
Chapter 2

DESIGN FLOW OVERVIEW

2. DESIGN FLOW OVERVIEW

2.1 Design Levels

Functionality and architecture of electronic devices can be very complex.
The systems may consist of analog and digital hardware together with
software parts. A telecommunication system contains for example:

An analog front-end to the physical transmission channel
Digital hardware for coding and modulation
General purpose or signal processors for control, user interface and
transmission protocol handling

Many designers with specialization in different areas are involved in
design and implementation. Several design steps are necessary to realize a
system concept on silicon. The design process can be classified in several
design levels as shown in Figure 2.1.

Each design level is associated with certain design tasks concerning the
whole system or system parts. Starting from system level the design
description becomes more and more detailed in a design step. CAD tools
support the designer at each level.

The system level is the first design level beginning with an idea of the
desired system. This level is also called concept engineering. The system
concept and main algorithms are described at a very abstract level without
information about the implementation of algorithms. For example, the
coding algorithm to be used for data transmission is specified, but it is not
decided to implement the coder in hardware or software.

8 Chapter 2

System Level
(Executable Specification)

Block Level
(digital: Register Transfer

Level)

Circuit / Transistor Level
(digital: Gate Level)

Layout Level

Figure 2-1. Design levels

The system specification can be developed on a sheet of paper. More
powerful is an executable specification supported by system-level simulators
(for example CoCentric System Studio, MATLAB, and SPW). It allows the
evaluation of the selected algorithms and provides a reference model for
following design steps.

The system is now partitioned into several hardware (analog or digital)
and software subsystems. This design level is named Block Level or
Register Transfer Level (RTL) in the digital area. The description of the
subsystems at this level contains more detail about the design architecture.
At this level the design consists of different blocks, for example multiplier,
adder, register, A/D converter, analog filter and amplifier.

Digital and mixed-signal hardware description language (HDL)
simulators support the block level design. Commonly used modeling
languages in this area are VHDL-AMS and Verilog-AMS. The design of
hardware/software systems is further supported by special tools, for example
instruction set simulators (ISS).

The third design level is called gate level in the digital domain and circuit
level in the analog domain. The blocks of the system are now represented by
netlists containing gates or active and passive analog elements. Gate level
models can be generated from RTL descriptions by logic synthesis. In the
analog design, the circuits are still designed manually.

Gate level or circuit simulation is used to evaluate the design at block
level. In the digital domain a timing analysis can be executed, and the blocks

DESIGN FLOW OVERVIEW 9

are still described in VHDL and Verilog. Circuit simulators such as SPICE
and Spectre are used in the analog domain to analyze the behavior of the
designed block.

Based on the gate level or circuit netlist and data of the circuit technology
the layout of the circuit is designed. The design is now represented as
polygons at different layers of an integrated circuit. In the digital domain this
step is well-automated. The tools will check if the design rules for a
specified circuit technology are fulfilled. In the analog domain further
manual optimization of layout may be necessary, for example to minimize
crosstalk between signals or to achieve a symmetric design. Tools that
extract parasitic effects that originate from layout also support the layout
verification.

2.2 Top-down System Design

System Level
(Executable Specification)

Electrical Block Level
(digital: Register Transfer

Level)

Circuit / Transistor Level
(digital: Gate Level)

Layout Level

System Partitioning
(HW and SW)

Circuit Design
(Logic Synthese)

Layout Synthese

System Level Simulation
(CoCentric, Matlab, SPW,

partially VHDL-AMS)

Behavioral Simulation
(VHDL-AMS, Verilog-AMS,

SystemC)

Circuit Simulation
(VHDL-AMS, Spice,

Spectre)

Layout Simulation,
Parasitic Extraction

Design Levels Simulation Support
(analog / mixed signal)

System
Specification

Analog/Digital
Mixed-Signal

Simulation

Circuit
Simulation

VHDL-AMS
coverage

Figure 2-2. Top-down design and simulation support

10 Chapter 2

Top-down design is a method of designing an electronic system that
starts with the complete system concept and then breaks it down into smaller
and smaller components (see Figure 2-2).

The first design level at which top down design starts is the system level.
For telecommunication systems it is here that is specified which algorithms
are used to transmit data from the signal source at point A to a sink at point
B. Algorithms which are specified at this level may be for example:

data structure and protocol
forward error correction techniques (FEC)
modulation techniques (QPSK, QAM, GMSK, OFDM)
channel equalization and synchronization

The system level design is supported by system level simulation.
Efficient simulation techniques (for example event driven or data stream
driven simulation) allow the simulation of the complete transmission system.
The simulation also includes a model of the transmission channel (additive
white Gaussian noise, AWGN, or mobile channels with fading). The goal of
the system design is an overall system specification. If a system level
simulation model exists, it can be used as an "executable specification" (see
Figure 2-3).

If the system level specification was successfully verified within a
system level simulation the system is partitioned. The algorithms of the
system can be implemented in different ways:

analog hardware
digital hardware
software

The second design level is named Block Level or in the digital area
Register Transfer Level. The system is now partitioned into components and
subsystems. Now parameters of the components can be specified.

Figure 2-3. Top level schematic of a WLAN system simulation model (SPW)

DESIGN FLOW OVERVIEW 11

Figure 2-4. Schematic of the RF subsystem (direct conversion receiver)

Figure 2-4 shows for example the block level schematic of the RF
subsystem of the WLAN receiver. At system level the RF subsystem was
specified either with ideal parameters or with parameters like noise level,
gain and linearity. Now it is broken down into its components (filter,
amplifier and mixers) which must be parameterized.

At block level we use behavioral models for the simulation of the
subsystems. For the analog and mixed-signal area, models can be written in
VHDL-AMS and Verilog-AMS. For pure analog simulation, additional
languages (for example SpectreHDL) are provided with the simulation tools.
The simulation at block level is used to verify whether the block level
realization of the subsystem meets the system level requirements.

After the blocks are specified, the circuit design can start. In the digital
area, gate level designs can be generated automatically from behavioral
models. However for analog blocks there are still no synthesis tools
available. So the analog designers must create the transistor level
implementation of the components manually. This is supported by transistor
level simulation. The block level simulation models can be reused as
testbench or reference models if the circuit level simulator supports
behavioral modeling languages. Verilog-AMS and VHDL-AMS simulators
often support the simulation of SPICE netlists; therefore they can also be
used for verification of the transistor level design.

If the transistor level design was verified by simulation the layout can be
developed. With the layout level the top down design flow is finished. The
layout design is not within the scope of this book. It is possible to extract
parasitic effects from layout level simulation which can be used to improve
the accuracy of transistor level simulation.

2.3 Bottom-up Verification

The amount of information and number of parameters increases during
the top-down design process from the system concept to its implementation.

12 Chapter 2

At the beginning of the design, the system is described with some
algorithms. After implementation the system may consist of a large number
of transistors. Concept verification is needed to check that the
implementation meets the requirements of the system.

In the “V” diagram (Figure 2-5) the verification starts from the layout
level (bottom) and then proceeds up to the block and system levels.

After layout, simulation parasitic effects can be back-annotated into the
circuit netlist. The circuit simulation with the extracted netlist is used to
verify the circuit design. The designed circuits can now be combined into
functional blocks, which are checked against their specification in a block
level simulation. Finally the designed blocks can be connected to the system.
System level simulation verifies that the blocks fit into the system
environment.

It is recommended to start verification before the design is completed at
layout level. After each design step simulation can be used to verify the
design or component against the specification.

System Level
(Executable

Specification)

Implementation

Layout Verification,
Parasitic Extraction

Circuit Verification

Block Verification

System Verification

Layout Level

Circuit / Transistor
Level

Electrical Block
Level

Verification

Time Time

Figure 2-5. Top -down design and bottom-up verification (V diagram)

DESIGN FLOW OVERVIEW 13

System level or block level simulation is used to verify large systems or
circuits. Often a transistor level model of a system cannot be simulated
because its complexity (number of transistors or gates) is much too large.
Therefore it is necessary to use behavioral models.

Figure 2-6 shows the application of behavioral models during block level
and system level verification. It is assumed that behavioral models were
already used during the top-down design. In the verification phase it is now
necessary to calibrate these models as follows:

Parasitic extraction and back annotation into the circuit netlist improves
the accuracy of the circuit model (extracted circuit model)
Simulation with the extracted circuit model is used to gain the circuit
characteristic and parameters
Extracted circuit parameters are used to calibrate the behavioral model of
this component
Calibrated behavioral models are used on block and system levels for
verification

System Level
(Executable

Specification)

Implementation

Layout Verification

Circuit Verification
(extracted circuit

model)

Block Verification
(calibrated behavioral

model)

System Verification

Layout Level

Circuit / Transistor
(circut model)

Electrical Block Level
(behavioral model)

Verification

Parasitic Extraction &
back annotation

Parameter Extraction
& model refinement

Figure 2-6. Refinement of models during bottom-up verification

14 Chapter 2

The main advantage of using (calibrated) behavioral models is the
simulation speedup which enables the simulation of large systems or
subsystems.

Different behavioral modeling languages exist. Most of them are specific
to a particular simulator. To allow the reuse of models it is suggested to use
standardized languages like VHDL-AMS and Verilog-AMS.

A characterization environment can support model calibration.
Characterization is the calculation of component or subsystem characteristics
and parameters from measured or simulated data. A characterization run
contains a set of simulation and postprocessing commands that allow the
determination of significant circuit characteristics. The behavior of the
circuit description and behavioral model can be compared. If the model is
inaccurate, the model parameters or algorithms are modified.
Characterization also supports model and circuit documentation. Chapter 11
contains more information about characterization environments.

http://www.springer.com/978-0-387-27584-0

