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Modular Forms, Elliptic Curves, and Modular
Curves

This chapter introduces three central objects of the book.
Modular forms are functions on the complex upper half plane. A matrix

group called the modular group acts on the upper half plane, and modular
forms are the functions that transform in a nearly invariant way under the
action and satisfy a holomorphy condition. Restricting the action to subgroups
of the modular group called congruence subgroups gives rise to more modular
forms.

A complex elliptic curve is a quotient of the complex plane by a lattice.
As such it is an Abelian group, a compact Riemann surface, a torus, and—
nonobviously—in bijective correspondence with the set of ordered pairs of
complex numbers satisfying a cubic equation of the form E in the preface.

A modular curve is a quotient of the upper half plane by the action of a
congruence subgroup. That is, two points are considered the same if the group
takes one to the other.

These three kinds of object are closely related. Modular curves are mapped
to by moduli spaces, equivalence classes of complex elliptic curves enhanced
by associated torsion data. Thus the points of modular curves represent en-
hanced elliptic curves. Consequently, functions on the moduli spaces satisfying
a homogeneity condition are essentially the same thing as modular forms.

Related reading: Gunning [Gun62], Koblitz [Kob93], Schoeneberg [Sch74],
and Chapter 7 of Serre [Ser73] are standard first texts on this subject. For
modern expositions of classical modular forms in action see [Cox84] (reprinted
in [BBB00]) and [Cox97].

1.1 First definitions and examples

The modular group is the group of 2-by-2 matrices with integer entries and
determinant 1,

SL2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
.
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The modular group is generated by the two matrices[
1 1
0 1

]
and

[
0 −1
1 0

]
(Exercise 1.1.1). Each element of the modular group is also viewed as an
automorphism (invertible self-map) of the Riemann sphere Ĉ = C∪{∞}, the
fractional linear transformation[

a b
c d

]
(τ) =

aτ + b

cτ + d
, τ ∈ Ĉ.

This is understood to mean that if c �= 0 then −d/c maps to ∞ and ∞
maps to a/c, and if c = 0 then ∞ maps to ∞. The identity matrix I and
its negative −I both give the identity transformation, and more generally
each pair ±γ of matrices in SL2(Z) gives a single transformation. The group
of transformations defined by the modular group is generated by the maps
described by the two matrix generators,

τ �→ τ + 1 and τ �→ −1/τ.

The upper half plane is

H = {τ ∈ C : Im(τ) > 0}.

Readers with some background in Riemann surface theory—which is not nec-
essary to read this book—may recognize H as one of the three simply con-
nected Riemann surfaces, the other two being the plane C and the sphere Ĉ.
The formula

Im(γ(τ)) =
Im(τ)

|cτ + d|2 , γ =
[

a b
c d

]
∈ SL2(Z)

(Exercise 1.1.2(a)) shows that if γ ∈ SL2(Z) and τ ∈ H then also γ(τ) ∈ H,
i.e., the modular group maps the upper half plane back to itself. In fact the
modular group acts on the upper half plane, meaning that I(τ) = τ where
I is the identity matrix (as was already noted) and (γγ′)(τ) = γ(γ′(τ)) for
all γ, γ′ ∈ SL2(Z) and τ ∈ H. This last formula is easy to check (Exer-
cise 1.1.2(b)).

Definition 1.1.1. Let k be an integer. A meromorphic function f : H −→ C
is weakly modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) for γ =
[

a b
c d

]
∈ SL2(Z) and τ ∈ H.

Section 1.2 will show that if this transformation law holds when γ is each
of the generators [ 1 1

0 1 ] and
[ 0 −1

1 0

]
then it holds for all γ ∈ SL2(Z). In other

words, f is weakly modular of weight k if
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f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ).

Weak modularity of weight 0 is simply SL2(Z)-invariance, f ◦ γ = f for
all γ ∈ SL2(Z). Weak modularity of weight 2 is also natural: complex analy-
sis relies on path integrals of differentials f(τ)dτ , and SL2(Z)-invariant path
integration on the upper half plane requires such differentials to be invariant
when τ is replaced by any γ(τ). But (Exercise 1.1.2(c))

dγ(τ) = (cτ + d)−2dτ,

and so the relation f(γ(τ))d(γ(τ)) = f(τ)dτ is

f(γ(τ)) = (cτ + d)2f(τ),

giving Definition 1.1.1 with weight k = 2. Weight 2 will play an especially
important role later in this book since it is the weight of the modular form in
the Modularity Theorem. The weight 2 case also leads inexorably to higher
even weights—multiplying two weakly modular functions of weight 2 gives a
weakly modular function of weight 4, and so on. Letting γ = −I in Defini-
tion 1.1.1 gives f = (−1)kf , showing that the only weakly modular function
of any odd weight k is the zero function, but nonzero odd weight examples
exist in more general contexts to be developed soon. Another motivating idea
for weak modularity is that while it does not make a function f fully SL2(Z)-
invariant, at least f(τ) and f(γ(τ)) always have the same zeros and poles
since the factor cτ + d on H has neither.

Modular forms are weakly modular functions that are also holomorphic on
the upper half plane and holomorphic at ∞. To define this last notion, recall
that SL2(Z) contains the translation matrix[

1 1
0 1

]
: τ �→ τ + 1,

for which the factor cτ + d is simply 1, so that f(τ + 1) = f(τ) for every
weakly modular function f : H −→ C. That is, weakly modular functions are
Z-periodic. Let D = {q ∈ C : |q| < 1} be the open complex unit disk, let
D′ = D −{0}, and recall from complex analysis that the Z-periodic holomor-
phic map τ �→ e2πiτ = q takes H to D′. Thus, corresponding to f , the function
g : D′ −→ C where g(q) = f(log(q)/(2πi)) is well defined even though the
logarithm is only determined up to 2πiZ, and f(τ) = g(e2πiτ ). If f is holo-
morphic on the upper half plane then the composition g is holomorphic on
the punctured disk since the logarithm can be defined holomorphically about
each point, and so g has a Laurent expansion g(q) =

∑
n∈Z anqn for q ∈ D′.

The relation |q| = e−2πIm(τ) shows that q → 0 as Im(τ) → ∞. So, thinking
of ∞ as lying far in the imaginary direction, define f to be holomorphic at ∞
if g extends holomorphically to the puncture point q = 0, i.e., the Laurent
series sums over n ∈ N. This means that f has a Fourier expansion
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f(τ) =
∞∑

n=0

an(f)qn, q = e2πiτ .

Since q → 0 if and only if Im(τ) → ∞, showing that a weakly modular holo-
morphic function f : H −→ C is holomorphic at ∞ doesn’t require computing
its Fourier expansion, only showing that limIm(τ)→∞ f(τ) exists or even just
that f(τ) is bounded as Im(τ) → ∞.

Definition 1.1.2. Let k be an integer. A function f : H −→ C is a modular
form of weight k if

(1) f is holomorphic on H,
(2) f is weakly modular of weight k,
(3) f is holomorphic at ∞.

The set of modular forms of weight k is denoted Mk(SL2(Z)).

It is easy to check that Mk(SL2(Z)) forms a vector space over C (Exer-
cise 1.1.3(a)). Holomorphy at ∞ will make the dimension of this space, and
of more spaces of modular forms to be defined in the next section, finite. We
will compute many dimension formulas in Chapter 3. When f is holomorphic
at ∞ it is tempting to define f(∞) = g(0) = a0, but the next section will
show that this doesn’t work in a more general context.

The product of a modular form of weight k with a modular form of weight l
is a modular form of weight k + l (Exercise 1.1.3(b)). Thus the sum

M(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z))

forms a ring, a so-called graded ring because of its structure as a sum.

The zero function on H is a modular form of every weight, and every
constant function on H is a modular form of weight 0. For nontrivial examples
of modular forms, let k > 2 be an even integer and define the Eisenstein
series of weight k to be a 2-dimensional analog of the Riemann zeta function
ζ(k) =

∑∞
d=1 1/dk,

Gk(τ) =
∑
(c,d)

′ 1
(cτ + d)k

, τ ∈ H,

where the primed summation sign means to sum over nonzero integer pairs
(c, d) ∈ Z2 − {(0, 0)}. The sum is absolutely convergent and converges uni-
formly on compact subsets of H (Exercise 1.1.4(c)), so Gk is holomorphic
on H and its terms may be rearranged. For any γ =

[
a b
c d

]
∈ SL2(Z), compute

that
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Gk(γ(τ)) =
∑
(c′,d′)

′ 1(
c′

(
aτ+b
cτ+d

)
+ d′

)k

= (cτ + d)k
∑

(c′,d′)

′ 1
((c′a + d′c)τ + (c′b + d′d))k

.

But as (c′, d′) runs through Z2 − {(0, 0)}, so does (c′a + d′c, c′b + d′d) =
(c′, d′)

[
a b
c d

]
(Exercise 1.1.4(d)), and so the right side is (cτ + d)kGk(τ),

showing that Gk is weakly modular of weight k. Finally, Gk is bounded
as Im(τ) → ∞ (Exercise 1.1.4(e)), so it is a modular form.

To compute the Fourier series for Gk, continue to let τ ∈ H and begin
with the identities

1
τ

+
∞∑

d=1

(
1

τ − d
+

1
τ + d

)
= π cot πτ = πi − 2πi

∞∑
m=0

qm, q = e2πiτ (1.1)

(Exercise 1.1.5—the reader who is unhappy with this unmotivated incanting
of unfamiliar expressions for a trigonometric function should be reassured that
it is a standard rite of passage into modular forms; but also, Exercise 1.1.6
provides other proofs, perhaps more natural, of the following formula (1.2)).
Differentiating (1.1) k−1 times with respect to τ gives for τ ∈ H and q = e2πiτ ,

∑
d∈Z

1
(τ + d)k

=
(−2πi)k

(k − 1)!

∞∑
m=1

mk−1qm, k ≥ 2. (1.2)

For even k > 2,

∑
(c,d)

′ 1
(cτ + d)k

=
∑
d�=0

1
dk

+ 2
∞∑

c=1

(∑
d∈Z

1
(cτ + d)k

)
,

so again letting ζ denote the Riemann zeta function and using (1.2) gives

∑
(c,d)

′ 1
(cτ + d)k

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
c=1

∞∑
m=1

mk−1qcm.

Rearranging the last expression gives the Fourier expansion

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, k > 2, k even

where the coefficient σk−1(n) is the arithmetic function

σk−1(n) =
∑
m|n
m>0

mk−1.
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Exercise 1.1.7(b) shows that dividing by the leading coefficient gives a se-
ries having rational coefficients with a common denominator. This normalized
Eisenstein series Gk(τ)/(2ζ(k)) is denoted Ek(τ). The Riemann zeta function
will be discussed further in Chapter 4.

Since the set of modular forms is a graded ring, we can make modular
forms out of various sums of products of the Eisenstein series. For example,
M8(SL2(Z)) turns out to be 1-dimensional. The functions E4(τ)2 and E8(τ)
both belong to this space, making them equal up to a scalar multiple and
therefore equal since both have leading term 1. Expanding out the relation
E2

4 = E8 gives a relation between the divisor-sum functions σ3 and σ7 (Exer-
cise 1.1.7(c)),

σ7(n) = σ3(n) + 120
n−1∑
i=1

σ3(i)σ3(n − i), n ≥ 1. (1.3)

The modular forms that, unlike Eisenstein series, have constant term equal
to 0 play an important role in the subject.

Definition 1.1.3. A cusp form of weight k is a modular form of weight k
whose Fourier expansion has leading coefficient a0 = 0, i.e.,

f(τ) =
∞∑

n=1

anqn, q = e2πiτ .

The set of cusp forms is denoted Sk(SL2(Z)).

So a modular form is a cusp form when limIm(τ)→∞ f(τ) = 0. The limit
point ∞ of H is called the cusp of SL2(Z) for geometric reasons to be explained
in Chapter 2, and a cusp form can be viewed as vanishing at the cusp. The cusp
forms Sk(SL2(Z)) form a vector subspace of the modular forms Mk(SL2(Z)),
and the graded ring

S(SL2(Z)) =
⊕
k∈Z

Sk(SL2(Z))

is an ideal in M(SL2(Z)) (Exercise 1.1.3(c)).
For an example of a cusp form, let

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ),

and define the discriminant function

∆ : H −→ C, ∆(τ) = (g2(τ))3 − 27(g3(τ))2.

Then ∆ is weakly modular of weight 12 and holomorphic on H, and a0 = 0,
a1 = (2π)12 in the Fourier expansion of ∆ (Exercise 1.1.7(d)). So indeed
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∆ ∈ S12(SL2(Z)), and ∆ is not the zero function. Section 1.4 will show that
in fact ∆(τ) �= 0 for all τ ∈ H so that the only zero of ∆ is at ∞.

It follows that the modular function

j : H −→ C, j(τ) = 1728
(g2(τ))3

∆(τ)

is holomorphic on H. Since the numerator and denominator of j have the
same weight, j is SL2(Z)-invariant,

j(γ(τ)) = j(τ), γ ∈ SL2(Z), τ ∈ H,

and in fact it is also called the modular invariant. The expansion

j(τ) =
(2π)12 + · · ·
(2π)12q + · · · =

1
q

+ · · ·

shows that j has a simple pole at ∞ (and is normalized to have residue 1 at
the pole), so it is not quite a modular form. Let µ3 denote the complex cube
root of unity e2πi/3. Easy calculations (Exercise 1.1.8) show that g3(i) = 0
so that g2(i) �= 0 and j(i) = 1728, and g2(µ3) = 0 so that g3(µ3) �= 0 and
j(µ3) = 0. One can further show (see [Ros81], [CSar]) that

g2(i) = 4�4
4, �4 = 2

∫ 1

0

dt√
1 − t4

= 2
√

π
Γ (5/4)
Γ (3/4)

and

g3(µ3) = (27/16)�6
3, �3 = 2

∫ 1

0

dt√
1 − t3

= 2
√

π
Γ (4/3)
Γ (5/6)

.

Here the integrals are elliptic integrals, and Γ is Euler’s gamma function, to be
defined in Chapter 4. Finally, Exercise 1.1.9 shows that the j-function surjects
from H to C.

Exercises

1.1.1. Let Γ be the subgroup of SL2(Z) generated by the two matrices [ 1 1
0 1 ]

and
[ 0 −1

1 0

]
. Note that [ 1 n

0 1 ] = [ 1 1
0 1 ]n ∈ Γ for all n ∈ Z. Let α =

[
a b
c d

]
be a

matrix in SL2(Z). Use the identity[
a b
c d

] [
1 n
0 1

]
=

[
a b′

c nc + d

]
to show that unless c = 0, some matrix αγ with γ ∈ Γ has bottom row (c, d′)
with |d′| ≤ |c|/2. Use the identity[

a b
c d

] [
0 −1
1 0

]
=

[
b −a
d −c

]
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to show that this process can be iterated until some matrix αγ with γ ∈ Γ
has bottom row (0, ∗). Show that in fact the bottom row is (0,±1), and since[ 0 −1

1 0

]2
= −I it can be taken to be (0, 1). Show that therefore αγ ∈ Γ and so

α ∈ Γ . Thus Γ is all of SL2(Z).

1.1.2. (a) Show that Im(γ(τ)) = Im(τ)/|cτ + d|2 for all γ =
[

a b
c d

]
∈ SL2(Z).

(b) Show that (γγ′)(τ) = γ(γ′(τ)) for all γ, γ′ ∈ SL2(Z) and τ ∈ H.
(c) Show that dγ(τ)/dτ = 1/(cτ + d)2 for γ =

[
a b
c d

]
∈ SL2(Z).

1.1.3. (a) Show that the set Mk(SL2(Z)) of modular forms of weight k forms
a vector space over C.

(b) If f is a modular form of weight k and g is a modular form of weight l,
show that fg is a modular form of weight k + l.

(c) Show that Sk(SL2(Z)) is a vector subspace of Mk(SL2(Z)) and that
S(SL2(Z)) is an ideal in M(SL2(Z)).

1.1.4. Let k ≥ 3 be an integer and let L′ = Z2 − {(0, 0)}.
(a) Show that the series

∑
(c,d)∈L′(sup{|c|, |d|})−k converges by considering

the partial sums over expanding squares.
(b) Fix positive numbers A and B and let

Ω = {τ ∈ H : |Re(τ)| ≤ A, Im(τ) ≥ B}.

Prove that there is a constant C > 0 such that |τ + δ| > C sup{1, |δ|} for all
τ ∈ Ω and δ ∈ R. (Hints for this exercise are at the end of the book.)

(c) Use parts (a) and (b) to prove that the series defining Gk(τ) converges
absolutely and uniformly for τ ∈ Ω. Conclude that Gk is holomorphic on H.

(d) Show that for γ ∈ SL2(Z), right multiplication by γ defines a bijection
from L′ to L′.

(e) Use the calculation from (c) to show that Gk is bounded on Ω. From the
text and part (d), Gk is weakly modular so in particular Gk(τ + 1) = Gk(τ).
Show that therefore Gk(τ) is bounded as Im(τ) → ∞.

1.1.5. Establish the two formulas for π cot πτ in (1.1). (A hint for this exercise
is at the end of the book.)

1.1.6. This exercise obtains formula (1.2) without using the cotangent. Let
f(τ) =

∑
d∈Z 1/(τ + d)k for k ≥ 2 and τ ∈ H. Since f is holomorphic (by

the method of Exercise 1.1.4) and Z-periodic and since limIm(τ)→∞ f(τ) = 0,
there is a Fourier expansion f(τ) =

∑∞
m=1 amqm = g(q) as in the section,

where q = e2πiτ and

am =
1

2πi

∫
γ

g(q)
qm+1 dq

is a path integral once counterclockwise over a circle about 0 in the punctured
disk D′.

(a) Show that
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am =
∫ 1+iy

τ=0+iy

f(τ)e−2πimτdτ =
∫ +∞+iy

τ=−∞+iy

τ−ke−2πimτdτ for any y > 0.

(b) Let gm(τ) = τ−ke−2πimτ , a meromorphic function on C with its only
singularity at the origin. Show that

−2πiResτ=0gm(τ) =
(−2πi)k

(k − 1)!
mk−1.

(c) Establish (1.2) by integrating gm(τ) clockwise about a large rectangular
path and applying the Residue Theorem. Argue that the integral along the
top side goes to am and the integrals along the other three sides go to 0.

(d) Let h : R −→ C be a function such that the integral
∫ ∞

−∞ |h(x)|dx
is finite and the sum

∑
d∈Z h(x + d) converges absolutely and uniformly on

compact subsets and is infinitely differentiable. Then the Poisson summation
formula says that ∑

d∈Z

h(x + d) =
∑
m∈Z

ĥ(m)e2πimx

where ĥ is the Fourier transform of h,

ĥ(x) =
∫ ∞

t=−∞
h(t)e−2πixtdt.

We will not prove this, but the idea is that the left side sum symmetrizes h to
a function of period 1 and the right side sum is the Fourier series of the left
side since the mth Fourier coefficient is

∫ 1
t=0

∑
d∈Z h(t + d)e−2πimtdt = ĥ(m).

Letting h(x) = 1/τk where τ = x + iy with y > 0, show that h meets the
conditions for Poisson summation. Show that ĥ(m) = e−2πmyam with am

from above for m > 0, and that ĥ(m) = 0 for m ≤ 0. Establish formula (1.2)
again, this time as a special case of Poisson summation. We will see more
Poisson summation and Fourier analysis in connection with Eisenstein series
in Chapter 4. (A hint for this exercise is at the end of the book.)

1.1.7. The Bernoulli numbers Bk are defined by the formal power series ex-
pansion

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.

Thus they are calculable in succession by matching coefficients in the power
series identity

t = (et − 1)
∞∑

k=0

Bk
tk

k!
=

∞∑
n=1

(
n−1∑
k=0

(
n

k

)
Bk

)
tn

n!

(i.e., the nth parenthesized sum is 1 if n = 1 and 0 otherwise) and they are
rational. Since the expression
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t

et − 1
+

t

2
=

t

2
· et + 1
et − 1

is even, it follows that B1 = −1/2 and Bk = 0 for all other odd k. The
Bernoulli numbers will be motivated, discussed, and generalized in Chapter 4.

(a) Show that B2 = 1/6, B4 = −1/30, and B6 = 1/42.
(b) Use the expressions for π cot πτ from the section to show

1 − 2
∞∑

k=1

ζ(2k)τ2k = πτ cot πτ = πiτ +
∞∑

k=0

Bk
(2πiτ)k

k!
.

Use these to show that for k ≥ 2 even, the Riemann zeta function satisfies

2ζ(k) = − (2πi)k

k!
Bk,

so in particular ζ(2) = π2/6, ζ(4) = π4/90, and ζ(6) = π6/945. Also, this
shows that the normalized Eisenstein series of weight k

Ek(τ) =
Gk(τ)
2ζ(k)

= 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn

has rational coefficients with a common denominator.
(c) Equate coefficients in the relation E8(τ) = E4(τ)2 to establish for-

mula (1.3).
(d) Show that a0 = 0 and a1 = (2π)12 in the Fourier expansion of the

discriminant function ∆ from the text.

1.1.8. Recall that µ3 denotes the complex cube root of unity e2πi/3. Show that[ 0 −1
1 0

]
(µ3) = µ3 + 1 so that by periodicity g2(

[ 0 −1
1 0

]
(µ3)) = g2(µ3). Show

that by modularity also g2(
[ 0 −1

1 0

]
(µ3)) = µ4

3g2(µ3) and therefore g2(µ3) = 0.
Conclude that g3(µ3) �= 0 and j(µ3) = 0. Argue similarly to show that g3(i) =
0, g2(i) �= 0, and j(i) = 1728.

1.1.9. This exercise shows that the modular invariant j : H −→ C is a sur-
jection. Suppose that c ∈ C and j(τ) �= c for all τ ∈ H. Consider the integral

1
2πi

∫
γ

j′(τ)dτ

j(τ) − c

where γ is the contour shown in Figure 1.1 containing an arc of the unit
circle from (−1 + i

√
3)/2 to (1 + i

√
3)/2, two vertical segments up to any

height greater than 1, and a horizontal segment. By the Argument Principle
the integral is 0. Use the fact that j is invariant under [ 1 1

0 1 ] to show that
the integrals over the two vertical segments cancel. Use the fact that j is
invariant under

[ 0 −1
1 0

]
to show that the integrals over the two halves of the

circular arc cancel. For the integral over the remaining piece of γ make the
change of coordinates q = e2πiτ , remembering that j′(τ) denotes derivative
with respect to τ and that j(τ) = 1/q + · · · , and compute that it equals 1.
This contradiction shows that j(τ) = c for some τ ∈ H and j surjects.
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