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4.10.8. (a) Let ¢ and ¢ be primitive Dirichlet characters modulo v and v
with (1¢)(—1) = (=1)* and uwv = N. If a : (Z/NZ)?> — C is the function

a(co,d + ev) = Y(c)p(d), a(T,y) =0 otherwise,
show that its Fourier transform is

a(—za, ~(d+ ew)) = (9(9)/0)g(W)p(c)i(d), a(.5) = 0 otherwise.

(Hints for this exercise are at the end of the book.)
(b) Define an Eisenstein series with parameter,

u—lv—1u—1

GPe(rs) =3 3 S w(a(d) G (7, 5).

c=0 d=0 e=0

Show that the sum (4.46) of Eisenstein series for the function « in this problem
is
Gi(rs) = G2 (1 8) + (1) (9(2)/0)9()GE Y (7).

Thus the functional equations for the eigenspaces (N, x) involve only two
series at a time.

(c) Define a function b : (Z/NZ)?> — C and a series E;"#(t,s) by the
conditions - ~

a = g(gp) b7 G’Lkﬁ,tp — g(@) El’f,@.
v v

Show that the sum (4.46) of Eisenstein series for b is more nicely symmetrized
than the one for a,

Gh(rs) = B2 (ry8) + o~ Ef Y (1 5).

4.11 Modular forms via theta functions

This chapter ends by using theta functions to construct a modular form that
both connects back to the preface and adumbrates the ideas at the end of the
book. The construction is one case of a general method due to Hecke [Hec26].

Recall that the preface used Quadratic Reciprocity to motivate the Mod-
ularity Theorem via a simple analog, counting the solutions modulo p to the
quadratic equation 22 = d. Now consider a cubic equation instead,

C:z®=d, d € ZT, d cubefree,
and for each prime p let
a,(C) = (the number of solutions modulo p of equation C') — 1.

Results from elementary number theory show that (Exercise 4.11.1)



156 4 FEisenstein Series

2 if p=1 (mod 3) and d is a nonzero cube modulo p,
ap(C)=<¢ -1 ifp=1 (mod 3) and d is not a cube modulo p, (4.47)
0 if p=2 (mod 3) or p|3d.

This section will use Poisson summation and the Cubic Reciprocity Theorem
from number theory to construct a modular form 6, with Fourier coefficients
ap(fy) = ap(C). Section 5.9 will show that these Fourier coefficients are eigen-
values. That is, the solution-counts of the cubic equation C' are a system of
eigenvalues arising from a modular form. Chapter 9 will further place this
example in the context of Modularity.

Introduce the notation

e(z) =€, z€C.
Let A = Z[us), let a = iv/3, and let B = L A. Thus A C B C +A. Note that
|z|? = 22 — x120 + 23 for any x = 1 + 2ou3 € Rlus).

We will frequently use the formula |z +y|? = |z|? +tr (zy*) +|y|? for 2,y € C,
where y* is the complex conjugate of y and tr (z) = z 4+ 2z*. For any positive
integer N and any u in the quotient group %A/NA define a theta function,

0“(1,N) = Z e(Nu/N +n|’1), 7€ (4.48)
neA

An argument similar to Exercise 4.9.2 shows that #% is holomorphic. The
following lemma establishes its basic transformation properties. From now
until near the end of the section the symbol d is unrelated to the d of the
cubic equation C.

Lemma 4.11.1. Let N be a positive integer. Then

01 +1,N) = e (%) 9%(r, N), 7 e B/NA,
0“(r,N)= > 6°(dr,dN), we B/NA, de Z7,
TEB/dNA
v=1u (NA)
v — —iT _tr(vw®) W _
0°(=1/7,N) N3 > e( Bt )9 (r,N), ©ve B/NA.

weB/NA

Proof. For the first statement compute that for u € B and n € A,

u 2 _ Juf?

For the second statement note that %(7,N) =3 _, e (dN\ ”/N%Pch). Let

n = r + dm, making the fraction “Y&” + m. Thus
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(N = 3 (dN\“+NT+mdeT)= S 0N (dr,dN),
TEA/AA TEA/AA
meA

where the reduction u + N7 is taken modulo d/N. This gives the result.

The third statement is shown by Poisson summation. Recall that the defin-
ing equation (4.42) from the previous section was extended to k = 0 in Exer-
cise 4.10.6(a),

y) =Y e NTIE 5 e (Z/NZ), 4 € GLy(R).

neZz?
To apply this let v € SLa(R) be the positive square root of % [7% _H,
satisfying

(21, 22)7* = oy + zopsf?,  @1,22 € R
Note that B/NA C +A/NA = A/3NA. Identify A with Z? so that if v € B
then its multiple 3v € oA C A can also be viewed as an element of Z2.
Compute with 3NV in place of N and with 7 as above that for any ¢t € R,

T (3N /2(0/VB) ) = 37 I GR )

neZz?

=) e~ 2NIN 01t _ g7 (ip),

neA

This shows that the identity (4.43) with & = 0, with 3N in place of N, with
7 as above, and with r = (v/31)7'/2 is (Exercise 4.11.2)

67(—1/(it), N) = Ntf S o) g, N), we B/NA,
€LA/NA

where vu* = (vu*); + (vu*)apus. Generalize from t € R* to —it for 7 € H by
the Uniqueness Theorem of complex analysis to get
—iT

NV3_

07(~1/,N) = 3 e(—%)eﬁ(gam, 7 € B/NA.

elA/NA
The sum on the right side is

> oe(-lz) Y G

weB/NA uetA/NA
au=w (NA)
To simplify the inner sum note that 6 (7, N) = ., e (N\W\QZ’»T) for

any w € B/NA, and similarly to the proof of the second statement this works
out to
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meA

- 2 [
07 (r,N)= > e<N’(w+%T)/a+m‘ 37’) = Y ot/ B N)
TEA/aA

TEA/aA
That is, the inner sum is

Z Qﬁ(3’r7 N) = 0E(7—7 N)7
ueiA/NA

w € B/NA.
au=w (NA)

The proof is completed by noting that (avw*)s = tr (vw™).

O
The next result shows how the theta function transforms under the group

Io(3N,N) = { {‘Cl Z] €SLy(Z) : b=

=0 (mod N), ¢=0 (mod 3N)} .
Proposition 4.11.2. Let N be a positive integer. Then

(0"[]0)(r, N) = (§) 0""(r,N), e A/NA, v=[2}] € I[H(3N,N).
Here (d/3) is the Legendre symbol.

Proof. Since 7% = §%% we can assume d > 0 by replacing v with —v if
necessary. Write

at+b 1 1 b

er+d d\d/t+c ’

Apply the second statement of the lemma and then the first statement to get
0% (y(7), N) = Z e(b“’lQ)Gﬁ( 1

N *—d/T—c’dN) :
vEB/dNA
v=u (NA)

The third statement and again the first now give

o7(3(r). ) = LT E

SULAR DY ML ow) ) 67 (—d/7 ~ c,dN)
dNV3 T, weB/dNA
v=u (NA)

_i(er +d)

—~ 7/ Z b|’u\2—tr (Uw*)—c|w\2) HW(—d/T dN)
- dN ) :
dNV3T T weB/ANA

Note that cw € NA for w € B since ¢ = 0 (mod 3N). It follows that

blv|2—tr (vw*)—clw]?\ _ blv—cw|?—tr (v—cw)w*)—clw|?
d. e dN = D e dN
TEB/dNA 5EB/dNA
v=u (NA)

v=u (NA)

—e (7 tr (auw™)

w) 2 (),
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where the last equality uses the relation ad —bec = 1. Since b = 0 (mod N) the
summand e (b[v|?/(dN)) depends only on v (mod dA), and since (d, N) =1
and u € A/NA the sum is Y i /44 € (0]v[*/(dN)). This takes the value
(d/3)d (Exercise 4.11.3). Substitute this into the transformation formula and
apply the second and third statements of the lemma to continue,

() = STED(9) 5 e (-l a1/, an)

Nv37 \3 weB/dNA
i(CT'f'd) (d> Z tr (auv™) \ pv
_Nertd) (d e (— @) gv 10 N)
Nv3T \3 BEB/NA ( )
_ ct+d (d tr (vw* +auv™) w
—T(5) X e(-megen) o)
v,weB/NA

Exercise 4.11.3(b) shows that the inner sum is

3 e(WW‘W)_{zNQ if W — —am,

TEB/NA if w# —au,
completing the proof since §~%% = 3%, 0

To construct a modular form from the theta functions we need to conjugate
and then symmetrize. To conjugate, let § = [§ {] so that

STH(3N?)6~! = IH(3N, N)

and the conjugation preserves matrix entries on the diagonal. Recall that the
weight-k operator was extended to GLj (Q) in Exercise 1.2.11. Thus for any
vy=[28] € IL(3N?),

(0" [69]1)(7) = (0" [ 8]1)(7) where 7/ = §v5~" € IH(3N, N)

= (d/3)(0°"[5]1)(7) since d = d.. (4.49)

The construction is completed by symmetrizing:

Theorem 4.11.3. Let N be a positive integer and let x : (A/NA)* — C* be
a character, extended multiplicatively to A. Define

Oy (T) = ¢ Z x(w)0“ (N7, N).
ueA/NA
Then
O [Y) = x(d)(d/3)0y, ~=[2}4] € Io(3N?).
Therefore
0 € MiBN%,¢),  (d) = x(d)(d/3).
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The desired transformation of 6, under I'H(3N?) follows from (4.49) since
0y = > = x(uw)0"[8]; (Exercise 4.11.4). To finish proving the theorem note that

Oy (1) = % Z x(n)e (|n\27') = Z am(ex)€27ri7-

necA m=0

where
am(f) =% Y x(n). (4.50)
neA
Inf2=m
This shows that a,(0) = O(n), i.e., the Fourier coefficients are small enough
to satisfy the condition in Proposition 1.2.4.
For example, when N = 1 the theta function

01(7r) = % Z 62”‘"‘27, TeH

neA

is a constant multiple of Ef’ ! the Eisenstein series mentioned at the end
of Section 4.8 (Exercise 4.11.5). This fact is equivalent to a representation
number formula like those in Exercise 4.8.7.

Along with Poisson summation, the other ingredient for constructing a
modular form to match the cubic equation C' from the beginning of the
section is the Cubic Reciprocity Theorem. The unit group of A is A* =
{+1, +p3, £u2}. Note that formula (4.50) shows that 6, = 0 unless x is trivial
on A*. Let p be a rational prime, p = 1 (mod 3). Then there exists an element
T = a+ bus € A such that

{neA:|nf?>=p}=A"1TU AT

The choice of 7 can be normalized, e.g., to @ = a + buz where a = 2 (mod 3)
and b = 0 (mod 3). On the other hand a rational prime p = 2 (mod 3) does
not take the form p = |n|? for any n € A, as is seen by checking |n|?> modulo 3.
(See 9.1-9.6 of [IR92] for more on the arithmetic of A.) A weak form of Cubic
Reciprocity is: Let d € Z+ be cubefree and let N = 3 Hp|dp. Then there exists
a character

X (A/NA)* — {1, 3, p3}

such that the multiplicative extension of x to all of A is trivial on A* and
on primes p 1 N, while on elements © of A such that =7 is a prime pt N it
1s trivial if and only if d is a cube modulo p. See Exercise 4.11.6 for simple
examples.

For this character, 6, (1, N) € M1(3N?,1) where 9 is the quadratic char-
acter with conductor 3. Formula (4.50) shows that the Fourier coefficients of
prime index are
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2 if p=1 (mod 3) and d is a nonzero cube modulo p,
ap(0y) = ¢ —1 if p=1 (mod 3) and d is not a cube modulo p, (4.51)
0 if p=2 (mod 3) or p| 3d.

That is, the Fourier coefficients are the solution-counts (4.47) of equation C'
as anticipated at the beginning of the section.

Exercises

4.11.1. Show that for any prime p the map x — 23 is an endomorphism of the
multiplicative group (Z/pZ)*. Show that the map is 3-to-1 if p = 1 (mod 3)
and is 1-to-1 if p = 2 (mod 3). Use this to establish (4.47).

4.11.2. Confirm that under the identification (x1,22) > 1 + xous, the
exponent —(u,vS) from Section 4.10 becomes —(vu*)s. Use this to verify
the application of Poisson summation with 3u, 3v, and 3N in the proof of
Lemma 4.11.1.

4.11.3. For b,d € Z with (3b,d) = 1 let ya = > 5c /g4 © (bJ[?/d). This
exercise proves the formula ¢, ¢ = (d/3)d.

(a) Prove the formula when d = p where p # 3 is prime. For p = 2 compute
directly. For p > 3 use the isomorphism Z[/—3|/pZ[v/—3] — A/pA to show

that
Po,d = Z e (b(Tf + 37’%)/17) .
r1,72€Z/pZ

Show that if m is not divisible by p then

> elm?/p)= X (1+())els/n) = (%) o)

r€Z/pZ SEZ/pZ

where g(x) is the Gauss sum associated to the character x(s) = (s/p). Show
that g(x)? = x(=1)]g(x)|* = (=1/p)p similarly to (4.12). Use Quadratic
Reciprocity to complete the proof.

(b) Before continuing show that for any x € N~!B,

. N? ifze B,
E e (tr (zw™)) = ¢
weA/NA 0 e ¢ B,
and
N2 if A
E e (tr (vz*)) = {3 1 J:EA,
TEB/NA 0 ifx ¢ A.

(c) Prove the formula for d = p' inductively by showing that for ¢ > 2,
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S Y e(blo+pt wl/ph)
vEA/pt—TAWEA/PA

= > e(Ml/p) D eltr(bvw)/p) = @ppe2p’.

TEA/pt—TA weEA/pA

b, pt

(d) For arbitrary d > 0 suppose that d = dids with (di,d2) = 1 and
di,dy > 0. Use the bijection

A/dlA X A/dgA — A/dA, (m,@) — d2U1 + d1u2

to show that vp.q = Vbdy,ds Pbds,dp- Deduce that this holds for d < 0 as well.
Complete the proof of the formula.

4.11.4. Verify the transformation law in Theorem 4.11.3.

4.11.5. (a) Use results from Chapter 3 to show that dim(S;(Io(3)) = 0, so
that if ¢ is the quadratic character modulo 3 then M;(3,v) = CEY"*.

(b) Let 01(7) denote the theta function in Theorem 4.11.3 specialized
to N = 1, making the character trivial. Thus 1 € M;(3,%) and so 01 is a
constant multiple of Ef’l What is the constant?

(¢) The Fourier coefficients a,,(#1) are (up to a constant multiple) repre-
sentation numbers for the quadratic form n? — nyng + n3. Thus the represen-
tation number is a constant multiple of the arithmetic function o ’l(m) =
>_djn ¥(d) for m > 1. Check the relation between r(p) and Uéb’l(p) for prime p
by using the information about this ring given in the proof of Corollary 3.7.2.
Indeed, the reader with background in number theory can work this exer-
cise backwards by deriving the representation numbers and thus the identity
0, = cEf’ 1 arithmetically.

4.11.6. (a) Describe the character x provided by Cubic Reciprocity for d = 1.

(b) To describe x for d = 2, first determine the conditions modulo 2 on
a,b € Z that make a + bug € A invertible modulo 2A, and similarly for 3.
Use these to show that the multiplicative group G = (A4/6A)* has order 18.
Show that A* reduces to a cyclic subgroup H of order 6 in G and that the
quotient G/H is generated by g = 1+ 3u3. Explain why x is defined on the
quotient and why up to complex conjugation it is

X(H)=1, x(gH)=G, x(¢*H)=¢G.

(Here the symbol (5 is being used to distinguish the cube root of unity in the
codomain C* of x from the cube root of unity in A.)
(c) Describe the character x provided by Cubic Reciprocity for d = 3.
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