
9
Reproductive Value from Matrix
Models

The concept of reproductive value is not limited to age-structured popu-
lations. It also applies to matrix population models for stage-structured
populations, where it appears as an eigenvector of the projection matrix.

9.1 Reproductive Value as an Eigenvector

We begin by returning to the projection equation

n(t + 1) = An(t) n(0) = n0 (9.1.1)

the solution of which (Section 7.1) can be written

n(t) =
∑

i

ciλ
t
iwi, (9.1.2)

where λi and wi are the eigenvalues and right eigenvectors of A and the
scalar constants ci are determined by the initial conditions n0;

c = W−1n0 (9.1.3)
= Vn0. (9.1.4)

The matrix W has the right eigenvectors wi as its columns; W−1 has as
its rows the complex conjugate transposes of the left eigenvectors vi. Thus

ci = v∗
i n0 (9.1.5)

with wi and vi scaled so that v∗
i wi = 1.
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If A is primitive, then

lim
t→∞

n(t)
λt

1
= c1w1. (9.1.6)

The growth rate and stable population structure are independent of n0,
but the size of the population at any (large) time t depends on n0, through
the constant c1. From (9.1.5), c1 is a weighted sum of the initial population,
with weights equal to the elements of v1.

Thus, if we take “the contribution of stage i to long-term population size”
as a reasonable measure of the “value of stage i,” the left eigenvector v1
gives the relative reproductive values of the stages (Goodman 1968, Keyfitz
1968). We must insert the qualifier “relative” because eigenvectors can be
scaled by any nonzero constant. The result c1 = v∗

1n0 holds when v∗
1w1 =

1, but any other scaling can be accounted for by setting c1 = v∗
1n0/v∗

1w1,
and eventual population size is still proportional to v∗

1n0. It is customary
to scale v1 so that its first entry is 1.

Regardless of the scaling imposed on v1, the total reproductive value
of a population, V (t) = v∗

1n(t), increases exponentially at the rate λ1,
regardless of the stage distribution:

V (t + 1) = v∗
1n(t + 1) (9.1.7)

= v∗
1An(t) (9.1.8)

= λv∗
1n(t). (9.1.9)

9.1.1 The Effect of Adding a Single Individual
Suppose that we add a single individual of stage j to the initial population
n0. Let ej be a vector with zeros everywhere except for a 1 in the jth entry.
If we drop the subscripts on λ1, w1 and v1, we have

lim
t→∞

At (n0 + ej)
λt

= v∗ (n0 + ej)w (9.1.10)

= v∗n0w + vjw. (9.1.11)

The total population is v∗n0‖w‖ + vj‖w‖, which differs from (9.1.6) by
vj‖w‖. That is, adding a single individual in stage j increases asymptotic
population size by an amount proportional to the reproductive value of
stage j.

Reproductive Value and Extinction.

Any population is subject to stochastic fluctuations because the vital rates
are probabilities applied to discrete individuals (demographic stochastic-
ity). These fluctuations lead to a nonzero probability of extinction, even
when λ > 1. This probability can be calculated for unstructured popula-
tions from the Galton–Watson branching process (see Section 16.4). The
corresponding probability for structured population is calculated from the
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multi-type branching process (Pollard 1973, MPM Chapter 15). In several
empirical examples (MPM Section 15.4.5), it has been shown that the prob-
ability of non-extinction of a population descended from a single founder
is directly proportional to the reproductive value of that founder. This
suggests, though it does not prove, that the reproductive value of an in-
dividual influences not only long-term population size but also short-term
risk of extinction.

9.1.2 Age-Specific Reproductive Value
We can write down the reproductive value for the age-classified case directly
from the equations defining the eigenvector:

vTA = λvT,

where we have dropped the subscript, and are assuming that v is real.
Suppose there are four age classes, as in Figure 3.9a, and set v1 = 1. Then

(
1 v2 v3 v4

)



F1 F2 F3 F4
P1 0 0 0
0 P2 0 0
0 0 P3 0


 = λ

(
1 v2 v3 v4

)
(9.1.12)

or, writing each equation out

F1 + v2P1 = λ (9.1.13)
F2 + v3P2 = λv2 (9.1.14)
F3 + v4P3 = λv3 (9.1.15)

F4 = λv4. (9.1.16)

From the last equation

v4 = F4λ
−1. (9.1.17)

Substituting this into the next-to-last equation gives

v3 = F3λ
−1 + P3F4λ

−2 (9.1.18)

and then

v2 = F2λ
−1 + P2F3λ

−2 + P2P3F4λ
−3. (9.1.19)

Finally, substituting this into the first equation gives

1 = F1λ
−1 + P1F2λ

−2 + P1P2F3λ
−3 + P1P2P3F4λ

−4 (9.1.20)

which is the characteristic equation (see Example 7.1). In general the age-
specific reproductive value is

vi =
s∑

j=i

(
j−1∏
h=i

Ph

)
Fjλ

i−j−1, (9.1.21)
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Figure 9.1. The transformed graphs for two life cycles. Above: an age-structured
model with four age classes. Below: a hypothetical life cycle in which individuals
of stage N2 have two developmental choices, in one of which (N3) they reproduce
only once and in the other of which (N4) they survive with probability P4 and
reproduce repeatedly.

which is the discrete version of Fisher’s formula (8.1.1).

9.1.3 Stage-Specific Reproductive Value and the Life Cycle
Graph

We can understand the correspondence of the left eigenvector and repro-
ductive value in stage-structured models by writing down the eigenvector
directly from the life cycle graph (Caswell 1982a; see Chapter 7 of MPM for
details). Begin by transforming the life cycle graph by replacing each coeffi-
cient aij with aijλ

−1. (This is known as the z-transform of the graph; in our
context, however, the variable usually denoted by z will be the eigenvalue
of A, so we denote it as λ.)

Figure 9.1 shows the transformation of the life cycle graph for the age-
classified model. Comparing this graph with (9.1.17)–(9.1.20), we see that
vi is the sum, over all pathways from Ni to N1, of the product over each
pathway of the transformed life cycle graph coefficients. There are, for
example, two pathways from N3 to N1. The products of the transformed
coefficients on these pathways are F3λ

−1 and P3F4λ
−2; the sum of these is

v3 in (9.1.18).
In other words, vi measures the expected future reproductive contribu-

tion from stage Ni, discounted by the population growth rate and the time
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required for the contribution; e.g.,

v2 = F2λ
−1︸ ︷︷ ︸

1 step

+ P2F3λ
−2︸ ︷︷ ︸

2 steps

+ P2P3F4λ
−3︸ ︷︷ ︸

3 steps

. (9.1.22)

This algorithm gives the left eigenvector for a wide class of life cycles.∗

In the (imaginary) stage-classified life cycle of Figure 9.1b, an individual
in N2 may proceed to a stage (N3) in which it only reproduces once or to
a stage (N4) in which it survives indefinitely with a probability P4. The
resulting reproductive value vector, obtained by summing contributions
from each stage back to the first, is

v1 = 1 (9.1.23)

v2 = F2λ
−1 + P2F3λ

−2 +
R2F4λ

−2

1 − P4λ−1 (9.1.24)

v3 = F3λ
−1 (9.1.25)

v4 =
F4λ

−1

1 − P4λ−1 . (9.1.26)

Each of these values is clearly a measure of future contribution to births,
discounted by the population growth rate.†

Residual Reproductive Value.

Equation (8.9.1) decomposed reproductive value at age x into two compo-
nents, one from reproduction at age x and the other from survival to,
and reproduction at, later ages. These components were called current
reproduction and residual reproductive value by Williams (1966). In the
age-classified case (9.1.12), e.g.,

v2 = F2λ
−1 + P2λ

−1v3, (9.1.27)

where the first term is current reproduction and the second is residual
reproductive value. In the stage-classified example, an individual in N2 has
two possible fates, so

v2 = F2λ−1 + P2λ
−1v3 + R2λ

−1v4. (9.1.28)

The first term is current reproduction and the second two terms together
constitute residual reproductive value.

∗Including any life cycle in which all loops other than self-loops pass through N1.
If there are more complicated loop structures, additional terms are required (Caswell
1982a, MPM Chapter 7).

†The terms
1

1 − P4λ1
= 1 + P4λ−1 + P 2

4 λ−2 + . . .

created by the self-loop on N4 reflect the probability that the individual will remain in
N4 for 1, 2, . . . time steps.
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9.2 The Stable Equivalent Population

The stable equivalent population of Section 8.8 applies to any classification
of individuals (Keyfitz 1969). An initial population n0 with an arbitrary
stage distribution will asymptotically produce an exponentially growing
population of the same size as an initial population of size Q with the
stable stage distribution.

To calculate Q, we scale w so that ‖w‖ = 1, and v so that v∗w = 1.
The population starting at n0 will eventually grow as

lim
t→∞

n(t)
λt

= v∗n0w (9.2.1)

while that starting from n(0) = Qw will grow as

lim
t→∞

n(t)
λt

= Q (v∗w)w. (9.2.2)

Equating the two gives

Q = v∗n0. (9.2.3)

That is, the stable equivalent is just the total reproductive value of the
initial population, when scaled so that ‖w‖ = 1 and v∗w = 1.

We note in passing that the models considered here and in Chapter 8
describe constant environments. Tuljapurkar and Lee (1997) have extended
the stable equivalent concept to models in which the vital rates fluctuate
stochastically in time.

Example 9.1 Stable equivalent for the killer whale

Killer whales (Orcinus orca) live in stable social groups called pods.
A life cycle is shown in Figure 3.10, and a set of vital rates estimated
from an intensively studied population of 18 pods in coastal waters
of Washington and British Columbia is shown in Example 11.1. The
right and left eigenvectors, appropriately scaled, are

w =




0.037
0.316
0.323
0.324


 v =




1.142
1.198
1.794

0


 . (9.2.4)

Each pod has its own observed structure, and Table 9.1 compares the
stable equivalent and the observed population of each. In contrast to
the comparison of the stable and observed population sizes of 12
countries in Table 8.8, which were within a few percent of each other,
among killer whale pods the stable equivalent ranges from 22 percent
smaller to 71 percent larger than the observed population. When Q <
N , the population is biased toward individuals of low reproductive
value, and vice versa.
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Table 9.1. The observed female population (N = ‖n‖) and the stable equivalent
population Q for each of 18 pods of resident killer whales (Orcinus orca) in
Washington and British Columbia.

N Q Q
N

12.93 10.59 0.82
10.30 8.05 0.78
26.23 28.10 1.07
5.77 5.77 1.00
4.20 6.33 1.51
7.73 9.48 1.23
1.23 2.11 1.71
5.10 4.74 0.93
5.63 6.69 1.19

11.53 12.27 1.06
5.13 7.33 1.43
3.07 4.82 1.57
2.50 3.78 1.51
2.30 1.99 0.87
6.37 9.12 1.43
6.13 9.00 1.47
2.93 4.22 1.44
8.47 11.71 1.38

The influence of n0 on eventual population size (and probability of
extinction) is of more than academic interest in conservation biology. In-
vasions of introduced animals and plants create huge environmental and
economic problems around the world. Studies of the determinants of in-
vasion success of birds and mammals in New Zealand (which, because of
its isolation, has been particularly vulnerable to invasions) have shown a
correlation between the size of the introduced population and the success
of the invasion (Veltman et al. 1996, Forsyth and Duncan 2001). The stable
equivalent of the introduced population might be even more relevant.

The effect of initial population also arises in attempts to reintroduce
threatened species to areas from which they have been exterminated. This
is an increasingly frequent task; at this writing, 132 such projects involving
63 species are underway in New Zealand alone. Many of these involve intro-
ductions of individuals to offshore islands from which introduced predators
have been eliminated. All else being equal, it might be useful to try to
maximize the stable equivalent population size in such introductions.
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9.2.1 Other Scalings of the Eigenvectors
Since the time of Fisher (1930) it has been customary to scale reproductive
value so that v1 = 1, as was done in Section 8.8. But if w is also scaled to
sum to 1, this means that Q must be modified to

Q =
v∗n0

v∗w
. (9.2.5)

For age-classified matrix models, it can be shown that, with this scaling of
v and w, the denominator

v∗w = λ−1BA, (9.2.6)

where B is the finite birth rate and A is the mean age of childbearing in
the stable population [the equivalent of κ in (8.1.2)]. Thus (9.2.5) is the
analogue of the continuous-time result (8.8.5); see also Goodman (1968).

It does not appear that the interpretation of v∗w in terms of birth rate
and generation time holds for general stage classifications, so in the general
case it is easier to compute Q by scaling ‖w‖ = 1 and v∗w = 1 and
sacrificing v1 = 1.
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