e such that m ≤ d ≤ e, E|Y − d| ≤ E|Y − e|.

5. Do the following constitute independent observations?
a) Number of abnormalities in each of several tissue sections taken from

the same individual.
b) Sales figures at Eaton’s department store for its lamp and cosmetic

departments.
c) Sales figures at Eaton’s department store for the months of May

through November.
d) Sales figures for the month of August at Eaton’s department store and

at its chief competitor Simpson-Sears.
e) Opinions of several individuals whose names you obtained by sticking

a pin through a phone book, and calling the “pinned” name on each
page.

f) Dow Jones Index and GNP of the United States.
g) Today’s price in Australian dollars of the German mark and the

Japanese yen.
6. To check out a new theory regarding black holes, astronomers compare the

number of galaxies in two different regions of the sky. Six non-overlapping
photographs are taken in each region, and three astronomers go over each
photo with each recording his counts. Would the statistical method descri-
bed in Section 1.3 be appropriate for analyzing this data? If so, how many
different rearrangements would there be?

7. a) Decisions. Suppose you have two potentially different radioactive iso-
topes with half-life parameters λ1 and λ2, respectively. You gather data
on the two isotopes and, taking advantage of a uniformly most powerful
unbiased permutation test, you reject the null hypothesis H: λ1 = λ2 in
favor of the one-sided alternative λ1 > λ2. What are you or the person
you are advising going to do about it? Will you need an estimate of
λ1 > λ2? Which estimate will you use? (Hint: See Section 3.2 in the
next chapter.)

b) Review some of the hypotheses you tested in the past. Distinguish your
actions after the test was performed from the conclusions you reached.
(In other words, did you do more testing? rush to publication? abandon
a promising line of research?) What losses were connected with your
actions? Should you have used a higher/lower significance level? Should
you have used a more powerful test or taken more/fewer observations?
Were all the assumptions for your test satisfied?

8. a) Your lab has been gifted with a new instrument offering 10 times the
precision of your present model. How might this affect the power of
your tests? their significance level? the number of samples you’ll need
to take?
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b) A directive from above has loosened the purse strings so you now can
test larger samples. How might this affect the power of your tests? their
significance level? the precision of your observations? the precision of
your results?

c) A series of lawsuits over silicon implants you thought were harmless
has totally changed your company’s point of view about the costs of
sampling. How might this affect the number of samples you’ll take?
the power of your tests? their significance level? the precision of your
observations? the precision of your results?

9. Give an example (or two) of identically distributed observations that are
not independent.

10. Are the residuals exchangeable in a regression analysis? an analysis of
variance?

11. Suppose a two-decision problem has the loss matrix
[
0 a
b 0

]
. Show that any

mini-max procedure is unbiased.
12. Bayes’ solutions. Let Θ be an unobservable parameter with probability

density ρ(θ) and suppose we desire a point estimate of a real-valued
function g(θ).
a) If L(θ, d) = (g(θ) − d)2, the Bayes’ solution is E[g(Θ)|x).
b) If L(θ, d) = |g(θ) − d|, the Bayes’ solution is median [g(Θ)|x).

13. Many statistical software packages now automatically compute the results
of several tests, both parametric and nonparametric. Show that, unless the
choice of test statistic is determined before the analysis is performed, the
resultant p-values will not be conservative.
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