
8
Reproductive Value from the Life
Table

When a woman of reproductive age is sterilized and so has no further chil-
dren, the community’s subsequent births are reduced. When a woman dies
or otherwise leaves the community, all subsequent times are again affected.
Our formal argument need make no distinction between emigration and
death, between leaving the country under study for life and leaving this
world altogether. A single theory answers questions about the numerical
effect of sterilization, of mortality, and of emigration, all supposed to be
taking place at a particular age x. By means of the theory we will be able
to compare the demographic results of eradicating a disease that affects
the death rate at young ages, say malaria, as against another that affects
the death rate at older ages, say heart disease.

A seemingly different question is what would happen to a rapidly increas-
ing population if its couples reduced their childbearing to bare replacement
immediately. The period net reproduction rate R0, the number of girl chil-
dren expected to be born to a girl child just born, would equal 1 from then
on, and ultimately the population would be stationary. But the history of
high fertility has built up an age distribution favorable to childbearing, and
the ultimate stationary total will be much higher than the total at the time
when the birth rate dropped to bare replacement. The amount by which
it will be higher is calculable, and by the same function—reproductive
value—that is used for problems of migration and changed mortality.
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8.1 Concept of Reproductive Value

Without having these particular problems in mind, Fisher (1930, p. 27)
developed a fanciful image of population dynamics that turns out to provide
solutions to them. He regarded the birth of a child as the lending to him of
a life, and the birth of that child’s offspring as the subsequent repayment
of the debt. Apply this to the female part of the population, in which the
chance of a girl living to age a is l(a), and the chance of her having a girl
between ages a and a + da is m(a) da, so that the expected number of
children in the small interval of age specified is l(a)m(a) da. This quantity
added through the whole of life is what was defined as the net reproduction
rate R0 in Section 6.1:

R0 =
∫ β

α

l(a)m(a) da,

where α is the youngest age of childbearing and β the oldest. The quantity
R0 is the expected number of girl children by which a girl child will be
replaced; for the population it is the ratio of the number in one generation
to the number in the preceding generation, according to the given l(a) and
m(a) (see Chapter 9 for the generalization to stage-classified models).

Fisher’s image discounts the future, at a rate of interest equal to the
intrinsic rate r of Section 6.1. The value of 1 dollar, or one child, discounted
back through a years at annual rate r compounded momently is e−ra;
therefore the value of l(a)m(a) da children is e−ral(a)m(a) da, as in the
financial calculations of Section 2.5. The present value of the repayment
of the debt is the integral of this last quantity through the ages to the
end of reproduction. Thus the debt that the girl incurs at birth is 1, and
the discounted repayment is the integral

∫ β

α
e−ral(a)m(a) da. If loan and

discounted repayment are to be equal, we must have

1 =
∫ β

α

e−ral(a)m(a) da,

and this is the same as the characteristic equation (Lotka 1939, p. 65, and
(6.1.2)), from which the r implied by a net maternity function l(a)m(a) is
calculated. The equation can now be seen in a new light: the equating of
loan and discounted repayment is what determines r, r being interpretable
either as the rate of interest on a loan or as Lotka’s intrinsic rate of natural
increase.

The loan-and-repayment interpretation of the characteristic equation
suggests calculating how much of the debt is outstanding by the time the
girl has reached age x < β. This is the same as the expected number of
subsequent children discounted back to age x. Her expected births in the
interval a to a + da, a > x, are [l(a)/l(x)]m(a); and if these births are
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discounted back a − x years, her debt outstanding at age x is

v(x) =
∫ β

x

e−r(a−x) l(a)
l(x)

m(a) da

or, as Fisher (1930) wrote,

v(x) =
1

e−rxl(x)

∫ β

x

e−ral(a)m(a) da, (8.1.1)

where v(x) will be called reproductive value at age x. Evidently v(0) = 1,
and, for x > β, v(x) = 0.

For his studies in genetics Fisher needed to know the extent to which
persons of given age (say x), on the average contribute to the births of future
generations. This seemingly different question is answered by a function
proportional to v(x); its value can be established at v(x)/κ, where, as in
Section 6.1,

κ =
∫ β

α

ae−ral(a)m(a) da; (8.1.2)

that is, κ is the mean age of childbearing in the stable population. The
basic proposition is that the addition of a girl or woman aged x to the
population at time zero adds an expected v(x)ert/κ baby girls at time
t, always supposing the continuance of the same regime of fertility and
mortality. The simplest derivation of this takes off from the real term of
solution 7.5.2 to the Lotka renewal equation. A self-contained version is
provided in Section 8.9.

8.1.1 Reproductive Value from the Lotka Integral Equation
One Woman Aged x. The continuous model of Section 7.5 provides the
curve of descendants of an arbitrary initial age distribution, and its asymp-
totic trajectory is the real term Q1e

r1t of (7.5.2), the value of Q1 being given
by (7.5.4). For a distribution consisting of one woman aged x, disregarding
questions of continuity and of random variation, we find that the children
expected at time t to t+dt are [l(x+ t)/l(x)]m(x+ t) dt, which is therefore
the function G(t). Entering it in (7.5.4), that is, in Q1 =

∫ β

0 e−rtG(t) dt/κ,
we have

Q1 =

∫ β−x

0
e−rt[l(x + t)/l(x)]m(x + t) dt

κ
, (8.1.3)

which except for the divisor κ is identical to v(x) of (8.1.1), giving the
discounted value of the expected future births to a woman aged x. In the
special case of a baby just born, x = 0; and, by virtue of (8.1.3) and the
characteristic equation (6.1.2), Q1 = 1/κ.
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Stable Age Distribution. The same constant Q1 can be readily evaluated for
a population of unity having the stable age distribution be−ral(a). We can
guess in advance from the nature of stability that the asymptotic population
will be ert and the births bert, so Q1 must equal b for this case.

The proof seems simplest if we start by calculating the total expected
reproductive value of a stable population:∫ β

0
be−rxl(x)v(x) dx,

then cancel the e−rxl(x) with the denominator of v(x) of (8.1.1) to find

b

∫ β

0

∫ β

x

e−ral(a)m(a) da dx,

and finally integrate by parts to obtain

b

∫ β

0
ae−ral(a)m(a) da = bκ

as the reproductive value of a population of unity having a stable age
distribution. The constant Q1 is this total reproductive value divided by κ,
that is, bκ/κ = b, as suggested by intuition.

Arbitrary Age Distribution. A more general statement can be made. Let
p(x) be the age distribution as a density function; i.e., so that the number of
individuals between ages a and a+5, say, is 5Na =

∫ a+5
a

p(x)dx. Whatever
the initial age distribution p(x) of a closed population acted on by fixed
rates of birth and death, its births have an asymptotic trajectory Q1e

r1t

where Q1, defined by (7.5.4), is equal to
∫ β

0 p(x)v(x) dx/κ, that is, the
sum of reproductive value in the population divided by the mean age of
childbearing.

To see this, note that the total reproductive value of p(x) is

V =
∫ β

0
p(x)v(x) dx =

∫ β

0
p(x)

∫ β−x

0
e−rt l(x + t)

l(x)
m(x + t) dt dx. (8.1.4)

But this is the same as the numerator of Q1 in (7.5.4), where G(t) is the
number of children expected to be generated by the initial population p(x).
For the number of those children born at time t will be

G(t) =
∫ β

0
p(x)

l(x + t)
l(x)

m(x + t) dx, (8.1.5)

and multiplying by e−rt and then integrating over t gives the double integral
in (8.1.4). This demonstrates that Q1 = V/κ, where V is the number of
women, each weighted by the v(x) for her age x. Once again, 1/κ of the
present value of the balance outstanding by age x in the hypothetical loan
is equal to the contribution of a woman aged x to the ultimate trajectory,
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and both the loan and the trajectory are additive for a group of women of
arbitrary ages.

The foregoing proof depends on the solution of the integral equation.
The proof in Section 8.9, on the other hand, stands on its own feet. The
same result can be derived using matrix formulations, without assuming
age-classification (Chapter 9).

Once we know the effect on the birth trajectory of adding one girl and
assume a fixed birth rate b, we can obtain the effect on the population
trajectory by dividing by b. This is obvious, for since the birth rate b is
B/N , births divided by population, the population must be N = B/b,
births divided by the birth rate. Hence the effect of adding a girl or woman
aged x is to add v(x)ert/κ to ultimate births and v(x)ert/κb to ultimate
population.

To obtain some intuitive feeling for the reason why the effect of one child
just born on the ultimate birth trajectory is to raise it by v0e

rt/κ = ert/κ,
rather than just ert or some other value, suppose that all children are
born at the same maternal age and that this age is κ. Then the birth of
an additional girl child now will result in R0 girl children in κ years, R2

0
children in 2κ years, and Rn

0 in the nth generation, where R0 is, as before,
the net reproduction rate; that is to say, a child born now outlines a birth
curve (Fig. 8.1) rising in the ratio of R0 every κ years, but with births
occurring only at κ-year intervals. In other words, the curve outlined gives
the number of births per κ years resulting from one birth at the outset; it
is reduced to births per year by dividing by κ : ert/κ. This argument is at
best heuristic; the result applies much more generally than to the primitive
model in which all births occur at the same maternal age.

8.1.2 Numerical Calculation
The expression for v(x) in (8.1.1) applies to exact age x, and an approxi-
mation analogous to that customarily made for the stable age distribution
is

vx ≈ e−2 1
2 r

5LxFx + e−7 1
2 r

5Lx+5Fx+5 + · · ·
lx

. (8.1.6)

This, with numerator and denominator multiplied by e−rx, is shown in
Table 8.1 for Mauritius females, 1966. Figure 8.2 shows the curves of v(x)
for Mauritius, the United States, and Hungary, taken from Keyfitz and
Flieger (1971, pp. 315, 361, and 443).

For the average reproductive value for the age interval x to x + 4 at last
birthday the recurrence formula

5Vx = 5
2Fx +

e−5r
5Lx+5

5Lx
( 5
2Fx+5 + 5Vx+5) (8.1.7)
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Figure 8.1. Effect of one birth if all children are born at age κ of mother.
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Figure 8.2. Curves of reproductive value for females of three countries.
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Table 8.1. Calculation of reproductive values for females of exact ages 0, 5, 10, . . . ,
50, Mauritius, 1966; r = 0.0305371

Age 5LxFx e−(x+2 1
2 )r

β−5∑

y=x

e−(y+2 1
2 )r

5LyFy e−rxlx vx

x (1) (2) (3) (4) (5) = (3)/(4)

0 0.92650 1 1 1
5 0.79531 1 0.78463 1.2745

10 0.0014 0.68269 1 0.66822 1.4965
15 0.1858 0.58602 0.99907 0.57152 1.7481
20 0.6236 0.50304 0.89019 0.48700 1.8279
25 0.6061 0.43181 0.57649 0.41212 1.3988
30 0.4730 0.37067 0.31477 0.34841 0.9034
35 0.3239 0.31818 0.13944 0.29392 0.4744
40 0.1201 0.27312 0.03639 0.24719 0.1472
45 0.0146 0.23445 0.00358 0.20816 0.0172
50 0.0008 0.20125 0.00016 0.17341 0.0009

Source: Net maternity function from Keyfitz and Flieger (1971, p. 315).

Table 8.2. Values of 5Vx, the Fisher reproductive value of females aged x to x+4
at last birthday, and 5Vx/(bκ), the coefficient of the amount by which population
at time t is raised by one added person aged x to x + 4 at time zero, Mauritius,
1966

Age 5Vx 5Vx/(bκ)

0–4 1.159 1.092
5–9 1.381 1.301

10–14 1.618 1.524
15–19 1.783 1.679
20–24 1.611 1.517
25–29 1.151 1.084
30–34 0.690 0.650
35–39 0.312 0.294
40–44 0.083 0.078
45–49 0.009 0.008
v0 = 1

v0/(bκ) =
1

(0.03889)(27.30)
= 0.942

Source: Keyfitz and Flieger (1971), p. 315.

provides a reasonable approximation. However, the 5Vx of Table 8.2 was
calculated, not in this way, but by the method (easier if a computer is avail-
able) of finding the left eigenvector of the projection matrix in Sections 7.1
and 7.5; see Section 9.1 for the connection between reproductive value and
eigenvectors.

Evidently total reproductive value of a population of arbitrary age dis-
tribution acted on by a fixed regime increases at rate r in the short as
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well as the long run. Such a statement is conspicuously not true for the
size of the total population, whose increase in the short run depends on
its age distribution. Both births and population acted on by a fixed regime
ultimately go into an exponential trajectory with parameter r; the total of
reproductive values immediately follows an exponential trajectory (Fisher
1930, p. 30).

The above like other pieces of theory in this book can be justified only
by its ability to answer demographic questions. The following section deals
with the first of a series of such questions.

8.2 Ultimate Effect of Small Out-Migration
Occurring in a Given Year

When people leave a crowded island like Barbados or Java, they make life
somewhat easier for those who remain behind, assuming that the rates of
mortality and fertility do not change as a result of their departure.

The age at which they leave determines the effect. Departures of persons
who are already past the ages of reproduction cannot influence the ultimate
population trajectory; the effect of their leaving is only the subtraction of
the person-years they themselves will live from the time of departure to
death.

A one-time departure of a person of reproductive age or below will lower
the expected population trajectory, but cannot change its rate of climb
as long as the age-specific rates of birth and death remain unchanged.
In symbols, if the ultimate trajectory is Qert, a one-time departure of an
individual or a group under age β can lower Q but will not alter r. It follows
from the theory of Section 8.1 that a female of age x leaving reduces the
female births at time t by v(x)ert/κ and the female population at time t
by v(x)ert/(bκ), where we take t to be large. Thus the change in Q for
population due to the departure of one female aged x is ∆Q = −v(x)/(bκ).

We are still on the one-sex model and suppose female dominance, that
is, that births are determined by the number of females at the several ages
and not by the number of males. This would be true if males were in the
majority or polygyny prevailed or artificial insemination were applied. The
extension of the ideas of the present chapter to a genuine two-sex model
depends on behavioral variables not readily incorporable in demographic
theory.

The effect of a one-time bulge in births follows readily. With ∆B extra
births in a given year the birth trajectory would be raised ert ∆B/κ, and
the population trajectory would be raised this amount divided by the birth
rate b.

Does a female of random age affect the ultimate population more or less
than a girl baby? The former, entering at time zero, raises the population
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at time t an expected ert, while the latter raises it by ert/(bκ). The mean
age of childbearing κ is never very far from 27, and the reciprocal of 27 is
0.037. For low-fertility populations b is considerably less than 1/κ ≈ 0.037;
hence a baby has more effect than a female between zero and ω randomly
chosen from the stable age distribution. For high-fertility populations, on
the other hand, b is greater than 1/κ and a baby has less expected effect
than a randomly selected female. Thus for Mexico the departure of a woman
of random age has more effect than averting one birth; for the United States
averting a birth has more effect.

The same technique can be used to find a variety of equivalents. By
what amount, for example, would births have to drop in a particular year
to offset an immigration of 1000 women aged 15 to 19 in the same year?
The population at distant time t resulting from 1000 women aged 15 to 19
is 10005V15e

rt/(bκ). The population from B births at time t is Bv0e
rt/(bκ).

Equating these two expressions, we obtain

B =
10005V15

v0

as the required equivalent number of births. From the Mauritius informa-
tion in Table 8.2 we have, since 5Vx is normed to v0 = 1,

B = 10005V15 = 1783.

In any one year (or other period) a drop of 1783 female births would be
required to offset the immigration of 1000 women aged 15 to 19 at last
birthday.

8.3 Effect of Continuing Birth Control
and Sterilization

Suppose that a few women each year resort to birth control when they
are of age a, and this occurs year after year, so that the birth rate m(a) is
permanently lowered for age a, but all other age-specific birth rates remain
unaltered. If the change in the age-specific birth rate in the single year of age
a is ∆m(a), a quantity that will carry a minus sign for decrease in m(a), the
change in the intrinsic rate of the population is determined by finding the
derivative dr/dm(a) in the characteristic equation

∫ β

α
e−rxl(x)m(x) dx = 1

as in Section 6.3, and for finite increments ∆r and ∆m(a) is approximately

∆r ≈ −e−ral(a) ∆m(a)
κ

, (8.3.1)

the same as (6.3.8). The result depends on ∆m(a) being small enough so
that e−ra, as well as κ, is substantially unaffected. Subject to this same
condition, we can find the combined effect of small increments at two dif-
ferent ages, say a and a+1. The effect on r will be approximately the sum
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of the ∆r for ∆m(a) and that for ∆m(a + 1), and similarly for any other
groups of ages. This type of perturbation analysis of the rate of increase is
expanded on in Chapter 13.

Now suppose a permanent change in m(a) for all a from age x onward,
so that the new birth function is m(a), a < x, and (1 − f)m(a), a � x,
f being a small positive or negative fraction. This could be the result of
sterilization becoming the custom at age x, or of the fraction f of women
at age x turning to conventional birth control in order to avoid all further
children. If f is small we can enter −fm(a) for ∆m(a) in the preceding
display, and find the total effect ∆r by adding the ∆r’s for the several
ages:

∆r = −
f

∫ β

x

e−ral(a)m(a) da

κ
. (8.3.2)

The integral here will be recognized as the same one that turned up in v(x)
of (8.1.1). Entering v(x) makes this

∆r = −fe−rxl(x)v(x)
κ

.

In words, the decrease by the fraction f of fertility rates for all ages above
x lowers the intrinsic rate by v(x) multiplied by fe−rxl(x)/κ. Remembering
that be−rxl(x) is the fraction of the population at age x, where at this point
it is convenient to make x integral and have it represent exact ages x − 1

2
to x + 1

2 , we can say that the decrease in r is f/(bκ) times the fraction of
the population aged x, times the reproductive value at age x. More simply,
the integral in (8.3.2) is the fraction of current mothers aged x and over, so
(8.3.2) tells us that the effect on r is equal to the fraction f dropping out of
childbearing, times the fraction of babies born to women aged x and over,
divided by the mean age of childbearing. Designating by bx the fraction of
births occurring to mothers aged x and over, (8.3.2) can be written

∆r = −fbx

κ
.

Conventional birth control, sterilization, or mortality, if they take place
year after year can lower births to women over age x by a small fraction f ,
and if they do the rate of increase r is reduced by f times the fraction bx

of children born to women aged x and older, divided by the mean age of
childbearing.

The preceding discussion also covers the consequences of a fall in the
death rate. Suppose that the rate at ages x − 1

2 to x + 1
2 goes from µ(x) to

µ(x) + ∆µ(x) and remains at that level, or (what is practically the same)
that ∆µ(x)/δ is permanently added to the density µ(x) over a narrow
age interval δ. Then all the results of this section apply. The derivation
first finds the effect of ∆µ(x)/δ on l(x), using the approximate formula
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e−∆µ(x)/δ ≈ 1 − ∆µ(x)/δ. Thereafter the derivation is the same as for
(8.3.1), since l(a) and m(a) enter symmetrically into the characteristic
equation.

8.4 Large Change in Regime

So far only small changes have been discussed. We now ask the same ques-
tion in reference to an arbitrary, possibly large, change: if birth control is
applied by women aged x and above, what fraction of births must they
avoid in order to change the rate of increase from r to r + ∆r?

Suppose that in every cohort women aged x and higher apply birth con-
trol to the point where they reduce their age-specific rates by the fraction
f of what they were before; sterilization of f of the women reaching age x
would have this effect. The original intrinsic rate of increase was found by
solving for r in the characteristic equation. The equation for the new rate
of increase r + ∆r breaks down into two parts:∫ β

α

exp
[

− (r + ∆r)a
]
l(a)m(a) da

−f

∫ β

x

exp
[

− (r + ∆r)a
]
l(a)m(a) da = 1, (8.4.1)

where we suppose a � x � β. Equation 8.4.1 could be solved for x if f and
r + ∆r were given, or for r + ∆r if x and f were given. A simple explicit
solution is available for f , the fraction of decrease above the given age x
that will suffice to change the intrinsic rate from r to r + ∆r:

f =

∫ β

α

exp
[

− (r + ∆r)a
]
l(a)m(a) da − 1∫ β

x

exp
[

− (r + ∆r)a
]
l(a)m(a) da

. (8.4.2)

Result 8.4.2 depends in no way on ∆r being small. [Find its limiting value
when ∆r is small.]

The numerator of (8.4.2) is bound to be positive for ∆r < 0, correspond-
ing to the birth control formulation in which f is defined as positive and
birth rates go from m(a) to (1 − f)m(a). In the special case where the
desired r + ∆r = 0 we would have the simpler form

f =

∫ β

α

l(a)m(a) da − 1∫ β

x

l(a)m(a) da

=
R0 − 1∫ β

x

l(a)m(a) da

. (8.4.3)

The f of (8.4.3) is the fraction by which women aged x and over must
reduce fertility to bring the rate of population increase r down to zero. The
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age x is arbitrary but is required to stay within certain limits if 0 < f < 1.
For data for Colombia, 1965, one observes that no reduction of fertility
in women 30 and over could bring stationarity if ages under 30 retained
existing rates, for we have R0 = 2.267 and

∫ 50
30 l(a)m(a) da = 1.001, and

hence a drop to R0 = 1 would not occur even if all fertility above age 30
disappeared.∗

One would have thought that a girl child would contribute the same
amount to the ultimate trajectory irrespective of the age of her mother; all
babies start at age zero, after all. The expression ∆r = e−ral(a) ∆m(a)/κ
in (8.3.1) is consistent with this view, for it says that the effect of a small
change ∆m(a) in the age-specific birth rate is proportional to e−ral(a),
that is, proportional to the number of women of that age in the stable
population; this has to be right, in that a given change in the birth rate
will alter the number of babies in proportion to the number of women to
whom the change is applied. The expression for ∆r in (8.3.1) supposes that
∆m(a) is small enough not to affect κ, the mean age of childbearing.

But for the ultimate effect of a large change that takes place generation
after generation, it does make a difference whether women are young or
old when they have their children. Avoiding births at age 40 is not as
effective as avoiding them at age 20, because of the more rapid turnover of
a population in which births occur to younger mothers. This is taken into
account in (8.4.2) and (8.4.3).

8.5 Emigration as a Policy Applied
Year After Year

Each year some inhabitants of Java go to Sumatra under an official trans-
migration program that has been government policy for two-thirds of a
century. The authorities have always recognized that the amount of re-
lief provided to Java depends on the age of the migrants at the time of
their out-migration, and that young couples are the ideal ones to go, but
they have tended to exaggerate the effect. Widjojo (1970) shows realis-
tic population projections under alternative assumptions about the rate of
movement, from which the consequences of different policies can be seen.

∗The net reproductive rate has come to play a central role in modelling epidemic dis-
eases, treated as a problem in pathogen demography. In this context, R0 is the expected
number of secondary cases caused by a single infected individual over its entire infectious
period. Whether R0 is greater or less than 1, when the population consists entirely of
susceptible hosts, determines whether the disease will spread or die out. Calculations
essentially identical to those used here to determine the amount by which fertility must
be reduced in order to stop population growth are used to calculate the level of vaccina-
tion that must be imposed to stop the spread of a disease. See Diekmann et al. (1990),
Anderson and May (1991), and Diekmann and Heesterbeek (2000).
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In this section we will examine one aspect of policy only: the effect of the
age of the migrants on the ultimate rate of increase of the population.

We can express (8.4.2) in terms of a generalization of reproductive value.
In this general reproductive value, say vx,r̄, future children are discounted,
not at the intrinsic rate r of the observed population, but at the rate r̄ at
which the emigration policy is to aim:

vx,r̄ =
∫ β−x

0
e−r̄t l(x + t)

l(x)
m(x + t) dt.

Then the alternative form of (8.4.2) is

fx =
v0,r̄ − 1

e−r̄xlxvx,r̄
. (8.5.1)

The argument of this section pivots on the simple result 8.5.1. If r̄ = 0,
we obtain the fraction fx emigrating out of each cohort for stationarity. In
general, (8.5.1) serves to show how much emigration is required to attain
the demographic objective represented by a rate of increase r̄, given the
continuance of the life table l(a) and the birth rates m(a).

To apply (8.5.1) we need only the net maternity function l(a)m(a). For
Mauritius, 1966, this is given in Table 6.1 in 5-year age intervals. The
intrinsic rate of Mauritius is estimated at 30.54 per thousand. How much
emigration will be required for the modest goal of bringing it down to 20
per thousand? If the emigrants are x = 25 years of age, (8.5.1) tells us that
with r̄ = 0.020 a fraction f25 = 0.417 of each cohort must leave on reaching
this age. If the emigrants are x = 20 years of age, the proportion that will
have to leave is smaller, 0.279.

Thus, to bring about a drop from the actual increase of 30.54 per thou-
sand to one of 20.00 per thousand, the departure of 41.7 percent of each
cohort will be required if the emigrants leave at age 25, and of 27.9 percent
if they leave at age 20. Emigration is not the easiest means of population
control.

To find the amount of emigration that will hold the ultimate rate of
increase down to zero we need the value of fx when r̄ is replaced by zero
in (8.5.1). The integral in the numerator is then R0, the net reproduction
rate, and the integral in the denominator is the part of R0 beyond age x.
Hence we have again (8.4.3),

fx =
R0 − 1∫ β

x

l(a)m(a) da

(8.5.2)

as the fraction of the age x that must emigrate per year to hold the ultimate
population stationary, x again being low enough for fx not to exceed unity.
To see (8.5.2) independently of its derivation as a special case of (8.5.1)
we note that to bring the net reproduction rate down to 1 we need to lose
R0 −1 births per woman from each birth cohort. The number of births per
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woman lost by removing a proportion f of women at age x is

fx

∫ β

x

l(a)m(a) da.

Equating this to R0 − 1 yields (8.5.2).

8.6 The Momentum of Population Growth

The authorities of some underdeveloped countries fear that once birth con-
trol is introduced their populations will immediately stop increasing. Such
fears are misplaced, partly because diffusion takes time, and even when
birth control is available it is not immediately used. But let us leave aside
this behavioral aspect, and consider only the momentum of population
growth that arises because the age distribution of a rapidly increasing
population is favorable to increase. The concept has been introduced in
Section 7.3.4; here we take advantage of the age-classification to explore
what determines population momentum.

Suppose that all couples adopt birth control immediately and drop their
births to a level that permits bare replacement. With U. S. mortality rates
fertile couples need on the average (Section 16.3) 2.36 children to give a
net reproduction rate R0 of unity. An average of 2.36 children covers the
loss of those dying before maturity, the fact that not everyone finds a mate,
and some sterility among couples.

We saw that without any change in birth rates the ultimate birth
trajectory due to p(x) dx persons at age x to x + dx would be
ertp(x)v(x) dx/κ, and for the whole population distributed as p(x) would
be ert

∫ β

0 p(x)v(x) dx/κ. For calculating the effect of the fall to bare re-
placement we want the trajectory based on the existing age distribution
p(x), but with a function v∗(x), corresponding to an intrinsic rate r = 0.
We can arrange this, without changing any other feature of the age inci-
dence of childbearing, by replacing m(x) by m∗(x) = m(a)/R0, which will
ensure that R∗

0 = 1 and r∗ = 0. Then the ultimate stationary number of
births must be ∫ β

0
p(x)v∗(x) dx/κ, (8.6.1)

where κ becomes µ, the mean age of childbearing in the stationary
population because v∗ = 0:

v∗(x)
κ

=
1

µl(x)

∫ β

x

l(a)m(a) da

R0
.

Ascertaining the ultimate stationary total population requires dividing by
b, the stationary birth rate, which is the same as multiplying by

o
e 0, the

expectation of life at age zero.
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Expression 8.6.1 is readily usable. If we have a table of the net ma-
ternity function in 5-year age intervals up to age 49 and the initial age
distribution, then, by cumulating the net maternity function to obtain 5V

∗
x

and multiplying 10 pairs of 5Nx and 5V
∗
x , we have the ultimate stationary

population
o
e 0Σ

β−5
0 5Nx 5V

∗
x /µ, (8.6.2)

where

5V
∗
x =

(5/5Lx)( 1
2 5LxFx + 5Lx+5Fx+5 + · · ·)

R0
.

This calculation will give the same result as a full population projection
with the new m∗(x).

If the initial age distribution p(x) can be taken as stable, the result is
even simpler. Entering p(x) = p0be

−rxl(x) in (8.6.1), where r is the intrinsic
rate before the drop to zero increase, canceling out l(x) in numerator and
denominator, and multiplying by

o
e 0 to produce the stationary population

rather than stationary births, we obtain

(1/p0)
o
e 0

∫ β

0
p(x)v∗(x) dx =

b
o
e 0

µ

∫ β

0

∫ β

x

e−rxl(a)
m(a)
R0

da dx (8.6.3)

as the ratio of the ultimate stationary population to the population at the
time when the fall occurs.

The double integral is evaluated by writing bx for
∫ β

x
l(a)m(a) da/R0 and

integrating by parts in (8.6.3) to obtain

b
o
e 0

µ

∫ β

0
e−rxbx dx =

b
o
e 0

µ

[
e−rx

−r
bx

∣∣∣∣
β

0
− 1

r

∫ β

0
e−rx l(x)m(x)

R0
dx

]
.

We find that the right-hand side reduces to

b
o
e 0

rµ

(
R0 − 1

R0

)
(8.6.4)

on applying the fact that b0 = 1 and
∫ β

0 e−rxl(x)m(x) dx = 1. Expression
8.6.4 gives the ratio of the ultimate population to population just before
the fall to zero increase and is the main result of this section.

For Ecuador, 1965, the data are 1000b = 44.82,
o
e 0 = 60.16, 1000r =

33.31, µ = 29.41, and R0 = 2.59. These make expression 8.6.4 equal to
1.69. By simple projection or by (8.6.2), which does not depend on the
stable assumption, we would have a ratio of the ultimate stationary to
the present population of 1.67. This experiment and others show that the
degree of stability in many underdeveloped countries makes (8.6.4) realistic.
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Table 8.3. Values of b
o
e 0/

√
R0, the approximate ratio of the ultimate to the

present population if the birth rate falls immediately from b = 0.045 to that
needed for bare replacement, 1/

o
e 0

Initial
o
e 0

R0 40 50 60

1.5 1.47 1.84 2.20
2.0 1.27 1.59 1.91
2.5 1.14 1.42 1.71

James Frauenthal has pointed out to me that (b
o
e 0/rµ)[(R0 − 1)/R0] of

(8.6.4) is very nearly b
o
e 0/

√
R0. For R0 is approximately erµ, and hence

b
o
e 0

rµ

(
R0 − 1

R0

)
=

b
o
e 0√
R0

[
erµ/2 − e−rµ/2

rµ

]

=
b

o
e 0√
R0

(
1 +

r2µ2

24
+

r4µ4

960
+ · · ·

)

on expanding both the exponentials in powers of rµ. The product rµ is of
the order of unity, so that r2µ2/24 must be close to 0.05. The example of
Ecuador, 1965, gives b

o
e 0/

√
R0 = 1.68 as compared with 1.69 for (8.6.4).

To obtain an intuitive meaning of this, note that the absolute number
of births just after the fall must be 1/R0 times the births just before the
fall. Births will subsequently rise and then drop in waves of diminishing
amplitude, and it seems likely that the curve will oscillate about the mean
of the absolute numbers before and after the fall. If the geometric mean of
1 and 1/R0 applies, the ultimate number of births will be 1/

√
R0 times the

births before the fall. In that case the ultimate population will be
o
e 0 /

√
R0

times the births before the fall, or b
o
e 0/

√
R0 times the population before

the fall.
In words, the approximation b

o
e 0/

√
R0 says that the momentum factor is

proportional to the birth rate and the expectation of life, and inversely pro-
portional to the square root of the net reproduction rate. Table 8.3 suggests
to what degree the factor depends on

o
e 0 and to what degree on R0 for an

initial birth rate of 1000b = 45. The conclusion is that with an immediate
fall in fertility to bare replacement Ecuador and demographically similar
countries would increase by about 50 percent or more before attaining sta-
tionarity. Note that (8.6.4) or b

o
e 0/

√
R0 is a good approximation to the

degree in which the age distribution before the fall is stable. [Using model
tables or otherwise, comment on the consistency of the pattern b = 0.045,
o
e 0 = 60, R0 = 1.5 that gives rise to the ratio 2.20 in Table 8.3.]
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Table 8.4. Deaths from malaria and heart disease, Philippines, 1959 and 1960

nVx

Reproductive
Degenerative value

Malaria, heart disease, for females,
Age Cause B–16, Cause B–26, Philippines,
x to x + n 1959 1959 1960

All ages 913 918
–5 251 12 1.21

5–14 156 7 1.64
15–24 133 37 2.00
25–44 186 198 0.76
45–64 138 322 0
65+ 45 333 0
Unknown 4 9

Total repro-
ductive value
for deaths of
stated age 967 250

Source: United Nations Demographic Yearbook (1961, p. 498); Keyfitz and Flieger
(1971, p. 411).

8.7 Eliminating Heart Disease Would Make Very
Little Difference to Population Increase,
Whereas Eradication of Malaria Makes a Great
Deal of Difference

Age distributions of deaths from malaria and heart disease are shown in
Table 8.4 for the Philippines, 1959. Evidently malaria affects the young
ages, whereas heart disease is negligible before middle life. Although the
two causes are responsible for about equal numbers of deaths, malaria has
a much greater effect on the chance that a child will survive to reproductive
age and on the number of women living through reproduction.

Finding the effect on the population trajectory of eliminating deaths
in any one year requires that each death at age x be evaluated as v(x),
that is to say, we need the sum

∫ β

0 p(x)v(x) dx, where now p(x) dx is the
population removed by death at ages x to x+dx. (The constants b and κ will
not affect the relative positions of the two causes.) The broad age groups
and lumping of the two sexes in Table 8.4 prevent us from attaining high
accuracy. Table 8.4 shows unweighted arithmetic averages of v(x) for the
age groups required. The value of the malaria deaths, if they were female,
would be (251)(1.21) + (156)(1.64) + (133)(2.00) + (186)(0.76) = 967; that
of the heart disease deaths similarly calculated would be 250. In practice



200 8. Reproductive Value from the Life Table

men and women influence mortality in different degrees, and no easy way
to allow for this suggests itself.

But the complexities that a two-sex model would introduce would not
greatly affect the present conclusion: although absolute numbers of deaths
from heart disease are about equal to those from malaria, malaria has
nearly 4 times the effect on subsequent population.

8.8 The Stable Equivalent

The stable equivalent Q, associated with long-run projections, helps to
interpret an observed past age distribution from the viewpoint of repro-
ductive potential, and so bridges the present chapter and the preceding
one dealing with reproductive value. It is the natural companion of the in-
trinsic rate of natural increase r. The rate r tells us how fast the population
would ultimately increase at present age-specific rates; Q tells us at what
level the ultimate population curve would stand.

8.8.1 Population Projection and the Stable Approximation
Thereto

Most of this chapter has used the continuous renewal equation model
for age-classified populations. Here we shift perspective to the discrete
population projection matrix method. We are given an observed (from a
mathematical viewpoint an arbitrary) age distribution for one sex, which is
arranged as a vertical vector n(0), together with a set of age-specific birth
and death rates arranged in the form of a matrix A. If a 5-year projection
interval, and 5-year age groups to age 85 to 89 at last birthday are rec-
ognized, A has 18 × 18 elements and n(0) has 18 × 1. The first row of A
provides for fertility, and the subdiagonal for survivorship; this is, in fact,
the Leslie matrix of Section 3.1. The age distribution projected through 5t
years is

n(t) = Atn(0). (8.8.1)

An approximation to this projection, called asymptotic because it is
approached as closely as one wishes with sufficiently large t, is

n(t) ≈ qe5rt, (8.8.2)

where the vector q is the stable equivalent of the age distribution.
To calculate q choose a large t and equate the right-hand sides of (8.8.1)

and (8.8.2). If the population were of stable age distribution from the start,
and contained q individuals at the several ages, by time 5t it would grow
to qe5rt. In fact, we know that it is of age distribution n(0), and when
projected it grows to Atn(0) by time 5t. The matrix equation for the
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Table 8.5. Female population total by conventional projection and by contribution
of dominant root, starting from United States, 1960∗ (000s)

Leslie Contribution
projection of positive
with fixed term

Year t 1960 rates Qert

1960 0 91,348 76,840
1970 10 106,220 94,986
1980 20 125,669 117,416
1990 30 150,129 145,144
2000 40 181,464 179,419
2010 50 222,196 221,789
2020 60 273,949 274,164
2030 70 338,990 338,907
2040 80 418,996 418,939

∗Right-hand column is Qert = 76,840e0.0212t.

calculation of q is thus

qe5rt = Atn(0)

or

q =
Atn(0)

e5rt
. (8.8.3)

One way of describing (8.8.3) is to say that n(0), the initial population is
projected forward t periods by the matrix A and backward an equal length
of time by the real root r, that is, by dividing by e5rt. The quantity qert

corresponds to the real term in the solution of the Lotka equation (7.5.2),
but is more complete in providing the several ages of the population rather
than births alone. The total of all ages, written as Q =

∑
qi, is shown in

Table 8.5 for United States females, starting with the 1960 age distribution
and projected by 1960 births and life table.

The intrinsic rate of natural increase for the regime of 1959–61 be-
ing r = 0.0212, and the stable equivalent of the initial population being
Q = 76,840,000, the future female population t years after 1960, if age-
specific rates remained fixed and the stable model applied, would be
76,840,000e0.0212t. Table 8.5 compares this at 10-year intervals with the
full projection, which implicitly uses all terms in the right-hand side of
(7.5.2). By the year 2000 the discrepancy is down to 1.1 percent.

However, between 1960 and 1965 some of the postwar cohorts moved
into childbearing ages, and the age distribution became more favorable, to
the point where the stable equivalent and the observed total practically
coincided, both being just under 99 million (Table 8.6). At the same time
a drastic decline in the birth rates occurred, so that the intrinsic rate fell
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Table 8.6. Female population P0 and stable equivalent number Q, United States,
1919–21 to 1965, adjusted births

Observed
female Stable

Year population equivalent
(000s) (000s)
N (0) Q

1919–21 52,283 55,519
1924–26 57,016 61,442
1929–31 60,757 72,304
1934–36 63,141 78,879
1939–41 65,811 77,279
1944–46 69,875 72,016
1949–51 76,216 68,376
1954–56 83,248 69,535
1960 91,348 76,840
1965 98,703 98,645

Source: Keyfitz and Flieger (1968).

to r = 0.01267. Hence the future from the 1965 vantage point was

98,645,000e0.01267(t−5), (8.8.4)

if t is still measured from 1960.

8.8.2 Application of the Stable Equivalent Q

Table 8.6 shows Q to be considerably above the observed female population
N(0) =

∑
ni(0) for the United States during the 1930s, and below it in

the 1950s. This reflects the tendency for there to be proportionately more
women of the age of motherhood in the population for some years after a
fall in the birth rate. The crude birth rate usually lags behind the intrinsic
birth rate after an upturn or downturn in fertility. The stable equivalent
Q measures the favorability of the age distribution to reproduction, given
the current regime of mortality and fertility.

In Table 8.7 historical data on Q are presented for four other countries.
Again a high Q relative to population after a fall in birth rates appears
for England and Wales between 1901 and 1941, and for Australia and
Canada before 1941. The Netherlands also shows this feature, but to a
more moderate degree.

8.8.3 Relation Between Q and Reproductive Value V

Reproductive value, the discounted future girl children that will be born to
a woman, has a close relation to Q. [Prove that Q, like V but unlike N(t),
has the property of increasing at a constant rate under a fixed regime of
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Table 8.7. Observed female population and stable equivalent, historical data for
four countries

Country Female Stable
and year population equivalent Ratio

(000s) (000s)
N (0) Q Q/N (0)

Australia
1911 2,152 2,395 1.11
1921 2,683 3,013 1.12
1933 3,263 4,267 1.31
1947 3,782 3,501 0.93
1957 4,758 4,215 0.89
1960 5,083 4,494 0.88
1965 5,632 5,659 1.00

Canada
1931 5,001 5,706 1.14
1941 5,608 6,356 1.13
1951 6,751 6,431 0.95
1961 8,794 8,120 0.92
1965 9,479 9,839 1.04

England and Wales
1861 10,324 10,802 1.05
1871 11,695 11,966 1.02
1881 13,373 13,608 1.02
1891 14,989 15,805 1.05
1901 16,845 19,047 1.13
1911 18,655 22,014 1.18
1921 19,816 22,229 1.12
1931 20,839 27,321 1.31
1941 21,515 27,522 1.28
1946 21,979 20,511 0.93
1951 22,751 22,741 1.00
1956 23,150 21,577 0.93
1961 23,820 19,764 0.83

Netherlands
1901 2,615 2,647 1.01
1910 2,960 3,064 1.03
1920 3,419 3,615 1.06
1930 3,954 4,386 1.11
1940 4,437 4,983 1.12
1945 4,619 4,551 0.99
1950 5,074 5,077 1.00
1955 5,395 5,405 1.00
1960 5,766 5,615 0.97
1965 6,081 5,942 0.98

Source: Keyfitz and Flieger (1968).
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Table 8.8. Observed female population, stable equivalent, and reproductive value
(000s)

Observed Ratio of Reproductive
female Stable stable to value in units

Country and Year population equivalent observed of girl babies
N (0) Q Q/N (0) V

Austria, 1964 3,845 3,187 0.83 1,665
Czechoslovakia, 1964 7,198 7,312 1.02 3,253
Denmark, 1964 2,380 2,326 0.98 1,091
Fiji Islands, 1964 219 229 1.04 229
Finland, 1964 2,370 2,540 1.07 1,227
Germany (East), 1964 9,257 7,871 0.85 3,499
Germany (West), 1964 30,980 27,755 0.90 13,124
Netherlands, 1964 6,081 5,942 0.98 3,665
Norway, 1964 1,854 1,649 0.89 914
Puerto Rico, 1964 1,309 1,375 1.05 1,050
Roumania, 1964 9,665 13,250 1.37 4,088
Switzerland, 1964 2,940 2,861 0.97 1,431

Source: Keyfitz and Flieger (1968).

mortality and fertility. The proof involves the fact that (At/e5rt)n(0) is
invariant with respect to t as long as t is large; in particular, At/e5rt is the
same when t + 1 is written for t (Section 8.1).]

In fact, V is a simple multiple of Q. In the continuous representation,
V is exactly equal to Q multiplied by the intrinsic birth rate b and by the
mean age of childbearing in the stable population κ, two constants obtain-
able from the age-specific rates and having nothing to do with the observed
age distribution. The reader may prove this statement by rearranging the
double integral contained in

∫ β

0 N(x)v(x) dx, where v(x) is defined as in
(8.1.1), and showing it to be the same as the numerator of the first co-
efficient Q in the solution (7.5.4) to the Lotka equation. In the present
notation this will prove

Q =
V

bκ
. (8.8.5)

Goodman (1968) shows this result to apply in the discrete case. Values of
N(0), Q, and V are given in Table 8.8 for a number of countries.

A question arises of the degree to which Q, the stable equivalent, is sen-
sitive to the particular set of age-specific birth and death rates used in its
calculation. The first row of Table 8.9 shows Q for the age distribution of
1960, worked out according to the 1960 and 1965 patterns of mortality and
fertility as embodied in the two A’s; the second row shows the correspond-
ing Q’s for the 1965 age distribution. The values obtained for Q depend
greatly on the set of age-specific rates applied as A. But if we study only
the change in Q in the United States between 1960 and 1965, it turns out
that the increase is 11.14 percent on the 1960 A and 10.84 percent on the
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Table 8.9. Stable equivalents Q for United States females in 1960 and 1965, each
calculated with two different matrices A (thousands)

Calculated with matrix A of

1960 1965

Age distribution:
1960 76,912 89,001
1965 85,478 98,645

Percent increase 11.14 10.84

Table 8.10. Stable equivalents Q for the United States and Mexico (thousands)

Calculated with matrix A of

United
States, Mexico,
1962 1962

Age distribution:
United States 82,933 63,395
Mexico 23,388 18,863

Ratio, Mexico to United States 0.282 0.272

1965 A. This way of making a comparison (applied between France and
Italy) is due to Vincent (1945), who noted the virtual invariance with re-
spect to the mortality and fertility patterns used. We are entitled to say
that the age distribution of women in the United States became about 11
percent more favorable to reproduction during the 5 years in question, and
the statement is true almost without regard to the fertility and mortality
patterns used in making this assessment.

As an example of a place comparison, Table 8.10 shows Q values for
Mexico and the United States, both for 1962. The Q for Mexico is 0.282
of that for the United States when the A of the latter is used; it is 0.272
when the A of the former is used. Jeffrey Evans has programmed place
comparisons among five countries which demonstrate the same invariance.

Section 12.3 below uses the stable equivalent to compare the effect on age
distribution of eliminating cancer with that of eliminating heart disease.

8.8.4 A More General Stable Equivalent
Age is merely a special case of the stable equivalent. Any model that
possesses the ergodic property, that is, that tends asymptotically to a distri-
bution unaffected by the initial distribution, is equally capable of analysis
by the methods given above. In fact (8.8.3) remains unchanged; only now
the matrix A and the vector n(0) provide for the two sexes, regions, mar-
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ried and single populations, and any other groups recognized in the model.
For details see Chapter 9 and some applications in Keyfitz (1969).

8.9 Reproductive Value as a Contribution to
Future Births

Section 8.1 appeals to intuition to make it appear likely that the effect of
adding one girl or woman aged x to the population is to raise the number
of births t years hence, where t is large, in proportion to v(x)ert, v(x) being
defined as

v(x) =

∫ β

x

e−ral(a)m(a) da

e−rxl(x)
.

This result can be derived from the Lotka equation of Section 7.5, but here
we examine a demonstration that is self contained, using the familiar device
of calculating the situation at time t from two successive moments near the
present. For purposes of this section v(x) will be defined afresh, in terms
of the ultimate birth trajectory.

Suppose that a woman aged x at time zero contributes v(x)ert to the
births at subsequent time t, where v(x) is to be determined and t is large.
This means that her disappearance would lower the ultimate birth trajec-
tory by v(x)ert. We assume that age-specific birth and death rates are fixed,
so that her descendants will ultimately increase in geometric proportion and
be unaffected by other members of the population.

The woman aged x can, in the next short period of time and age, say ∆,
have a child, and whether or not she has a child can survive to the next
age, x + ∆. The chance of her having a child is m(x)∆, and the chance
of her surviving is l(x + ∆)/l(x). By having a child she would contribute
v(0)er(t−∆) to the births at time t, and by surviving she would convert
herself into a woman of reproductive value v(x + ∆) and so contribute
v(x + ∆)er(t−∆). If the progression of childbearing and aging at the given
rates over the time ∆ is not to affect the ultimate birth trajectory, we can
equate the two expressions for later births:

v(x)ert =
[
m(x)v(0)∆ +

l(x + ∆)
l(x)

v(x + ∆)
]

er(t−∆). (8.9.1)

If we multiply both sides of (8.9.1) by

1
∆

l(x)
v(0)

e−rxe−rt,
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we obtain
1
∆

l(x)
v(x)
v(0)

e−rx = m(x)l(x)e−rxe−r∆

+
1
∆

l(x + ∆)
v(x + ∆)

v(0)
e−r(x+∆).

(8.9.2)

Subtracting the rightmost term from both sides and letting ∆ → 0, we
have directly

− d

dx
l(x)

v(x)
v(0)

e−rx = m(x)l(x)e−rx,

and integrating gives

e−rxl(x)
v(x)
v(0)

=
∫ β

x

e−ral(a)m(a) da, (8.9.3)

so that, if v(0) is set equal to unity, v(x) again comes out as shown in
(8.1.1). No constant of integration is needed, since both sides are unity for
x = 0. Equation (8.9.3) establishes v(x) to within a multiplicative constant.

Let us find the constant v(0) that corresponds to the ultimate effect of
adding one female to the population.

If the initial age distribution is stable, we know that the population at
time t must be ert for each person initially present, and hence the births
at time t are bert. Equating the two values for time t, we have

bert =
∫ β

0
be−rxl(x)v(x) dx ert; (8.9.4)

since from (8.9.3) v(x) may be written as

v(0)
e−rxl(x)

∫ β

x

e−ral(a)m(a) da,

the be−rxl(x) within the integral of (8.9.4), as well as ert outside the
integral, cancels, and we obtain the following equation for v(0):

1
v(0)

=
∫ β

0

∫ β

x

e−ral(a)m(a) da dx. (8.9.5)

The integral on the right-hand side is evaluated by integration by parts
and turns out to be κ, the mean age of childbearing in the stable population.
This proves that for the v(x) function of this section, v(0) = 1/κ, and that
the v(x) function of the main body of the chapter, defined in (8.1.1), gives
the ultimate birth trajectory due to a woman aged x as ertv(x)/κ.
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