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Modular Forms, Elliptic Curves, and Modular
Curves

This chapter introduces three central objects of the book.

Modular forms are functions on the complex upper half plane. A matrix
group called the modular group acts on the upper half plane, and modular
forms are the functions that transform in a nearly invariant way under the
action and satisfy a holomorphy condition. Restricting the action to subgroups
of the modular group called congruence subgroups gives rise to more modular
forms.

A complex elliptic curve is a quotient of the complex plane by a lattice.
As such it is an Abelian group, a compact Riemann surface, a torus, and—
nonobviously—in bijective correspondence with the set of ordered pairs of
complex numbers satisfying a cubic equation of the form E in the preface.

A modular curve is a quotient of the upper half plane by the action of a
congruence subgroup. That is, two points are considered the same if the group
takes one to the other.

These three kinds of object are closely related. Modular curves are mapped
to by moduli spaces, equivalence classes of complex elliptic curves enhanced
by associated torsion data. Thus the points of modular curves represent en-
hanced elliptic curves. Consequently, functions on the moduli spaces satisfying
a homogeneity condition are essentially the same thing as modular forms.

Related reading: Gunning [Gun62], Koblitz [Kob93], Schoeneberg [Sch74],
and Chapter 7 of Serre [Ser73] are standard first texts on this subject. For
modern expositions of classical modular forms in action see [Cox84] (reprinted
in [BBB00]) and [Cox97].

1.1 First definitions and examples

The modular group is the group of 2-by-2 matrices with integer entries and
determinant 1,

SLQ(Z):{[(;Z] :a,b,c7d€Z7ad—bc:1}.
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The modular group is generated by the two matrices

o1 o )

(Exercise 1.1.1). Each element of the modular group is also viewed as an
automorphism (invertible self-map) of the Riemann sphere C = CU{oo}, the
fractional linear transformation

ab at +b ~
|:Cd:|(T)_CT+d7 TeC.

This is understood to mean that if ¢ # 0 then —d/c maps to co and oo
maps to a/c, and if ¢ = 0 then oo maps to co. The identity matrix I and
its negative —I both give the identity transformation, and more generally
each pair v of matrices in SLy(Z) gives a single transformation. The group
of transformations defined by the modular group is generated by the maps
described by the two matrix generators,

T—=74+1 and 7+ —1/7.

The upper half plane is
H={reC:Im(r) > 0}.

Readers with some background in Riemann surface theory—which is not nec-
essary to read this book—may recognize H as one of the three simply con-
nected Riemann surfaces, the other two being the plane C and the sphere C.
The formula

n(y(r) = 2 1= |y

- Lo(Z
ler 4+ d|?”’ cd}ESQ( )

(Exercise 1.1.2(a)) shows that if v € SLy(Z) and 7 € H then also v(7) € H,
i.e., the modular group maps the upper half plane back to itself. In fact the
modular group acts on the upper half plane, meaning that I(7) = 7 where
I is the identity matrix (as was already noted) and (yy')(7) = v(7/'(1)) for
all 7,7 € SLy(Z) and 7 € H. This last formula is easy to check (Exer-
cise 1.1.2(b)).

Definition 1.1.1. Let k be an integer. A meromorphic function f: H — C
is weakly modular of weight k if

FO) = (er + @ 5(r) fory= | 4] €SLa(@) and 7 € 1

Section 1.2 will show that if this transformation law holds when + is each
of the generators [§ 1] and [{ ~}] then it holds for all v € SLy(Z). In other
words, f is weakly modular of weight k if
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flr+1)=f(r) and f(=1/7)=7"f(7).

Weak modularity of weight 0 is simply SLs(Z)-invariance, f oy = f for
all v € SLy(Z). Weak modularity of weight 2 is also natural: complex analy-
sis relies on path integrals of differentials f(7)dr, and SLy(Z)-invariant path
integration on the upper half plane requires such differentials to be invariant
when 7 is replaced by any (7). But (Exercise 1.1.2(c))

dy() = (et +d)~3dr,
and so the relation f(v(7))d(v(r)) = f(r)dr is

FOy(1)) = (er +d)* f(7),

giving Definition 1.1.1 with weight k¥ = 2. Weight 2 will play an especially
important role later in this book since it is the weight of the modular form in
the Modularity Theorem. The weight 2 case also leads inexorably to higher
even weights—multiplying two weakly modular functions of weight 2 gives a
weakly modular function of weight 4, and so on. Letting v = —I in Defini-
tion 1.1.1 gives f = (—1)*f, showing that the only weakly modular function
of any odd weight k is the zero function, but nonzero odd weight examples
exist in more general contexts to be developed soon. Another motivating idea
for weak modularity is that while it does not make a function f fully SLs(Z)-
invariant, at least f(7) and f(y(7)) always have the same zeros and poles
since the factor ¢7 + d on H has neither.

Modular forms are weakly modular functions that are also holomorphic on
the upper half plane and holomorphic at co. To define this last notion, recall
that SLo(Z) contains the translation matrix

L1 —=T+1
01 °T T ,

for which the factor ¢r + d is simply 1, so that f(r + 1) = f(7) for every
weakly modular function f : H — C. That is, weakly modular functions are
Z-periodic. Let D = {q € C : |¢q| < 1} be the open complex unit disk, let
D’ = D — {0}, and recall from complex analysis that the Z-periodic holomor-
phic map 7 — €2 = ¢ takes H to D’. Thus, corresponding to f, the function
g : D' — C where g(q) = f(log(q)/(2m)) is well defined even though the
logarithm is only determined up to 27iZ, and f(7) = g(e?>™*7). If f is holo-
morphic on the upper half plane then the composition g is holomorphic on
the punctured disk since the logarithm can be defined holomorphically about
each point, and so g has a Laurent expansion g(q) = >, .z anq" for ¢ € D'.
The relation |g| = e=2™™(7) shows that ¢ — 0 as Im(7) — oo. So, thinking
of 0o as lying far in the imaginary direction, define f to be holomorphic at oo
if g extends holomorphically to the puncture point ¢ = 0, i.e., the Laurent
series sums over n € IN. This means that f has a Fourier expansion
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oo
F@) =) an(f)g", g=¢€"".
n=0

Since ¢ — 0 if and only if Im(7) — oo, showing that a weakly modular holo-
morphic function f : H — C is holomorphic at co doesn’t require computing
its Fourier expansion, only showing that limyy, ) f(7) exists or even just
that f(7) is bounded as Im(7) — oo.

Definition 1.1.2. Let k be an integer. A function f : H — C is a modular
form of weight k if

(1) f is holomorphic on H,
(2) f is weakly modular of weight k,
(3) f is holomorphic at co.

The set of modular forms of weight k is denoted My (SLa(Z)).

It is easy to check that My (SLy(Z)) forms a vector space over C (Exer-
cise 1.1.3(a)). Holomorphy at oo will make the dimension of this space, and
of more spaces of modular forms to be defined in the next section, finite. We
will compute many dimension formulas in Chapter 3. When f is holomorphic
at oo it is tempting to define f(oo) = ¢g(0) = ag, but the next section will
show that this doesn’t work in a more general context.

The product of a modular form of weight k£ with a modular form of weight [
is a modular form of weight k + [ (Exercise 1.1.3(b)). Thus the sum

M(SL2(2)) = €D M (SL2(2))

keZ
forms a ring, a so-called graded ring because of its structure as a sum.

The zero function on A is a modular form of every weight, and every
constant function on H is a modular form of weight 0. For nontrivial examples
of modular forms, let £k > 2 be an even integer and define the FEisenstein
series of weight k to be a 2-dimensional analog of the Riemann zeta function

(:(k?) = 230:1 1/dka
Gr(r) = Z/% TEeH,

k )
o et 4+ d)

where the primed summation sign means to sum over nonzero integer pairs
(c,d) € Z?> —{(0,0)}. The sum is absolutely convergent and converges uni-
formly on compact subsets of H (Exercise 1.1.4(c)), so G} is holomorphic
on H and its terms may be rearranged. For any v = [‘C‘ S] € SLy(Z), compute
that
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’ 1
Gr(v(1) =
G (c/ (%) +d/)k
, 1
= (CT + d)k Z ((c’a + d’C)T + (Clb + d/d))k .

(¢,d")

But as (¢/,d') runs through Z% — {(0,0)}, so does (c'a + d’c,c'b + d'd) =
(¢,d)[24] (Exercise 1.1.4(d)), and so the right side is (¢ + d)*Gy(7),
showing that Gy is weakly modular of weight k. Finally, G is bounded
as Im(7) — oo (Exercise 1.1.4(e)), so it is a modular form.

To compute the Fourier series for Gy, continue to let 7 € H and begin
with the identities

hl § = t T = i — 278 m = 2™ (11
T+d_1<T_d+T—|—d> Tcot mT = i mE q", qg=e (1.1)

m=0

(Exercise 1.1.5—the reader who is unhappy with this unmotivated incanting
of unfamiliar expressions for a trigonometric function should be reassured that
it is a standard rite of passage into modular forms; but also, Exercise 1.1.6
provides other proofs, perhaps more natural, of the following formula (1.2)).
Differentiating (1.1) k—1 times with respect to 7 gives for 7 € H and ¢ = 2™7,

1 271'2
Z (r+ d)k k )l Z mtlg™, k> 2. (1.2)

deZ

For even k > 2,

!

¥ - SE

(c,d) d#0 c=1

> )

deZ

so again letting ¢ denote the Riemann zeta function and using (1.2) gives

! 1 1cm
2 orap - XE |ZZ mt

(Cvd) c=1m=1

Rearranging the last expression gives the Fourier expansion

n

n)q", k>2, keven

where the coefficient oj_1(n) is the arithmetic function

Ukl Em

m|n
m>0
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Exercise 1.1.7(b) shows that dividing by the leading coefficient gives a se-
ries having rational coefficients with a common denominator. This normalized
Eisenstein series G (7)/(2¢(k)) is denoted Ej(7). The Riemann zeta function
will be discussed further in Chapter 4.

Since the set of modular forms is a graded ring, we can make modular
forms out of various sums of products of the Eisenstein series. For example,
Ms(SLa(Z)) turns out to be 1-dimensional. The functions Fy(7)? and Eg(7)
both belong to this space, making them equal up to a scalar multiple and
therefore equal since both have leading term 1. Expanding out the relation
Ef = FEjg gives a relation between the divisor-sum functions o3 and o7 (Exer-
cise 1.1.7(c)),

n—1

o7(n) = 03(n) + 120 Y o3(i)os(n —i), n>1. (1.3)

i=1
The modular forms that, unlike Eisenstein series, have constant term equal

to 0 play an important role in the subject.

Definition 1.1.3. A cusp form of weight k is a modular form of weight k
whose Fourier expansion has leading coefficient ag = 0, i.e.,

)
f(T) _ Zanqn’ q= 627”7—.
n=1

The set of cusp forms is denoted Sy (SL2(Z)).

So a modular form is a cusp form when limyy,(-)— o f(7) = 0. The limit
point oo of H is called the cusp of SLs(Z) for geometric reasons to be explained
in Chapter 2, and a cusp form can be viewed as vanishing at the cusp. The cusp
forms Sk (SLa(Z)) form a vector subspace of the modular forms My (SLy(Z)),
and the graded ring

S(SL2(2)) = €D Sk(SL2(2))

keZ

is an ideal in M(SL2(Z)) (Exercise 1.1.3(c)).
For an example of a cusp form, let

92(7) = 60G4(7),  g3(7) = 140Ge(7),
and define the discriminant function
A:H— C, A1) = (g2(7))® — 27(g3(1))?.

Then A is weakly modular of weight 12 and holomorphic on H, and ag = 0,
a; = (27)'2 in the Fourier expansion of A (Exercise 1.1.7(d)). So indeed
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A € 815(SLy(Z)), and A is not the zero function. Section 1.4 will show that
in fact A(7) # 0 for all 7 € H so that the only zero of A is at cc.
It follows that the modular function

(92(7))°

j:H— C, j(r)=1728 A(7)

is holomorphic on H. Since the numerator and denominator of j have the
same weight, j is SLo(Z)-invariant,

iy (r) =i(r),  y€SLa(Z), T€H,
and in fact it is also called the modular invariant. The expansion

) Qm)2+... 1

i(7) = 2m) 2+ - ¢ T
shows that j has a simple pole at oo (and is normalized to have residue 1 at
the pole), so it is not quite a modular form. Let pu3 denote the complex cube
root of unity €*™/3. Easy calculations (Exercise 1.1.8) show that gs(i) = 0
so that g2(7) # 0 and j(i) = 1728, and g2(u3) = 0 so that gs(us) # 0 and
j(us) = 0. One can further show (see [Ros81], [CSar]) that

N .4 ot at I(5/4)
g2(i) = 4wy, W4—2/0 m_QﬁF(?)/zl)
and
dt I(4/3)

2V

93(p3) = (27/16)ws, w3 = 2/0 V-8 r'(5/6)

Here the integrals are elliptic integrals, and I" is Euler’s gamma function, to be
defined in Chapter 4. Finally, Exercise 1.1.9 shows that the j-function surjects
from H to C.

Exercises

1.1.1. Let I" be the subgroup of SLy(Z) generated by the two matrices [ 1]
and [ 7] Note that [§ 7] = [§1]" € I' for all n € Z. Let a = [ )] be a
matrix in SLo(Z). Use the identity

abl|1In| |a ¥

cd||01] |cne+d
to show that unless ¢ = 0, some matrix oy with 4 € I" has bottom row (¢, d’)
with |d'| <|c|/2. Use the identity

o) [2o)= 10
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to show that this process can be iterated until some matrix ay with v € I’
has bottom row (0, ). Show that in fact the bottom row is (0, £1), and since

[0 *(1)]2 = —1I it can be taken to be (0, 1). Show that therefore ary € I" and so
a € I'. Thus I is all of SLy(Z).

1.1.2. (a) Show that Im(v(7)) = Im(7)/|cT + d|? for all v = [2 4] € SLy(Z).
(b) Show that (vy')(7) = ~v(y/(7)) for all v, € SLa(Z) and 7 € H.
(c) Show that dy(7)/dr = 1/(cT + d)? for v = [2 ] € SLy(Z).

1.1.3. (a) Show that the set My, (SLa(Z)) of modular forms of weight k forms
a vector space over C.

(b) If f is a modular form of weight k and g is a modular form of weight I,
show that fg is a modular form of weight k + [.

(c) Show that Si(SL2(Z)) is a vector subspace of My, (SL2(Z)) and that
S(SLy(Z)) is an ideal in M(SLy(Z)).

1.1.4. Let k > 3 be an integer and let L' = Z2 — {(0,0)}.

(a) Show that the series 3. 57 (sup{|c], |d|})~* converges by considering
the partial sums over expanding squares.

(b) Fix positive numbers A and B and let

N ={reH:|Re(r)] < A,Im(r) > B}.

Prove that there is a constant C' > 0 such that |7 + | > C'sup{1, |d|} for all
7 € 2 and § € R. (Hints for this exercise are at the end of the book.)

(c) Use parts (a) and (b) to prove that the series defining Gy (7) converges
absolutely and uniformly for 7 € 2. Conclude that Gy, is holomorphic on .

(d) Show that for v € SLo(Z), right multiplication by 7 defines a bijection
from L’ to L'.

(e) Use the calculation from (c) to show that G, is bounded on {2. From the
text and part (d), Gy, is weakly modular so in particular G (7 + 1) = G(7).
Show that therefore G (7) is bounded as Im(7) — .

1.1.5. Establish the two formulas for 7 cot 77 in (1.1). (A hint for this exercise
is at the end of the book.)

1.1.6. This exercise obtains formula (1.2) without using the cotangent. Let
f(1) = Y 4ez 1/( + d)* for k > 2 and 7 € H. Since f is holomorphic (by
the method of Exercise 1.1.4) and Z-periodic and since limy, (7)o f(7) = 0,
there is a Fourier expansion f(7) = > .°_ amq¢™ = g(q) as in the section,
where ¢ = €>™" and
_ L [ 909

2mi )., qm Tt

am
is a path integral once counterclockwise over a circle about 0 in the punctured

disk D’.
(a) Show that
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141y ) +oo+1y )
G = / f(r)e ?™mTdr = / 77 Re= ™M dr for any y > 0.
T=0+1y T=—00+1Yy
(b) Let g,n (1) = 77Fe~2™"™7 2 meromorphic function on C with its only
singularity at the origin. Show that

—2miResr—ogm (7)) = ——m

(c) Establish (1.2) by integrating g,,(7) clockwise about a large rectangular
path and applying the Residue Theorem. Argue that the integral along the
top side goes to a,, and the integrals along the other three sides go to 0.

(d) Let o : R — C be a function such that the integral [*_|h(z)|dx
is finite and the sum ), ., h(z + d) converges absolutely and uniformly on
compact subsets and is infinitely differentiable. Then the Poisson summation

formula says that
Z h(x +d) = Z h(m)e2rime
deZ meZ

where h is the Fourier transform of h,

(o)
)= [ b
t=—o00
We will not prove this, but the idea is that the left side sum symmetrizes h to
a function of period 1 and the right side sum is the Fourier series of the left
side since the mth Fourier coefficient is ftlzo ez bt +d)e= 2™t dt = h(m).
Letting h(x) = 1/7% where 7 = z + iy with y > 0, show that h meets the
conditions for Poisson summation. Show that iz(m) = e ?2™Yq,, with a,,
from above for m > 0, and that k(m) = 0 for m < 0. Establish formula (1.2)
again, this time as a special case of Poisson summation. We will see more
Poisson summation and Fourier analysis in connection with Eisenstein series
in Chapter 4. (A hint for this exercise is at the end of the book.)

1.1.7. The Bernoulli numbers By, are defined by the formal power series ex-

pansion
t N
et—1 Z BkH’
k=0

Thus they are calculable in succession by matching coefficients in the power
series identity

NGO EALIE

n=1 \k=0

(i.e., the nth parenthesized sum is 1 if n = 1 and 0 otherwise) and they are
rational. Since the expression
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t t t et+1

-1 2 2 d—1
is even, it follows that By = —1/2 and By = 0 for all other odd k. The
Bernoulli numbers will be motivated, discussed, and generalized in Chapter 4.
(a) Show that By =1/6, By = —1/30, and B = 1/42.
(b) Use the expressions for 7 cot 77 from the section to show

(2miT)k
k!

1- 22@(2/{)7% = 7T cot mT = TWiT + ZBk
k=0

Use these to show that for k > 2 even, the Riemann zeta function satisfies
(27i)*
2 (k) = -7
so in particular ((2) = 72/6, ((4) = 7*/90, and ((6) = 7°/945. Also, this
shows that the normalized Eisenstein series of weight k

Ek(T) gg( = ZO’k 1

has rational coeflicients with a common denominator.

(c) Equate coefficients in the relation Eg(7) = E4(7)? to establish for-
mula (1.3).

(d) Show that ag = 0 and a; = (27)'? in the Fourier expansion of the
discriminant function A from the text.

Bku

1.1.8. Recall that 3 denotes the complex cube root of unity e27*/3. Show that
[9 78] (u3) = ps + 1 so that by periodicity 92([9 78] (u3)) = g2(ps). Show
that by modularity also go [ } = pig2(ps) and therefore go(us) = 0.
Conclude that g3(us) # 0 and ](,ug) = O Argue similarly to show that g3(i) =

0, g2(7) # 0, and j(i) = 1728.

1.1.9. This exercise shows that the modular invariant j : H — C is a sur-
jection. Suppose that ¢ € C and j(7) # ¢ for all 7 € H. Consider the integral

1 [ ()
2mi J., j(1) — ¢

where ~ is the contour shown in Figure 1.1 containing an arc of the unit
circle from (—1 4 iv/3)/2 to (1 + v/3)/2, two vertical segments up to any
height greater than 1, and a horizontal segment. By the Argument Principle
the integral is 0. Use the fact that j is invariant under [} 1] to show that
the integrals over the two vertical segments cancel. Use the fact that j is
invariant under [(1) *(1)] to show that the integrals over the two halves of the
circular arc cancel. For the integral over the remaining piece of v make the
change of coordinates ¢ = €2™7, remembering that j’(7) denotes derivative
with respect to 7 and that j(7) = 1/¢ + ---, and compute that it equals 1.
This contradiction shows that j(7) = ¢ for some 7 € ‘H and j surjects.
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