Progress in Quantum Algorithms

Peter W. Shor!

We discuss the progress (or lack of it) that has been made in discovering algo-
rithms for computation on a quantum computer. Some possible reasons are given
Jor the paucity of quantum algorithms so far discovered, and a short survey is
given of the state of the field.

KEY WORDS: quantum algorithms; NP-complete.
PACS: 03.67.Lx.

1. INTRODUCTION

It has now been 10years since I discovered the quantum factoring algo-
rithm.(D' This discovery caused great excitement; although some quantum
algorithms had previously been discovered, this was the first algorithm
that gave a substantial speedup over a classical algorithm for a well-stud-
ied and interesting problem. Many people expected a succession of other
interesting quantum algorithms to quickly follow. Lov Grover indeed dis-
covered his quantum searching algorithm shortly thereafter,® but the pro-
gress since has been disappointing, especially compared with the progress
the rest of the field of quantum information processing has been making.
Physicists have been proposing and experimenters have been exploring pos-
sible physical implementations of quantum computers at a pace I believe is
faster than what anybody, but the most optimistic people expected; these
developments are covered in the rest of this issue. Quantum cryptography
is coming of age, with several theoretical proofs of its security recently dis-
covered, and commercial quantum cryptography systems now on the mar-
ket. The field of quantum information theory and quantum computational

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA. E-mail: shor@mit.edu

5



6 Shor

complexity have both been quite active, with a succession of interesting
and important theoretical results. Meanwhile, the development of quantum
algorithms appears to have lagged behind, with what seem like barely any
significant new algorithms having been discovered. We will speculate on
why more quantum algorithms have not been found, and survey the pro-
gress that has been made. This is an expansion and update of my paper®
which also discusses this issue.

2. THOUGHTS ON QUANTUM ALGORITHMS

One thing 1 am often asked is why so few new quantum algorithms
for solving classical problems have been discovered. It has not been for
lack of effort; people have looked quite hard for new quantum algorithms.
I can think of two reasons that quantum algorithms might be difficult to
discover. The first is that there might really be only a few problems for
which quantum computers can offer a substantial speed-up over classical
computers; in the most pessimistic scenario, we have already discovered
most of the important algorithms. The second is that quantum computers
operate in a manner so non-intuitive, and so different from classical com-
puters, that all the experience of the last 50 years in discovering classical
algorithms offers little insight into how to go about finding quantum algo-
rithms, so that while efficient quantum algorithms for many more prob-
lems exist, they are very hard to find. It appears impossible to tell which
of these two cases is the actuality.

Another thing that I am often asked is what kind of problems are
susceptible to attack by a quantum computer. Unfortunately, even the
classical analog of this question: What kind of problems are can be solved
in polynomial time by a digital computer? does not have a satisfactory
answer. Computer scientists have a plethora of techniques they can try
to apply to a problem: linear programming, divide-and-conquer, dynamic
programming, Monte Carlo methods, semidefinite programming, and so
forth. However, deciding which of these methods is likely to work for a
given problem, and how to apply it, remains more of an art than a science,
and there is no good way known to characterize the class of problems
having polynomial-time algorithms., Characterizing the class of problems
having polynomial-time quantum algorithms appears equally, if not more,
difficult, one of the main additional difficulties being that we have so far
discovered very few algorithmic techniques.

One of the things that has made it difficult to find new quantum algo-
rithms that perform better than classical algorithms is the remarkable job
that computer scientists have done over the last 50 years in finding good



Progress in Quantum Algorithms 7

classical algorithms for problems. For the most part, researchers have been
looking for quantum algorithms that efficiently solve problems which are
not known to be solvable classically in polynomial time. These would yield
the most impressive advances, and are also very likely to be the first prob-
lems for which, when and if quantum computers are developed, the quan-
tum algorithms will give a practical advantage in the real world. To find
such a problem, if we make the assumption that quantum computers can-
not solve NP-complete problems in faster than exponential time, we would
need to find a problem which is neither in P nor is NP-hard. Remarkably,
in part because of the success of the classical theory of algorithms, there
are relatively few natural problems which fit this criterion.

I now give a brief digression on complexity theory. The complex-
ity class P consists of those problems which can be solved using algo-
rithms running in time bounded by a polynomial in the length of the
input. The class of problems with probabilistic polynomial-time algorithms
is called BPP, and the class with quantum probabilitistic polynomial-time
algorithms is called BQP (quantum algorithms are in general inherently
probabilistic, and so the class BQP should most fairly be compared with
the class BPP rather than P). Polynomial running times are considered
to be efficient by theoretical computer scientists. This isn’t strictly true—
nobody would call an algorithm that runs in n!% steps efficient in prac-
tice, where n is the length of the input, but this definition has proven to
be a good compromise between theory and practice; it appears to be the
case that most natural problems in P have algorithms with running time
a relatively small power of n. The class NP consists of those problems for
which a solution can be verified in polynomial time; this class contains P,
and the containment is generally thought to be strict.

Computer scientists have identified a subclass of NP comprising the
hardest problems in NP; these are called NP-complete problems,®>%and
a polynomial-time algorithm for any of these problems would imply a
polynomial-time algorithm for all problems in NP, showing that P = NP.
Remarkably, a large number of NP-complete problems have been identi-
fied.() When theoretical computer scientists consider a new problem, one
of their first goals is to either show that it is NP-complete, or to find a
polynomial-time algorithm for it. While these are mutually exclusive out-
comes, it is not guaranteed that a problem in NP will either be NP-com-
plete or in P; remarkably, however, the vast majority of problems studied
seem to fall in one of these two classes.

Why might we suspect that quantum computers cannot solve NP-
complete problems? Let us consider the classical analog of that ques-
tion: why do computer scientists believe that classical computers cannot
solve NP-complete problems efficiently? This is the celebrated P vs. NP



8 Shor

question. (See Ref. 8,7,9 for the history of this problem.) The class NP is
the class of problems for which, once a solution has been found, it can
be verified in polynomial time that it is indeed a solution. Mathematically
speaking, NP is the set of languages for which there are polynomial length
proofs that a string is in the language (although there are not necessarily
short proofs that a string is not in the language). NP-complete problems
are a subset of these NP problems which have the property that if any of
these NP-complete problems is solvable by an efficient algorithm, then all
NP problems are solvable by an efficient algorithm.

There are essentially two lines of argument for why P should be
different from NP. The first, which in my opinion is not terribly con-
vincing, is that nobody has yet found a polynomial-time algorithm for
solving NP-complete problems. While such an algorithm would generate
a complete upheaval of our understanding of computational complexity,
similar revolutions have occurred, albiet infrequently, in other branches
of mathematics and science. The second argument is barely more rigor-
ous than the first. It relates NP completeness to the difficulty of finding
mathematical proofs. If, for instance, a quadratic algorithm was discov-
ered for solving an NP complete problem, then a mathematician could use
this algorithm to mechanically check whether a conjectured theorem had
a proof of length n using computation time of cn? steps for some con-
stant ¢. Now, let us assume that the primes are in some sense quasi-ran-
domly distributed, as is believed by many mathematicians (although many
other quasi-randomly distributed objects could be used in this argument
as well). It then seems that it should be very difficult to check the truth
of a statement such as

There are 17 primes in arithmetic progression between integers a and b.

without testing a large fraction of the numbers between a and b for pri-
mality; here the relative sizes of a and b should be chosen so that the
probability of the above statement is roughly % On the other hand, if you
are given 11 numbers, testing to see if these are indeed primes in arithme-
tic progression can be done in time polynomial in the length of b. This
problem is in the class NP, which means that it can be efficiently trans-
lated into a 3SAT problem—a Boolean formula in conjuctive normal form
with 3 variables per clause (this translation is essentially the proof of the
NP-compleness result). However, this problem appears quite hard, and it
is very likely not NP-complete (meaning the reverse translation cannot be
done). If any NP-complete problem could be solved in polynomial time,
then problems such as the above could be solved in polynomial time. Intu-
itively, it seems as though it would be very difficult to prove the non-exis-
tence of such an arithmetic progression of primes, especially if you believe



Progress in Quantum Algorithms 9

the distribution of prime numbers is quasi-random. Thus, this is some
intuitive evidence towards the conjecture that P # NP.

Could the use of a quantum computer help solve such problems in
NP? In this new question, we now have lost the mathematical intuition
that proofs can be much harder to discover than to check. The symmetry
between checking and discovering the proof is now gone: we are allowed
a quantum computer to discover these proofs, but only permitted a digital
computer to check them. Although the argument is not as convincing, it
still does not seem likely that quantum computers can solve NP complete
problems in less than exponential time. There is more evidence in this
direction, in that there is a proof that a quantum computer cannot search
a space of size N in less than O(+/N) time.!9 This result shows that a
quantum algorithm for solving NP-complete problems in sub-exponential
time will have to use the structure of these problems, and this result can
also be used to find an oracle with respect to which NP is not contained
in BQP.

If quantum computers cannot indeed solve NP complete problems,
then where should we be looking for problems to speed up using quan-
tum algorithms? The obvious place to look is in problems neither known
to be in P or to be NP-complete. There are only a few problems in this
class. Those handful of these which appear to be related to periodicity,
and thus possibly susceptible to attack using quantum Fourier transforms,
have received substantial study from the quantum algorithms community.
These include the two problems of graph isomorphism and of finding a
short vector in a geometrical lattice. The problem of graph isomorphism
is: given two graphs, is there a permutation of the nodes which renders
them identical? The problem of finding a short vector in a lattice is: given
a lattice in d dimensions—i.e., the integer combinations of a set of d inde-
pendent basis vectors—is it possible to efficiently find a vector that is not
much longer than the shortest vector in this lattice? This problem becomes
hard for large d. Finding a vector with length within a constant factor of
the length of the shortest vector is NP-hard, while the best classical poly-
nomial-time algorithms known can only find a vector having length within
a factor that is exponential in the dimension d. While neither of these can
be solved efficiently by a quantum algorithm yet, the study of the lattice
problem from a quantum point of view has led to a purely classical result
that puts this problem (with certain parameters) in the complexity class
NP N co-NP.(D

If we moderate our goals somewhat, and look also for quantum algo-
rithms that speed problems up by a polynomial factor, then we have not
only all the problems in P to consider, but also the NP-complete problems.
Grover’s algorithm can be applied to speed up the algorithms for many of



10 Shor

these problems by a quadratic factor, and it is conceivable that some of
them can be sped up by a larger factor. In my paper,® I suggested look-
ing at trying to speed up the solutions of problems in P by quantum algo-
rithms, and I still believe this is a good source of research problems.

3. PROGRESS IN QUANTUM ALGORITHMS

Despite the general lack of progress that appears to have been made
on quantum algorithms, there have been a number of results which I con-
sider to represent incremental progress which may eventually lead to new
quantum algorithms. In my talks, I generally classify known quantum
algorithms into three classes: those using periodicity finding, those using
variants of Grover search, and those using quantum computers to simu-
late quantum mechanics. There has been progress in all three areas of this
classification, and a couple of new algorithmic techniques have been pro-
posed which appear promising, although they have so far not resulted in
any breakthroughs in the discovery of new algorithms. I will now describe
some of this progress; I will not attempt to be comprehensive, but merely
to give pointers to some papers which I think show the potential for sub-
stantial progress.

We first treat the progress in quantum algorithms that use the Fou-
rier transform, the tool that let us perform periodicity finding. It did not
take long after the papers(!l-12) to realize that a natural generalization of
the factoring and discrete logarithm algorithms was to the abelian hidden
subgroup problem: the problem of finding a subgroup of an abelian group
which is hidden in the values of a function. Fourier transforms on abe-
lian groups could be used to find periodicity and solve this problem in
much the same way that the Fourier transform on the cyclic group was
used to factor and find discrete logarithms (see, e.g., Ref. 13). Hallgren(!¥)
has recently shown that the Fourier transform can also be used to find the
periodicity of functions with irrational periods, and that this is useful in
solving certain number theory problems such as finding solutions to Pell’s
equation and finding class groups of number fields. There are other prop-
erties of the Fourier transform which can be used for purposes other than
finding periodicity. For instance, shifts of a periodic function transform
nicely under the Fourier transform, and this fact can be used to solve cer-
tain hidden shift problem.U'> The Fourier transform can also be defined
over non-abelian groups. It is not known how to compute this efficiently
for all these groups, but it can be computed for some of them, such as
the symmetric group(!® and the dihedral group.!” Kuperberg has recently
been able to give an algorithm solving the hidden subgroup problem over



Progress in Quantum Algorithms . 11

the dihedral group in subexponential time by working directly with the
representations returned by the Fourier transform.(!® These results indi-
cate at least that the Fourier transform can be used in ways that are more
versatile and powerful than those previously considered.

The second class of quantum algorithms I discuss are the general-
ization of Grover’s algorithm for searching a set of N things in time
O0(/N).® Many of these are covered in the survey.!” The most impor-
tant is probably that of amplitude amplification,®1% which lets one
amplify the probability of success of a quantum algorithm which has
only a small probability of success with efficiency quadratically better
than would be possible classically. Recently, there have been a num-
ber of algorithms discovered that combine the techniques of Grover’s
algorithm with quantum walks to perform certain tasks faster than one
can do classically.*>2% It was first shown that quantum random walks
could be used to solve some problems faster than classical algorithms
could in;®® these problems, however, appeared fairly artificial. Ambai-
nis combined these with random walk techniques to give a near-opti-
mal time quantum algorithm for testing whether two elements in a
database are distinct.??) These techniques have also been used to show
that certain graphs with locality can be searched quickly by a quan-
tum computer, where the computer program has the option either going
from a vertex to a neighboring vertex or testing that vertex to see
whégler it is the “goal” vertex.?¥ A survey of these results appears
in.

The third class of quantum algorithms are those simulating quantum
mechanics. There are two recent papers showing that the simulation of
quantum mechanical processes can be used to solve certain classical prob-
lems faster than it is known how to do classically. One of these®® uses
the fact that a certain observable in topological quantum field theories has
its expectation value equal to the value of the Jones polynomial evaluated
at certain points. While the variance of this observable is too large for a
quantum computer to compute the value of this Jones polynomial exactly
in polynomial time, it can be approximated by a quantum computer much
more efficiently than it is known how to do using a classical computer.
Another paper along these lines shows how to approximate zeros of cer-
tain finite field zeta functions by a quantum computer.?”) Inspired by the
spectral approach to the Riemann hypothesis, which attempts to relate
the zeros of the Riemann zeta function to the eigenvalues of a (currently
unknown) chaotic quantum system, van Dam shows that the zeros of cer-
tain finite field zeta functions are given by the eigenvalues of a quantum
circuit, and that this fact can be used to approximate them more efficiently
on a quantum computer than it is known how to do classically.



12 Shor

Finally, I want to mention adiabatic quantum computation. This heu-
ristic attempts to find the ground state of a Hamiltonian by tracking its
evolution by a quantum computer as the Hamiltonian is evolved from one
whose ground state is known to one whose ground state is the desired
result of the quantum computation.?® The adiabatic theorem says that
this approach is efficient if there exists a spectral gap of size at least recip-
rocal polynomial for all the intermediate Hamiltonians in the evolution.
Although this approach has not yet been shown to yield an algorithm
for an interesting problem, it does appear to me to have promise. It has
been shown recently that all polynomial time quantum computations can
be translated so they can be solved by this adiabatic method.(*”

REFERENCES

1. P W. Shor, “Polynomial Time Algorithms for Prime factorization and Discrete loga-
rithms on a Quantum Computer,”

2. L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack”,
Phys. Rev. Lert. 78, 325-328 (1997).

3. P W. Shor, “Why haven’t More Quantum Algorithms been Found?” J ACM 50, 87-90
(2003); Siam J. Comput. 26, 1484-1509 (1997).
4. S. Cook, “The Complexity of Theorem Proving Procedures,” in Proc. of the 3rd Annual
ACM Symposium on Theory of Computing (ACM Press, New York 1971), pp. 151-158.

5. R. Karp, “Reducibility Among Combinatorial Problems,” in (R. Miller, and J. Thatcher),
Complexity of Computer Computations, (Plenum, NY, 1972), pp. 85-103.

6. L. A. Levin, Problems of Information Transmission “Universal Search Problems,” 9(3),
265-266 (1973) [Russian].

7. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, (W. H. Freeman and Company, 1979).

8. S. Cook, “The P versus NP Problem,” at http://www.claymath.org/millennium/.

9. M. Sipser, “The History and Status of the P Versus NP Question.” in Proc. 24th ACM
Symposium on the Theory of Computing, 1992, pp. 603-619.

10. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and Weakness of
Quantum Computing”, SIAM J. Comput. 26, 1510-1523 (1997).

11. D. Aharonov and O. Regev, “Lattice Problems in NP N co-NP,” manuscript in prepara-
tion, available at www.tau.ac.il/ odedr/.

12. D. R. Simon, “On the Power of Quantum Computation Siam”, J Comput. 26, 1474
1483 (1997).

13. M. Mosca and A. Ekert,."The Hidden Subgroup Problem and Eigenvalue Estimation on
a Quantum Computer,” in Proc. of the Ist NASA International Conference on Quantum
Computing and Quantum Communication, Palm Springs, USA, Lecture Notes in Computer
Science, 1509 (1999); arXiv: quant-ph/9903071.

14. S. Hallgren, “Polynomial-time Algorithms for Pell’s Equation and the Principal Ideal
Problem,” in Proc. 34th Annual ACM Symposium on Theory of Computing, (ACM Press,
2002), pp. 653-658.

15. W. van Dam, S. Hallgren, and L. Ip, “Quantum Algorithms for Some Hidden Shift
Problems,” pp. 489-498. Proc. ACM-SIAM Symposium on Discrete Algorithms, 2003



Progress in Quantum Algorithms 13

16.
17.
18.

19.

20.

21.

22.
23.
24.

25.

26.

27.
28.

29.

R. Beals, “Quantum computation of Fourier Transforms over Symmetric Groups,” in
Proc. 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 48-53.

M. Ettinger and E. Hdyer, “On Quantum Algorithms for Non-commutative Hidden Sub-
groups,” arXiv: quant-ph/9807029.

G. Kuperberg, “A Subexponential-time Quantum Algorithm for the Dihedral Hidden
Subgroup Problem,” arXiv: quant-ph/0302112.

L. K. Grover and ‘A. M. Sengupta, “From Coupled Pendulums to Quantum Search,”
in R. K. Brylinski and G. Chen, Eds, Mathematics of Quantum Computation, (Chap-
man&Hall/CRC, Boca Raton, FL), pp. 119-134.

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum Amplitude Amplification
and Estimation,” AMS Conterporary Math Series 305, 53—74 Quantum Computation and
Information, Amer. Math. Soc. (2002).

L. K. Grover, “Quantum Computers can Search Rapdily by Using Almost any Transfor-
mation,” Phys. Rev. Lett. 80, 4329-4332 (1998). “Needle in a Haystack™, Phys. Rev. Lett.
78, 325-328 (1997).

A. Ambainis, “Quantum Walk Algorithm for Element Distinctness,” quant-ph/0311001.

A. Ambainis, “Quantum Walks and their Algorithmic Applications," quant-ph/0403120.

A. Ambainis, J. Kempe, and A. Rivosh, “Coins Make Quantum Walks Faster," quant-
ph/0402107.

A. M. Childs, R. E. Cleve, E. Deotto, E.Farhi, S. Gutmann, and D. A. Spielman, “Expo-
nential Algorithmic Speedup by Quantum Walk,” pp.59-68. Proc. 35th ACM Symposium
on Theory of Computing, (ACM Press, 2003).

M. Bordewich, M. Freedman, L. Lovasz, and D. Welsh, “Approximate Counting and
Quantum Computation,” available at http://research.microsoft.com/research/theory/freed-
man/.

W. van Dam, “Quantum Computing and Zeroes of Zeta Functions,” arXiv: quant-
ph/0405081.

E. Farhi, J. Goldstone, S. Gutman, and M. Sipser, “Quantum Computation by Adiabatic
Evolution,” arXiv: quant-ph/0001106.

D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adia-
batic Quantum Computation is Equivalent to Standard Quantum Computation,” arXiv:
quant-ph/0405098.



2 Springer
http://www.springer.com/978-0-387-23045-0

Experimental Aspects of Quantum Computing
Everitt, H.0. (Ed.]

2005, W1, 308 p., Hardcover

ISBN: @78-0-387-23045-0





