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7.6 Function fields over Q

Working over the complex numbers C we have considered the universal
curve E; and the field containments

C(j) € C(, Ej[N]) € C(j).

Corollary 7.5.3 established that the extension C(j, E;[N])/C(j) is Galois with
group SLy(Z/NZ). This section studies the situation when the underlying field
is changed to the rational numbers Q. The result will be that the Galois group
enlarges to GLo(Z/NZ). Large enough subgroups correspond to intermediate
fields that are the function fields of algebraic curves over the rational numbers.
The next section will show that the intermediate fields Q(4, fo) and Q(j, f1)
define Xo(N) and X;(N) over Q. The field Q(j, f1,0, fo,1) defines X (V) over
the field Q(pu,) where py is the group of complex Nth roots of unity.

Since Q is the prime subfield of C, much of the algebraic structure from
the previous section carries over. The equation defining E; has its coeffi-
cients in Q(j). Viewing the curve as defined over this field means considering

2
points (z,y) € Q(j) satisfying the equation. This includes the nonzero points
of E;[N] over C(j) from before, and in the field containments

Q@) € QU E;[N]) € Q)

the extension Q(j, E;[N])/Q(j) is again Galois. The only difference between
the field theory over Q and over C will involve .
Consider the Galois group

Hq = Gal(Q(py, j, E5[N1)/Q(5))
and the representation
p:Hq — GL2(Z/NZ)

describing how Hgq permutes E;[N]. This is defined as before in terms of the
ordered basis (Pr,Q;) of E;[N] over Z/NZ from (7.11), so that

5]-s[5]. v

Lemma 7.6.1. The function det p describes how Hq permutes iy,

pe = pr e py, o € Hg.

det p(o)

(Here p% is p acted on by o while is  raised to the power det p(o).)

This is shown with the Weil pairing as in the proof of Corollary 7.5.3
(Exercise 7.6.1). To use the lemma, suppose o € Hq fixes E;[N]. This means
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Figure 7.3. Fields and groups over Q

that o € ker(p), so o € ker(det p) and the lemma says that o fixes pt5. Thus
py C Q(j, E;[N]) by Galois theory, showing that Hq is in fact the Galois
group of Q(j, E;[N]) over Q(j), the analog over Q of the group H in the
proof of Corollary 7.5.3. Consider the configuration of fields and groups in
Figure 7.3. Since the field extension is generated by E;[N], now p clearly is
injective, and by the lemma it restricts to

To analyze the images of Hq and Hq(,,) under p, recall a result from Galois
theory.

Lemma 7.6.2 (Restriction Lemma). Let k and F be extension fields of £
inside K with ¥ /f Galois. Suppose K = kF. Then K/k is Galois, there is a

natural injection
Gal(K/k) — Gal(F/f),

and the image is Gal(F/(kNF)).
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f

Figure 7.4. Setup for the Restriction Lemma

Proof. The situation is shown in Figure 7.4. Any map o : K — K fixing k
restricts to a map F — F fixing k N F. Since the extension F/(k N F) is
Galois, the restriction is an automorphism of F and therefore ¢ is an auto-
morphism of K = kF. This shows that K/k is Galois and that restriction
gives a homomorphism

Gal(K/k) — Gal(F/(k NF)) C Gal(F/f).
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If the restriction of some o fixes F along with k then it fixes K and is trivial,
so the restriction map injects. Since the fixed field of K under Gal(K/k) is k,
the fixed field of F under the restriction is k N F and so restriction maps to
all of Gal(F/kNF). O

One application of the lemma is implicit in Figure 7.3, where (Z/NZ)* is
displayed as Gal(Q(py,7)/Q(5)) (Exercise 7.6.2). For another, consider the
situation shown in Figure 7.5.
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Figure 7.5. Applying the Restriction Lemma

The Restriction Lemma shows that SLo(Z/NZ) injects into Hq,,)- But
also p injects in the other direction, making the two groups isomorphic since
they are finite,

P HQ(HN) ;> SLQ(Z/NZ).
Now the lemma also shows that C(j) N Q(4, E;[N]) = Q(pn,J), and inter-
secting with Q gives

Q(j, Ej[N]) N Q = Q(py)-
Also, Figure 7.3 now shows that
|Hq| = [HQ(uy)|(Z/NZ)"| = [SL2(Z/NZ)| (Z/NZ)"|.

But |SL2(Z/NZ)||(Z/NZ)*| = |GL2(Z/NZ)|, so the representation p sur-
jects,
p: Hq — GL2(Z/NZ).

This lets us specify which intermediate fields of Q(j, E;[N])/Q(j) corre-
spond to algebraic curves over Q. Let K be an intermediate field and let the
corresponding subgroup of Hq be K = Gal(Q(j, E;[N])/K), as in Figure 7.6.

Recall that det p describes how Hq permutes p . This gives the equiva-
lences

KNQ=Q < KNQ(uy)=Q
< detp: K — (Z/NZ)" surjects.

Summing up the results of this section,
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Figure 7.6. Subgroup and fixed field

Theorem 7.6.3. Let Hq denote the Galois group of the field extension
Q(j, E;[N])/Q(j). There is an isomorphism

p: Hq = GLy(Z/NZ).

Let K be an intermediate field and let K be the corresponding subgroup of Hq.
Then o
KNQ=Q < detp: K — (Z/NZ)* surjects.

Thus K is the function field of an algebraic curve over Q if and only if det p
surjects.

The last statement in the theorem follows from Theorem 7.2.5.

Exercises
7.6.1. Prove Lemma 7.6.1.

7.6.2. Justify the relation Gal(Q(uy,7)/Q(j)) = (Z/NZ)* shown in Fig-
ure 7.3.

7.7 Modular curves as algebraic curves and Modularity

This section defines the modular curves Xo(N) and X;(N) as algebraic curves
over Q and then restates the Modularity Theorem algebraically.
Consider three intermediate fields of the extension Q(j, E;[N])/Q(j),

KO:Q(jafO)a K6:Q(]3]N)a Kle(j7f1)7

analogous to the function fields C(j, fo) = C(4,jn) and C(j, f1) of the modu-
lar curves Xo(N) and X7 (N) as complex algebraic curves. The subgroups K,
K{, and K; of Hqg corresponding to Ky, K{,, and K; satisfy (Exercise 7.7.1)

s =orp ={ o)} w0 ={=)03]} @

running through all such matrices in GLy(Z/NZ), so in fact Ky = K{. Thus
detp : K; — (Z/NZ)* surjects for j = 0,1, and so by Theorem 7.6.3 the
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