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9.5 Galois representations and modular forms

This section associates Galois representations to modular curves and then
decomposes them into 2-dimensional representations associated to modular
forms.

Let N be a positive integer and let ¢ be prime. The modular curve X;(N)
is a projective nonsingular algebraic curve over Q. Let g denote its genus. The
curve X;(N)c over C defined by the same equations can also be viewed as a
compact Riemann surface. As in Chapter 6 the Jacobian of the modular curve
is a g-dimensional complex torus obtained from integration modulo homology,

J1(N) = Jac(X1(N)c) = So(I1(N) /Hi(X1(N)c, Z) = C9/A,.

The Picard group of the modular curve is the Abelian group of divisor classes
on the points of X;(N),

Pic’(X1(N)) = Div?(X;(N))/Div' (X1 (N)).

By the methods of Section 7.9, Pic’(X(N)) can be identified with a subgroup
of Pic’(X1(N)¢), and the complex Picard group is naturally isomorphic to
the Jacobian by Abel’s Theorem as in Section 6.1. Thus there is an inclusion
of ¢™-torsion,

in 2 Pic? (X1 (N))[£"] — Pic®(X1(N)c)[¢"] = (Z/¢"Z)%.

Recall that Igusa’s Theorem (Theorem 8.6.1) states that X;(N) has good
reduction at primes p{ N, so also there is a natural surjective reduction map
Pic’(X1(N)) — Pic®(X;(N)) restricting to

T Pic? (X1 (V) [0"] — Pic (X1 (N))["].

We state without proof two generalizations of facts we have used about elliptic
curves:

e The inclusion i, is in fact an isomorphism.
e So is the surjection 7, for pt ¢N.

These follow from results of algebraic geometry. Specifically, if a curve X
over a field k has genus g and M is coprime to char(k) then Pic®(X)[M] =
(Z/MZ)?9, and if a curve X over Q has good reduction at a prime p { M then
the reduction map is injective on Pic®(X)[M].

The ¢-adic Tate module of X1(N) is

Tag (Pic® (X1 (V) = lim{Pic” (X, (N))[£"]}.

n

Similarly to the previous section, choosing bases of Pic’(X1(N))[¢"] compat-
ibly for all n shows that
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Tay(Pic” (X, (N))) = Z79.

Any automorphism ¢ € Gq defines an automorphism of Div"(X;(N)),

(> np(P)>U =3 np(P).

Since dlv(f)" = div(f9) for any f € Q(X1(N)), the automorphism descends
to Pic’(X1(N)),

Pic’(X1(N)) x Gq — Pic’(X;(N)). (9.13)

The field extension Q(Pic”(X;(N))[¢"])/Q is Galois for each n € Z, so the
action restricts to Pic’ (X (N))[£"]. For each n there is a commutative diagram

/\

Aut(Pic®(X ) ¢+ Aut(Pic® (X1 (N))[e" ).

Again as in the previous section this leads to a continuous homomorphism

PX1(N),e* GQ — GLQQ(Zg) C GLQg(Qe).

This is the 2g-dimensional Galois representation associated to Xi(N).
Recall from Chapter 6 that the Hecke algebra over Z is the algebra of
endomorphisms of Sy(I'1(N)) generated over Z by the Hecke operators,

Ty, = Z[{T,, (n) : n € ZT}].

The Hecke algebra acts on Pic’(X;(N)), cf. the bottom rows of diagrams
(7.18) and (7.19),

Tz x Pic?(X(N)) — Pic®(X1(N)). (9.14)

Since the action is linear it restricts to f-power torsion, and so it extends
to Tay(Pic’(X1(N))). From Section 7.9 the Hecke action is defined over Q. So
the Galois action (9.13) and the Hecke action (9.14) on Pic’(X;(N)) commute,
and therefore so do the two actions on Tay(Pic®(X1(N))).

Theorem 9.5.1. Let ¢ be prime and let N be a positive integer. The Galois
representation px, (e is unramified at every prime p { {N. For any such p
let p C Z be any mazimal ideal over p. Then px, (n),e(Froby) satisfies the
polynomial equation

2 — T,z + (p)p = 0.
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Similarly to how we have abbreviated T}, . to T}, on Pic’(X;(NV)) all along,
the last formula in the theorem omits the asterisk from the subscript of both
Hecke operators on Ta,(Pic’(X1(N))). As in the previous section, the vector
space Vy(X1(N)) = Tas(Pic’(X1(N))) ® Q can be taken as the Galois repre-
sentation rather than px, (n),¢, there is a corresponding commutative diagram,
and the theorem can be rephrased appropriately.

Proof. Let p{ {N and let p lie over p. As in the proof of Theorem 9.4.1 there
is a commutative diagram

Dy —— Aut(Pic® (X, (N))[¢"])

| |

Gr, —— Aut(PiCO(f(l (N))[em]).

The map down the right side is an isomorphism as explained at the beginning
of the section. Similarly to before, I, C ker px, (n),¢-

For the second part, the Eichler—Shimura Relation (Theorem 8.7.2) re-
stricts to £"-torsion,

Pic® (X, (N))[£"] ———2—— Pic®(X1 (N))[¢"]

Lo

~ Tp,«+(P) «Tp ~
Picd (X, (N))[e] —2 270y i (%, (N)) (6],

The same diagram but with Frob, + (p)pFrob, ! across the top row instead
also commutes, cf. (8.15). Since the vertical arrows are isomorphisms, T, =
Frob, + <;1f)>pF1robp_1 on Pic?(X(NN))[¢"]. This holds for all n, so the equality

extends to Tay(Pic®(X1(N))). The result follows. O

To proceed from Picard groups to modular forms, consider a normalized
eigenform

f € Sa(N, x).

Recall from Chapter 6 that the Hecke algebra contains an ideal associated
to f, the kernel of the eigenvalue map,

It ={T €Tz :Tf =0},
and the Abelian variety of f is defined as
A =J1(N)/I;J1(N).

This is a complex analytic object. We do not define an algebraic version of
it because its role here is auxiliary. By (6.12) and Exercise 6.5.2 there is an
isomorphism
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Tz/I; — O where O; =Z[{a,(f):n € Z}].

Under this isomorphism each Fourier coefficient a,(f) acts on Ay as T}, + I.
Also, Oy contains the values x(n) for n € Z* and x(p) acts on A as (p) + ;.
The ring Of generates the number field of f, denoted K. The extension
degree d = [Ky : Q] is also the dimension of Ay as a complex torus. As with
elliptic curves and modular curves, the Abelian variety has an f-adic Tate
module,

Tag(Af) = lim{As[¢"]} = Z3".

The action of Of on Ay is defined on ¢-power torsion and thus extends to an
action on Tag(Ays). The following lemma shows that Gq acts on Tay(Ay) as
well.

Lemma 9.5.2. The map Pic’(X1(N))[¢"] — A[f"] is a surjection. Its ker-
nel is stable under Gq.

Proof. Multiplication by ¢™ is surjective on the complex torus J;(NN). This
makes it surjective on I;J1(N) as well. Indeed, any y € I;Ji(N) takes the
form y = >, Tyy; with T; € Iy and y; € J1(N) = £"J;(N) for each i, so
y=>,Ti(l"x;) =", Tyx; € {"1;J1(N) as desired.

To show the first statement of the lemma, take any y € A¢[¢"]. Then y =
xz + I;J1(N) for some z € J1(N) such that "z € I;J;(N). Thus "z = {"a’
for some 2’ € IyJ1(N) by the previous paragraph. The difference z — 2’ lies
in Jy(N)["] = Pic®(X1(N))[¢"] and maps to y as desired.

The kernel is Pic(X;(N))[¢"] N I;J1(N) = (I;J1(N))[€"]. We claim that
the inclusion (I;Pic’(X1(N)))[¢"] € (I;J1(N))[¢"] is in fact an equality. To
see this, let So = So(I1(N)) and H; = Hy(X1(N)c,Z) C 8. Thus J1(N) =
82/\/H1 and

Ile(N):(IfSQ/\—l-Hl)/Hlg[fSé\/(HlﬁIfSé\). (915)

Proposition 6.2.4 shows that I;H; is a subgroup of Hy N I;S5 with some
finite index M. This shows that M(H; N I;S85) C IyH;. Now suppose
that y € (I7J1(N))[¢"]. Then (9.15) shows that y = x + Hy N [;S5 with
z € I;85, and since ("y = 0 this implies "z € H; N I;S4. Therefore
Mz € M(HyN1;SY) C IpHy, and so @ € I;(M~1¢~"H;). It follows that
y € I;(J1(N)[M"]) C I;Pic’(X,(N)), and since "y = 0 the equality is
proved. Thus the kernel is (I;(Pic’(X;(N)))[¢"]. This is stable under Gq as
desired since the Galois and Hecke actions on Pic’(X;(N)) commute. O

So Gq acts on A¢[¢"] and therefore on Tay(Af). The action commutes
with the action of Of since the Gq-action and the Tz-action commute
on Ta,(Pic’(X;(N))). Choosing coordinates appropriately gives a Galois rep-
resentation

PAs L GQ — GLQd(Qz).
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This is continuous because px, (n),¢ is continuous and (Exercise 9.5.1)

Pxy .U (m.9)) € oy (U (n,d)), (9.16)

where U(n, g) = ker (GLag(Z¢) — GL2g(Z/¢"Z)) and similarly for U(n,d).
The representation is unramified at all primes p 1 /N since its kernel con-
tains ker px, (n),¢- For any such p let p C Z be any maximal ideal over p.
At the level of Abelian varieties, since T), acts as a,(f) and (p) acts as x(p),
pa;¢(Froby) satisfies the polynomial equation

z® — ap(f)z + x(p)p = 0.

The Tate module Tay(Ay) has rank 2d over Z,. Since it is an O s-module the
tensor product Vp(Ay) = Tar(Af)®Q is amodule over Oy @Q, = Ky ®q Qq.

Lemma 9.5.3. Vy(Ay) is a free module of rank 2 over Ky ®q Qq.

Proof. Again let Sy = S3(I1(N)) and Hy = Hy(X,(N)¢,Z) C S5. Consider
the quotients S = 84 /1;S5 and Hy = (Hy + I;S5)/1;S5. Then Ay =
S5 /(Hy + 1;S5) = S /H,. Thus H; is an Oy-module whose Z-rank is 2d.
Since Ky is a field, H, ®Q is a free K -module of rank 2, and therefore
Hi®Q=H; ®Q®q Q is free of rank 2 over the ring K; ®q Q.

The O¢-linear isomorphisms ¢~"H/H; — H1/¢"H; induced by multi-
plication by £ on ¢~ H; assemble to give an isomorphism of O ;®Z,-modules,

Tag(Ay) = lim{A;["]} = lim{e~"H, /Hy} = lim{H, /0T } = T, © Z,

where the transition maps in the last inverse limit are the natural projection
maps. And now Vy(Ay) = Tay(4;) @ Q=2 H1 ®Z, ®Q = H1 ® Qg is an
isomorphism of modules over Oy ® Z; ® Q = Ky ® Qg, showing that V;(Ay)
is free. a

The absolute Galois group Gq acts (K; ®q Q¢)-linearly on Vy(Ay), and
Vi(Ar) = (Kf ®q Qe)? by the lemma. Choose a basis B of Vy(Af) to get
a homomorphism Gq — GL2(K; ®q Q). Also, (9.9) specializes to give
Ky ®qQr = HAM Ky x, so for each A we can compose the homomorphism
with a projection to get

P - GQ — GLQ(K]“,A).

This is continuous (Exercise 9.5.2(b)), making it a Galois representation. And
ker(pa,¢) C ker(ps ) (Exercise 9.5.2(c)). We have proved

Theorem 9.5.4. Let f € S3(N,x) be a normalized eigenform with number
field Ky. Let £ be prime. For each mazimal ideal X of Ok, lying over { there
is a 2-dimensional Galois representation
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P - GQ — GLQ(Kf,A).

This representation is unramified at every prime p t ¢N. For any such p
let p C Z be any mazimal ideal lying over p. Then py x(Froby,) satisfies the

polynomial equation

a? — ap(f)z + x(p)p = 0.

In particular, if f € So(Io(N)) then the relation is 2* — a,(f)x +p = 0.

Exercises

9.5.1. Establish (9.16). (A hint for this exercise is at the end of the book.)

9.5.2. (a) Let i : Ky ®q Q¢ — [[,, Ky be the isomorphism of (9.9).
For each A, let ey be the element of Ky ®q Q¢ that is taken by i to
(0,...,0,1k,,,0,...,0) and let Vi = ex(Vi(Ay)). Show that each Vj y is
a 2-dimensional vector space over K¢y and that

Vi(4y) = D Vi

Al

Show that each Vy  is invariant under the Gq-action on V;(Ay). Show that
if each Vy 5 is given the basis exB over Ky ) where B is the basis of V;(Ay)
over Ky ®q Q¢ in the section then each py  is defined by the action of Gq
on Vi . (Hints for this exercise are at the end of the book.)

(b) To show that py » is continuous it suffices to show that the action

Vf,>\ X GQ — Vf,>\

is continuous. Explain why this statement is independent of whether V; ) is
viewed as a vector space over Ky y or over Q. Explain why the action is
continuous in the latter case.

(c) Use the decomposition from (a) to show that ker(pa, ) C ker(py, ) for
each A.

9.6 Galois representations and Modularity

This last section states the Modularity Theorem in terms of Galois represen-
tations, connects it to the arithmetic versions in Chapter 8, and describes how
the modularity of elliptic curves is part of a broader conjecture. Finally we
discuss how the modularity of Galois representations and of mod ¢ represen-
tations are related.

Definition 9.6.1. An irreducible Galois representation
p: GQ — GLQ(Q[)

such that det p = x¢ is modular if there exists a newform f € Sa(LH(My))
such that Ky x = Qg for some mazimal ideal A of Ok, lying over £ and such
that pf.x ~ p.
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