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Div(S1 (N )) —2s Div(S1(N)L,)

ng

Div®(S; (N 4>D1v (S (N)).

Show that the diamond operator in characteristic p on the moduli space and
on the modular curve (cf. diagram (8.29)) are compatible in that the following
diagram commutes:

Div®(Sy( )4>D1v (S1(NY)

J N l (8.39)

Pic’( ) — Pic®(X1(N)).

(d) Use part (b) and diagram (8.39) to complete the proof that dia-
gram (8.34) commutes.

8.8 Fourier coefficients, L-functions, and Modularity

Recall that if E is an elliptic curve over Q then its analytic conductor was
defined in Section 7.7 as the smallest N such that Xo(N) surjects to E, and
its algebraic conductor Ng was described in Section 8.3. Both conductors
depend only on the isogeny class over Q of E. In this section we simply call
the algebraic conductor the conductor en route to explaining why the two
conductors are in fact equal and no longer need to be distinguished.

Theorem 8.8.1 (Modularity Theorem, Version a,). Let E be an elliptic
curve over Q with conductor Ng. Then for some newform f € Sa(I'o(Ng)),

ap(f) = ap(E)  for all primes p.

This version of Modularity is most obviously related to Version Aq, the
version that provides a map A’f — F, since each version involves a new-
form f, and unsurprisingly the two f’s are the same. But since A’ ' Is a variety
rather than a curve, and our policy is to argue using only curves, we give
instead a partial proof that Version Xq, providing a map Xo(N) — E, im-
plies this version. The argument necessarily requires a little effort to extract f
from Xo(N) in consequence of avoiding varieties. Specifically, we prove

Theorem 8.8.2. Let E be an elliptic curve over Q with conductor Ng, let N
be a positive integer, and let

a:Xo(N)— E
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be a nonzero morphism over Q of curves over Q. Then for some newform
fe SQ(Fo(Mf)) where My | N,

ap(f) = ap(E)  for all primes pf NgN.

After proving this we will touch on the rest of the argument that Ver-
sion Xq of Modularity implies Version a,, and on the more natural-seeming
argument starting from Version Aq.

Proof. The route from a,(f) for some f to a,(E) is that

e ay(f) on A% is T, for each f, by a variant of diagram (6.15), and a sum

of factors A’ over all f is isogenous to Pic’(X((N)), by a variant of The-
orem 6.6.6, _

e T, on Pic’(Xo(N)) reduces to o, + o on Pic”(Xo(N)), by the Eichler-
Shimura Relation (Xo(N) has good reduction at p because p{ N),

® 0p.t+0;0n Pic’(Xo(N)) commutes with &, to become Op s+, on Pic’(E),
by formulas (8.17) and (8.19) (E has good reduction at p because p 1 Ng),

e and finally 0, . + 05 on Pic’(E) is a,(E), by Proposition 8.3.2.

Recall some ideas from Section 6.6, given there for the group I'j(N) and
now modified for I'H(N). The complex vector space Sa(Io(IN)) has basis

BN = JUU 7 (nr)

f n o

where the first union is taken over equivalence class representatives of new-
forms f € Sa(I'v(My)) with My dividing N, the second over divisors n
of N/Mjy, and the third over embeddings o : K; < C. Work over C now,
identifying complex algebraic curves and Riemann surfaces, and identifying
Picard groups and Jacobians. Then the Picard group associated to IH(N) is
isogenous to a direct sum of Abelian varieties, both sides being viewed as
complex tori,

Pic’(Xo(N)c) — D 4 ¢
I
and there exists a dual isogeny

P A} ¢ — Pic’(Xo(N)c).
fin

The given map a : Xo(N) — E extends to
ac : Xo(N)c — Ec,

viewed as a morphism of complex algebraic curves or as a holomorphic map
of compact Riemann surfaces, a surjection in either case.
For any p{ NgN the diagram
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P A4 TenlooD-a®) By a1
i fn

| | o

Tp—ap(E ac,«
Pic®(Xo(N)c) B picd(Xo(N)e) —25 Pic (Fe)

has the following properties, to be proved in a moment:

(a) If ay(f) # ap(E) then the top row surjects from P, A ¢ to @, 4% ¢
(b) The square commutes.
(¢) The composite map on the bottom row is zero.

If a,(f) # ap(E) for some f and some p t NgN then in the diagram for
that p, mapping €, A},C across the top row takes it to all of €, Alf,c
by property (a), and then mapping this down gives its isogenous image
in Pic’(X,(N)c). By property (b) the isogenous image also comes from map-
ping ,, A/f,c down the left side of the diagram and then halfway across the
bottom row. Property (c) now shows that the isogenous image of €P,, A% ¢
lies in ker(ac,«). Therefore, if for each f there exists a p { NgN such that
ap(f) # a,(E) then all of Pic’(Xo(N)c) lies in ker(ac ). But ac . surjects,
so this is impossible. That is, there is a newform f such that a,(f) = a,(E)
for all p{ NgN, as we needed to prove.

Returning to diagram (8.40), to prove its property (a) let a,(f) # a,(E).
Recall that a,(f) is an algebraic integer, and a,(E) is a rational integer. Thus
their difference § satisfies a minimal monic polynomial with rational integer
coefficients,

0 4+a0 '+ +a_104+a. =0, ai,...,a.€Z, ae # 0.

The resulting relation (6! + a;0°"2 + - + ae_1) = —a. shows that J is
surjective on A/f,c as desired, since —a, is.

Property (b) follows quickly from diagram (6.20) suitably modified from
Fl(N) to Fo(N)

To prove property (c) switch back to working over Q and consider the
following diagram:

Tp—a,(E [o'
B O (X (V) —— s Pic%(E)

| |

Pic’(Xo(N))

|

ap,*Jro;fap(E)

Pic?(Xo(NV)) Pic?(Xo(N)) ———— Pic(F)  (841)
1J op«tor—ap(E) ll
Pic®(Xo(N)) ————— Pic"(E) ————— Pic"(E).

The top row here is a restriction of the bottom row of diagram (8.40), and it
suffices to prove that this restriction doesn’t surject (Exercise 8.8.1). The top
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left square commutes since it is essentially (8.38) from the Eichler—Shimura
Relation, and the top right square commutes by Corollary 8.5.9. The bottom
rectangle commutes because formulas (8.17) and (8.19) from earlier in the
chapter show that o), . and o, commute with é., and multiplication by a,(E)
certainly commutes with the linear map &, as well. The second map on the
bottom row is zero by Proposition 8.3.2, making the bottom row zero and thus
making the middle row zero. So the top row followed by the right vertical arrow
to the second row is zero. But the vertical arrow surjects by Theorem 8.5.9.
This shows that the top row can’t surject, as desired. With properties (a), (b),
and (c) of diagram (8.40) established, the proof of Theorem 8.8.2 is complete.

O

For Version Xq of Modularity to imply Version ap, the newform f of
Theorem 8.8.2 needs to have level M; = Ng and to have Fourier coefficients
ap(f) = ap(E) for all p.

Strong Multiplicity One shows that all the Fourier coefficients of f are
rational integers. To see this, recall that if ¢ is any automorphism of Q then
the conjugate of f under o is defined as

F7(r) = an(f)7a"

According to Theorem 6.5.4 all conjugates of f are again newforms. In this
case they are all equal to f itself because for all pt N and all o,

ap(f) = ap(E) = ap(f) € Z = a,(f)7 = ap(f),

so that f = f by Strong Multiplicity One. This means that the Fourier
coefficients of f are algebraic integers invariant under Aut(Q), i.e., the Fourier
coeflicients are rational integers as claimed. Thus f has number field Ky = Q.

Obtaining Version a, of Modularity from here requires results beyond the
scope of this book, but we sketch the ideas. As quoted in Section 7.7, the
Abelian variety A}, viewed as a variety over Q, has dimension [Ky: Q] =1,
L.e., A% is an elliptic curve over Q. The map Xo(N) — Pic’(Xo(N)) — A
is defined over Q, so we can run the proof of Theorem 8.8.2 again to show
that there exists a newform g such that a,(g) = a,(A}) for all but finitely
many p. The proof in this case shows that g = f, so

ap(f) = a,(A%) for all but finitely many p. (8.42)

Carayol [Car86], building on the work of Eichler—Shimura, Langlands, and
Deligne, showed that in fact a,(f) = ap(A}) for all p, and the level of f is the
conductor of A’f, notated My = Ny, and this is also the analytic conductor
of Ay. But also, the work so far gives an isogeny over Q from A’f to F, so that
ap(A%}) = ap(E) for all p and the conductor of A’ is the conductor of £, that
is, Ny = Ng. This gives a,(f) = a,(E) for all p and My = Ng, i.e., Version a,
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of Modularity. It also shows that the analytic and algebraic conductors of FE
are the same. That is, the newform f associated to E has the same level as
the smallest modular curve Xo(N) that maps to E.

Starting instead from Version Aq of Modularity, that is, starting from a
map « : A} — F, a more natural-looking proof that a,(f) = a,(E) for
all p t NgM; (where Ng is the conductor of E and M/ is the level of f)
would set up a diagram analogous to (8.41),

ap(f)—ap(E) «
Aj Ay

E
i,crp oy —ay(E) AL & g
A} Aj E
ll 1
— & _ Optop—ap(E) ¥
A E E.

If ap(f) # ap(E) then the top row is surjective, as is £ — E, but the bottom
row is zero and hence the middle row is zero, giving a contradiction because all
the rectangles commute. However, this argument makes use of the structure
of A'f as a variety over Q, reduces the variety modulo p, and then makes
further use of the structure of the reduction as a variety over F,, invoking
algebraic geometry well beyond the scope of this book. By contrast our proof
of Theorem 8.8.2 makes no reference to the variety structure of Pic’(Xo(N)),
and it uses Pic’(X,(N)), the Picard group of the reduced curve, rather than
reducing an Abelian variety.

Section 1.3 mentioned that some complex tori have complex multiplication,
endomorphisms other than {[N] : N € Z}. This notion extends to algebraic el-
liptic curves, providing more examples of Modularity. For example the elliptic
curve

E:y?=23-d, deZ,d#0

has the order 3 automorphism (z,y) — (usz,y) over Q(us), and its ring of
endomorphisms is isomorphic to A = Z[us]. As in Exercise 8.3.6(b), a,(E) =0
for all p = 2 (mod 3) for which the displayed Weierstrass equation is minimal.
The theory of complex multiplication in fact describes a,(E) for all p: there
exist an integer N | 12]],;p and a character x : (A/NA)* — C* of order 6
such that y(u) = u=! for u € A*, x(a) = (a/3) (Legendre symbol) for a €
(Z/NZ)*, and
ap(E) = § Z x(n)n.

neA
In|*=p

(See Chapter 2 of [Sil94] for proofs of these results, and see Exercise 11.5.7
of [Kob93] for the case d = —16, giving N = 3.) The solution-counts of E are
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the Fourier coefficients of the function

02 (7) = & Z X(n)nezmlnlzT, T EH.
neA

This function is a modular form of level 32 by the weight 2 version of Hecke’s
construction in Section 4.11. It is a normalized eigenform by an argument sim-
ilar to the one in Section 5.9 for the weight 1 theta function. For the minimal
choice of N, it is in fact a newform of level 3N? = N, thus illustrating Ver-
sion a, of Modularity for these elliptic curves I. The elliptic curves ¥ over Q
with complex multiplication form a small class of examples—for example they
have only a finite set of j-invariants—but they are important in number the-
ory, and Shimura’s proof of Version Xq of Modularity for such curves [Shi71]
provided evidence for the algebraic formulations of Modularity in general.

Version a,, of the Modularity Theorem rephrases in terms of L-functions.
Recall from Chapter 5 that if f € S3(IH(NV)) is a newform then its L-function
is

L(s, f) =Y an(f)n™ = [ = ap(N)p™* + In(p)p' )", (8.43)

p

with convergence in a right half plane. For any elliptic curve E over Q let 1g
be the trivial character modulo the conductor N of E as in Section 8.3. The
Hasse—Weil L-function of E, encoding all the solution-counts a,(E), is

L(s,B) = [[(1 = ap(B)p~* + 1e(p)p' )"
P

From Section 8.3 we have the definitions

W(E)=1,  ap(B)=p +1—|EEe), e=1
and the recurrence

ape(E) = ap(E)aye-1(E) — 1g(p)paye—2(E), e>2.
One more definition,

amn(E) = am(E)an(E), (m,n) =1,

completes the analogy between the values a,,(E) and the Fourier coefficients
an(f) of a newform. As in Chapter 5, the L-function of an elliptic curve is
now

L(s,E) = Z an(E)n=° = H(l —a,(E)p~* + 1g(p)p*~ ). (8.44)
n=1 P
Half plane convergence of L(s,E) can be established as well by estimat-
ing a,(FE). But this is unnecessary since comparing the products in (8.43)
and (8.44) shows that Version a, of Modularity is equivalent to
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Theorem 8.8.3 (Modularity Theorem, Version L). Let E be an elliptic
curve over Q with conductor Ng. Then for some newform f € So(I'o(Ng)),

L(s, f) = L(s, E).

Faltings’s Isogeny Theorem (Corollary 5.2 in Chapter 2 of [CS86]), a deep
result, now shows that this Version L of Modularity implies

Theorem 8.8.4 (Modularity Theorem, strong Version Aq). Let E be
an elliptic curve over Q with conductor Ng. Then for some newform f €
S2(I0(NEg)) the Abelian variety A’y is also an elliptic curve over Q and there
exists an isogeny over Q

Ay — E.

To see this, suppose that by Version L we have L(s, f) = L(s, E). Then f
has rational coefficients, making A’f an elliptic curve. Equation (8.42) shows
that L(s, A}) and L(s, f) have the same Euler product factors for all but
finitely many primes p. So the same is true of L(s, A}) and L(s, E), and now
Faltings’s Theorem gives an isogeny A}y — E.

Version L of the Modularity Theorem shows that the half plane conver-
gence, analytic continuation, and functional equation of L(s, f) from Theo-
rem 5.10.2 now apply to L(s, E). This is important because the continued
L(s, E) is conjectured to contain sophisticated information about the group
structure of E. Specifically, since E(Q) is a finitely generated Abelian group
it takes the form

EQ =Tz

where T is the torsion subgroup and r is the rank. The rank is much harder
to compute than the torsion. However,

Conjecture 8.8.5 (Weak Birch and Swinnerton-Dyer Conjecture).
Let E be an elliptic curve defined over Q. Then the order of vanishing of
L(s,E) at s =1 is the rank of E(Q). That is, if E(Q) has rank r then

L(s,E) = (s = 1)7g(s), (1) # 0,00.

The original half plane of convergence of L(s, E) is {Re(s) > 2}, and the
functional equation then determines L(s, E') for Re(s) < 0, but the behavior
of L(s,E) at the center of the remaining strip {0 < Re(s) < 2} is what
conjecturally determines the rank of E(Q). The Birch and Swinnerton-Dyer
Conjecture would give an algorithm for finding all rational points on elliptic
curves, and it would give an effective method for finding imaginary quadratic
fields with a given class number. For more on the Birch and Swinnerton-Dyer
Conjecture see [Tat02], Appendix C.16 of [Sil86], or Chapter 17 of [Hus04].
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Exercise
8.8.1. Let B¢ denote the map of the bottom row of diagram (8.40),

axo(Tp—ap(E))

Be : Pic’(Xo(N)e) Pic’(Ec).

Augment S to get a map of complex algebraic curves,

Y : Xo(N) —Pic®(Xo(N)e) L?PicO(Ec) —Fc.

Here the first stage is P — [(P)—(Fp)] where Py € X((N)c is a base point, and
the third stage is [>_(Q:)] — > Q;. Since ¢ is a composite of holomorphic
maps, it is holomorphic as a map of Riemann surfaces and therefore it is a
morphism as a map of complex algebraic curves.

(a) Show that if ¢ is zero then B¢ is zero. (A hint for this exercise is at
the end of the book.)

(b) Assume that the base point Py in part (a) has algebraic coordinates.
Show that v¢ is defined over Q as follows. It suffices to show that v& = ~c
for all o € Aut(C/Q). Compute that for any P € Xo(N)c and any o,

1c(P7) = 7c(P)” =& (P7).

Since P? can be any point of Xo(N)g, this gives the result.
(¢) Let 8 denote the map of the top row of diagram (8.41),

.o(Ty—a,(E))

B : Pic®(Xo(N)) Pic’(E).

This is the restriction of S¢ to Q—poinﬁ. Consider the corresponding restric-
tion of g, viewed as a morphism over Q of algebraic curves over Q according
to part (b),

7 Xo(N) ——Pic?(Xo(N)) ——Pic®(E) ——E.

Use the maps of curves v and 7¢ to show that if 8 does not surject then B¢
is zero. This was used in proving property (c) of diagram (8.40). The result is
immediate from quoting that as morphisms from varieties to curves, § and (¢
are both constant or surjective, but the argument in this exercise uses only
the algebraic geometry of curves.
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