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We discuss the progress (or lack of it) that has been made in discovering algo­
rithms for computation on a quantum computer Some possible reasons are given 
for the paucity of quantum algorithms so far discovered, and a short survey is 
given of the state of the field. 
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1. INTRODUCTION 

It has now been 10 years since I discovered the quantum factoring algo-
rithm.̂ ^̂  This discovery caused great excitement; although some quantum 
algorithms had previously been discovered, this was the first algorithm 
that gave a substantial speedup over a classical algorithm for a well-stud­
ied and interesting problem. Many people expected a succession of other 
interesting quantum algorithms to quickly follow. Lov Grover indeed dis­
covered his quantum searching algorithm shortly thereafter/^^ but the pro­
gress since has been disappointing, especially compared with the progress 
the rest of the field of quantum information processing has been making. 
Physicists have been proposing and experimenters have been exploring pos­
sible physical implementations of quantum computers at a pace I believe is 
faster than what anybody, but the most optimistic people expected; these 
developments are covered in the rest of this issue. Quantum cryptography 
is coming of age, with several theoretical proofs of its security recently dis­
covered, and commercial quantum cryptography systems now on the mar­
ket. The field of quantum information theory and quantum computational 
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complexity have both been quite active, with a succession of interesting 
and important theoretical results. Meanwhile, the development of quantum 
algorithms appears to have lagged behind, with what seem like barely any 
significant new algorithms having been discovered. We will speculate on 
why more quantum algorithms have not been found, and survey the pro­
gress that has been made. This is an expansion and update of my paper̂ ^^ 
which also discusses this issue. 

2. THOUGHTS ON QUANTUM ALGORITHMS 

One thing I am often asked is why so few new quantum algorithms 
for solving classical problems have been discovered. It has not been for 
lack of effort; people have looked quite hard for new quantum algorithms. 
I can think of two reasons that quantum algorithms might be difficult to 
discover. The first is that there might really be only a few problems for 
which quantum computers can offer a substantial speed-up over classical 
computers; in the most pessimistic scenario, we have already discovered 
most of the important algorithms. The second is that quantum computers 
operate in a manner so non-intuitive, and so different from classical com­
puters, that all the experience of the last 50 years in discovering classical 
algorithms offers little insight into how to go about finding quantum algo­
rithms, so that while efficient quantum algorithms for many more prob­
lems exist, they are very hard to find. It appears impossible to tell which 
of these two cases is the actuality. 

Another thing that I am often asked is what kind of problems are 
susceptible to attack by a quantum computer. Unfortunately, even the 
classical analog of this question: What kind of problems are can be solved 
in polynomial time by a digital computer? does not have a satisfactory 
answer. Computer scientists have a plethora of techniques they can try 
to apply to a problem: linear programming, divide-and-conquer, dynamic 
programming, Monte Carlo methods, semidefinite programming, and so 
forth. However, deciding which of these methods is likely to work for a 
given problem, and how to apply it, remains more of an art than a science, 
and there is no good way known to characterize the class of problems 
having polynomial-time algorithms. Characterizing the class of problems 
having polynomial-time quantum algorithms appears equally, if not more, 
difficult, one of the main additional difficulties being that we have so far 
discovered very few algorithmic techniques. 

One of the things that has made it difficult to find new quantum algo­
rithms that perform better than classical algorithms is the remarkable job 
that computer scientists have done over the last 50 years in finding good 
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classical algorithms for problems. For the most part, researchers have been 
looking for quantum algorithms that efficiently solve problems which are 
not known to be solvable classically in polynomial time. These would yield 
the most impressive advances, and are also very likely to be the first prob­
lems for which, when and if quantum computers are developed, the quan­
tum algorithms will give a practical advantage in the real world. To find 
such a problem, if we make the assumption that quantum computers can­
not solve NP-complete problems in faster than exponential time, we would 
need to find a problem which is neither in P nor is NP-hard. Remarkably, 
in part because of the success of the classical theory of algorithms, there 
are relatively few natural problems which fit this criterion. 

I now give a brief digression on complexity theory. The complex­
ity class P consists of those problems which can be solved using algo­
rithms running in time bounded by a polynomial in the length of the 
input. The class of problems with probabiHstic polynomial-time algorithms 
is called BPP, and the class with quantum probabilitistic polynomial-time 
algorithms is called BQP (quantum algorithms are in general inherently 
probabilistic, and so the class BQP should most fairly be compared with 
the class BPP rather than P). Polynomial running times are considered 
to be efficient by theoretical computer scientists. This isn't strictly true— 
nobody would call an algorithm that runs in n^^^ steps efficient in prac­
tice, where n is the length of the input, but this definition has proven to 
be a good compromise between theory and practice; it appears to be the 
case that most natural problems in P have algorithms with running time 
a relatively small power of n. The class NP consists of those problems for 
which a solution can be verified in polynomial time; this class contains P, 
and the containment is generally thought to be strict. 

Computer scientists have identified a subclass of NP comprising the 
hardest problems in NP; these are called NP-complete problems,̂ '̂̂ '̂ ^and 
a polynomial-time algorithm for any of these problems would imply a 
polynomial-time algorithm for all problems in NP, showing that P = NP. 
Remarkably, a large number of NP-complete problems have been identi-
fied.^^^ When theoretical computer scientists consider a new problem, one 
of their first goals is to either show that it is NP-complete, or to find a 
polynomial-time algorithm for it. While these are mutually exclusive out­
comes, it is not guaranteed that a problem in NP will either be NP-com­
plete or in P; remarkably, however, the vast majority of problems studied 
seem to fall in one of these two classes. 

Why might we suspect that quantum computers cannot solve NP-
complete problems? Let us consider the classical analog of that ques­
tion: why do computer scientists beheve that classical computers cannot 
solve NP-complete problems efficiently? This is the celebrated P vs. NP 
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question. (See Ref. 8,7,9 for the history of this problem.) The class NP is 
the class of problems for which, once a solution has been found, it can 
be verified in polynomial time that it is indeed a solution. Mathematically 
speaking, NP is the set of languages for which there are polynomial length 
proofs that a string is in the language (although there are not necessarily 
short proofs that a string is not in the language). NP-complete problems 
are a subset of these NP problems which have the property that if any of 
these NP-complete problems is solvable by an efficient algorithm, then all 
NP problems are solvable by an efficient algorithm. 

There are essentially two lines of argument for why P should be 
different from NP. The first, which in my opinion is not terribly con­
vincing, is that nobody has yet found a polynomial-time algorithm for 
solving NP-complete problems. While such an algorithm would generate 
a complete upheaval of our understanding of computational complexity, 
similar revolutions have occurred, albiet infrequently, in other branches 
of mathematics and science. The second argument is barely more rigor­
ous than the first. It relates NP completeness to the difficulty of finding 
mathematical proofs. If, for instance, a quadratic algorithm was discov­
ered for solving an NP complete problem, then a mathematician could use 
this algorithm to mechanically check whether a conjectured theorem had 
a proof of length n using computation time of crp- steps for some con­
stant c. Now, let us assume that the primes are in some sense quasi-ran-
domly distributed, as is believed by many mathematicians (although many 
other quasi-randomly distributed objects could be used in this argument 
as well). It then seems that it should be very difficult to check the truth 
of a statement such as 

There are 17 primes in arithmetic progression between integers a and b. 

without testing a large fraction of the numbers between a and b for pri-
mality; here the relative sizes of a and b should be chosen so that the 
probability of the above statement is roughly j . On the other hand, if you 
are given 11 numbers, testing to see if these are indeed primes in arithme­
tic progression can be done in time polynomial in the length of b. This 
problem is in the class NP, which means that it can be efficiently trans­
lated into a 3SAT problem—a Boolean formula in conjuctive normal form 
with 3 variables per clause (this translation is essentially the proof of the 
NP-compleness result). However, this problem appears quite hard, and it 
is very likely not NP-complete (meaning the reverse translation cannot be 
done). If any NP-complete problem could be solved in polynomial time, 
then problems such as the above could be solved in polynomial time. Intu­
itively, it seems as though it would be very difficult to prove the non-exis­
tence of such an arithmetic progression of primes, especially if you believe 
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the distribution of prime numbers is quasi-random. Thus, this is some 
intuitive evidence towards the conjecture that P 7̂  NP. 

Could the use of a quantum computer help solve such problems in 
NP? In this new question, we now have lost the mathematical intuition 
that proofs can be much harder to discover than to check. The symmetry 
between checking and discovering the proof is now gone: we are allowed 
a quantum computer to discover these proofs, but only permitted a digital 
computer to check them. Although the argument is not as convincing, it 
still does not seem Hkely that quantum computers can solve NP complete 
problems in less than exponential time. There is more evidence in this 
direction, in that there is a proof that a quantum computer cannot search 
a space of size N in less than 0{\fN) time.̂ ^^^ This result shows that a 
quantum algorithm for solving NP-complete problems in sub-exponential 
time will have to use the structure of these problems, and this result can 
also be used to find an oracle with respect to which NP is not contained 
in BQP 

If quantum computers cannot indeed solve NP complete problems, 
then where should we be looking for problems to speed up using quan­
tum algorithms? The obvious place to look is in problems neither known 
to be in P or to be NP-complete. There are only a few problems in this 
class. Those handful of these which appear to be related to periodicity, 
and thus possibly susceptible to attack using quantum Fourier transforms, 
have received substantial study from the quantum algorithms community. 
These include the two problems of graph isomorphism and of finding a 
short vector in a geometrical lattice. The problem of graph isomorphism 
is: given two graphs, is there a permutation of the nodes which renders 
them identical? The problem of finding a short vector in a lattice is: given 
a lattice in d dimensions—i.e., the integer combinations of a set of d inde­
pendent basis vectors—is it possible to efficiently find a vector that is not 
much longer than the shortest vector in this lattice? This problem becomes 
hard for large d. Finding a vector with length within a constant factor of 
the length of the shortest vector is NP-hard, while the best classical poly­
nomial-time algorithms known can only find a vector having length within 
a factor that is exponential in the dimension d. While neither of these can 
be solved efficiently by a quantum algorithm yet, the study of the lattice 
problem from a quantum point of view has led to a purely classical result 
that puts this problem (with certain parameters) in the complexity class 
NP n co-NP^ii> 

If we moderate our goals somewhat, and look also for quantum algo­
rithms that speed problems up by a polynomial factor, then we have not 
only all the problems in P to consider, but also the NP-complete problems. 
Grover's algorithm can be applied to speed up the algorithms for many of 
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these problems by a quadratic factor, and it is conceivable that some of 
them can be sped up by a larger factor. In my paper/̂ ^ I suggested look­
ing at trying to speed up the solutions of problems in P by quantum algo­
rithms, and I still believe this is a good source of research problems. 

3. PROGRESS IN QUANTUM ALGORITHMS 

Despite the general lack of progress that appears to have been made 
on quantum algorithms, there have been a number of results which I con­
sider to represent incremental progress which may eventually lead to new 
quantum algorithms. In my talks, I generally classify known quantum 
algorithms into three classes: those using periodicity finding, those using 
variants of Grover search, and those using quantum computers to simu­
late quantum mechanics. There has been progress in all three areas of this 
classification, and a couple of new algorithmic techniques have been pro­
posed which appear promising, although they have so far not resulted in 
any breakthroughs in the discovery of new algorithms. I will now describe 
some of this progress; I will not attempt to be comprehensive, but merely 
to give pointers to some papers which I think show the potential for sub­
stantial progress. 

We first treat the progress in quantum algorithms that use the Fou­
rier transform, the tool that let us perform periodicity finding. It did not 
take long after the paperŝ ^̂ '̂ ^̂  to realize that a natural generalization of 
the factoring and discrete logarithm algorithms was to the abelian hidden 
subgroup problem: the problem of finding a subgroup of an abelian group 
which is hidden in the values of a function. Fourier transforms on abe-
Han groups could be used to find periodicity and solve this problem in 
much the same way that the Fourier transform on the cyclic group was 
used to factor and find discrete logarithms (see, e.g., Ref 13). Hallgren̂ "̂*̂  
has recently shown that the Fourier transform can also be used to find the 
periodicity of functions with irrational periods, and that this is useful in 
solving certain number theory problems such as finding solutions to Pell's 
equation and finding class groups of number fields. There are other prop­
erties of the Fourier transform which can be used for purposes other than 
finding periodicity. For instance, shifts of a periodic function transform 
nicely under the Fourier transform, and this fact can be used to solve cer­
tain hidden shift problem.̂ ^̂ ^ The Fourier transform can also be defined 
over non-abelian groups. It is not known how to compute this efficiently 
for all these groups, but it can be computed for some of them, such as 
the symmetric group̂ ^̂ ^ and the dihedral group. ̂ ^̂^ Kuperberg has recently 
been able to give an algorithm solving the hidden subgroup problem over 
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the dihedral group in subexponential time by working directly with the 
representations returned by the Fourier transform/^^^ These results indi­
cate at least that the Fourier transform can be used in ways that are more 
versatile and powerful than those previously considered. 

The second class of quantum algorithms I discuss are the general­
ization of Grover's algorithm for searching a set of N things in time 
0(\/N)P^ Many of these are covered in the survey/^^^ The most impor­
tant is probably that of amplitude amplification/^'^^^ which lets one 
ampUfy the probability of success of a quantum algorithm which has 
only a small probability of success with efficiency quadratically better 
than would be possible classically. Recently, there have been a num­
ber of algorithms discovered that combine the techniques of Grover's 
algorithm with quantum walks to perform certain tasks faster than one 
can do classically. ̂ ^̂ "̂ '̂ ^ It was first shown that quantum random walks 
could be used to solve some problems faster than classical algorithms 
could in;̂ ^̂ ^ these problems, however, appeared fairly artificial. Ambai-
nis combined these with random walk techniques to give a near-opti­
mal time quantum algorithm for testing whether two elements in a 
database are distinct.^^^^ These techniques have also been used to show 
that certain graphs with locality can be searched quickly by a quan­
tum computer, where the computer program has the option either going 
from a vertex to a neighboring vertex or testing that vertex to see 
whether it is the "goal" vertex.̂ "̂*̂  A survey of these results appears 
in.(23) 

The third class of quantum algorithms are those simulating quantum 
mechanics. There are two recent papers showing that the simulation of 
quantum mechanical processes can be used to solve certain classical prob­
lems faster than it is known how to do classically. One of these^^^^ uses 
the fact that a certain observable in topological quantum field theories has 
its expectation value equal to the value of the Jones polynomial evaluated 
at certain points. While the variance of this observable is too large for a 
quantum computer to compute the value of this Jones polynomial exactly 
in polynomial time, it can be approximated by a quantum computer much 
more efficiently than it is known how to do using a classical computer. 
Another paper along these lines shows how to approximate zeros of cer­
tain finite field zeta functions by a quantum computer. ̂ ^̂ ^ Inspired by the 
spectral approach to the Riemann hypothesis, which attempts to relate 
the zeros of the Riemann zeta function to the eigenvalues of a (currently 
unknown) chaotic quantum system, van Dam shows that the zeros of cer­
tain finite field zeta functions are given by the eigenvalues of a quantum 
circuit, and that this fact can be used to approximate them more efficiently 
on a quantum computer than it is known how to do classically. 
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Finally, I want to mention adiabatic quantum computation. This heu­
ristic attempts to find the ground state of a Hamiltonian by tracking its 
evolution by a quantum computer as the Hamiltonian is evolved from one 
whose ground state is known to one whose ground state is the desired 
result of the quantum computation/^^^ The adiabatic theorem says that 
this approach is efficient if there exists a spectral gap of size at least recip­
rocal polynomial for all the intermediate Hamiltonians in the evolution. 
Although this approach has not yet been shown to yield an algorithm 
for an interesting problem, it does appear to me to have promise. It has 
been shown recently that all polynomial time quantum computations can 
be translated so they can be solved by this adiabatic method.^^^^ 
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