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Galois Representations

This book has explained the idea that all elliptic curves over Q arise from mod-
ular forms. Chapters 1 and 2 introduced elliptic curves and modular curves as
Riemann surfaces, and Chapter 1 described elliptic curves as algebraic curves
over C. As a general principle, information about mathematical objects can
be obtained from related algebraic structures. Elliptic curves already form
Abelian groups. Modular curves do not, but Chapter 3 showed that the com-
plex vector space of weight 2 cusp forms associated to a modular curve has
dimension equal to the genus of the curve, Chapter 5 defined the Hecke op-
erators, linear operators that act on the vector space, and Chapter 6 showed
that integral homology is a lattice in the dual space and is stable under the
Hecke action.

As number theorists we are interested in equations over number fields,
in particular elliptic curves over Q. Chapter 7 showed that modular curves
are defined over Q as well. As another general principle, information about
equations can be obtained by reducing them modulo primes p. Chapter 8
reduced the equations of elliptic curves and modular curves to obtain similar
relations for the two kinds of curve: for an elliptic curve E over Q,

ap(E) = σp,∗ + σ∗
p as an endomorphism of Pic0(Ẽ),

while for the modular curve X0(N) the Eichler–Shimura Relation is

Tp = σp,∗ + σ∗
p as an endomorphism of Pic0(X̃0(N)).

These relations hold for all but finitely many p, and each involves different
geometric objects as p varies.

Using more algebraic structure, this last chapter lifts the two relations
from characteristic p to characteristic 0. For any prime � the �-power torsion
groups of an elliptic curve give rise to a vector space V�(E) over the �-adic
number field Q�. Similarly, the �-power torsion groups of the Picard group of
a modular curve give an �-adic vector space V�(X). The vector spaces V�(E)
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and V�(X) are acted on by the absolute Galois group of Q, the group GQ of
automorphisms of the algebraic closure Q. This group subsumes the Galois
groups of all number fields, and it contains absolute Frobenius elements Frobp

for maximal ideals p of Z lying over rational primes p. The vector spaces V�(X)
are also acted on by the Hecke algebra. The two relations in the previous
paragraph lead to the relations

Frob2
p − ap(E)Frobp + p = 0 as an endomorphism of V�(E)

and

Frob2
p − Tp Frobp + p = 0 as an endomorphism of V�(X0(N)).

These hold for a dense set of elements Frobp in GQ, but now each involves a
single vector space as Frobp varies. The second relation connects the Hecke
action and the Galois action on the vector spaces associated to modular curves.

The vector spaces V� are Galois representations of the group GQ. The
Galois representation associated to a modular curve decomposes into pieces
associated to modular forms. The Modularity Theorem in this context is that
the Galois representation associated to any elliptic curve over Q arises from
such a piece. This fits into a larger problem, to show that Galois representa-
tions from algebraic geometry arise from modular forms.

This chapter provides less background than the rest of the book. It quotes
results from algebraic number theory and it uses techniques from algebra, es-
pecially tensors, without comment. Related reading: Chapter 15 of [Hus04],
Chapter III.7 of [Sil86], Section 7.4 of [Shi73]. The volumes [Mur95] and
[CSS97] contain lectures on the proof of Fermat’s Last Theorem, and [DDT94]
is a survey article. Henri Darmon’s article in [Mur95] discusses the conjecture
of Serre mentioned at the end of the chapter.

9.1 Galois number fields

Recall from Section 6.4 that a number field is a field F ⊂ Q such that the
degree [F : Q] is finite, and each number field has its ring of algebraic inte-
gers OF. This chapter will work with number fields F such that the extension
F/Q is Galois. These fields are notated F rather than K to emphasize that
they play a different role from other number fields earlier in the book, but the
reader is cautioned that Fq continues to denote a finite field. The purpose of
this section is to illustrate some results from algebraic number theory in the
Galois case by giving specific examples, without proof, to convey a concrete
sense of the ideas before we start using them. The reader without background
in algebraic number theory is strongly encouraged to refer to a text on the
subject.
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Let F be a Galois number field and let p ∈ Z be prime. There are positive
integers e, f , and g that describe the ideal pOF as a product of maximal ideals
of OF,

pOF = (p1 · · · pg)e, OF/pi
∼= Fpf for i = 1, . . . , g, efg = [F : Q].

The first formula is (8.22) specialized to the Galois case. The ramification
degree e says how many times each maximal ideal p of OF that lies over p
repeats as a factor of pOF. There are only finitely many p such that e > 1,
the primes that ramify in F. The residue degree f is the dimension of the
residue field fp = OF/p (a finite field) as a vector space over Fp = Z/pZ for
any p over p. The decomposition index g is the number of distinct p over p.
The condition efg = [F : Q] says that the net measure of ramification degree,
residue degree, and decomposition index associated to each rational prime p
is the field extension degree. Equivalently, efg = |Gal(F/Q)|.

The simplest Galois number fields are the quadratic fields. Let

F = Q(
√

d), d ∈ Z squarefree.

Then [F : Q] = 2 and the extension F/Q is Galois with its group generated
by the automorphism taking

√
d to −

√
d. The discriminant of the field is

∆F =

{
4d if d �≡ 1 (mod 4),
d if d ≡ 1 (mod 4),

and the ring of algebraic integers in this field is

OF = Z
[
∆F +

√
∆F

2

]
=

{
a + b

∆F +
√

∆F

2
: a, b ∈ Z

}
.

This says that OF = Z[
√

d] if d �≡ 1 (mod 4) while OF = Z[ 1+
√

d
2 ] if d ≡

1 (mod 4), but phrasing results in terms of ∆F and thus making no more direct
reference to cases is tidier. The Legendre symbol from elementary number
theory, (a/p) where a ∈ Z and p is an odd prime, extends to incorporate the
Kronecker symbol, defined only for a ≡ 0, 1 (mod 4),

(a

2

)
=


1 if a ≡ 1 (mod 8),

−1 if a ≡ 5 (mod 8),
0 if a ≡ 0 (mod 4).

This makes the behavior of a rational prime p in OF easy to notate,

pOF =


pq if (∆F/p) = 1,

p if (∆F/p) = −1,

p2 if (∆F/p) = 0.
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The content of this formula is that the odd primes p such that d is a quadratic
residue modulo p decompose in OF, the odd primes such that d is a nonresidue
remain inert, and the odd primes dividing d ramify, while 2 decomposes if
d ≡ 1 (mod 8), remains inert if d ≡ 5 (mod 8), and ramifies if d �≡ 1 (mod 4).

Another family of simple Galois number fields is the cyclotomic fields. Let
N be a positive integer and let

F = Q(µN ), µN = e2πi/N .

Then [F : Q] = φ(N) (Euler totient) and the extension F/Q is Galois with
group isomorphic to (Z/NZ)∗,

Gal(F/Q) ∼−→ (Z/NZ)∗, (µN �→ µa
N ) �−→ a (mod N). (9.1)

The cyclotomic integers are

OF = Z[µN ] = {a0 + a1µN + · · · + aN−1µ
N−1
N : a0, . . . , aN−1 ∈ Z}.

Each rational prime not dividing N is unramified in F,

pOF = p1 · · · pg, p � N,

and its residue degree f is the order of p (mod N) in (Z/NZ)∗. The primes
dividing N ramify in Q(µN ). We do not need a precise description of their
behavior since we will focus on the unramified primes.

For the simplest non-Abelian Galois group, let d > 1 be a cubefree integer,
let d1/3 denote the real cube root of d, and let

F = Q(d1/3, µ3).

In this case [F : Q] = 6 and Gal(F/Q) is isomorphic to S3, the symmetric
group on three letters. The Galois group is generated by

σ :
(

d1/3 �→ µ3d
1/3

µ3 �→ µ3

)
, τ :

(
d1/3 �→ d1/3

µ3 �→ µ2
3

)
,

and the isomorphism (noncanonical) is

Gal(F/Q) ∼−→ S3, σ �→ (1 2 3), τ �→ (2 3).

The rational primes not dividing 3d are unramified in F, and their behavior
is (Exercise 9.1.1)

pOF =


p1 · · · p6 if p ≡ 1 (mod 3) and d is a cube modulo p,

p1p2 if p ≡ 1 (mod 3) and d is not a cube modulo p,

p1p2p3 if p ≡ 2 (mod 3).
(9.2)

Returning to the general situation, again let F be a Galois number field
and let p be a rational prime. For each maximal ideal p of OF lying over p
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the decomposition group of p is the subgroup of the Galois group that fixes p
as a set,

Dp = {σ ∈ Gal(F/Q) : pσ = p}.

The decomposition group has order ef , so its index in Gal(F/Q) is indeed the
decomposition index g. By its definition it acts on the residue field fp = OF/p,

(x + p)σ = xσ + p, x ∈ OF, σ ∈ Dp.

The inertia group of p is the kernel of the action,

Ip = {σ ∈ Dp : xσ ≡ x (mod p) for all x ∈ OF}.

The inertia group has order e, so it is trivial for all p lying over any unram-
ified p. Recall the Frobenius automorphism σp : x �→ xp in characteristic p
from Chapter 8. If we view Fp = Z/pZ as a subfield of fp = OF/p ∼= Fpf then
there is an injection

Dp/Ip −→ Gal(fp/Fp) = 〈σp〉.

Since both groups have order f , the injection is an isomorphism and the
quotient Dp/Ip has a generator that maps to σp. Any representative of this
generator in Dp is called a Frobenius element of Gal(F/Q) and denoted Frobp.
That is, Frobp is any element of a particular coset σIp in the subgroup Dp

of Gal(F/Q). Its action on F, restricted to OF, descends to the residue
field fp = OF/p, where it is the action of σp. When p is unramified, mak-
ing the inertia group Ip trivial, Frobp is unique. To summarize,

Definition 9.1.1. Let F/Q be a Galois extension. Let p be a rational prime
and let p be a maximal ideal of OF lying over p. A Frobenius element
of Gal(F/Q) is any element Frobp satisfying the condition

xFrobp ≡ xp (mod p) for all x ∈ OF.

Thus Frobp acts on the residue field fp as the Frobenius automorphism σp.

When F/Q is Galois the Galois group acts transitively on the maximal
ideals lying over p, i.e., given any two such ideals p and p′ there is an auto-
morphism σ ∈ Gal(F/Q) such that

pσ = p′.

(We made reference to this fact, and to the earlier-mentioned fact that Dp

surjects to Gal(fp/Fp), in the proof of Theorem 8.5.4.) The associated decom-
position and inertia groups satisfy

Dpσ = σ−1Dpσ, Ipσ = σ−1Ipσ,

and the relation between corresponding Frobenius elements is
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Frobpσ = σ−1Frobp σ.

If p is ramified then this means that the conjugate of a Frobenius is a Frobenius
of the conjugate. The relation shows that if the Galois group is Abelian then
Frobp for any p lying over p can be denoted Frobp.

To compute the Frobenius element in the quadratic field case, again let
F = Q(

√
d) where d ∈ Z is squarefree. The Galois group Gal(F/Q) consists

of the identity and the map taking
√

∆F to −
√

∆F. Let p be a maximal ideal
of OF lying over an odd prime p. Each a + b(∆F +

√
∆F)/2 ∈ OF reduces to

the residue field fp, with a, b, and ∆F reducing to its subfield Fp and with 2
reducing to F∗

p . Using the same symbols for the reductions, compute in the
residue field that(

a + b
∆F +

√
∆F

2

)p

= a + b
∆F + ∆

(p−1)/2
F

√
∆F

2
.

This shows that the Frobenius element is the Legendre symbol in that Frobp

multiplies
√

∆F by ∆
(p−1)/2
F = (∆F/p) for odd primes p. There are infinitely

many such p such that (∆F/p) = 1, and similarly for (∆F/p) = −1. Therefore
every element of the Galois group of F takes the form Frobp for infinitely
many p, and there is an isomorphism

Gal(F/Q) ∼−→ {±1}, Frobp �→ (∆F/p) for odd p � ∆F.

The Frobenius automorphism has a natural description in the cyclotomic
case F = Q(µN ) as well. For any prime p � N let p lie over p and note that
in the residue field fp = Fp[µN ], again using the same symbols to denote
reductions, (∑

m

amµm
N

)p

=
∑
m

amµpm
N .

This shows that Frobp is the element of Gal(Q(µN )/Q) that takes µN to µp
N ,

and thus the isomorphism (9.1) takes Frobp to p (mod N). By Dirichlet’s
Theorem on Arithmetic Progressions, for each a ∈ (Z/NZ)∗ there are in-
finitely many p such that p ≡ a (mod N). Therefore every element of the
Galois group of F again takes the form Frobp for infinitely many p, and the
isomorphism (9.1) is

Gal(F/Q) ∼−→ (Z/NZ)∗, Frobp �→ p (mod N) for p � N. (9.3)

In the non-Abelian example F = Q(d1/3, µ3) since the conjugacy classes in
any symmetric group Sn are specified by the cycle structure of their elements,
in this case of S3 they are

{1}, {(1 2), (2 3), (3 1)}, {(1 2 3), (1 3 2)}.

So the conjugacy class of an element of S3 is determined by the element’s order,
and therefore this holds in Gal(F/Q) as well. To determine the conjugacy class
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of Frobp it thus suffices to determine its order, the residue degree f of the
prime p lying under p. Formula (9.2) and the formula efg = 6 combine to
show that for any unramified rational prime p, i.e., p � 3d, the associated
conjugacy class

{Frobp : p lies over p} (9.4)
is

the elements of order


1 if p ≡ 1 (mod 3) and d is a cube modulo p,

3 if p ≡ 1 (mod 3) and d is not a cube modulo p,

2 if p ≡ 2 (mod 3).

Each conjugacy class takes the form (9.4) for infinitely many p, as with the
previous two fields. This fact, as well as Dirichlet’s Theorem, is a special case
of

Theorem 9.1.2 (Tchebotarov Density Theorem, weak version). Let
F be a Galois number field. Then every element of Gal(F/Q) takes the form
Frobp for infinitely many maximal ideals p of OF.

We end this section with a motivating example. There is an embedding
of S3 in GL2(Z) (Exercise 9.1.2) such that

(1 2 3) �→
[

0 1
−1 −1

]
, (2 3) �→

[
0 1
1 0

]
. (9.5)

Again letting F = Q(d1/3, µ3) this gives a representation

ρ : Gal(F/Q) −→ GL2(Z).

The trace of ρ is a well defined function on conjugacy classes (9.4) and there-
fore depends only on the underlying unramified rational primes p,

tr ρ(Frobp) =


2 if p ≡ 1 (mod 3) and d is a cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3).
(9.6)

Recall from Section 4.11 the theta function θχ(τ) ∈ M1(3N2, ψ) where N =
3

∏
p|d p and ψ is the quadratic character with conductor 3. Formula (9.6)

for tr ρ(Frobp) matches formula (4.51) for the Fourier coefficient ap(θχ) when
p � 3d. Similarly the determinant of ρ is defined on conjugacy classes over
unramified primes,

det ρ(Frobp) =

{
1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

This is ψ(p). So the Galois group representation ρ, as described by its trace
and determinant on Frobenius elements, arises from the modular form θχ. This
modular form is a normalized eigenform by Section 5.9 and a cusp form by
Exercise 5.11.3. The idea of this chapter is that 2-dimensional representations
of Galois groups arise from such modular forms in great generality.
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