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(n staggered rows of a;’s, m staggered rows of b;’s, all other entries 0). The
resultant eliminates x, leaving a polynomial in the coefficients that vanishes
if and only if f and g share a root. Let p(z) and ¢(x) be monic polynomials
in Q[xz]. Consider the resultants

6<t7 u) = R(p(s), u—s—t; S)> r(“) = R((j(tv u)7 Q(t)§ t)'

Show that if o and ( satisfy the polynomials p and ¢ then « 4 3 satisfies the
polynomial r. Similarly, find polynomials satisfied by a3 and 1/« if « # 0.
(A hint for this exercise is at the end of the book.)

6.4.2. Use the methods of the section or of Exercise 6.4.1 to find a monic
integer polynomial satisfied by v/2 + ps.

6.4.3. Show that Z N Q = Z. (A hint for this exercise is at the end of the
book.)

6.4.4. Show that every algebraic number takes the form of an algebraic integer
divided by a rational integer. (A hint for this exercise is at the end of the book.)

6.4.5. Prove Theorem 6.4.5 and its corollaries.

6.5 Algebraic eigenvalues

Returning to the material of Section 6.3, recall the action of the weight-2
Hecke operators T' = T,, and T' = (d) on the dual space as composition from
the right,

T:SQ(Fl(N))A%SQ(Fl(N))A, (pl—)(pOT,

and recall that the action descends to the quotient J; (V). Thus the oper-
ators act as endomorphisms on the kernel H;(X7(NV),Z), a finitely gener-
ated Abelian group. In particular the characteristic polynomial f(z) of T,
acting on Hy(X7(N),Z) has integer coefficients, and being a characteristic
polynomial it is monic. Since an operator satisfies its characteristic poly-
nomial, f(7,) = 0 on Hi(X:1(N),Z). Since T}, is C-linear, also f(T,) = 0
on Sy(I1(N))" and so f(T,) = 0 on Sa(I'1(N)). Therefore the characteris-
tic polynomial of T, on Sa(I1(N)) divides f(x) and the eigenvalues of T,
satisfy f(z), making them algebraic integers. Since p is arbitrary this proves
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Theorem 6.5.1. Let f € So(I1(N)) be a normalized eigenform for the Hecke
operators Tp,. Then the eigenvalues an(f) are algebraic integers.

To refine this result we need to view the Hecke operators as lying within
an algebraic structure, not merely as a set.

Definition 6.5.2. The Hecke algebra over Z is the algebra of endomor-
phisms of So(I'(N)) generated over Z by the Hecke operators,

Tz = Z[{T,, (n) : n € Z1}].
The Hecke algebra Tc over C is defined similarly.

Each level has its own Hecke algebra, but N is omitted from the notation
since it is usually written somewhere nearby. Clearly any f € Sy(I7(N)) is an
eigenform for all of T¢ if and only if f is an eigenform for all Hecke operators
T, and (d).

For the remainder of this chapter the methods will shift to working with
algebraic structure rather than thinking about objects such as Hecke oper-
ators one at a time. In particular modules will figure prominently, and so
in this context Abelian groups will often be called Z-modules. For example,
viewing the Z-module Tz as a ring of endomorphisms of the finitely generated
free Z-module H;(X;(N),Z) shows that it is finitely generated as well (Ex-
ercise 6.5.1). Again letting f(7) = > -7 | a,(f)¢" be a normalized eigenform,
the homomorphism

)\f :Tz—)c, TfZ)\f(T)f

therefore has as its image a finitely generated Z-module. Since the image
is Z[{a,(f) : n € Z1}] this shows that even though there are infinitely many
eigenvalues a, (f), the ring they generate has finite rank as a Z-module. More
specifically, letting

If = ker(/\f) = {T cTy: Tf = O}
gives a ring and Z-module isomorphism (Exercise 6.5.2)
Tz/Iy — Z[{an(f)}]. (6.12)

The image ring sits inside some finite-degree extension field of Q, i.e., a number
field. The rank of Tz/I; is the degree of this number field as an extension

of Q.

Definition 6.5.3. Let f € S3(I1(N)) be a normalized eigenform, f(r) =
>0 L ang™. The field Ky = Q({an}) generated by the Fourier coefficients
of [ is called the number field of f.
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The reader is referred to William Stein’s web site [Ste] and John Cremona’s
tables [Cre97] for examples.

Any embedding ¢ : Ky < C conjugates f by acting on its coefficients.
That is, if f(7) = .7, a,q" then notating the action with a superscript,

n=1
o0
fo(r) =Y agq™
n=1

In fact this action produces another eigenform.

Theorem 6.5.4. Let f be a weight 2 normalized eigenform of the Hecke oper-
ators, so that f € So(N,x) for some N and x. Let K be its number field. For
any embedding o : Ky < C the conjugated f7 is also a normalized eigenform
in Sa(N, x7) where x°(n) = x(n)?. If f is a newform then so is f°.

The proof will require two beginning results from commutative algebra, so
these are stated first.

Proposition 6.5.5 (Nakayama’s Lemma). Suppose that A is a commu-
tative ring with unit and J C A is an ideal contained in every mazximal ideal
of A, and suppose that M is a finitely generated A-module such that JM = M.
Then M = {0}.

Proof. Suppose that M # {0} and let my, ..., m, be a minimal set of gen-
erators for M over A. Since JM = M, in particular m,, € JM, giving it the
form m,, = aymy + - -- + ap,m, with all a; € J. Thus

(I—ap)m, =a1mi+- -+ ap_1My_1.

But 1 — a, is invertible in A, else it sits in a maximal ideal, which necessarily
contains a, as well and therefore is all of A, impossible. Thus mq, ..., m,_1
is a smaller generating set, and this contradiction proves the lemma. a

Again suppose that A is a commutative ring with unit and J C A is an
ideal, and suppose that M is an A-module and a finite-dimensional vector
space over some field k. The dual space M”" = Homy (M, k) is an A-module
in the natural way, ap = poa for a € A and ¢ € M" (ie., (ap)(m) =
o(am) for m € M), and similarly for (M/JM)". Let M[J] be the elements
of M annihilated by J, and similarly for M”[J]. Then there exist natural
isomorphisms of A-modules (Exercise 6.5.3)

(M/JM)" = MMJ], M) JM" = M[J]". (6.13)
Now we can prove Theorem 6.5.4.

Proof. The Fourier coeflicients {a,, } are a system of eigenvalues for the opera-
tors Ty, acting on So(I' (IV)). We need to show that the conjugated coefficients
{aZ} are again a system of eigenvalues.
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As explained at the beginning of the section, the action of Tz on Sy (171 (N))
transfers to the dual space So(I7(N))" as composition on the right and
then descends to the Jacobian J;(NN), inducing an action on the homol-
ogy group H;(X;(N),Z). This Z-module is free of rank 2¢g where g is the
genus of X;(N) and the dimension of So(I(N)). Take a homology basis
{p1,--, P29} C Sa(I1(N))™, so that

Hi(X1(N),Z) =Zp1 & - @ Zipag.
With respect to this basis, each group element Z?i 1 M5 is represented as
an integral row vector ¥ = [n;] € Z?9 and each T € Tgz is represented by an

integral 2g-by-2¢ matrix [T'] € Mag(Z), so that the action of T as composition
from the right is multiplication by [T7],

T 1] (6.14)

This action of Tz extends linearly to the free C-module generated by the set
{¥1,...,p2g}, the 2g-dimensional complex vector space

V:Cgpl@@Cgogg

Each element (z1¢1, ..., 224%24) is represented by a complex row vector ¥ =
[z;] € C?9, and the action of each T is still described by (6.14). Suppose
{MT) : T € Tz} is a system of eigenvalues of Tz on V, i.e., some nonzero
7 € C?9 satisfies

O[T = NT)v, T € Tg.

Let ¢ : C — C be any automorphism extending the given embedding
o : Ky < C. Then o acts on ¥ elementwise and fixes the elements of each
matrix [T since it fixes Q. Thus

V[T = (0[T])” = MT)D)” = NT)707, T € Tg,

showing that if {\(T") : T € Tz} is a system of eigenvalues on V' then so is
{MT)? : T € Tz}. To prove the theorem, this result needs to be transferred
from V to SQ(Fl(N))

For convenience, abbreviate Sa(I'1(IN)) to S for the duration of this proof.
The space Sz is isomorphic as a complex vector space to its dual space

Sé\:C(p1++C(pgg

The dual space is not V but a g-dimensional quotient of V' under the map
(2101, - - ., Z2g92g) — > 2jp;. The map has a g-dimensional kernel because
the {¢;} are linearly independent over R but dependent over C. The proof
will construct a complementary space 872A isomorphic to Sy such that V is
isomorphic to the direct sum S5 @S35 as a Tz-module and therefore the desired
result transfers to the sum, and then the proof will show that the systems of
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eigenvalues on the sum are the systems of eigenvalues on Ss, transferring the
result to Sy as necessary.

To construct the complementary space, recall the operator wy = [[ _ ](\), (1)]]2
from Section 5.5, satisfying the relation wyT = T*wy for all T € Ty where as
usual T* is the adjoint of T'. For any cusp form g € S consider an associated
map 1, from cusp forms to scalars,

g8 — C, Yy(h) = (wng, h).

Then by (h 4+ h) = 1,(h) + ,(h) but since the Petersson inner product is
conjugate-linear in its second factor,

Yg(zh) = zZpg(h), ze€ C.

Thus 14 belongs to the set 872A of conjugate-linear functions on Sy, the complex
conjugates of the dual space S5 (Exercise 6.5.4). This set forms a complex
vector space with the obvious operations. It is immediate that 1445 = ¥4+
and ¢.4 = 29, for g,§ € Sz and z € C, and therefore the map

Sy — S, g by,

is C-linear. It has trivial kernel, making it an isomorphism. The vector space
S5 is a Tz-module with the Hecke operators acting from the right as compo-
sition, and the linear isomorphism ¥ is also Tz-linear since

Yrg(h) = (wnTg,h) = (T wng, h) = (wng,Th) = (g 0 T)(h).

That is, Sp and @ are isomorphic as complex vector spaces and as Tz-
modules. In particular, every system of eigenvalues {A\(T') : T' € Tz} on Sz is
a system of eigenvalues on @ and conversely.

Also, every system of eigenvalues on Sy is a system of eigenvalues on
the dual space 8 and conversely. To see this, let f € Sy be a normalized
eigenform. Similarly to before there is a map

/\fZTC — C, TfZ/\f(T).

(We need the complex Hecke algebra T¢ in this paragraph.) Let J; =
ker(A\y) = {T' € T¢c : Tf = 0}, a prime ideal of Tc. An application of
Nakayama’s Lemma shows that JySs # S (Exercise 6.5.5), making the quo-
tient Sy/J;S2 nontrivial. It follows that the subspace of the dual space anni-
hilated by Jy¢,

SPIfl={p eS8y :poT =0forall T € Js},
is nonzero since it is isomorphic to (S»2/J;S2)" by the first isomorphism

in (6.13). Since T7 is the identity operator, T'— A (T)T} € Jy for any T € Tc,
and so any nonzero ¢ € S'[Jy] satisfies
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poT =po(T=A(T)T1) + Ap(T)p = Ap(T)p, T €Tc.

Restricting our attention to Tz again, this shows that {A¢(T") : T € Tz} is a
system of eigenvalues on 8% as claimed. The converse follows by replacing Ss
and S with their duals, since the finite-dimensional vector space Sy is natu-
rally isomorphic to its double dual as a Tz-module. Thus the cusp forms S,
and the sum S5 @ 875\ have the same systems of eigenvalues.

Consider the C-linear map

V— 85 @575\7 (21015 - -+, Z2g4p2g) (sz@j>zzj@j)~

This is also a Tz-module map since ¢; oT = @; o T'. The map has trivial
kernel since if " z;p; = 0in S5 and 3 z;@; = 0 in S5 then both 3" z;¢; = 0
and Y z;p; = 0in 82, ie., Y Re(zj)p; =0 and Y Im(z;)¢; = 0 in 85'; but
the {¢;} are linearly independent over R, so this implies z; = 0 for all j.
Since the domain and codomain have the same dimension the map is a linear
isomorphism of Tz-modules. The result that if {\(T) : T € Tz} is a system
of eigenvalues then so is {\(T)? : T € Tz} now transfers from V to Sy @& S§
and then to Sy. Thus if f(7) =Y a,q™ is a normalized eigenform in Sy(N, x)
then its conjugate f7(7) = >_ aZq™ is a normalized eigenform in Sy(N, x7) as
desired.

It remains to prove the last statement of the theorem, that if f is a newform
then so is f?. By Theorem 5.8.3, f7 takes the form f7(7) = >, a;fi(n:7)
where each f; is a newform at level M; with n;M; | N. (Note that this uses
only the part of that theorem that we have proved, that the set of such f;
spans So(I1(N)).) Let 7 = 0~ : C — C, an extension of another embedding
7 : Ky = C. Then f = (f7)” = >, a] f7(n;7). If f7 is not new then by
Exercise 5.8.4 it is old and all M; are strictly less than N. Since each f] is
also a modular form at level M; this shows that f is old as well. The result
follows by contraposition. a

Linearly combining the normalized eigenforms gives modular forms with
coefficients in Z.

Corollary 6.5.6. The space S2(I'1(N)) has a basis of forms with rational
integer coefficients.

Proof. Let f be any newform at level M where M | N. Let K = K be the
number field of f. Let {aq,...,aq} be a basis of Ok as a Z-module and let
{01,...,04} be the embeddings of K into C. Consider the matrix from the
end of the previous section and the vector

a({l...a‘id fo'l
A= : ) f: : 5

. agd de
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and let §= Af, i.e.,
d
gi=Y a7, i=1...d
j=1

Then span({g1,...,ga4}) = span({f°*,..., f??}) since A is invertible. Each g;
takes the form g;(7) = >, an(gi)q™ with all a,(g;) € Z. For any automor-
phism ¢ : C — C, as o; runs through the embeddings of K into C so
does o0 (composing left to right), and so

d

g7 =) a7 [ =g,

Jj=1

That is, each an(g;) is fixed by all automorphisms of C, showing that
each a,(g;) lies in Z N Q = Z. Repeating this argument for each newform f
whose level divides N gives the result. O

Exercises

6.5.1. Let M be a free Z-module of rank r. Show that the ring of endomor-
phisms of M is a free Z-module of rank r2, and so any subring is a free
Z-module of finite rank.

6.5.2. Let f € S3(I1(N)) be a normalized eigenform. Thus f € Sa(N,x)
for some Dirichlet character x : (Z/NZ)* — C* and A\f((d)) = x(d) for all
d € (Z/NZ)*. Show that there is a ring and Z-module isomorphism Tz /I —
Z[{an(f),x(d)}]. Show that adjoining the x(d) values is redundant, making
(6.12) in the text correct. (A hint for this exercise is at the end of the book.)

6.5.3. Prove the isomorphisms (6.13). (A hint for this exercise is at the end
of the book.)

6.5.4. Let V' be any complex vector space with dual space V. Show that
the set VA = {@ : ¢ € V"} is the set of functions ¢ : V. — C such that
Y +v") =)+ ) and Y(zv) = Z¢Y(v) for all v,0" € V and z € C.

6.5.5. Let J¢, Tc, and &2 be as in the proof of Theorem 6.5.4. Show that
Jy is a prime ideal. Define the local ring of Tc at Jy as a set of equivalence
classes of formal elements

A:{T/UZTETC,UETC*JJ?}/N
where the equivalence relation is

T/U~T' /U if V(UT-UT')=0 for some nonzero V € T¢ — J;.
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