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Metric Spaces

What is the minimum of structure one needs to have on a set in order to be
able to speak of continuity?

If f is a function defined on a subset of R—or, more generally, of Euclidean
n-space R

n—we say that f is continuous at x0 if “f(x) approaches f(x0) as x
approaches x0.” With ε and δ, this statement can be made sufficiently precise
for mathematical purposes.

For each ε > 0, there is δ > 0 such that |f(x) − f(x0)| < ε for all x
such that |x − x0| < δ.

Crucial for the definition of continuity thus seems to be that we can measure
the distance between two real numbers (or, rather, two vectors in Euclidean
n-space).

If we want to speak of continuity of functions defined on more general sets,
we should thus have a meaningful way to speak of the distance between two
points of such a set: this, in a nutshell, is the idea behind a metric space.

2.1 Definitions and Examples

In Euclidean 2-space, the distance between two points (x1, x2) and (y1, y2)
is defined as

√
(x1 − y1)2 + (x2 − y2)2. More generally, in Euclidean n-space

R
n, one defines, for x = (x1, . . . , xn) and y = (y1, . . . , yn), their distance as

d(x, y) :=

√√
√√

n∑

j=1

(xj − yj)2.

The Euclidean distance has the following properties.

1. d(x, y) ≥ 0 for all x, y ∈ R
n with d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ R
n;

3. d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ R
n.
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In the definition of a metric space, these three properties of the Euclidean
distance are axiomatized.

Definition 2.1.1. Let X be a set. A metric on X is a map d : X × X → R

with the following properties:

(a) d(x, y) ≥ 0 for all x, y ∈ X with d(x, y) = 0 if and only if x = y (positive
definiteness);

(b) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
(c) d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X (triangle inequality).

A set together with a metric is called a metric space.

We often denote a metric space X whose metric is d by (X, d); sometimes,
if the metric is obvious or irrelevant, we may also simply write X.

Examples 2.1.2. (a) R
n with the Euclidean distance is a metric space.

(b) Let (X, d) be a metric space, and let Y be a subset of X. Then the re-
striction of d to Y × Y turns Y into a metric space of its own. The metric
space (Y, d|Y ×Y ) is called a subspace of X. In particular, any subset of R

n

equipped with the Euclidean distance is a subspace of R
n.

(c) Let E be a linear space (over F = R or F = C). A norm on E is a map
‖ · ‖ : E → R such that: (i) ‖x‖ ≥ 0 for all x ∈ E with ‖x‖ = 0 if and only
if x = 0; (ii) ‖λx‖ = |λ|‖x‖ for λ ∈ F and x ∈ E; (iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖
for all x, y ∈ E (a linear space equipped with a norm is called a normed
space). For x, y ∈ E, define

d(x, y) := ‖x − y‖.
This turns E into a metric space. For example, let E be C([0, 1], F), the
space of all continuous F-valued functions on [0, 1]. Then there are several
norms on E, for example, ‖ · ‖1 defined by

‖f‖1 :=
∫ 1

0

|f(t)| dt (f ∈ E)

or ‖ · ‖∞ given by

‖f‖∞ := sup{|f(t)| : t ∈ [0, 1]} (f ∈ E).

Each of them turns E into a normed space.
(d) Let S �= ∅ be a set, and let (Y, d) be a metric space. A function f : S → Y

is said to be bounded if

sup
x,y∈S

d(f(x), f(y)) < ∞

The set
B(S, Y ) := {f : S → Y : f is bounded}

becomes a metric space through D defined by

D(f, g) := sup
x∈S

d(f(x), g(x)) (f, g ∈ B(S, Y )).
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(e) France is a centralized country: every train that goes from one French city
to another has to pass through Paris. This is slightly exaggerated, but not
too much, as the map shows.

c©Document SNCF, Direction de la Communication, 2001

Fig. 2.1: Map of the French railroad network

This motivates the name French railroad metric for the following construc-
tion. Let (X, d) be a metric space (“France”), and fix p ∈ X (“Paris”).
Define a new metric dp on X by letting

dp(x, y) :=
{

0, x = y,
d(x, p) + d(p, y), otherwise,
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for x, y ∈ X. Then (X, dp) is again a metric space.
(f) Let (X, d) be any metric space, and define d̃ : X × X → R via

d̃(x, y) :=
d(x, y)

1 + d(x, y)
(x, y ∈ X).

We claim that d̃ is a metric on X. It is obvious that d̃ is positive definite
and symmetric. Hence, all we have to show is that the triangle inequality
holds. First note that the function

[0,∞) → R, t �→ t

1 + t
(∗)

is increasing (this can be verified, for instance, through differentiation).
Let x, y, z ∈ X, and observe that

d̃(x, z) =
d(x, z)

1 + d(x, z)

≤ d(x, y) + d(y, z)
1 + d(x, y) + d(y, z)

, because (∗) is increasing,

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)
1 + d(x, y) + d(y, z)

≤ d(x, y)
1 + d(x, y)

+
d(y, z)

1 + d(y, z)

= d̃(x, y) + d̃(y, z).

Consequently, d̃ is indeed a metric on X.
(g) A semimetric d on a set X satisfies the same axioms as a metric with one

exception: it is possible for x, y ∈ X with x �= y that d(x, y) = 0. If d
is a semimetric, then d̃ as constructed in the previous example is also a
semimetric. Let X be equipped with a sequence (dn)∞n=1 of semimetrics
such that, for any x, y ∈ X with x �= y, there is n ∈ N with dn(x, y) > 0.
Then d : X × X → R defined by

d(x, y) :=
∞∑

n=1

1
2n

dn(x, y)
1 + dn(x, y)

(x, y ∈ X)

is a metric. Clearly, d is symmetric and satisfies the triangle inequality,
and if x, y ∈ X are such that x �= y, there is n ∈ N with dn(x, y) > 0, so
that d(x, y) ≥ 1

2n

dn(x,y)
1+dn(x,y) > 0.

(h) The previous example can be used, for instance, to turn a Cartesian prod-
uct X of countably many metric spaces ((Xn, dn))∞n=1 into a metric space
again. For each n ∈ N, the map

δn : X × X → [0,∞), ((x1, x2, x3, . . .), (y1, y2, y3, . . .)) �→ dn(xn, yn)
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is a semimetric. Moreover, if x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .)
are different points of X, there is at least one coordinate n ∈ N such that
xn �= yn, so that δn(x, y) = dn(xn, yn) > 0. For x = (x1, x2, x3, . . .) and
y = (y1, y2, y3, . . .) in X, let

d(x, y) :=
∞∑

n=1

1
2n

δn(x, y)
1 + δn(x, y)

=
∞∑

n=1

1
2n

dn(xn, yn)
1 + dn(xn, yn)

.

Then d is a metric on X.
(i) Let X be any set. For x, y ∈ X define

d(x, y) :=
{

0, x = y,
1, otherwise.

Then (X, d) is easily seen to be a metric space. (Metric spaces of this form
are called discrete.)

Exercises

1. Let S be any set, and let X consist of the finite subsets of S. Show that

d : X × X → [0,∞), (A, B) �→ |(A \ B) ∪ (B \ A)|

is a metric on X.
2. Verify Example 2.1.2(d) in detail.
3. Let S �= ∅ be a set, and let E be a normed space. Show that

‖f‖∞ := sup{‖f(x)‖ : x ∈ S} (f ∈ B(S, E))

defines a norm on B(S, E). How does ‖ · ‖∞ relate to the metric D from the
previous exercise?

4. Let (E, ‖ · ‖) be a normed space, and define ||| · ||| : E → [0,∞) by letting

|||x||| :=
‖x‖

1 + ‖x‖ (x ∈ E).

Is ||| · ||| a norm on E?
5. Let X be any set, and let d : X × X → [0,∞) be a semimetric. For x, y ∈ X,

define x ≈ y if and only if d(x, y) = 0.
(a) Show that ≈ is an equivalence relation on X.
(b) For x ∈ X, let [x] denote its equivalence class with respect to ≈, and let

X/≈ denote the collection of all [x] with x ∈ X. Show that

(X/≈) × (X/≈) → [0,∞), ([x], [y]) �→ d(x, y)

defines a metric on X/≈.
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2.2 Open and Closed Sets

We start with the definition of an open ball in a metric space:

Definition 2.2.1. Let (X, d) be a metric space, let x0 ∈ X, and let r > 0.
The open ball centered at x0 with radius r is defined as

Br(x0) := {x ∈ X : d(x, x0) < r}.

Of course, in Euclidean 2- or 3-space, this definition coincides with the
usual intuitive one. Nevertheless, even though open balls are defined with
the intuitive notions of Euclidean space in mind, matters can turn out to be
surprisingly counterintuitive:

Examples 2.2.2. (a) Let (X, d) be a discrete metric space, let x0 ∈ X, and let
r > 0. Then

Br(x0) =
{
{x0}, r < 1,
X, r ≥ 1,

holds; that is, each open ball is a singleton subset or the whole space.
(b) Let (X, d) be any metric space, let p ∈ X, and let dp be the corresponding

French railroad metric. To tell open balls in (X, d) and (X, dp) apart, we
write Br(x0; d) and Br(x0; dp), respectively, for x0 ∈ X and r > 0. Let
x0 ∈ X, and let r > 0. Since, for x ∈ X with x �= x0, we have

dp(x, x0) = d(x, p) + d(p, x0) < r ⇐⇒ d(x, p) < r − d(p, x0),

the following dichotomy holds.

Br(x0; dp) =
{

{x0}, if r ≤ d(p, x0),
Br−d(p,x0)(p; d) ∪ {x0}, otherwise.

Like the notion of an open ball, the notion of an open set extends from
Euclidean space to arbitrary metric spaces.

Definition 2.2.3. Let (X, d) be a metric space. A set U ⊂ X is called open
if, for each x ∈ U , there is ε > 0 such that Bε(x) ⊂ U .

If our choice of terminology is to make any sense, an open ball in a metric
space better be an open set. Indeed, this is true.

Example 2.2.4. Let (X, d) be a metric space, let x0 ∈ X, and let r > 0. For
x ∈ Br(x0), choose ε := r − d(x, x0) > 0. Hence, we have for y ∈ Bε(x):

d(y, x0) ≤ d(y, x) + d(x, x0) < ε + d(x, x0) = r − d(x, x0) + d(x, x0) = r.

It follows that Bε(x) ⊂ Br(x0).

The following proposition lists the fundamental properties of open sets.

Proposition 2.2.5. Let (X, d) be a metric space. Then:
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(i) ∅ and X are open;
(ii) If U is a family of open subsets of X, then

⋃
{U : U ∈ U} is open;

(iii) If U1 and U2 are open subsets of X, then U1 ∩ U2 is open.

Proof. (i) is clear.
For (ii), let U be a family of open sets in X, and let x ∈

⋃
{U : U ∈ U}.

Then there is U0 ∈ U with x ∈ U0, and since U0 is open there is ε > 0 such
that

Bε(x) ⊂ U0 ⊂
⋃

{U : U ∈ U}.

Hence,
⋃
{U : U ∈ U} is open.

Let U1, U2 ⊂ X be open, and let x ∈ U1 ∩ U2. Since U1 and U2 are open,
there are ε1, ε2 > 0 such that Bεj

(x) ⊂ Uj for j = 1, 2. Let ε := min{ε1, ε2}.
Then it is immediate that Bε(x) ⊂ U1 ∩ U2. This proves (iii). ��

Proposition 2.2.5(i) may seem odd at the first glance. The closed unit
interval in R is a subspace of R, thus a metric space in its own right, and
thus open by Proposition 2.2.5(i). But, of course, we know that [0, 1] is not
open. How is this possible? The answer is that openness (as well as all the
notions that are derived from it) depends on the context of a given metric
space. Thus, [0, 1] is open in [0, 1], but not open in R.

Example 2.2.6. Let (X, d) be a discrete metric space, and let S ⊂ X. Then

S =
⋃

x∈S

{x} =
⋃

x∈S

B1(x)

is open; that is, all subsets of X are open.

A notion closely related to open sets is that of a neighborhood of a point.

Definition 2.2.7. Let (X, d) be a metric space, and let x ∈ X. A subset N
of X is called a neighborhood of x if there is an open subset U of X with
x ∈ U ⊂ N . The collection of all neighborhoods of x is denoted by Nx.

Proposition 2.2.8. Let (X, d) be a metric space, and let x ∈ X. Then:

(i) A subset N of X belongs to Nx if and only if there is ε > 0 such that
Bε(x) ⊂ N ;

(ii) If N ∈ Nx and M ⊃ N , then M ∈ Nx;
(iii) If N1, N2 ∈ Nx, then N1 ∩ N2 ∈ Nx.

Moreover, a subset U of X is open if and only if U ∈ Ny for each y ∈ U .

Proof. Suppose that N ⊂ X is such that there is ε > 0 such that Bε(x) ⊂ N .
Since Bε(x) is open, it follows that N ∈ Nx. Conversely, suppose that N ∈ Nx.
Then there is an open subset U of N with x ∈ U . By the definition of openness,
there is ε > 0 such that Bε(x) ⊂ U ⊂ N . This proves (i).

(ii) is obvious, and (iii) follows immediately from Proposition 2.2.5(iii).
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Let U ⊂ X be open. Then, clearly, U is a neighborhood of each of its points.
Conversely, let U ⊂ X be any set with that property. By the definition of a
neighborhood, there is, for each y ∈ U , an open subset Uy of U with y ∈ Uy.
Since U =

⋃
y∈U Uy, Proposition 2.2.5(ii) yields that U is open. ��

As in Euclidean space, we define a set to be closed if its complement is
open.

Definition 2.2.9. Let (X, d) be a metric space. A subset F of X is called
closed if X \ F is open.

Examples 2.2.10. (a) Let (X, d) be any metric space, let x0 ∈ X, and let r > 0.
The closed ball centered at x0 with radius r is defined as

Br[x0] := {x ∈ X : d(x, x0) ≤ r}.

We claim that Br[x0] is indeed closed. To show this, let x ∈ X \ Br[x0],
that is, such that d(x, x0) > r. Let ε := d(x, x0)−r > 0, and let y ∈ Bε(x).
Since d(x, x0) ≤ d(x, y) + d(y, x0), we obtain that

d(y, x0) ≥ d(x, x0) − d(x, y) > d(x, x0) − ε = d(x, x0) − (d(x, x0) − r) = r.

It follows that Bε(x) ⊂ X \ Br[x0]. Consequently, X \ Br[x0] is open and
Br[x0] is closed.

(b) In a discrete metric space, every subset is both open and closed.

The following is a straightforward consequence of Proposition 2.2.5.

Proposition 2.2.11. Let (X, d) be a metric space. Then:

(i) ∅ and X are closed;
(ii) If F is a family of closed subsets of X, then

⋂
{F : F ∈ F} is closed;

(iii) If F1 and F2 are closed subsets of X, then F1 ∪ F2 is closed.

Of course, in most metric spaces there are many sets that are neither open
nor closed. Nevertheless, we can make the following definition.

Definition 2.2.12. Let (X, d) be a metric space. For each S ⊂ X, the closure
of S is defined as

S :=
⋂

{F : F ⊂ X is closed and contains S}.

From Proposition 2.2.11(ii) it is immediate that the closure of a set is a
closed set. The following is an alternative description of the closure.

Proposition 2.2.13. Let (X, d) be a metric space, and let S ⊂ X. Then we
have:

S = {x ∈ X : N ∩ S �= ∅ for all N ∈ Nx}
= {x ∈ X : Bε(x) ∩ S �= ∅ for all ε > 0}.
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Proof. Each open ball is a neighborhood of its center, and any neighborhood
of a point contains an open ball centered at that point; therefore

{x ∈ X : N ∩ S �= ∅ for all N ∈ Nx} = {x ∈ X : Bε(x) ∩ S �= ∅ for all ε > 0}

holds. We denote this set by cl(S).
Let x ∈ S, and let N ∈ Nx. Then there is an open subset U of X contained

in N with x ∈ U . Assume that N∩S = ∅, so that U∩S = ∅ (i.e., S ⊂ X \U).
Since X \U is closed, it follows that S ⊂ X \U and thus x ∈ X \U , which is
a contradiction. Consequently, x ∈ cl(S) holds.

Conversely, let x ∈ cl(S), and assume that x /∈ S. Then U := X \ S is an
open set containing x (thus belonging to Nx) having empty intersection with
S. This contradicts x ∈ cl(S). ��

Examples 2.2.14. (a) Any open interval in R contains a rational number.
Hence, we have Q = R.

(b) Let (X, d) be any metric space. It is obvious that Br(x0) ⊂ Br[x0] for all
x0 ∈ X and r > 0. In general, equality need not hold. If (X, d) is discrete
and has more than one element, we have for any x0 ∈ X that

B1(x0) = {x0} = {x0} � X = B1[x0].

(c) Let E be a normed space, let x0 ∈ E, and let r > 0. We claim that (in
this particular situation) Br(x0) = Br[x0] holds. In view of the previous
example, only Br[x0] ⊂ Br(x0) needs proof. Let x ∈ Br[x0], and let ε > 0.
Choose δ ∈ (0, 1) such that δ‖x − x0‖ < ε, and let

y := x0 + (1 − δ)(x − x0) = (1 − δ)x + δx0,

so that
‖y − x0‖ = (1 − δ)‖x − x0‖ ≤ (1 − δ)r < r;

that is, y ∈ Br(x0). Furthermore, we have

‖y − x‖ = ‖(1 − δ)x + δx0 − x‖ = δ‖x − x0‖ < ε,

and thus y ∈ Bε(x). From Proposition 2.2.13, we conclude that x ∈
Br(x0).

The closure of a set is important in connection with two further topological
concepts: density and the boundary.

Definition 2.2.15. Let (X, d) be a metric space.

(a) A subset D of X is said to be dense in X if D = X.
(b) If X has a dense countable subset, then X is called separable.

Examples 2.2.16. (a) Q is dense in R. In particular, R is separable.
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(b) A subset S of a discrete metric space (X, d) is dense if and only if S = X.
In particular, X is separable if and only if it is countable.

The following hereditary property of separability is somewhat surprising,
but very useful.

Theorem 2.2.17. Let (X, d) be a separable metric space, and let Y be a sub-
space of X. Then Y is also separable.

Proof. Let C = {x1, x2, x3, . . .} be a dense countable subset of X. One might
be tempted to use Y ∩ C as a dense (and certainly countable) subset of Y ,
but this may not work: if X �= C, take Y = X \ C, for example.

Let

A :=
{

(n,m) ∈ N × N : there is y ∈ Y such that d(y, xn) <
1
m

}
.

For each (n,m) ∈ A, choose yn,m ∈ Y with d(yn,m, xn) < 1
m . Then CY :=

{yn,m : (n,m) ∈ A} is a countable subset of Y . We claim that CY is also
dense in Y . Let y ∈ Y , and let ε > 0. Choose m ∈ N such that 1

m ≤ ε
2 . Since

C is dense in X, there is n ∈ N such that d(y, xn) < 1
m . By the definition of

A, this means that (n,m) ∈ A. It follows that

d(y, yn,m) ≤ d(y, xn) + d(xn, yn,m) <
2
m

≤ ε.

By Proposition 2.2.13, this means that y lies in the closure of CY in Y . ��

Examples 2.2.18. (a) The irrational numbers are a separable subspace of R.
(b) Let X = B(N, R) be equipped with the metric introduced in Example

2.1.2(d); that is,

d(f, g) = sup
n∈N

|f(n) − g(n)| (f, g ∈ X).

We claim that X is not separable. We assume towards a contradiction that
X is separable. Let Y denote the subspace of X consisting of all {0, 1}
valued functions. From Theorem 2.2.17, it follows that Y is separable, too.
Since, for f, g ∈ Y , we have

d(f, g) = sup
n∈N

|f(n) − g(n)| =
{

0, f = g,
1, f �= g,

it follows that Y is a discrete metric space and therefore must be countable.
However, the map

Y → [0, 1], f �→
∞∑

n=1

f(n)
2n

is surjective, and [0, 1] is not countable. This is a contradiction.
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To motivate the notion of boundary, we first consider an example.

Example 2.2.19. Let (E, ‖ · ‖) be a normed space, let x0 ∈ E, and let r > 0.
Then, intuitively, one might view the boundary of the open ball Br(x0) as the
sphere

Sr[x0] := {x ∈ E : ‖x − x0‖ = r}.
Let x ∈ Sr[x0], and let ε > 0. Let δ ∈ (0, 1) be such that δ‖x − x0‖ < ε,
and let y := x0 + (1 − δ)(x − x0). As in Example 2.2.14(c), it follows that
y ∈ Bε(x) ∩ Br(x0), so that

Bε(x) ∩ Br(x0) �= ∅ and Bε(x) ∩ (E \ Br(x0)) �= ∅. (∗∗)

On the other hand, since Br(x0) and E \Br[x0] are open, it follows that any
element x of E satisfying (∗∗) for each ε > 0 must lie in Sr[x0].

In view of this example, we define the following.

Definition 2.2.20. Let (X, d) be a metric space, and let S ⊂ X. Then the
boundary of S is defined as

∂S := {x ∈ X : Bε(x) ∩ S �= ∅ and Bε(x) ∩ (X \ S) �= ∅ for all ε > 0}.

An argument similar to that at the beginning of the proof of Proposition
2.2.13 yields immediately that

∂S = {x ∈ X : N ∩ S �= ∅ and N ∩ (X \ S) �= ∅ for all N ∈ Nx}

for each subset S of a metric space X.

Proposition 2.2.21. Let (X, d) be a metric space, and let S ⊂ X. Then:

(i) ∂S = ∂(X \ S);
(ii) ∂S is closed;
(iii) S = S ∪ ∂S.

Proof. (i) is a triviality.
For (ii), let x ∈ X \ ∂S; that is, there is N ∈ Nx such that N ∩ S = ∅

or N ∩ (X \ S) = ∅. Let U ⊂ N be open such that x ∈ U . It follows that
U ∩S = ∅ or U ∩(X \S) = ∅. Since U is a neighborhood of each of its points,
it follows that U ⊂ X \ ∂S. Hence, X \ ∂S is a neighborhood of x. Since x
was arbitrary, it follows that X \ ∂S is open.

For (iii), note that, by Proposition 2.2.13, ∂S ⊂ S holds, so that S∪∂S ⊂ S.
Conversely, let x ∈ S, and suppose that x /∈ S. For each N ∈ Nx, it is clear
that N ∩ (X \ S) �= ∅, and Proposition 2.2.13 yields that N ∩ S �= ∅ as well.
��

The closure of a given set is, by definition, the smallest closed set containing
it. Analogously, one defines the largest open set contained in a given set.
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Definition 2.2.22. Let (X, d) be a metric space. For each S ⊂ X, the interior
of S is defined as

◦
S:=

⋃
{U : U ⊂ X is open and contained in S}.

The following proposition characterizes the interior of a set:

Proposition 2.2.23. Let (X, d) be a metric space, and let S ⊂ X. Then we
have:

◦
S= {x ∈ X : S ∈ Nx} = S \ ∂S.

Proof. Let x ∈
◦
S. Then there is an open subset U of S with x ∈ U , so that

S ∈ Nx. Conversely, if S ∈ Nx, then there is an open set U of X with
x ∈ U ⊂ S, so that x ∈

◦
S.

Let x ∈
◦
S, so that S ∈ Nx by the foregoing. Since, trivially, S∩(X\S) = ∅,

we see that x /∈ ∂S. Conversely, let x ∈ S \ ∂S. Then there is N ∈ Nx such
that N ∩ (X \ S) = ∅. Let U ⊂ N be open in X such that x ∈ U . It follows

that U ∩ (X \ S) = ∅ and therefore U ⊂ S. Consequently, x ∈ U ⊂
◦
S holds.

��

Exercises

1. Show that a finite subset of a metric space is closed.
2. Let (E, ‖ · ‖) be a normed space, let U ⊂ E be open, and let S ⊂ E be any set.

Show that S + U := {x + y : x ∈ S, y ∈ U} is open in E.
3. Let U ⊂ R be open.

(a) For each x ∈ U , let Ix be the union of all open intervals contained in U and
containing x. Show that Ix is an open (possibly unbounded) interval.

(b) For x, y ∈ U , show that Ix = Iy or Ix ∩ Iy = ∅.
(c) Conclude that U is a union of countably many, pairwise disjoint open in-

tervals.
4. Let (X, d) be a metric space, and let S ⊂ X. The distance of x ∈ X to S is

defined as
dist(x, S) := inf{d(x, y) : y ∈ S}

(where dist(x, S) = ∞ if S = ∅). Show that S = {x ∈ X : dist(x, S) = 0}.
5. Let Y be the subspace of B(N, F) consisting of those sequences tending to zero.

Show that Y is separable.
6. Let (X, d) be a metric space, and let Y be a subspace of X. Show that U ⊂ Y is

open in Y if and only if there is V ⊂ X that is open in X such that U = Y ∩V .

2.3 Convergence and Continuity

The notion of convergence in R
n carries over to metric spaces almost verbatim.
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Definition 2.3.1. Let (X, d) be a metric space. A sequence (xn)∞n=1 in X is
said to converge to x ∈ X if, for each ε > 0, there is nε ∈ N such that
d(xn, x) < ε for all n ≥ nε. We then say that x is the limit of (xn)∞n=1 and
write x = limn→∞ xn or xn → x.

It is straightforward to verify that a sequence (xn)∞n=1 in a metric space
converges to x if and only if, for each N ∈ Nx, there is nN ∈ N such that
xn ∈ N for all n ≥ nN .

Examples 2.3.2. (a) Let (X, d) be a discrete metric space, and let (xn)∞n=1 be
a sequence in X that converges to x ∈ X. Then there is n1 ∈ N such
that d(xn, x) < 1 for n ≥ n1; that is, xn = x for n ≥ n1. Hence, every
convergent sequence in a discrete metric space is eventually constant.

(b) Let C([0, 1], F) be equipped with the metric induced by ‖ · ‖∞ (Example
2.1.2(c)). We claim that a sequence (fn)∞n=1 in C([0, 1], F) converges to
f ∈ C([0, 1], F) with respect to that metric if and only if it converges (to
f) uniformly on [0, 1]. Suppose first that ‖fn − f‖∞ → 0, and let ε > 0.
Then there is nε ∈ N such that

|fn(t) − f(t)| ≤ ‖fn − f‖∞ < ε (n ≥ nε, t ∈ [0, 1]),

so that fn → f uniformly on [0, 1]. Conversely, let (fn)∞n=1 converge to f
uniformly on [0, 1], and let ε > 0. By the definition of uniform convergence,
there is nε ∈ N such that

|fn(t) − f(t)| <
ε

2
(n ≥ nε, t ∈ [0, 1])

and consequently,

‖fn − f‖∞ = sup{|fn(t) − f(t)| : t ∈ [0, 1]} ≤ ε

2
< ε (n ≥ nε).

Hence, we have convergence with respect to ‖ · ‖∞.

As in R
n, the limit of a sequence in a metric space is unique.

Proposition 2.3.3. Let (X, d) be a metric space, let (xn)∞m=1 be a sequence
in X, and let x, x′ ∈ X be such that (xn)∞n=1 converges to both x and x′. Then
x and x′ are equal.

Proof. Assume that x �= x′, so that ε := 1
2d(x, x′) > 0. Since xn → x, there

is n1 ∈ N such that d(xn, x) < ε for n ≥ n1, and since xn → x′, too, there is
n2 ∈ N such that d(xn, x′) < ε for n ≥ n2. Let n := max{n1, n2}, so that

d(x, x′) ≤ d(x, xn) + d(xn, x′) < ε + ε = d(x, x′),

which is nonsense. ��
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Here is the idea of the proof of Proposition 2.3.3 in a sketch.

ε
2x

xn

n 1x

x’

x

ε

n

Fig. 2.2: Uniqueness of the limit

Also, as in R
n, convergence in metric spaces can be used to characterize

the closed subsets.

Proposition 2.3.4. Let (X, d) be a metric space, and let S ⊂ X. Then S
consists of those points in X that are the limit of a sequence in S.

Proof. Let x ∈ X be the limit of a sequence (xn)∞n=1 in S, and let ε > 0.
By the definition of convergence, there is nε ∈ N such that d(xn, x) < ε for
n ≥ nε; that is, xn ∈ Bε(x) for n ≥ nε. In particular, Bε(x) ∩ S is nonempty.
Since ε > 0 is arbitrary, it follows that x ∈ S by Proposition 2.2.13.

Conversely, let x ∈ S. By Proposition 2.2.13, we have B 1
n
(x) ∩ S �= ∅ for

each n ∈ N; there is thus, for each n ∈ N, some xn ∈ S with d(xn, x) < 1
n . It

is clear that the sequence (xn)∞n=1 converges to x. ��

Corollary 2.3.5. Let (X, d) be a metric space. Then F ⊂ X is closed if and
only if every sequence in F that converges in X has its limit in F .

Of course, with a notion of convergence at hand, continuity of functions
can be defined.

Definition 2.3.6. Let (X, dX) and (Y, dY ) be metric spaces, and let x0 ∈ X.
Then f : X → Y is said to be continuous at x0 if, for each sequence (xn)∞n=1

in X that converges to x0, we have limn→∞ f(xn) = f(x0).
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The following characterization holds.

Theorem 2.3.7. Let (X, dX) and (Y, dY ) be metric spaces, and let x0 ∈ X.
Then the following are equivalent for f : X → Y .

(i) f is continuous at x0.
(ii) For each ε > 0, there is δ > 0 such that dY (f(x), f(x0)) < ε for all x ∈ X

with dX(x, x0) < δ.
(iii) For each ε > 0, there is δ > 0 such that Bδ(x0) ⊂ f−1(Bε(f(x0))).
(iv) For each N ∈ Nf(x0), we have f−1(N) ∈ Nx0 .

Proof. (i) =⇒ (ii): Assume otherwise; that is, there is ε0 > 0 such that, for
each δ > 0, there is xδ ∈ X with dX(xδ, x0) < δ, but dY (f(xδ), f(x0)) ≥ ε0.
For n ∈ N, let x′

n := x 1
n
, so that d(x′

n, x0) < 1
n and thus x′

n → x0. Since,
however, dY (f(x′

n), f(x0)) ≥ ε0 holds for all n ∈ N, it is impossible that
f(x′

n) → f(x0) as required for f to be continuous at x0.
(iii) is only a rewording of (ii).
(iii) =⇒ (iv): Let N ∈ Nf(x0). Hence, there is ε > 0 such that Bε(x0) ⊂ N .

By (iii), there is δ > 0 such that

Bδ(x0) ⊂ f−1(Bε(f(x0))) ⊂ f−1(N).

This implies that f−1(N) ∈ Nx0 .
(iv) =⇒ (i): Let (xn)∞n=1 be a sequence in X with xn → x0. Let N ∈ Nf(x0),

so that f−1(N) ∈ Nx0 . Since xn → x0, there is nN ∈ N such that xn ∈ f−1(N)
for n ≥ nN ; that is, f(xn) ∈ N for n ≥ nN . Since N ∈ Nf(x0) was arbitrary,
this yields f(xn) → f(x0). ��

The following definition should also look familiar.

Definition 2.3.8. Let (X, dX) and (Y, dY ) be metric spaces. Then a function
f : X → Y is said to be continuous if it is continuous at each point of X.

Example 2.3.9. Let (X, d) be a metric space. We first claim that

|d(x, y) − d(x0, y0)| ≤ d(x, x0) + d(y, y0) (x, x0, y, y0 ∈ X). (∗ ∗ ∗)

Fix x, x0, y, y0 ∈ X, and note that

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y)

and therefore
d(x, y) − d(x0, y0) ≤ d(x, x0) + d(y0, y).

Interchanging the roles of x and x0 and, respectively, y and y0, yields
d(x0, y0) − d(x, y) ≤ d(x, x0) + d(y0, y). Altogether, we obtain (∗ ∗ ∗). The
Cartesian square X2 becomes a metric space in its own right through

d̃((x, y), (x′, y′)) := d(x, x′) + d(y, y′) ((x, x′), (y, y′) ∈ X2).

The inequality (∗ ∗ ∗) immediately yields that d : X2 → R is continuous if X2

is equipped with d̃.
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Corollary 2.3.10. Let (X, dX) and (Y, dY ) be metric spaces. Then the fol-
lowing are equivalent for f : X → Y .

(i) f is continuous.
(ii) f−1(U) is open in X for each open subset U of Y .
(iii) f−1(F ) is closed in X for each closed subset F of Y .

Proof. (i) =⇒ (ii): Let U ⊂ Y be open, so that U ∈ Ny for each y ∈ U and
thus U ∈ Nf(x) for each x ∈ f−1(U). For Theorem 2.3.7(iv), we conclude that
f−1(U) ∈ Nx for each x ∈ f−1(U); that is, f−1(U) is a neighborhood of each
of its points and thus open.

(ii) =⇒ (iii): Let F ⊂ Y be closed, so that Y \ F is open. Since X \
f−1(F ) = f−1(Y \ F ) then must be open by (ii), it follows that f−1(F ) is
closed. Analogously, (iii) =⇒ (ii) is proved.

(ii) =⇒ (i): If f satisfies (ii), it trivially also satisfies Theorem 2.3.7(iii) for
each x ∈ X. ��

We now give an example which shows that continuous maps between gen-
eral metric spaces can be quite different from what we may intuitively expect.

Example 2.3.11. Let (X, dX) and (Y, dY ) be metric spaces such that (X, dX)
is discrete, and let f : X → Y be arbitrary. Let U ⊂ Y be open. Since in a
discrete space every set is open, it follows that f−1(U) is open. Consequently,
f must be continuous.

As we have seen, there can be different metrics on one set. For many
purposes, it is convenient to view certain metrics as identical.

Definition 2.3.12. Let X be a set. Two metrics d1 and d2 on X are said
to be equivalent if the identity map on X is continuous both from (X, d1) to
(X, d2) and from (X, d2) to (X, d1).

In view of Corollary 2.3.10, two metrics d1 and d2 on a set X are equivalent
if and only if they yield the same open sets (or, equivalently, the same closed
sets).

Examples 2.3.13. (a) The Euclidean metric on R
n and the discrete metric are

not equivalent.
(b) For j = 1, . . . , n, let (Xj , dj) be a metric space. Let X := X1 × · · · × Xn,

and for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X, define

D1(x, y) :=
n∑

j=1

dj(xj , yj) and D∞(x, y) := max
j=1,...,n

dj(xj , yj).

Then D1 and D∞ are metrics on X satisfying

D∞(x, y) ≤ D1(x, y) ≤ nD∞(x, y) (x, y ∈ X).

Consequently, D1 and D∞ are equivalent.
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(c) Let (X, d) be any metric space, let p ∈ X, and let dp be the corresponding
French railroad metric. Since

d(x, y) ≤ dp(x, y) (x, y ∈ X),

it is easily seen that the identity is continuous from (X, dp) to (X, d). On
the other hand, let (xn)∞n=1 be a sequence in X that converges to x �= p
with respect to d. If xn �= x, we have

dp(xn, x) = d(xn, p) + d(p, x) ≥ d(p, x),

so that, for dp(xn, x) → 0 to hold, (xn)∞n=1 must be eventually constant.
Hence, for example, the Euclidean metric on R

n and—no matter how
“Paris” is chosen—the corresponding French railroad metric are not equiv-
alent. On the other hand, if (X, d) is discrete, then the identity from (X, d)
to (X, dp) is also continuous, so that d and dp are equivalent.

(d) Let (X, d) be any metric space, and let d̃ be the metric defined in Example
2.1.2(f). We claim that d and d̃ are equivalent. The function

f : [0,∞) → [0, 1), t �→ t

1 + t

is continuous and bijective with continuous inverse

g : [0, 1) → [0,∞), s �→ s

1 − s
.

Since d̃ = f ◦ d (and, consequently, d = g ◦ d̃), it follows that d and d̃ are
indeed equivalent.

(e) Let (X, d) be any metric space, and let U ⊂ X be open. Define

dU (x, y) := d(x, y) +
∣∣∣
∣

1
dist(x,X \ U)

− 1
dist(y,X \ U)

∣∣∣
∣ (x, y ∈ U).

(If U = X, we formally set 1
dist(x,X\U) = 1

dist(y,X\U) = 1
∞ = 0.) From

Exercise 2.2.4, it follows that dU is well defined on U × U . We claim that
dU is a metric on U . Clearly, dU is positive definite and symmetric. Let
x, y, z ∈ U , and note that

dU (x, z) = d(x, z) +
∣∣∣∣

1
dist(x,X \ U)

− 1
dist(z,X \ U)

∣∣∣∣

≤ d(x, y) + d(y, z) +
∣
∣∣∣

1
dist(x,X \ U)

− 1
dist(y,X \ U)

+
1

dist(y,X \ U)
− 1

dist(z,X \ U)

∣∣∣∣

≤ d(x, y) +
∣
∣∣∣

1
dist(x,X \ U)

− 1
dist(y,X \ U)

+
∣
∣∣∣

+ d(y, z) +
∣∣∣
∣

1
dist(y,X \ U)

− 1
dist(z,X \ U)

∣∣∣
∣

= dU (x, y) + dU (y, z).
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We claim that d restricted to U × U and dU are equivalent. Since

d(x, y) ≤ dU (x, y) (x, y ∈ U),

the continuity of the identity from (U, dU ) to (U, d) is clear. To prove that
the identity on U is also continuous in the converse direction, first note
that nothing has to be shown if U = X. We may thus suppose without loss
of generality that U � X. Let (xn)∞n=1 be a sequence in U that converges
to x ∈ U with respect to d; that is, d(xn, x) → 0. By Exercise 3 below,
this entails that dist(xn,X \ U) → dist(x,X \ U) and thus

dU (xn, x) = d(xn, x) +
∣
∣∣∣

1
dist(xn,X \ U)

− 1
dist(x,X \ U)

∣
∣∣∣→ 0.

Hence, (xn)∞n=1 converges to x as well with respect to dU .

Exercises

1. Let ((Xk, dk))∞k=1 be a sequence of metric spaces, and let X :=
∏∞

k=1
Xk be

equipped with the metric d from Example 2.1.2(g). Show that convergence in

X is coordinatewise convergence: a sequence
((

x
(n)
1 , x

(n)
2 , x

(n)
3 , . . .

))∞

n=1
in X

converges to (x1, x2, x3, . . .) ∈ X with respect to d if and only if x
(n)
k → xk for

each k ∈ N.
2. Let (X, dX) and (Y, dY ) be metric spaces, let p ∈ X, and let dp denote the

corresponding French railroad metric on X. Show that f : X → Y is continuous
with respect to dp if and only if it is continuous at p with respect to dX .

3. Let (X, d) be a metric space, and let ∅ �= S ⊂ X. Show that the function

X → R, x �→ dist(x, S)

is continuous.
4. Let E and F be normed spaces, and let T : E → F be linear. Show that the

following are equivalent.
(i) T is continuous;
(ii) T is continuous at 0;
(iii) There is C ≥ 0 such that ‖T (x)‖ ≤ C‖x‖ for all x ∈ E.

5. Let E and F be normed spaces, let T : E → F be linear, and suppose that
dim E < ∞. Show that T is continuous. (Hint : For x ∈ E, define |||x||| :=
max{‖x‖, ‖T (x)‖}; show that ||| · ||| is a norm on E, and use Proposition B.1.)

6. On C([0, 1], F) we have the two norms ‖ · ‖1 and ‖ · ‖∞ introduced in Example
2.1.2(c). Show that the metrics induced by these two norms are not equivalent.

2.4 Completeness

As we can define convergent sequences in metric spaces, we can speak of
Cauchy sequences.
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Definition 2.4.1. Let (X, d) be a metric space. A sequence (xn)∞n=1 in X
is called a Cauchy sequence if, for each ε > 0, there is nε > 0 such that
d(xn, xm) < ε for all n,m ≥ nε.

As in R
n, we have the following.

Proposition 2.4.2. Let (X, d) be a metric space, and let (xn)∞n=1 be a con-
vergent sequence in X. Then (xn)∞n=1 is a Cauchy sequence.

Proof. Let x := limn→∞ xn, and let ε > 0. Then there is nε > 0 such that
d(xn, x) < ε

2 for all n ≥ nε. Consequently, we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε (n,m ≥ nε),

so that (xn)∞n=1 is a Cauchy sequence. ��

In R
n, the converse holds as well: Every Cauchy sequence converges. For

general metric spaces, this is clearly false: the sequence
(

1
n

)∞
n=1

is a Cauchy
sequence in the metric space (0, 1)—equipped with its canonical metric—but
has no limit in that space. This makes the following definition significant.

Definition 2.4.3. A metric space (X, d) is called complete if every Cauchy
sequence in X converges.

A normed space that is complete with respect to the metric induced by
its norm is also called a Banach space.

Examples 2.4.4. (a) R
n is complete.

(b) In a discrete metric space, every Cauchy sequence is eventually constant
and therefore convergent. Hence, discrete metric spaces are complete.

(c) Let S �= ∅ be a set, and let (Y, d) be a complete metric space. We claim
that the metric space (B(S, Y ),D) from Example 2.1.2(d) is complete. Let
(fn)∞n=1 be a Cauchy sequence in B(S, Y ). Let ε > 0, and choose nε > 0
such that D(fn, fm) < ε for all n,m ≥ nε. For x ∈ S, we then have

d(fn(x), fm(x)) ≤ D(fn, fm) < ε (n,m ≥ nε).

Consequently, (fn(x))∞n=1 is a Cauchy sequence in Y for each x ∈ S. Since
Y is complete, we can therefore define f : S → Y by letting

f(x) := lim
n→∞

fn(x) (x ∈ S).

We first claim that f lies in B(S, Y ) and is, in fact, the limit of (fn)∞n=1

with respect to D. To see this, let x ∈ S, and note that

d(fn(x), f(x)) = lim
m→∞

d(fn(x), fm(x))

for n ∈ N by Example 2.3.9. It follows for n ≥ nε that
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d(fn(x), f(x))

= lim
m→∞

d(fn(x), fm(x)) ≤ lim sup
m→∞

D(fn, fm) ≤ ε (x ∈ S).

Let n ≥ nε, and let C := supx,y∈S d(fn(x), fn(y)), which is finite by
the definition of B(S, Y ). From the previous inequality, we obtain, for
arbitrary x, y ∈ S, that

d(f(x), f(y)) ≤ d(f(x), fn(x))+ d(fn(x), fn(y))+ d(fn(y), f(y)) ≤ 2ε+C.

Hence, f belongs to B(S, Y ). Since d(fn(x), f(x)) ≤ ε for all x ∈ S and
n ≥ nε, we eventually obtain:

D(fn, f) = sup
x∈S

d(fn(x), f(x)) ≤ ε (n ≥ nε).

This is sufficient to guarantee that f = limn→∞ fn in (B(S, Y ),D).

The following proposition indicates how to get new complete spaces from
old ones.

Proposition 2.4.5. Let (X, d) be a metric space, and let Y be a subspace of X.

(i) If X is complete and if Y is closed in X, then Y is complete.
(ii) If Y is complete, then it is closed in X.

Proof. Suppose that X is complete and that Y is closed in X. Let (xn)∞n=1 be
a Cauchy sequence in Y . Then (xn)∞n=1 is also a Cauchy sequence in X and
thus has a limit x ∈ X. Since Y is closed, Corollary 2.3.5 yields that x ∈ Y ,
so that Y is complete. This proves (i).

For (ii), let (yn)∞n=1 be a sequence in Y that converges to y ∈ X. Since
(yn)∞n=1 converges in X, it is a Cauchy sequence in X and thus in Y . Since Y
is complete, there is y′ ∈ Y with y′ = limn→∞ yn. If (yn)∞n=1 converges to y′

in Y , it does so in X. Uniqueness of the limit yields that y′ = y. Hence, y lies
in Y . Corollary 2.3.5 thus yields that Y is closed in X. ��

Example 2.4.6. Let (X, dX) and (Y, dY ) be metric spaces. We define

C(X,Y ) := {f : X → Y : f is continuous}

and
Cb(X,Y ) := B(X,Y ) ∩ C(X,Y ).

Clearly, Cb(X,Y ) is a subspace of the metric space (B(X,Y ),D). We claim
that Cb(X,Y ) is closed in B(X,Y ) and therefore complete if (Y, dY ) is. Let
(fn)∞n=1 be a sequence in Cb(X,Y ) that converges to f ∈ B(X,Y ). We claim
that f is again continuous. To see this, fix x0 ∈ X. We show that f is contin-
uous at x0. Let ε > 0. Since fn → f in B(X,Y ), there is nε ∈ N such that
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D(fn, f) < ε
3 for n ≥ nε. Fix n ≥ nε. Since fn is continuous at x0, the set

N := f−1
n (B ε

3
(fn(x0))) is a neighborhood of x0. Let x ∈ N , and note that

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0))
≤ D(fn, f) + d(fn(x), fn(x0)) + D(fn, f)

<
2ε

3
+ d(fn(x), fn(x0)), because n ≥ nε,

< ε, because x ∈ N.

It follows that N ⊂ f−1(Bε(f(x0))), so that f−1(Bε(f(x0))) ∈ Nx0 . Since
ε > 0 was arbitrary, this is enough to guarantee the continuity of f at x0.

In view of Proposition 2.4.5, the following assertion seems to defy reason
at first glance.

Proposition 2.4.7. Let (X, d) be a complete metric space, and let U ⊂ X
be open. Then (U, dU ) is a complete metric space, where dU is defined as in
Example 2.3.13(e).

Proof. If U = X, we have dU = d, so that the claim is trivially true. Hence,
suppose that U � X.

Let (xn)∞n=1 be a Cauchy sequence in (U, dU ). Then (xn)∞n=1 is easily seen
to be a Cauchy sequence in (X, d) as well. Let x ∈ X be its limit in (X, d).
We first claim that x ∈ U . Assume towards a contradiction that x ∈ X \ U .
From Exercise 2.3.3, we conclude that dist(xn,X \ U) → 0. Since (xn)∞n=1 is
a Cauchy sequence in (U, dU ), there is n1 ∈ N such that
∣∣
∣∣

1
dist(xn,X \ U)

− 1
dist(xm,X \ U)

∣∣
∣∣ ≤ dU (xn, xm) ≤ 1 (n,m ≥ n1).

Fix m ≥ n1, and note that therefore

1
dist(xn,X \ U)

≤
∣∣
∣∣

1
dist(xn,X \ U)

− 1
dist(xm,X \ U)

∣∣
∣∣+

1
dist(xm,X \ U)

≤ 1 +
1

dist(xm,X \ U)
(n ≥ n1).

This is impossible, however, if dist(xn,X \U) → 0. Consequently, x ∈ U must
hold.

Since d and dU are equivalent on U , we see that dU (xn, x) → 0 as well.
Hence, x is the limit of (xn)∞n=1 in (U, dU ). ��

At first glance, Proposition 2.4.7 seems to be paradoxical, to say the least.
Any open subset of a complete metric space is supposed to be complete with
respect to an equivalent metric. Doesn’t this and Proposition 2.4.5(ii) imme-
diately yield that every open subset of a complete metric space is also closed?
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This is clearly wrong. The apparent paradox is resolved if one recalls the defi-
nition of a subspace of a metric space: (U, dU ) is not a subspace of the metric
space (X, d), even though the two metrics d and dU are equivalent on U .

We now present a famous property of complete metric spaces, for which
we first require a definition.

Definition 2.4.8. Let (X, d) be a metric space. The diameter of a subset
S �= ∅ of X is defined as

diam(S) := sup{d(x, y) : x, y ∈ S}.

Theorem 2.4.9 (Cantor’s intersection theorem). Let (X, d) be a com-
plete metric space, and let (Fn)∞n=1 be a sequence of nonempty closed subsets of
X such that F1 ⊃ F2 ⊃ F3 ⊃ · · · and limn→∞ diam(Fn) = 0. Then

⋂∞
n=1 Fn

contains precisely one point of X.

Proof. For each n ∈ N, let xn ∈ Fn. We claim that the sequence (xn)∞n=1 is a
Cauchy sequence. To see this, let ε > 0. Choose nε ∈ N such that diam(Fn) < ε
for n ≥ nε. Let n,m ≥ nε. Since the sequence (Fn)∞n=1 is decreasing, it follows
that xn, xm ∈ Fnε

, so that

d(xn, xm) ≤ diam(Fnε
) < ε.

Consequently, (xn)∞n=1 is indeed a Cauchy sequence and therefore converges
in X, to x say. Since xm ∈ Fm ⊂ Fn for all n,m ∈ N, with m ≥ n, it follows
from Corollary 2.3.5 that x = limm→∞ xm ∈ Fn for all n ∈ N and thus
x ∈

⋂∞
n=1 Fn.

To show that
⋂∞

n=1 Fn = {x}, assume towards a contradiction that there
is x′ ∈

⋂∞
n=1 Fn different from x. Let ε0 := d(x, x′) > 0, and choose n ∈ N so

large that diam(Fn) < ε0. Since x, x′ ∈ Fn, we obtain

d(x, x′) ≤ diam(Fn) < ε0 = d(x, x′),

which is impossible. ��
Next, we show that any metric space is—in a sense yet to be made

precise—already a subspace of a complete metric space.

Definition 2.4.10. Let (X, d) be a metric space. A completion of (X, d) is
a metric space

(
X̃, d̃

)
together with a map ι : X → X̃ with the following

properties.

(a)
(
X̃, d̃

)
is complete;

(b) d̃(ι(x), ι(y)) = d(x, y) for x, y ∈ X;
(c) ι(X) is dense in X̃.

We show that, first of all, every metric space has a completion and, sec-
ondly, that this completion is unique (in a certain sense).

To specify what we mean by uniqueness of a completion, we require another
definition.
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Definition 2.4.11. Let (X, dX) and (X, dY ) be metric spaces. A function f :
X → Y is called an isometry (or isometric) if

dY (f(x), f(y)) = dX(x, y) (x, y ∈ X).

If f is also bijective, we call f an isometric isomorphism.

Lemma 2.4.12. Let (X, d) be a metric space, let
(
X̃1, d̃1

)
and

(
X̃2, d̃2

)
be

completions of (X, d), and let ι1 : X → X̃1 and ι2 : X → X̃2 denote the
corresponding maps from Definition 2.4.10. Then there is a unique isometric
isomorphism f : X̃1 → X̃2 such that f ◦ ι1 = ι2.

Proof. We begin with the definition of f . Let x ∈ X̃1. Since ι1(X) is dense in
X̃1, there is a sequence (xn)∞n=1 in X such that x = limn→∞ ι1(xn). It is clear
that (ι1(xn))∞n=1 is a Cauchy sequence in X̃1, and Definition 2.4.10(b) implies
that (xn)∞n=1 is a Cauchy sequence in X. Again Definition 2.4.10(b) guarantees
that (ι2(xn))∞n=1 is a Cauchy sequence in X̃2 and therefore converges. Let
f(x) := limn→∞ ι2(xn).

We first prove that f is well defined , that is, does not depend on the
particular choice of a sequence (xn)∞n=1. To prove this, let (x′

n)∞n=1 be another
sequence in X with x = limn→∞ ι1(x′

n). It follows that

d(xn, x′
n) = d̃1(ι1(xn), ι1(x′

n)) ≤ d̃1(ι1(xn), x) + d̃1(x, ι1(x′
n)) → 0

and therefore

d̃2(ι2(x′
n), f(x)) ≤ d̃2(ι2(x′

n), ι2(xn)) + d̃2(ι2(xn), f(x))
= d(x′

n, xn) + d̃2(ι2(xn), f(x))
→ 0.

All in all, f(x) = limn→∞ ι2(x′
n) holds, so that f is indeed well defined.

Next, we prove that f is an isometry. Let x, y ∈ X̃1 and let (xn)∞n=1 and
(yn)∞n=1 be the corresponding sequences in X used to define f(x) and f(y),
respectively. From

d̃2(f(x), f(y)) = lim
n→∞

d̃2(ι2(xn), ι2(xn))

= lim
n→∞

d(xn, yn)

= lim
n→∞

d̃1(ι1(xn), ι1(xn))

= d̃1(x, y),

we see that f is isometric. This immediately also proves the injectivity of f .
Clearly, f ◦ ι1 = ι2 holds, so that f

(
X̃1

)
⊃ ι2(X) must be dense in X̃2.

We claim that f
(
X̃1

)
is a complete subspace of X̃2 and therefore closed (this
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implies that f
(
X̃1

)
must be all of X̃2). Let (xn)∞n=1 be a sequence in X̃1 such

that (f(xn))∞n=1 is a Cauchy sequence in X̃2. Since f is an isometry, (xn)∞n=1

is also a Cauchy sequence in X̃1 and thus convergent to some x ∈ X̃1. Again
since f is an isometry, it follows that limn→∞ f(xn) = f(x) in X̃2.

Finally, to prove the uniqueness of f , let f̃ : X̃1 → X̃2 be another map as
described in the statement of the lemma. Let x ∈ X̃1. By Definition 2.4.10(c),
there is a sequence (xn)∞n=1 in X with limn→∞ ι1(xn) = x. We obtain that

f(x) = lim
n→∞

f(ι1(xn)) = lim
n→∞

ι2(xn) = lim
n→∞

f̃(ι1(xn)) = f̃(x).

Since x ∈ X̃1 was arbitrary, this proves that f = f̃ . ��

In less formal (but probably much more digestible) language, Lemma
2.4.12 asserts that a completion of a metric space (if it exists at all!) is unique
up to isometric isomorphism.

The existence of the completion of a given metric space is surprisingly easy
to establish.

Theorem 2.4.13. Let (X, d) be a metric space. Then (X, d) has a completion,
which is unique up to isometric isomorphism.

Proof. In view of Lemma 2.4.12, only the existence of the completion still
has to be shown. It is sufficient to find some complete metric space and an
isometry ι from X into that space: just let X̃ := ι(X). The complete metric
space into which we embed X is the Banach space Cb(X, R).

Fix x0 ∈ X. For x ∈ X, define

fx : X → R, t �→ d(x, t) − d(x0, t).

In view of Example 2.3.9, it is clear that fx is continuous for each x ∈ X, and
also, due to the inequality (∗ ∗ ∗) from Example 2.3.9, we have

|fx(t)| ≤ d(x, x0) + d(t, t) = d(x, x0) (t ∈ X),

so that fx lies even in Cb(X, R). We claim that the map

ι : X → Cb(X, R), x �→ fx

is an isometry. To see this, fix x, y ∈ X and note that, by (∗ ∗ ∗) again,

D(ι(x), ι(y)) = sup
t∈X

|fx(t) − fy(t)| = sup
t∈X

|d(x, t) − d(y, t)| ≤ d(x, y),

holds; on the other hand, we have

D(ι(x), ι(y)) = sup
t∈X

|fx(t) − fy(t)| ≥ |fx(y) − fy(y)| = d(x, y),

which proves the claim. ��
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In view of the uniqueness of a completion up to isometric isomorphism,
we are justified to speak of the completion of a metric space. For the sake
of notational convenience, we also identify a metric space with its canonical
image in its completion.

We now turn to one of the most fundamental theorems on complete metric
spaces.

Theorem 2.4.14 (Bourbaki’s Mittag-Leffler theorem). Suppose that
((Xn, dn))∞n=0 is a sequence of complete metric spaces, and let fn : Xn → Xn−1

for n ∈ N be continuous with dense range. Then

∞⋂

n=1

(f1 ◦ f2 ◦ · · · ◦ fn)(Xn)

is dense in X0.

Proof. We first inductively define new metrics d̃0, d̃1, d̃2, . . . on the spaces
X0,X1,X2, . . . such that

• d̃n and dn are equivalent for n ∈ N0,
•

(
Xn, d̃n

)
is complete for each n ∈ N0, and

• d̃n−1(fn(x), fn(y)) ≤ d̃n(x, y) for n ∈ N and x, y ∈ Xn.

This is accomplished by letting d̃0 := d0 and, once d̃0, . . . , d̃n−1 have been
defined for some n ∈ N, letting

d̃n(x, y) := dn(x, y) + d̃n−1(fn(x), fn(y)) (x, y ∈ Xn).

In what follows, we consider the spaces X0,X1,X2, . . . equipped with the
metrics d̃0, d̃1, d̃2, . . . instead of with d0, d1, d2, . . ..

Let U0 ⊂ X be open and not empty. We need to show that

U0 ∩
∞⋂

n=1

(f1 ◦ · · · ◦ fn)(Xn) �= ∅.

Since f1(X1) is dense in X0, there is x1 ∈ X1 with f1(x1) ∈ U0. Since f1

is continuous at x1, there is δ1 ∈ (0, 1] such that f1(Bδ1(x1)) ⊂ U0. Let
U1 := Bδ1(x1). Since f2(X2) is dense in X1, there is x2 ∈ X2 with f2(x2) ∈ U1.
Since f2 is continuous at x2, there is δ2 ∈

(
0, 1

2

]
such that f2(Bδ2(x2)) ⊂ U1.

Let U2 := Bδ2(x2), and continue in this fashion.
We thus obtain a sequence (Un)∞n=1 of open balls such that fn(Un) ⊂ Un−1

for n ∈ N and such that Un has radius at most 1
n . For n ∈ N0 and m ∈ N, let

Yn,m := (fn+1 ◦ · · · ◦ fn+m)(Un+m).

It follows that Yn,m �= ∅, that diam(Yn,m) ≤ 2
n+m , and that Yn,m+1 ⊂ Yn,m.

From Cantor’s intersection theorem, it follows that there is yn ∈
⋂∞

m=1 Yn,m.
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From the construction, it is immediate that fn(yn) = yn−1 and thus that
(f1 ◦ · · · ◦ fn)(yn) = y0 for n ∈ N. Consequently,

y0 ∈ U0 ∩
∞⋂

n=1

(f1 ◦ · · · ◦ fn)(Xn)

holds. ��

The name “Mittag-Leffler theorem” for Theorem 2.4.14 may sound be-
wildering, but the well-known Mittag-Leffler theorem from complex analysis
(Theorem A.1) can be obtained as a consequence of it (see Appendix A; be-
sides some background from complex variables, you will also need material
from Sections 3.1 to 3.4 for it). We turn, however, to another consequence of
Theorem 2.4.14.

Lemma 2.4.15. Let (X, d) be a metric space, and let U1, . . . , Un ⊂ X be
dense open subsets of X. Then U1 ∩ · · · ∩ Un is dense in X.

Proof. By induction, it is clear that we may limit ourselves to the case where
n = 2. Let x ∈ X, and let ε > 0. Since U1 is dense in X, we have Bε(x)∩U1 �=
∅. Since Bε(x)∩U1 is open—and thus a neighborhood of each of its points—it
follows from the denseness of U2 that Bε(x) ∩ U1 ∩ U2 �= ∅. Since ε > 0 was
arbitrary, we conclude that x ∈ U1 ∩ U2. ��

Theorem 2.4.16 (Baire’s theorem). Let (X, d) be a complete metric
space, and let (Un)∞n=1 be a sequence of dense open subsets of X. Then⋂∞

n=1 Un is dense in X.

Proof. By Lemma 2.4.15, we may replace Un by U1∩· · ·∩Un and thus suppose
without loss of generality that U1 ⊃ U2 ⊃ · · · . Let (X0, d0) := (X, d), and let
(Xn, dn) := (Un, dUn

), where dUn
is defined for n ∈ N as in Example 2.3.13(e).

Furthermore, let fn : Xn → Xn−1 be the inclusion map for n ∈ N. Since d and
dUn

are equivalent on Xn for n ∈ N, it is clear that f1, f2, . . . are continuous.
By the hypothesis, (X0, d0) is complete and the same is true for (Xn, dn) with
n ∈ N by Proposition 2.4.7. It follows from Theorem 2.4.14 that

∞⋂

n=1

(f1 ◦ · · · ◦ fn)(Xn) =
∞⋂

n=1

Un

is dense in X0 = X. ��

The following is an immediate consequence of Baire’s theorem (just pass
to complements).

Corollary 2.4.17. Let (X, d) be a complete metric space, and let (Fn)∞n=1 be
a sequence of closed subsets of X such that

⋃∞
n=1 Fn has a nonempty interior.

Then at least one of the sets F1, F2, . . . has a nonempty interior.
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To illustrate the power of Baire’s theorem, we turn to an example from
elementary calculus. We all know that there are continuous functions that
are not differentiable at certain points (take the absolute value function, for
instance), and it is not very hard to come up with continuous functions that
are not differentiable at a finite, and even countable, number of points. But is
there a continuous function, on an interval say, that fails to be differentiable
at each point of its domain? The following example gives the answer.

Example 2.4.18. For n ∈ N, let Fn consist of those f ∈ C([0, 2], R) for which
there is t ∈ [0, 1] such that

sup
h∈(0,1)

|f(t + h) − f(t)|
h

≤ n.

Obviously, if f ∈ C([0, 2], R) is differentiable at some point t ∈ [0, 1], then

sup
h∈(0,1)

|f(t + h) − f(t)|
h

< ∞

must hold, so that f ∈
⋃∞

n=1 Fn. Hence, if every continuous function on [0, 2]
is differentiable at some point of [0, 1], we have C([0, 2], R) =

⋃∞
n=1 Fn. Using

Corollary 2.4.17, we show that this is not possible.
To be able to apply Corollary 2.4.17, we first need to show that the sets Fn

for n ∈ N are closed in C([0, 2], R). Fix n ∈ N, and let (fm)∞m=1 be a sequence
in Fn such that ‖fm − f‖∞ → 0 for some f ∈ C([0, 2], R). For each m ∈ N,
there is tm ∈ [0, 1] such that

sup
h∈(0,1)

|fm(tm + h) − fm(tm)|
h

≤ n.

Suppose without loss of generality that (tm)∞m=1 converges to some t ∈ [0, 1]
(otherwise, replace (tm)∞m=1 by a convergent subsequence). Fix h ∈ (0, 1) and
ε > 0, and choose mε ∈ N so large that

⎧
⎨

⎩

|f(t + h) − f(tm + h)|
‖f − fm‖∞

|f(tm) − f(t)|

⎫
⎬

⎭
<

ε

4
h (m ≥ mε).

For m ≥ mε, this implies

|f(t + h) − f(t)|
≤ |f(t + h) − f(tm + h)|
︸ ︷︷ ︸

< ε
4 h

+ |f(tm + h) − fm(tm + h)|
︸ ︷︷ ︸

< ε
4 h

+ |fm(tm + h) − fm(tm)|
︸ ︷︷ ︸

≤nh

+ |fm(tm) − f(tm)|
︸ ︷︷ ︸

< ε
4 h

+ |f(tm) − f(t)|
︸ ︷︷ ︸

< ε
4 h

≤ nh + εh,
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so that
|f(t + h) − f(t)|

h
≤ n + ε.

Since h and ε were arbitrary, this means that f ∈ Fn. Hence, Fn is closed.
Assume towards a contradiction that every f ∈ C([0, 2], R) is differentiable

at some point in [0, 1], so that C([0, 2], R) =
⋃∞

n=1 Fn. By Corollary 2.4.17,
there are n0 ∈ N, f ∈ C([0, 2], R), and ε > 0 such that Bε(f) ⊂ Fn0 . By the
Weierstraß approximation theorem (Corollary 4.3.8 below), Bε(f) contains at
least one polynomial, say p. Since Bε(f) is open, there is δ > 0 such that
Bδ(p) ⊂ Bε(f) ⊂ Fn0 . Replacing f by p and ε by δ, we can thus suppose
without loss of generality that f is continuously differentiable on [0, 2].

For k ∈ N and j = 0, . . . , k, let tj := 2j
k . Define a “sawtooth function”

gk : [0, 2] → R by letting

gk(t) :=

{
ε
2k(t − tj−1), t ∈

[
tj−1, tj−1 + 1

k

]
,

ε
2k(tj − t), t ∈

[
tj − 1

k , tj
]

for j = 1, . . . , n and t ∈ [tj−1, tj ].

t

_ε
g2

g1

g3

0 1 2

2

Fig. 2.3: Sawtooth functions

Then gk is continuous with ‖gk‖∞ = ε
2 , but

sup
h∈(0,1)

|gk(t + h) − gk(t)|
h

=
ε

2
k (†)

holds for any t ∈ [0, 1]. Since f + gk ∈ Bε(f) ⊂ Fn0 , there is t ∈ [0, 1] such
that

sup
h∈(0,1)

|(f + gk)(t + h) − (f + gk)(t)|
h

≤ n0.

This, however, yields
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sup
h∈(0,1)

|gk(t + h) − gk(t)|
h

≤ sup
h∈(0,1)

|(f + gk)(t + h) − (f + gk)(t)|
h

+ sup
h∈(0,1)

|f(t + h) − f(t)|
h

= n0 + ‖f ′‖∞,

which contradicts (†) if we choose k ∈ N so large that ε
2k > n0 + ‖f ′‖∞.

Hence, the sets F1, F2, . . . have an empty interior, thus their union
⋃∞

n=1 Fn

cannot be all of C([0, 2], R), and consequently there must be a continuous
function on [0, 1] that is nowhere differentiable.

Exercises

1. Let (X, d) be any metric space, let p ∈ X, and let dp be the corresponding
French railroad metric. Show that (X, dp) is complete.

2. Let (X, d) be a complete metric space, and let (xn)∞n=0 be a sequence in X such
that there is θ ∈ (0, 1) with d(xn+1, xn) ≤ θ d(xn, xn−1) for n ∈ N. Show that
(xn)∞n=0 is convergent.

3. Use the previous problem to prove Banach’s fixed point theorem: if (X, d) is a
complete metric space, and if f : X → X is such that

d(f(x), f(y)) ≤ θ d(x, y) (x, y ∈ X)

for some θ ∈ (0, 1), then there is a unique x ∈ X with f(x) = x.
4. Let (X, d) be a metric space, and let ∅ �= S ⊂ X. Show that

diam(S) = inf{r > 0 : S ⊂ Br(x) for all x ∈ S}.

5. Give an example showing that the demand that limn→∞ diam(Fn) = 0 in Can-
tor’s intersection theorem cannot be dropped if we still want

⋂∞
n=1

Fn �= ∅ to
hold.

6. Let E be a normed space with a countable Hamel basis. Show that E is a
Banach space if and only if dim E < ∞. (Hint : You may use the fact that all
finite-dimensional subspaces of a normed space are closed (Corollary B.3); then
use Corollary 2.4.17.)

7. Let (fk)∞k=1 be a sequence in C([0, 1], F) that converges pointwise to a function
f : [0, 1] → F.
(a) For θ > 0 and n ∈ N, let

Fn := {t ∈ [0, 1] : |fn(t) − fk(t)| ≤ θ for all k ≥ n}.

Show that Fn is closed, and that [0, 1] =
⋃∞

n=1
Fn.

(b) Let ε > 0, and let I be a nondegenerate, closed subinterval of [0, 1]. Show

that there is a nondegenerate, closed interval J contained in
◦
I such that

|f(t) − f(s)| ≤ ε (t, s ∈ J).

(Hint : Apply (a) with θ := ε
3

and Corollary 2.4.17.)
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(c) Let I be a nondegenerate closed subinterval of [0, 1]. Show that there is a

sequence (In)∞n=1 of nondegenerate closed subintervals of I with I1 ⊃
◦
I 1⊃

I2 ⊃
◦
I 2⊃ I3 ⊃ · · · such that

• The length of In is at most 1
n
, and

• |f(t) − f(s)| ≤ 1
n

for all s, t ∈ In.
What can be said about f at all points in

⋂∞
n=1

In?
(d) Conclude that the set of points in [0, 1] at which f is continuous is dense in

[0, 1].

2.5 Compactness for Metric Spaces

The notion of compactness is one of the most crucial in all of topology (and
one of the hardest to grasp).

Definition 2.5.1. Let (X, d) be a metric space, and let S ⊂ X. An open cover
for S is a collection U of open subsets of X such that S ⊂

⋃
{U : U ∈ U}.

Definition 2.5.2. A subset K of a metric space (X, d) is called compact if,
for each open cover U of K, there are U1, . . . , Un ∈ U such that K ⊂ U1 ∪
· · · ∪ Un.

Definition 2.5.2 is often worded as, “A set is compact if and only if each
open cover has a finite subcover.”

Examples 2.5.3. (a) Let (X, d) be a metric space, and let S ⊂ X be finite;
that is, S = {x1, . . . , xn}. Let U be an open cover of X. Then, for each
j = 1, . . . , n, there is Uj ∈ U such that xj ∈ Uj . It follows that S ⊂
U1 ∪ · · · ∪ Un. Hence, S is compact.

(b) Let (X, d) be a compact metric space, and let ∅ �= K ⊂ X be compact.
Fix x0 ∈ K. Since {Br(x0) : r > 0} is an open cover of K, there are
r1, . . . , rn > 0 such that

K ⊂ Br1(x0) ∪ · · · ∪ Brn
(x0).

With R := max{r1, . . . , rn}, we see that K ⊂ BR(x0), so that diam(K) ≤
2R < ∞. This means, for example, that any unbounded subset of R

n (or,
more generally, of any normed space) cannot be compact. In particular,
the only compact normed space is {0}.

(c) Let X = (0, 1) be equipped with the usual metric. For r ∈ (0, 1), let
Ur := (r, 1). Then {Ur : r ∈ (0, 1)} is an open cover for (0, 1) which has
no finite subcover.

Before we turn to more (and more interesting) examples of compact metric
spaces, we establish a few hereditary properties.

Proposition 2.5.4. Let (X, d) be a metric space, and let Y be a subspace of X.
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(i) If X is compact and Y is closed in X, then Y is compact.
(ii) If Y is compact, then it is closed in X.

Proof. For (i), let U be an open cover for Y . Since Y is closed in X, the
family U ∪{X \Y } is an open cover for X. Since X is compact, it has a finite
subcover, i.e., there are U1, . . . , Un ∈ U such that

X = U1 ∪ · · · ∪ Un ∪ X \ Y.

Taking the intersection with Y , we see that Y ⊂ U1 ∪ · · · ∪ Un.
For (ii), let x ∈ X \ Y . For each y ∈ Y , there are εy, δy > 0 such that

Bεy
(x)∩Bδy

(y) = ∅. Since {Bδy
(y) : y ∈ Y } is an open cover for Y , there are

y1, . . . , y1 ∈ Y such that

Y ⊂ Bδy1
(y1) ∪ · · · ∪ Bδyn

(yn).

Letting ε := min{εy1 , . . . , εyn
}, we obtain that

Bε(x) ∩ Y ⊂ Bε(x) ∩
(
Bδy1

(y1) ∪ · · · ∪ Bδyn
(yn)

)
= ∅

and thus Bε(x) ⊂ X \Y . Since x ∈ X \Y was arbitrary, this means that X \Y
is open. ��

Proposition 2.5.5. Let (K, dK) be a compact metric space, let (Y, dY ) be any
metric space, and let f : K → Y be continuous. Then f(K) is compact.

Proof. Let U be an open cover for f(K). Then {f−1(U) : U ∈ U} is an open
cover for K by Corollary 2.3.10. Hence, there are U1, . . . , Un ∈ U with

K = f−1(U1) ∪ · · · ∪ f−1(Un)

and thus
f(K) ⊂ U1 ∪ · · · ∪ Un.

This proves the claim. ��

Corollary 2.5.6. Let (K, d) be a non-empty, compact metric space, and let
f : K → R be continuous. Then f attains both a minimum and a maximum
on K.

Proof. Let M := sup f(K). Since f(K) is compact, it is bounded, so that
M < ∞. For each n ∈ N, there is yn ∈ f(K) such that yn > M − 1

n ; it is clear
that M = limn→∞ yn. Since f(K) is closed in R, it follows that M ∈ f(K).
Hence, there is x0 ∈ K such that f(x0) = M .

An analogous argument works for inf f(K). ��

The real line R has the Bolzano–Weierstraß property: every bounded se-
quence in R has a convergent subsequence. The following lemma asserts that
compact metric spaces enjoy a similar property:
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Lemma 2.5.7. Let (K, d) be a compact metric space. Then every sequence in
K has a convergent subsequence.

Proof. Let (xn)∞n=1 be a sequence in K. Assume that (xn)∞n=1 has no con-
vergent subsequence. This means that, for each x ∈ X (it cannot be the
limit of any subsequence of (xn)∞n=1!) there is εx > 0 such that Bεx

(x) con-
tains only finitely many terms of (xn)∞n=1; that is, there is nx ∈ N such that
xn /∈ Bεx

(x) for n ≥ nx. Since {Bεx
(x) : x ∈ K} is an open cover for K, there

are x′
1, . . . , x

′
m ∈ K with

K = Bεx′
1
(x′

1) ∪ · · · ∪ Bεx′
m

(x′
m).

For n ≥ max{nx′
1
, . . . , nx′

m
}, this means that

xn /∈ Bεx′
1
(x′

1) ∪ · · · ∪ Bεx′
m

(x′
m) = K,

which is absurd. ��

Proposition 2.5.8. Let (K, d) be a compact metric space. Then K is both
complete and separable.

Proof. Let (xn)∞n=1 be a Cauchy sequence in K. By Lemma 2.5.7, (xn)∞n=1

has a convergent subsequence, say (xnk
)∞k=1, whose limit we denote by x. Let

ε > 0. Then there is kε ∈ N such that d(xnk
, x) < ε

2 for k ≥ kε. Furthermore,
there is nε ∈ N with d(xn, xm) < ε

2 for n ≥ nε. Choose k0 ≥ kε so large that
nk0 ≥ nε. For n ≥ nε, we obtain that

d(xn, x) ≤ d(xn, xnk0
) + d(xnk0

, x) <
ε

2
+

ε

2
= ε.

It follows that x = limn→∞ xn.
To see that K is separable, first note that

{
B 1

n
(x) : x ∈ K

}
, the collection

of all open balls in K of radius 1
n , is an open cover for K for each n ∈ N.

Since K is compact, each such open cover has a finite subcover: there are, for
each n ∈ N, a positive integer mn as well as x1,n, . . . , xmn,n ∈ K such that

K = B 1
n
(x1,n) ∪ · · · ∪ B 1

n
(xmn,n).

The set
⋃∞

n=1{x1,n, . . . , xmn,n} is clearly countable. We claim that it is also
dense in K. To see this, let x ∈ K, and let ε > 0. Let n ∈ N be so large that
1
n < ε. Since K = B 1

n
(x1,n) ∪ · · · ∪ B 1

n
(xmn,n), there is j ∈ {1, . . . , mn} such

that x ∈ B 1
n
(xj,n) and thus xj,n ∈ Bε(x). ��

We now turn to two notions related to compactness.

Definition 2.5.9. Let (X, d) be a metric space. Then:
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(a) X is called totally bounded if, for each ε > 0, there are x1, . . . , xn ∈ X
with

X = Bε(x1) ∪ · · · ∪ Bε(xn).

(b) X is called sequentially compact if every sequence in X has a convergent
subsequence.

Some relations among compactness, total boundedness, and sequential
compactness are straightforward. Every compact metric space is trivially to-
tally bounded and also sequentially compact by Lemma 2.5.7. On the other
hand, (0, 1) is easily seen to be totally bounded, but fails to be compact.
The following theorem relates compactness, total boundedness, and sequen-
tial compactness in the best possible manner.

Theorem 2.5.10. The following are equivalent for a metric space (X, d).

(i) X is compact.
(ii) X is complete and totally bounded.
(iii) X is sequentially compact.

Proof. By Lemma 2.5.7, (i) =⇒ (iii) holds.
(iii) =⇒ (ii): The same argument as in the proof of Proposition 2.5.8 shows

that X is complete. Assume that X is not totally bounded. Then there is ε0
such that

Bε0(x
′
1) ∪ · · · ∪ Bε0(x

′
n) � X

for any choice of x′
1, . . . , x

′
n ∈ X. We use this to inductively construct a

sequence in X that has no convergent subsequence. Let x1 ∈ X be arbitrary.
Pick x2 ∈ X \ Bε0(x1). Then pick x3 ∈ X \ (Bε0(x1) ∪ Bε0(x2)). Continuing
in this fashion, we obtain a sequence (xn)∞n=1 in X with

xn+1 /∈ Bε0(x1) ∪ · · · ∪ Bε0(xn) (n ∈ N).

It is clear from this construction that

d(xn, xm) ≥ ε0 (n,m ∈ N, n �= m),

so that no subsequence of (xn)∞n=1 can be a Cauchy sequence. This is impos-
sible if X is sequentially compact.

(ii) =⇒ (i): Let U be an open cover of X, and assume that it has no
finite subcover. Since X is totally bounded, it can be covered by finitely many
open balls of radius 1. Consequently, there is at least one x1 ∈ X such that
B1(x1) cannot be covered by finitely many sets from U . Again by the total
boundedness of X, the open ball B1(x1) can be covered by finitely many open
balls of radius 1

2 (not necessarily centered at points of B1(x1)). Consequently,
there is at least one x2 ∈ X such that B 1

2
(x2)∩B1(x1) cannot be covered by

finitely many sets from U . Continuing this construction, we obtain a sequence
(xn)∞n=1 in X such that
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B 1
n
(xn) ∩ · · · ∩ B 1

2
(x2) ∩ B1(x1)

cannot be covered by finitely many sets from U . For n ∈ N, let

Fn := B 1
n
(xn) ∩ · · · ∩ B 1

2
(x2) ∩ B1(x1).

Since diam(Fn) ≤ 2
n → 0, Cantor’s intersection theorem yields that

⋂∞
n=1 Fn =

{x} for some x ∈ X. Let U0 ∈ U be such that x ∈ U0, and let ε > 0 be such
that Bε(x) ⊂ U0. Choose nε ∈ N such that 2

nε
< ε. Since diam(Fnε

) ≤ 2
nε

,
this means that Fnε

⊂ Bε(x) ⊂ U0. In particular, {U0} is a finite cover of
B 1

nε
(xnε

) ∩ · · · ∩ B1(x1), which is impossible according to our construction.
��

Corollary 2.5.11. Let (X, d) be a totally bounded metric space. Then its com-
pletion is compact.

Proof. Let
(
X̃, d̃

)
be the completion of (X, d). For r > 0 and x ∈ X, we write

Br(x;X) and Br

(
x; X̃

)
for the open balls with radius r centered at x in X

and X̃, respectively.
Let ε > 0. Since X is totally bounded, there are x1, . . . , xn ∈ X such that

X = B ε
2
(x1;X) ∪ · · · ∪ B ε

2
(xn;X) ⊂ B ε

2

(
x1; X̃

)
∪ · · · ∪ B ε

2

(
xn; X̃

)
.

Now, B ε
2

(
x1; X̃

)
∪· · ·∪B ε

2

(
xn; X̃

)
is a closed subset of X̃ containing X and

therefore must be all of X̃. Since B ε
2

(
xj ; X̃

)
⊂ Bε

(
xj ; X̃

)
for j = 1, . . . , n,

we obtain that
X̃ = Bε

(
x1; X̃

)
∪ · · · ∪ Bε

(
xn; X̃

)
.

Hence, X̃ is also totally bounded and thus compact by Theorem 2.5.10. ��

The Heine–Borel theorem, which characterizes the compact subsets of R
n,

is probably familiar from several variable calculus. At the end of this section,
we deduce it from Theorem 2.5.10, thus increasing our stock of compact and
noncompact metric spaces.

Corollary 2.5.12 (Heine–Borel theorem). Let K ⊂ R
n. Then K is com-

pact if and only if it is bounded and closed in R
n.

Proof. In view of Example 2.5.3(b) and Proposition 2.5.4(ii), the “only if”
part is clear.

For the converse, first note that, since K is bounded, there is r > 0 such
that K ⊂ [−r, r]n. Since K is closed in R

n and therefore in [−r, r]n, we
can invoke Proposition 2.5.4(i) and suppose without loss of generality that
K = [−r, r]n.
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As a closed subset of a complete metric space, K is clearly complete. It is
therefore sufficient to show that K is totally bounded. Let ε > 0. For m ∈ N

and j ∈ {1, . . . , m}, let

Ij :=
[
−r + (j − 1)

2r

m
,−r + j

2r

m

]
,

and note that

[−r, r] =
m⋃

j=1

Ij

and thus
K =

⋃

(j1,...,jn)∈{1,...,m}n

Ij1 × · · · × Ijn
.

Let (j1, . . . , jn) ∈ {1, . . . , m}n, and let x, y ∈ Ij1 × · · · × Ijn
. The Euclidean

distance of x and y can then be estimated via

‖x − y‖ =

√√√
√

n∑

k=1

(xk − yk)2 ≤

√√√√
n∑

k=1

(
2r

m

)2

=
2r

m

√
n.

Let m be so large that 2r
m

√
n < ε. For (j1, . . . , jn) ∈ {1, . . . ,m}n, let

x(j1,...,jn) ∈ Ij1 × · · · × Ijn
. By the foregoing estimate, Ij1 × · · · × Ijn

⊂
Bε

(
x(j1,...,jn)

)
holds, so that

K ⊂
⋃

(j1,...,jn)∈{1,...,m}n

Bε

(
x(j1,...,jn)

)
.

Consequently, K is totally bounded and therefore compact. ��

Outside the realm of Euclidean n-space, the Heine–Borel theorem is no
longer true, and even worse: for general metric spaces, it fails to make sense.
First of all, every metric space is closed in itself, so that requiring a set to be
closed depends very much on the metric space in which we are considering it.
Secondly, what does it mean for a subset of a metric space to be bounded?
We could, of course, define a set to be bounded if it has finite diameter, but
since every metric is equivalent to a metric that attains its values in [0, 1),
and since compactness is not characterized via a particular metric, but rather
through open sets, boundedness cannot be used in general metric spaces to
characterize compactness.

In normed spaces, it still makes sense to speak of bounded sets as in R
n,

but the Heine–Borel theorem becomes false.

Example 2.5.13. Let E = C([0, 1], F) be equipped with ‖ · ‖∞, and let (fn)∞n=1

be defined by
fn : [0, 1] → R, t �→ tn (n ∈ N).
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This sequence is contained in the closed unit ball B1[0] of E. If the Heine–
Borel theorem is true for E, then B1[0] is compact and, consequently, (fn)∞n=1

has a convergent subsequence, say (fnk
)∞k=1, with limit f . Since fn ∈ S1[0] for

n ∈ N and since S1[0] is closed, it is clear that f ∈ S1[0]; that is, ‖f‖∞ = 1.
On the other hand, convergence in E is uniform convergence and thus entails
pointwise convergence. Hence, we have for t ∈ [0, 1) that

f(t) = lim
k→∞

fnk
(t) = lim

k→∞
tnk = 0.

Since f is continuous, this means that f(1) = 0 as well and thus f ≡ 0. This
is a contradiction.

More generally, the closed unit ball of a normed space E is compact if and
only if dimE < ∞ (Theorem B.5).

Exercises

1. Show that a discrete metric space (X, d) is compact if and only if X is finite.
2. Let (X, d) be a metric space, and let (xn)∞n=1 be a sequence in X with limit x0.

Show that the subset {x0, x1, x2, . . .} of X is compact.
3. Let (X, d) be a metric space, and let F and K be subspaces of X such that F

is closed in X and K is compact. Show that

F ∩ K �= ∅ ⇐⇒ inf{d(x, y) : x ∈ F, y ∈ K} = 0.

What happens if we replace the compactness of K by the demand that it be
closed in X?

4. Let (K1, d1), . . . , (Kn, dn) be compact metric spaces, and let K := K1×· · ·×Kn

be equipped with any of the two (equivalent) metrics D1 and D∞ from Example
2.3.13(b). Show that K is compact.

5. More generally, let ((Kn, dn))∞n=1 be a sequence of compact metric spaces, and
let K :=

∏∞
n=1

Kn be equipped with a metric d as in Example 2.1.2(h). Show
that (K, d) is compact.

6. Let E be a normed space, and let K, L ⊂ E be compact. Show that K + L :=
{x + y : x ∈ K, y ∈ L} is also compact.

7. A subset S of a metric space (X, d) is called relatively compact if S is compact.
Show that S ⊂ X is relatively compact if and only if each sequence in S has
a subsequence that converges in X. To what more familiar notion is relative
compactness equivalent if the surrounding space X is complete?

8. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is called
uniformly continuous if, for each ε > 0, there is δ > 0 such that dY (f(x), f(y)) < ε
whenever dX(x, y) < δ. Show that any continuous function from a compact
metric space into another metric space is uniformly continuous.

9. Lebesgue’s covering lemma. Let (K, d) be a compact metric space, and let U
be an open cover of K. Show that there is a number L(U) > 0 (the Lebesgue
number of U) such that any ∅ �= S ⊂ K with diam(S) < L(U) is contained in
some U ∈ U .
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Remarks

Metric spaces are little more than one hundred years old: their axioms appear
for the first time in Maurice Fréchet’s thesis [Fréchet 06] from 1906. Instead
of metric spaces, Fréchet speaks of classes (E), and the distance of two ele-
ments with respect to the given metric is called their écart , which is French
for gap. A few years later, the German mathematician Felix Hausdorff rechris-
tened Fréchet’s classes (E) in his treatise [Hausdorff 14]: he called them
metrische Räume, which translates into English literally as metric spaces.
Most of the material from Sections 2.1, 2.2, 2.3, and 2.5 can already be found
in [Hausdorff 14].

What we call a semimetric is usually called a pseudometric. However, a
map p from a linear space into [0,∞) that satisfies all the axioms of a norm,
except that it allows that p(x) = 0 for nonzero x, is called a seminorm, not a
pseudonorm. This is our reason for deviating from the standard terminology,
so that p(x − y) for a seminorm p defines a semimetric, which is a metric if
and only if p is a norm.

Bourbaki’s Mittag-Leffler theorem (Theorem 2.4.14) is from “his” mon-
umental treatise Eléments de mathématique [Bourbaki 60]. The possessive
pronoun is in quotation marks because Nicolas Bourbaki is not one man but
the collective pseudonym of a group of French mathematicians that formed in
1935 and, from 1939 on, started publishing the aforementioned multivolume
opus Eléments de mathématique with the goal to rebuild mathematics from
scratch. Members of Nicolas Bourbaki have to leave once they reach age 50,
and new members are appointed to replace the retiring ones. Hence, Nico-
las Bourbaki is a truly immortal mathematician! Even though it is widely
claimed (and believed), Nicolas Bourbaki was not the name of a French gen-
eral in the Franco–Prussian war of 1871: there was a general in that war
by the last name of Bourbaki, but his first names were Charles Denis. (He
was offered the throne of Greece in 1862, which he turned down, and in the
Franco–Prussian war, he unsuccessfully attempted suicide in order to avoid
the humiliation of surrender.)

For a good reason, our Theorem 2.4.14 is somewhat less general than the
result from [Bourbaki 60]. As Jean Esterle remarks in [Esterle 84]:

Incidentally, the reader interested in a French way of writing a result as
clear as Corollary 2.2 [≈ Theorem 2.4.14] in a form almost inaccessible
to human mind is referred to the statement by Bourbaki [. . . ].

In statement and proof of Theorem 2.4.14, we follow [Dales 78].
Baire’s theorem is sometimes referred to as Baire’s category theorem (es-

pecially in older books). The reasons for this are historical. A subset of a
metric space is called nowhere dense if its closure has an empty interior. A
subset that is a countable union of nowhere dense sets used to be called a
set of the first category in the space, and all other subsets were said to be of
the second category . In this terminology, Baire’s theorem (or rather Corollary
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2.4.17) asserts that every complete metric space is of the second category in
itself. The first/second category terminology has not withstood the test of
time (when mathematicians nowadays speak of categories, they mean some-
thing completely different), but the nametag category theorem still survives
to this day.

Maurice Fréchet died in 1973, at the age of 94, decades after the concept
he had introduced in his thesis had become a mathematical household item.
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