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M =




a0 a1 · · · · · · am

. . . . . . . . .
a0 a1 . . . . . . am

b0 b1 · · · bn

b0 b1 · · · bn

. . . . . . . . .
b0 b1 . . . bn




(n staggered rows of ai’s, m staggered rows of bj ’s, all other entries 0). The
resultant eliminates x, leaving a polynomial in the coefficients that vanishes
if and only if f and g share a root. Let p(x) and q(x) be monic polynomials
in Q[x]. Consider the resultants

q̃(t, u) = R(p(s), u − s − t; s), r(u) = R(q̃(t, u), q(t); t).

Show that if α and β satisfy the polynomials p and q then α + β satisfies the
polynomial r. Similarly, find polynomials satisfied by αβ and 1/α if α �= 0.
(A hint for this exercise is at the end of the book.)

6.4.2. Use the methods of the section or of Exercise 6.4.1 to find a monic
integer polynomial satisfied by

√
2 + µ3.

6.4.3. Show that Z ∩ Q = Z. (A hint for this exercise is at the end of the
book.)

6.4.4. Show that every algebraic number takes the form of an algebraic integer
divided by a rational integer. (A hint for this exercise is at the end of the book.)

6.4.5. Prove Theorem 6.4.5 and its corollaries.

6.5 Algebraic eigenvalues

Returning to the material of Section 6.3, recall the action of the weight-2
Hecke operators T = Tp and T = 〈d〉 on the dual space as composition from
the right,

T : S2(Γ1(N))∧ −→ S2(Γ1(N))∧, ϕ �→ ϕ ◦ T,

and recall that the action descends to the quotient J1(N). Thus the oper-
ators act as endomorphisms on the kernel H1(X1(N),Z), a finitely gener-
ated Abelian group. In particular the characteristic polynomial f(x) of Tp

acting on H1(X1(N),Z) has integer coefficients, and being a characteristic
polynomial it is monic. Since an operator satisfies its characteristic poly-
nomial, f(Tp) = 0 on H1(X1(N),Z). Since Tp is C-linear, also f(Tp) = 0
on S2(Γ1(N))∧ and so f(Tp) = 0 on S2(Γ1(N)). Therefore the characteris-
tic polynomial of Tp on S2(Γ1(N)) divides f(x) and the eigenvalues of Tp

satisfy f(x), making them algebraic integers. Since p is arbitrary this proves
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Theorem 6.5.1. Let f ∈ S2(Γ1(N)) be a normalized eigenform for the Hecke
operators Tp. Then the eigenvalues an(f) are algebraic integers.

To refine this result we need to view the Hecke operators as lying within
an algebraic structure, not merely as a set.

Definition 6.5.2. The Hecke algebra over Z is the algebra of endomor-
phisms of S2(Γ1(N)) generated over Z by the Hecke operators,

TZ = Z[{Tn, 〈n〉 : n ∈ Z+}].

The Hecke algebra TC over C is defined similarly.

Each level has its own Hecke algebra, but N is omitted from the notation
since it is usually written somewhere nearby. Clearly any f ∈ S2(Γ1(N)) is an
eigenform for all of TC if and only if f is an eigenform for all Hecke operators
Tp and 〈d〉.

For the remainder of this chapter the methods will shift to working with
algebraic structure rather than thinking about objects such as Hecke oper-
ators one at a time. In particular modules will figure prominently, and so
in this context Abelian groups will often be called Z-modules. For example,
viewing the Z-module TZ as a ring of endomorphisms of the finitely generated
free Z-module H1(X1(N),Z) shows that it is finitely generated as well (Ex-
ercise 6.5.1). Again letting f(τ) =

∑∞
n=1 an(f)qn be a normalized eigenform,

the homomorphism

λf : TZ −→ C, T f = λf (T )f

therefore has as its image a finitely generated Z-module. Since the image
is Z[{an(f) : n ∈ Z+}] this shows that even though there are infinitely many
eigenvalues an(f), the ring they generate has finite rank as a Z-module. More
specifically, letting

If = ker(λf ) = {T ∈ TZ : Tf = 0}

gives a ring and Z-module isomorphism (Exercise 6.5.2)

TZ/If
∼−→ Z[{an(f)}]. (6.12)

The image ring sits inside some finite-degree extension field of Q, i.e., a number
field. The rank of TZ/If is the degree of this number field as an extension
of Q.

Definition 6.5.3. Let f ∈ S2(Γ1(N)) be a normalized eigenform, f(τ) =∑∞
n=1 anqn. The field Kf = Q({an}) generated by the Fourier coefficients

of f is called the number field of f .
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The reader is referred to William Stein’s web site [Ste] and John Cremona’s
tables [Cre97] for examples.

Any embedding σ : Kf ↪→ C conjugates f by acting on its coefficients.
That is, if f(τ) =

∑∞
n=1 anqn then notating the action with a superscript,

fσ(τ) =
∞∑

n=1

aσ
nqn.

In fact this action produces another eigenform.

Theorem 6.5.4. Let f be a weight 2 normalized eigenform of the Hecke oper-
ators, so that f ∈ S2(N, χ) for some N and χ. Let Kf be its number field. For
any embedding σ : Kf ↪→ C the conjugated fσ is also a normalized eigenform
in S2(N, χσ) where χσ(n) = χ(n)σ. If f is a newform then so is fσ.

The proof will require two beginning results from commutative algebra, so
these are stated first.

Proposition 6.5.5 (Nakayama’s Lemma). Suppose that A is a commu-
tative ring with unit and J ⊂ A is an ideal contained in every maximal ideal
of A, and suppose that M is a finitely generated A-module such that JM = M .
Then M = {0}.

Proof. Suppose that M �= {0} and let m1, . . . , mn be a minimal set of gen-
erators for M over A. Since JM = M , in particular mn ∈ JM , giving it the
form mn = a1m1 + · · · + anmn with all ai ∈ J . Thus

(1 − an)mn = a1m1 + · · · + an−1mn−1.

But 1 − an is invertible in A, else it sits in a maximal ideal, which necessarily
contains an as well and therefore is all of A, impossible. Thus m1, . . . , mn−1
is a smaller generating set, and this contradiction proves the lemma. ��

Again suppose that A is a commutative ring with unit and J ⊂ A is an
ideal, and suppose that M is an A-module and a finite-dimensional vector
space over some field k. The dual space M∧ = Homk(M,k) is an A-module
in the natural way, aϕ = ϕ ◦ a for a ∈ A and ϕ ∈ M∧ (i.e., (aϕ)(m) =
ϕ(am) for m ∈ M), and similarly for (M/JM)∧. Let M [J ] be the elements
of M annihilated by J , and similarly for M∧[J ]. Then there exist natural
isomorphisms of A-modules (Exercise 6.5.3)

(M/JM)∧ ∼= M∧[J ], M∧/JM∧ ∼= M [J ]∧. (6.13)

Now we can prove Theorem 6.5.4.

Proof. The Fourier coefficients {an} are a system of eigenvalues for the opera-
tors Tn acting on S2(Γ1(N)). We need to show that the conjugated coefficients
{aσ

n} are again a system of eigenvalues.
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As explained at the beginning of the section, the action of TZ on S2(Γ1(N))
transfers to the dual space S2(Γ1(N))∧ as composition on the right and
then descends to the Jacobian J1(N), inducing an action on the homol-
ogy group H1(X1(N),Z). This Z-module is free of rank 2g where g is the
genus of X1(N) and the dimension of S2(Γ1(N)). Take a homology basis
{ϕ1, . . . , ϕ2g} ⊂ S2(Γ1(N))∧, so that

H1(X1(N),Z) = Zϕ1 ⊕ · · · ⊕ Zϕ2g.

With respect to this basis, each group element
∑2g

j=1 njϕj is represented as
an integral row vector 
v = [nj ] ∈ Z2g and each T ∈ TZ is represented by an
integral 2g-by-2g matrix [T ] ∈ M2g(Z), so that the action of T as composition
from the right is multiplication by [T ],

T : 
v �→ 
v[T ]. (6.14)

This action of TZ extends linearly to the free C-module generated by the set
{ϕ1, . . . , ϕ2g}, the 2g-dimensional complex vector space

V = Cϕ1 ⊕ · · · ⊕ Cϕ2g.

Each element (z1ϕ1, . . . , z2gϕ2g) is represented by a complex row vector 
v =
[zj ] ∈ C2g, and the action of each T is still described by (6.14). Suppose
{λ(T ) : T ∈ TZ} is a system of eigenvalues of TZ on V , i.e., some nonzero

v ∈ C2g satisfies


v[T ] = λ(T )
v, T ∈ TZ.

Let σ : C −→ C be any automorphism extending the given embedding
σ : Kf ↪→ C. Then σ acts on 
v elementwise and fixes the elements of each
matrix [T ] since it fixes Q. Thus


vσ[T ] = (
v[T ])σ = (λ(T )
v)σ = λ(T )σ
vσ, T ∈ TZ,

showing that if {λ(T ) : T ∈ TZ} is a system of eigenvalues on V then so is
{λ(T )σ : T ∈ TZ}. To prove the theorem, this result needs to be transferred
from V to S2(Γ1(N)).

For convenience, abbreviate S2(Γ1(N)) to S2 for the duration of this proof.
The space S2 is isomorphic as a complex vector space to its dual space

S∧
2 = Cϕ1 + · · · + Cϕ2g.

The dual space is not V but a g-dimensional quotient of V under the map
(z1ϕ1, . . . , z2gϕ2g) �→

∑
zjϕj . The map has a g-dimensional kernel because

the {ϕj} are linearly independent over R but dependent over C. The proof
will construct a complementary space S∧

2 isomorphic to S2 such that V is
isomorphic to the direct sum S∧

2 ⊕S∧
2 as a TZ-module and therefore the desired

result transfers to the sum, and then the proof will show that the systems of
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eigenvalues on the sum are the systems of eigenvalues on S2, transferring the
result to S2 as necessary.

To construct the complementary space, recall the operator wN = [
[ 0 1

−N 0

]
]2

from Section 5.5, satisfying the relation wNT = T ∗wN for all T ∈ TZ where as
usual T ∗ is the adjoint of T . For any cusp form g ∈ S2 consider an associated
map ψg from cusp forms to scalars,

ψg : S2 −→ C, ψg(h) = 〈wNg, h〉.

Then ψg(h + h̃) = ψg(h) + ψg(h̃) but since the Petersson inner product is
conjugate-linear in its second factor,

ψg(zh) = z̄ψg(h), z ∈ C.

Thus ψg belongs to the set S∧
2 of conjugate-linear functions on S2, the complex

conjugates of the dual space S∧
2 (Exercise 6.5.4). This set forms a complex

vector space with the obvious operations. It is immediate that ψg+g̃ = ψg +ψg̃

and ψzg = zψg for g, g̃ ∈ S2 and z ∈ C, and therefore the map

Ψ : S2 −→ S∧
2 , g �→ ψg

is C-linear. It has trivial kernel, making it an isomorphism. The vector space
S∧

2 is a TZ-module with the Hecke operators acting from the right as compo-
sition, and the linear isomorphism Ψ is also TZ-linear since

ψTg(h) = 〈wNTg, h〉 = 〈T ∗wNg, h〉 = 〈wNg, Th〉 = (ψg ◦ T )(h).

That is, S2 and S∧
2 are isomorphic as complex vector spaces and as TZ-

modules. In particular, every system of eigenvalues {λ(T ) : T ∈ TZ} on S2 is
a system of eigenvalues on S∧

2 and conversely.
Also, every system of eigenvalues on S2 is a system of eigenvalues on

the dual space S∧
2 and conversely. To see this, let f ∈ S2 be a normalized

eigenform. Similarly to before there is a map

λf : TC −→ C, T f = λf (T ).

(We need the complex Hecke algebra TC in this paragraph.) Let Jf =
ker(λf ) = {T ∈ TC : Tf = 0}, a prime ideal of TC. An application of
Nakayama’s Lemma shows that JfS2 �= S2 (Exercise 6.5.5), making the quo-
tient S2/JfS2 nontrivial. It follows that the subspace of the dual space anni-
hilated by Jf ,

S∧
2 [Jf ] = {ϕ ∈ S∧

2 : ϕ ◦ T = 0 for all T ∈ Jf},

is nonzero since it is isomorphic to (S2/JfS2)∧ by the first isomorphism
in (6.13). Since T1 is the identity operator, T −λf (T )T1 ∈ Jf for any T ∈ TC,
and so any nonzero ϕ ∈ S∧

2 [Jf ] satisfies



238 6 Jacobians and Abelian Varieties

ϕ ◦ T = ϕ ◦ (T − λf (T )T1) + λf (T )ϕ = λf (T )ϕ, T ∈ TC.

Restricting our attention to TZ again, this shows that {λf (T ) : T ∈ TZ} is a
system of eigenvalues on S∧

2 as claimed. The converse follows by replacing S2
and S∧

2 with their duals, since the finite-dimensional vector space S2 is natu-
rally isomorphic to its double dual as a TZ-module. Thus the cusp forms S2
and the sum S∧

2 ⊕ S∧
2 have the same systems of eigenvalues.

Consider the C-linear map

V −→ S∧
2 ⊕ S∧

2 , (z1ϕ1, . . . , z2gϕ2g) �→
( ∑

zjϕj ,
∑

zjϕ̄j

)
.

This is also a TZ-module map since ϕj ◦ T = ϕ̄j ◦ T . The map has trivial
kernel since if

∑
zjϕj = 0 in S∧

2 and
∑

zjϕ̄j = 0 in S∧
2 then both

∑
zjϕj = 0

and
∑

z̄jϕj = 0 in S∧
2 , i.e.,

∑
Re(zj)ϕj = 0 and

∑
Im(zj)ϕj = 0 in S∧

2 ; but
the {ϕj} are linearly independent over R, so this implies zj = 0 for all j.
Since the domain and codomain have the same dimension the map is a linear
isomorphism of TZ-modules. The result that if {λ(T ) : T ∈ TZ} is a system
of eigenvalues then so is {λ(T )σ : T ∈ TZ} now transfers from V to S∧

2 ⊕ S∧
2

and then to S2. Thus if f(τ) =
∑

anqn is a normalized eigenform in S2(N, χ)
then its conjugate fσ(τ) =

∑
aσ

nqn is a normalized eigenform in S2(N, χσ) as
desired.

It remains to prove the last statement of the theorem, that if f is a newform
then so is fσ. By Theorem 5.8.3, fσ takes the form fσ(τ) =

∑
i aifi(niτ)

where each fi is a newform at level Mi with niMi | N . (Note that this uses
only the part of that theorem that we have proved, that the set of such fi

spans S2(Γ1(N)).) Let τ = σ−1 : C −→ C, an extension of another embedding
τ : Kf ↪→ C. Then f = (fσ)τ =

∑
i aτ

i fτ
i (niτ). If fσ is not new then by

Exercise 5.8.4 it is old and all Mi are strictly less than N . Since each fτ
i is

also a modular form at level Mi this shows that f is old as well. The result
follows by contraposition. ��

Linearly combining the normalized eigenforms gives modular forms with
coefficients in Z.

Corollary 6.5.6. The space S2(Γ1(N)) has a basis of forms with rational
integer coefficients.

Proof. Let f be any newform at level M where M | N . Let K = Kf be the
number field of f . Let {α1, . . . , αd} be a basis of OK as a Z-module and let
{σ1, . . . , σd} be the embeddings of K into C. Consider the matrix from the
end of the previous section and the vector

A =




ασ1
1 · · · ασd

1
...

. . .
...

ασ1
d · · · ασd

d


 , 
f =




fσ1

...
fσd


 ,
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and let 
g = A
f , i.e.,

gi =
d∑

j=1

α
σj

i fσj , i = 1, . . . , d.

Then span({g1, . . . , gd}) = span({fσ1 , . . . , fσd}) since A is invertible. Each gi

takes the form gi(τ) =
∑

n an(gi)qn with all an(gi) ∈ Z. For any automor-
phism σ : C −→ C, as σj runs through the embeddings of Kf into C so
does σjσ (composing left to right), and so

gσ
i =

d∑
j=1

α
σjσ
j fσjσ = g.

That is, each an(gi) is fixed by all automorphisms of C, showing that
each an(gi) lies in Z ∩ Q = Z. Repeating this argument for each newform f
whose level divides N gives the result. ��

Exercises

6.5.1. Let M be a free Z-module of rank r. Show that the ring of endomor-
phisms of M is a free Z-module of rank r2, and so any subring is a free
Z-module of finite rank.

6.5.2. Let f ∈ S2(Γ1(N)) be a normalized eigenform. Thus f ∈ S2(N, χ)
for some Dirichlet character χ : (Z/NZ)∗ −→ C∗ and λf (〈d〉) = χ(d) for all
d ∈ (Z/NZ)∗. Show that there is a ring and Z-module isomorphism TZ/If

∼−→
Z[{an(f), χ(d)}]. Show that adjoining the χ(d) values is redundant, making
(6.12) in the text correct. (A hint for this exercise is at the end of the book.)

6.5.3. Prove the isomorphisms (6.13). (A hint for this exercise is at the end
of the book.)

6.5.4. Let V be any complex vector space with dual space V ∧. Show that
the set V ∧ = {ϕ̄ : ϕ ∈ V ∧} is the set of functions ψ : V −→ C such that
ψ(v + v′) = ψ(v) + ψ(v′) and ψ(zv) = z̄ψ(v) for all v, v′ ∈ V and z ∈ C.

6.5.5. Let Jf , TC, and S2 be as in the proof of Theorem 6.5.4. Show that
Jf is a prime ideal. Define the local ring of TC at Jf as a set of equivalence
classes of formal elements

A = {T/U : T ∈ TC, U ∈ TC − Jf}/ ∼

where the equivalence relation is

T/U ∼ T ′/U ′ if V (U ′T − UT ′) = 0 for some nonzero V ∈ TC − Jf .
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