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4.10.8. (a) Let ψ and ϕ be primitive Dirichlet characters modulo u and v
with (ψϕ)(−1) = (−1)k and uv = N . If a : (Z/NZ)2 −→ C is the function

a(cv, d + ev) = ψ(c)ϕ̄(d), a(x, y) = 0 otherwise,

show that its Fourier transform is

â(−cu, −(d + eu)) = (g(ϕ̄)/v)g(ψ)ϕ(c)ψ̄(d), â(x, y) = 0 otherwise.

(Hints for this exercise are at the end of the book.)
(b) Define an Eisenstein series with parameter,

Gψ,ϕ
k (τ, s) =

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ̄(d)G(cv,d+ev)
k (τ, s).

Show that the sum (4.46) of Eisenstein series for the function a in this problem
is

Ga
k(τ, s) = Gψ,ϕ

k (τ, s) + (−1)k(g(ϕ̄)/v)g(ψ)Gϕ,ψ
k (τ, s).

Thus the functional equations for the eigenspaces Ek(N, χ) involve only two
series at a time.

(c) Define a function b : (Z/NZ)2 −→ C and a series Eψ,ϕ
k (τ, s) by the

conditions

a =
g(ϕ̄)

v
b, Gψ,ϕ

k =
g(ϕ̄)

v
Eψ,ϕ

k .

Show that the sum (4.46) of Eisenstein series for b is more nicely symmetrized
than the one for a,

Gb
k(τ, s) = Eψ,ϕ

k (τ, s) + ϕ(−1)Eϕ,ψ
k (τ, s).

4.11 Modular forms via theta functions

This chapter ends by using theta functions to construct a modular form that
both connects back to the preface and adumbrates the ideas at the end of the
book. The construction is one case of a general method due to Hecke [Hec26].

Recall that the preface used Quadratic Reciprocity to motivate the Mod-
ularity Theorem via a simple analog, counting the solutions modulo p to the
quadratic equation x2 = d. Now consider a cubic equation instead,

C : x3 = d, d ∈ Z+, d cubefree,

and for each prime p let

ap(C) = (the number of solutions modulo p of equation C) − 1.

Results from elementary number theory show that (Exercise 4.11.1)
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ap(C) =




2 if p ≡ 1 (mod 3) and d is a nonzero cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3) or p | 3d.

(4.47)

This section will use Poisson summation and the Cubic Reciprocity Theorem
from number theory to construct a modular form θχ with Fourier coefficients
ap(θχ) = ap(C). Section 5.9 will show that these Fourier coefficients are eigen-
values. That is, the solution-counts of the cubic equation C are a system of
eigenvalues arising from a modular form. Chapter 9 will further place this
example in the context of Modularity.

Introduce the notation

e (z) = e2πiz, z ∈ C.

Let A = Z[µ3], let α = i
√

3, and let B = 1
αA. Thus A ⊂ B ⊂ 1

3A. Note that

|x|2 = x2
1 − x1x2 + x2

2 for any x = x1 + x2µ3 ∈ R[µ3].

We will frequently use the formula |x+y|2 = |x|2 +tr (xy∗)+ |y|2 for x, y ∈ C,
where y∗ is the complex conjugate of y and tr (z) = z + z∗. For any positive
integer N and any u in the quotient group 1

3A/NA define a theta function,

θu(τ, N) =
∑
n∈A

e
(
N |u/N + n|2τ

)
, τ ∈ H. (4.48)

An argument similar to Exercise 4.9.2 shows that θu is holomorphic. The
following lemma establishes its basic transformation properties. From now
until near the end of the section the symbol d is unrelated to the d of the
cubic equation C.

Lemma 4.11.1. Let N be a positive integer. Then

θu(τ + 1, N) = e
(

|u|2
N

)
θu(τ, N), u ∈ B/NA,

θu(τ, N) =
∑

v∈B/dNA
v≡u (NA)

θv(dτ, dN), u ∈ B/NA, d ∈ Z+,

θv(−1/τ, N) =
−iτ

N
√

3

∑
w∈B/NA

e
(
− tr (vw∗)

N

)
θw(τ, N), v ∈ B/NA.

Proof. For the first statement compute that for u ∈ B and n ∈ A,

N
∣∣ u
N + n

∣∣2 ≡ |u|2
N (mod Z).

For the second statement note that θu(τ, N) =
∑

n∈A e
(
dN |u/N+n

d |2dτ
)
. Let

n = r + dm, making the fraction u+Nr
dN + m. Thus
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θu(τ, N) =
∑

r∈A/dA
m∈A

e
(
dN

∣∣u+Nr
dN + m

∣∣2dτ
)

=
∑

r∈A/dA

θu+Nr(dτ, dN),

where the reduction u + Nr is taken modulo dN . This gives the result.
The third statement is shown by Poisson summation. Recall that the defin-

ing equation (4.42) from the previous section was extended to k = 0 in Exer-
cise 4.10.6(a),

ϑv
0(γ) =

∑
n∈Z2

e−π|(v/N+n)γ|2 , v ∈ (Z/NZ)2, γ ∈ GL2(R).

To apply this let γ ∈ SL2(R) be the positive square root of 1√
3

[ 2 −1
−1 2

]
,

satisfying
|(x1, x2)γ|2 = 2√

3
|x1 + x2µ3|2, x1, x2 ∈ R.

Note that B/NA ⊂ 1
3A/NA ∼= A/3NA. Identify A with Z2 so that if v ∈ B

then its multiple 3v ∈ αA ⊂ A can also be viewed as an element of Z2.
Compute with 3N in place of N and with γ as above that for any t ∈ R+,

ϑ3v
0 (γ(3N)1/2(t/

√
3)1/2) =

∑
n∈Z2

e
−π

√
3N |

( 3v
3N +n

)
γ|2t

=
∑
n∈A

e−2πN | v
N +n|2t = θv(it).

This shows that the identity (4.43) with k = 0, with 3N in place of N , with
γ as above, and with r = (

√
3 t)−1/2 is (Exercise 4.11.2)

θv(−1/(it), N) =
t

N
√

3

∑
u∈ 1

3 A/NA

e
(
− 3(vu∗)2

N

)
θu(3it, N), v ∈ B/NA,

where vu∗ = (vu∗)1 + (vu∗)2µ3. Generalize from t ∈ R+ to −iτ for τ ∈ H by
the Uniqueness Theorem of complex analysis to get

θv(−1/τ, N) =
−iτ

N
√

3

∑
u∈ 1

3 A/NA

e
(
− (αv(αu)∗)2

N

)
θu(3τ, N), v ∈ B/NA.

The sum on the right side is∑
w∈B/NA

e
(
− (αvw∗)2

N

) ∑
u∈ 1

3 A/NA
αu≡w (NA)

θu(3τ, N).

To simplify the inner sum note that θw(τ, N) =
∑

n∈A e
(
N |w/N+n

α |23τ
)

for
any w ∈ B/NA, and similarly to the proof of the second statement this works
out to
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θw(τ, N) =
∑

r∈A/αA
m∈A

e
(

N
∣∣∣ (w+Nr)/α

N + m
∣∣∣23τ

)
=

∑
r∈A/αA

θ(w+Nr)/α(3τ, N).

That is, the inner sum is∑
u∈ 1

3 A/NA
αu≡w (NA)

θu(3τ, N) = θw(τ, N), w ∈ B/NA.

The proof is completed by noting that (αvw∗)2 = tr (vw∗). ��
The next result shows how the theta function transforms under the group

Γ0(3N, N) =
{[

a b
c d

]
∈ SL2(Z) : b ≡ 0 (mod N), c ≡ 0 (mod 3N)

}
.

Proposition 4.11.2. Let N be a positive integer. Then

(θu[γ]1)(τ, N) =
(

d
3

)
θau(τ, N), u ∈ A/NA, γ =

[
a b
c d

]
∈ Γ0(3N, N).

Here (d/3) is the Legendre symbol.

Proof. Since θ−au = θau we can assume d > 0 by replacing γ with −γ if
necessary. Write

aτ + b

cτ + d
=

1
d

(
1

d/τ + c
+ b

)
.

Apply the second statement of the lemma and then the first statement to get

θu(γ(τ), N) =
∑

v∈B/dNA
v≡u (NA)

e
(

b|v|2
dN

)
θv

(
− 1

−d/τ−c , dN
)

.

The third statement and again the first now give

θu(γ(τ), N) =
i(d/τ + c)

dN
√

3

∑
v,w∈B/dNA

v≡u (NA)

e
(

b|v|2−tr (vw∗)
dN

)
θw(−d/τ − c, dN)

=
i(cτ + d)
dN

√
3 τ

∑
v,w∈B/dNA

v≡u (NA)

e
(

b|v|2−tr (vw∗)−c|w|2
dN

)
θw(−d/τ, dN).

Note that cw ∈ NA for w ∈ B since c ≡ 0 (mod 3N). It follows that∑
v∈B/dNA
v≡u (NA)

e
(

b|v|2−tr (vw∗)−c|w|2
dN

)
=

∑
v∈B/dNA
v≡u (NA)

e
(

b|v−cw|2−tr ((v−cw)w∗)−c|w|2
dN

)

= e
(
− tr (auw∗)

N

) ∑
v∈B/dNA
v≡u (NA)

e
(

b|v|2
dN

)
,
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where the last equality uses the relation ad−bc = 1. Since b ≡ 0 (mod N) the
summand e

(
b|v|2/(dN)

)
depends only on v (mod dA), and since (d, N) = 1

and u ∈ A/NA the sum is
∑

v∈A/dA e
(
b|v|2/(dN)

)
. This takes the value

(d/3)d (Exercise 4.11.3). Substitute this into the transformation formula and
apply the second and third statements of the lemma to continue,

θu(γ(τ), N) =
i(cτ + d)
N

√
3 τ

(
d

3

) ∑
w∈B/dNA

e
(
− tr (auw∗)

N

)
θw(d(−1/τ), dN)

=
i(cτ + d)
N

√
3 τ

(
d

3

) ∑
v∈B/NA

e
(
− tr (auv∗)

N

)
θv(−1/τ, N)

=
cτ + d

3N2

(
d

3

) ∑
v,w∈B/NA

e
(
− tr (vw∗+auv∗)

N

)
θw(τ, N).

Exercise 4.11.3(b) shows that the inner sum is

∑
v∈B/NA

e
(

− tr (v(w∗ + au∗))
N

)
=

{
3N2 if w = −au,

0 if w 	= −au,

completing the proof since θ−au = θau. ��

To construct a modular form from the theta functions we need to conjugate
and then symmetrize. To conjugate, let δ = [ N 0

0 1 ] so that

δΓ0(3N2)δ−1 = Γ0(3N, N)

and the conjugation preserves matrix entries on the diagonal. Recall that the
weight-k operator was extended to GL+

2 (Q) in Exercise 1.2.11. Thus for any
γ =

[
a b
c d

]
∈ Γ0(3N2),

(θu[δγ]1)(τ) = (θu[γ′δ]1)(τ) where γ′ = δγδ−1 ∈ Γ0(3N, N)

= (d/3)(θau[δ]1)(τ) since d = dγ′ .
(4.49)

The construction is completed by symmetrizing:

Theorem 4.11.3. Let N be a positive integer and let χ : (A/NA)∗ −→ C∗ be
a character, extended multiplicatively to A. Define

θχ(τ) = 1
6

∑
u∈A/NA

χ(u)θu(Nτ, N).

Then
θχ[γ]1 = χ(d)(d/3)θχ, γ =

[
a b
c d

]
∈ Γ0(3N2).

Therefore
θχ ∈ M1(3N2, ψ), ψ(d) = χ(d)(d/3).
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The desired transformation of θχ under Γ0(3N2) follows from (4.49) since
θχ =

∑
u χ(u)θu[δ]1 (Exercise 4.11.4). To finish proving the theorem note that

θχ(τ) = 1
6

∑
n∈A

χ(n)e
(
|n|2τ

)
=

∞∑
m=0

am(θχ)e2πiτ

where
am(θχ) = 1

6

∑
n∈A

|n|2=m

χ(n). (4.50)

This shows that an(θ) = O(n), i.e., the Fourier coefficients are small enough
to satisfy the condition in Proposition 1.2.4.

For example, when N = 1 the theta function

θ1(τ) = 1
6

∑
n∈A

e2πi|n|2τ , τ ∈ H

is a constant multiple of Eψ,1
1 , the Eisenstein series mentioned at the end

of Section 4.8 (Exercise 4.11.5). This fact is equivalent to a representation
number formula like those in Exercise 4.8.7.

Along with Poisson summation, the other ingredient for constructing a
modular form to match the cubic equation C from the beginning of the
section is the Cubic Reciprocity Theorem. The unit group of A is A∗ =
{±1,±µ3,±µ2

3}. Note that formula (4.50) shows that θχ = 0 unless χ is trivial
on A∗. Let p be a rational prime, p ≡ 1 (mod 3). Then there exists an element
π = a + bµ3 ∈ A such that

{n ∈ A : |n|2 = p} = A∗π ∪ A∗π.

The choice of π can be normalized, e.g., to π = a + bµ3 where a ≡ 2 (mod 3)
and b ≡ 0 (mod 3). On the other hand a rational prime p ≡ 2 (mod 3) does
not take the form p = |n|2 for any n ∈ A, as is seen by checking |n|2 modulo 3.
(See 9.1–9.6 of [IR92] for more on the arithmetic of A.) A weak form of Cubic
Reciprocity is: Let d ∈ Z+ be cubefree and let N = 3

∏
p|d p. Then there exists

a character
χ : (A/NA)∗ −→ {1, µ3, µ

2
3}

such that the multiplicative extension of χ to all of A is trivial on A∗ and
on primes p � N , while on elements π of A such that ππ̄ is a prime p � N it
is trivial if and only if d is a cube modulo p. See Exercise 4.11.6 for simple
examples.

For this character, θχ(τ, N) ∈ M1(3N2, ψ) where ψ is the quadratic char-
acter with conductor 3. Formula (4.50) shows that the Fourier coefficients of
prime index are
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ap(θχ) =




2 if p ≡ 1 (mod 3) and d is a nonzero cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3) or p | 3d.

(4.51)

That is, the Fourier coefficients are the solution-counts (4.47) of equation C
as anticipated at the beginning of the section.

Exercises

4.11.1. Show that for any prime p the map x �→ x3 is an endomorphism of the
multiplicative group (Z/pZ)∗. Show that the map is 3-to-1 if p ≡ 1 (mod 3)
and is 1-to-1 if p ≡ 2 (mod 3). Use this to establish (4.47).

4.11.2. Confirm that under the identification (x1, x2) ↔ x1 + x2µ3, the
exponent −〈u, vS〉 from Section 4.10 becomes −(vu∗)2. Use this to verify
the application of Poisson summation with 3u, 3v, and 3N in the proof of
Lemma 4.11.1.

4.11.3. For b, d ∈ Z with (3b, d) = 1 let ϕb,d =
∑

v∈A/dA e
(
b|v|2/d

)
. This

exercise proves the formula ϕb,d = (d/3)d.
(a) Prove the formula when d = p where p 	= 3 is prime. For p = 2 compute

directly. For p > 3 use the isomorphism Z[
√

−3]/pZ[
√

−3] −→ A/pA to show
that

ϕb,d =
∑

r1,r2∈Z/pZ

e
(
b(r2

1 + 3r2
2)/p

)
.

Show that if m is not divisible by p then∑
r∈Z/pZ

e
(
mr2/p

)
=

∑
s∈Z/pZ

(
1 +

(
ms
p

) )
e (s/p) =

(
m
p

)
g(χ)

where g(χ) is the Gauss sum associated to the character χ(s) = (s/p). Show
that g(χ)2 = χ(−1)|g(χ)|2 = (−1/p)p similarly to (4.12). Use Quadratic
Reciprocity to complete the proof.

(b) Before continuing show that for any x ∈ N−1B,

∑
w∈A/NA

e (tr (xw∗)) =

{
N2 if x ∈ B,

0 if x /∈ B,

and ∑
v∈B/NA

e (tr (vx∗)) =

{
3N2 if x ∈ A,

0 if x /∈ A.

(c) Prove the formula for d = pt inductively by showing that for t ≥ 2,
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ϕb,pt =
∑

v∈A/pt−1A

∑
w∈A/pA

e
(
b|v + pt−1w|2/pt

)

=
∑

v∈A/pt−1A

e
(
b|v|2/pt

) ∑
w∈A/pA

e (tr (bvw∗)/p) = ϕb,pt−2p2.

(d) For arbitrary d > 0 suppose that d = d1d2 with (d1, d2) = 1 and
d1, d2 > 0. Use the bijection

A/d1A × A/d2A −→ A/dA, (u1, u2) �→ d2u1 + d1u2

to show that ϕb,d = ϕbd2,d1ϕbd1,d2 . Deduce that this holds for d < 0 as well.
Complete the proof of the formula.

4.11.4. Verify the transformation law in Theorem 4.11.3.

4.11.5. (a) Use results from Chapter 3 to show that dim(S1(Γ0(3)) = 0, so
that if ψ is the quadratic character modulo 3 then M1(3, ψ) = CEψ,1

1 .
(b) Let θ1(τ) denote the theta function in Theorem 4.11.3 specialized

to N = 1, making the character trivial. Thus θ1 ∈ M1(3, ψ) and so θ1 is a
constant multiple of Eψ,1

1 . What is the constant?
(c) The Fourier coefficients am(θ1) are (up to a constant multiple) repre-

sentation numbers for the quadratic form n2
1 − n1n2 + n2

2. Thus the represen-
tation number is a constant multiple of the arithmetic function σψ,1

0 (m) =∑
d|n ψ(d) for m ≥ 1. Check the relation between r(p) and σψ,1

0 (p) for prime p
by using the information about this ring given in the proof of Corollary 3.7.2.
Indeed, the reader with background in number theory can work this exer-
cise backwards by deriving the representation numbers and thus the identity
θ1 = cEψ,1

1 arithmetically.

4.11.6. (a) Describe the character χ provided by Cubic Reciprocity for d = 1.
(b) To describe χ for d = 2, first determine the conditions modulo 2 on

a, b ∈ Z that make a + bµ3 ∈ A invertible modulo 2A, and similarly for 3.
Use these to show that the multiplicative group G = (A/6A)∗ has order 18.
Show that A∗ reduces to a cyclic subgroup H of order 6 in G and that the
quotient G/H is generated by g = 1 + 3µ3. Explain why χ is defined on the
quotient and why up to complex conjugation it is

χ(H) = 1, χ(gH) = ζ3, χ(g2H) = ζ2
3 .

(Here the symbol ζ3 is being used to distinguish the cube root of unity in the
codomain C∗ of χ from the cube root of unity in A.)

(c) Describe the character χ provided by Cubic Reciprocity for d = 3.
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