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5.9 The connection with L-functions

Each modular form f ∈ Mk(Γ1(N)) has an associated Dirichlet series, its L-
function. Let f(τ) =

∑∞
n=0 anqn, let s ∈ C be a complex variable, and write

formally

L(s, f) =
∞∑

n=1

ann−s.

Convergence of L(s, f) in a half plane of s-values follows from estimating the
Fourier coefficients of f .

Proposition 5.9.1. If f ∈ Mk(Γ1(N)) is a cusp form then L(s, f) converges
absolutely for all s with Re(s) > k/2 + 1. If f is not a cusp form then L(s, f)
converges absolutely for all s with Re(s) > k.

Proof. First assume f is a cusp form. Let g(q) =
∑∞

n=1 anqn, a holomorphic
function on the unit disk {q : |q| < 1}. Then by Cauchy’s formula,

an =
1

2πi

∫
|q|=r

g(q)q−ndq/q for any r ∈ (0, 1)

=
∫ 1

x=0
f(x + iy)e−2πin(x+iy)dx for any y > 0, where q = e2πi(x+iy)

= e2π

∫ 1

x=0
f(x + i/n)e−2πinxdx letting y = 1/n.

Since f is a cusp form, Im(τ)k/2|f(τ)| is bounded on the upper half plane H
(Exercise 5.9.1(a)), and so estimating this last integral shows that |an| ≤
Cnk/2. The result for a cusp form f now follows since |ann−s| = O(nk/2−Re(s)).

If E is an Eisenstein series in Mk(Γ1(N)) then by direct inspection
its Fourier coefficients satisfy |an| ≤ Cnk−1 (Exercise 5.9.1(b)) and now
|ann−s| = O(nk−1−Re(s)). Since any modular form is the sum of a cusp form
and an Eisenstein series the rest of the proposition follows. ��

The estimate |an(f)| ≤ Cnk/2 for f ∈ Sk(Γ1(N)) readily extends to
Sk(Γ (N)) and therefore to Sk(Γ ) for any congruence subgroup Γ of SL2(Z).
Similarly for the estimate |an(E)| ≤ Cnk−1 for Eisenstein series E ∈
Mk(Γ (N)). The upshot is that every modular form with respect to a congru-
ence subgroup satisfies condition (3′) in Proposition 1.2.4,

(3′) In the Fourier expansion f(τ) =
∑∞

n=0 anqn
N , the coefficients satisfy the

condition

|an| ≤ Cnr for some positive constants C and r.

So finally the converse to that proposition holds as well: if f is holomorphic
and weight-k invariant under Γ then f is a modular form if and only if it
satisfies condition (3′).

The condition of f being a normalized eigenform is equivalent to its L-
function series having an Euler product.
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Theorem 5.9.2. Let f ∈ Mk(N, χ), f(τ) =
∑∞

n=0 anqn. The following are
equivalent:

• f is a normalized eigenform.
• L(s, f) has an Euler product expansion

L(s, f) =
∏
p

(1 − app
−s + χ(p)pk−1−2s)−1,

where the product is taken over all primes.

Note that the Euler product here is the Hecke operator generating function
product (5.12).

Proof. By Proposition 5.8.5, the first item here is equivalent to three condi-
tions on the coefficients an, so it suffices to show that those conditions are
equivalent to the second item here.

Fix a prime p. Multiplying condition (2) in Proposition 5.8.5 by p−rs and
summing over r ≥ 2 shows, after a little algebra, that it is equivalent to

∞∑
r=0

aprp−rs · (1 − app
−s + χ(p)pk−1−2s) = a1 + (1 − a1)p−s. (5.23)

If also condition (1) in Proposition 5.8.5 holds then this becomes

∞∑
r=0

aprp−rs · (1 − app
−s + χ(p)pk−1−2s) = 1. (5.24)

Conversely, suppose (5.24) holds. Letting s → +∞ shows a1 = 1 so condi-
tion (1) in Proposition 5.8.5 holds, and so does (5.23), implying condition (2)
in Proposition 5.8.5. So conditions (1) and (2) in Proposition 5.8.5 are equiv-
alent to

∞∑
r=0

aprp−rs = (1 − app
−s + χ(p)pk−1−2s)−1 for p prime. (5.25)

Before continuing, note that the Fundamental Theorem of Arithmetic (pos-
itive integers factor uniquely into prime powers) implies that for a function g
of prime powers (Exercise 5.9.2),

∏
p

∞∑
r=0

g(pr) =
∞∑

n=1

∏
pr‖n

g(pr). (5.26)

The notation pr‖n means that pr is the highest power of p that divides n, and
we are assuming that g is small enough to justify formal rearrangements.

Now, if (5.25) holds along with condition (3) of Proposition 5.8.5 then
compute
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L(s, f) =
∞∑

n=1

ann−s =
∞∑

n=1


 ∏

pr‖n

apr


 n−s by the third condition

=
∞∑

n=1

∏
pr‖n

aprp−rs =
∏
p

∞∑
r=0

aprp−rs by (5.26)

=
∏
p

(1 − app
−s + χ(p)p1−k−2s)−1 by (5.25),

giving the Euler product expansion.
Conversely, given the Euler product expansion, compute (using the geo-

metric series formula and (5.26))

L(s, f) =
∏
p

(1 − app
−s + χ(p)p1−k−2s)−1

=
∏
p

∞∑
r=0

bp,rp
−rs for some {bp,r}

=
∞∑

n=1

∏
pr‖n

bp,rp
−rs =

∞∑
n=1


 ∏

pr‖n

bp,r


 n−s.

So an =
∏

pr‖n bp,r, giving condition (3) of Proposition 5.8.5 and showing in
particular that bp,r = apr . This in turn implies (5.25), implying conditions (1)
and (2) of Proposition 5.8.5. ��

As an example, the L-function of the Eisenstein series Eψ,ϕ
k /2 works out

to (Exercise 5.9.3)

L(s, Eψ,ϕ
k /2) = L(s, ψ)L(s − k + 1, ϕ) (5.27)

where the L-functions on the right side are as defined in Chapter 4. For another
example see Exercise 5.9.4.

Let N be a positive integer and let A be the ring Z[µ3]. For any char-
acter χ : (A/NA)∗ −→ C∗, Section 4.11 constructed a modular form
θχ ∈ M1(3N2, ψ) where ψ(d) = χ(d)(d/3). Recall that χ needs to be triv-
ial on A∗ for θχ to be nonzero, so assume this. The arithmetic of A and
Theorem 5.9.2 show that θχ is a normalized eigenform. The relevant facts
about A were invoked in the proof of Corollary 3.7.2 and in Section 4.11. To
reiterate, A is a principal ideal domain. For each prime p ≡ 1 (mod 3) there
exists an element πp ∈ A such that πpπ̄p = p, but there is no such element if
p ≡ 2 (mod 3). The maximal ideals of A are

• for each prime p ≡ 1 (mod 3), the two ideals 〈πp〉 and 〈πp〉,
• for each prime p ≡ 2 (mod 3), the ideal 〈p〉,
• for p = 3, the ideal 〈

√
−3〉.
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Let πp = p for each prime p ≡ 2 (mod 3), let π3 =
√

−3, and take the set of
generators of the maximal ideals,

S = {πp, πp : p ≡ 1 (mod 3)} ∪ {πp : p ≡ 2 (mod 3)} ∪ {π3}.

Then each nonzero n ∈ A can be written uniquely as

n = u
∏
π∈S

πaπ , u ∈ A∗, each aπ ∈ N, aπ = 0 for all but finitely many π.

Correspondingly χ(n) =
∏

π∈S χ(π)aπ . The Fourier coefficients of θχ were
given in (4.50),

am(θχ) = 1
6

∑
n∈A

|n|2=m

χ(n).

Compute that therefore

L(s, θχ) = 1
6

∑
n∈A
n �=0

χ(n)|n|−2s =
∏
π∈S

(1 − χ(π)|π|−2s)−1 =
∏
p

Lp(s, θχ),

where (Exercise 5.9.5)

Lp(s, θχ)−1 =




1 − (χ(πp) + χ(π̄p))p−s + χ(p)p−2s if p ≡ 1 (mod 3),
1 − χ(p)p−2s if p ≡ 2 (mod 3),
1 − χ(

√
−3)3−s if p = 3.

(5.28)
Since Lp(s, θχ) = (1 − ap(θχ)p−s + ψ(p)p−2s)−1 in all cases, Theorem 5.9.2
shows that θχ is a normalized eigenform.

Exercises

5.9.1. (a) For any cusp form f ∈ Sk(Γ1(N)) show that the function ϕ(τ) =
Im(τ)k/2|f(τ)| is bounded on the upper half plane H. (A hint for this exercise
is at the end of the book.)

(b) Establish the relation 1 ≤ σk−1(n)/nk−1 < ζ(k − 1) where ζ is the
Riemann zeta function. Show that the Fourier coefficients an of any Eisenstein
series satisfy |an| ≤ Cnk−1.

5.9.2. Prove formula (5.26). (A hint for this exercise is at the end of the book.)

5.9.3. Prove formula (5.27). What is a half plane of convergence?

5.9.4. Recall the functions f , f1, f2, and f3 from Exercise 5.8.3. The exercise
showed that the 4-dimensional space spanned by these functions contains only
three normalized eigenforms. How do the L-functions of the three eigenforms
relate to L(s, f)?

5.9.5. Establish formula (5.28).
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