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Are Crucial Morphogenetic Events 
Occurring during Early Development 
Olivier G. Morali, Pierre Savagner and Lionel Larue 

Abstract 

D evelopmental biology constitutes a unique field to study cell dynamics within an 
organism. Transitions from epithelial to mesenchymal architectures represent major 
morphogenetic events during development. In this chapter, trophectoderm and 

mesoderm formation in the mouse is analyzed in detail to exemplify general features of epithe­
lial to mesenchyme transition at the level of the organism, tissues, cells and molecules. As a 
conclusion, importance of regulation of these processes in embryos and adults is stressed, 
dysregulations leading to cancer formation and progression. 

Introduction 
The term "morphogenesis" originates from the combination of two Greek words, "Morphe" 

(= form, shape) and "G^n^sis*' (= principle, origin). Consequendy, it means "origin of forms". 
Because of this etymological definition, the word has numerous domains of application in 
Biology. Life sciences, by definition, deal with a dynamic environment, and "morphogenesis" 
designates the formation and organization, and also the deformation, movement and disap­
pearance of biological objects. The biological objects at the sub-cellular level for example are 
the different organelles. At the cellular level, morphogenesis is at least involved in two major 
cellular phenomena, cell division and the general shape of the cell. For tissues, morphogenesis 
refers to the correct arrangement of the cells forming the tissue. Finally, for whole organisms, 
morphogenesis designates all the morphological transformations of the organism. In embryol­
ogy in particular, morphogenesis designates the harmonious transformations leading from the 
zygote to an adult organism. Developmental biology is consequently a field involving the inte­
gration of a series of morphogenetic events that depend on molecular events and that can be 
analyzed at the sub cellular, cellular and tissue levels. 

The study of morphogenesis has been fundamental to the classification of animal species 
and hence to considerations of evolution. Indeed, phylogenetic divisions are based on the ap­
pearance of relative morphogenetic characteristics. In particular, the appearance of intercellular 
adhesion and the subsequent apparition of different types of supracellular architectures were 
essential. The first division is based on the appearance of multicellular structures (= colonial 
protists) from unicellular organisms (= protozoans) as shown in Figure 1. Seventeen known 
types of colonial protists present development phases during which they form multicellular 
assemblies. An example of this type of protist is Dictyostelium discoideum that forms a multicel­
lular assembly, a pseudo-plasmodium, in absence of nutrients. The molecular mechanism of 
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Figure 1. Simplified phylogenetic tree. This simplified phylogenetic tree present the major evolutionary 
steps fi-om Protozoans to Mammals. The first step consists in the apparition of multicellular structures 
followed by multicellular organisms. The following steps correspond to the simultaneous apparition of 
bilateral symmetry and of the first mesenchymal layer, mesoderm. The interaction of mesoderm with the 
two other layers defines the ftirther subclassification. 

intercellular adhesion involves the sequential expression of transmembrane glycoproteins. The 
initial adhesion is mediated by the expression at the membrane of one glycoprotein.^ This 
adhesion is stabilized by the expression of a second membrane glycoprotein. In a third phase, 
a third membrane glycoprotein is expressed, and mediates the cohesion of particular cells dur­
ing the migration of the pseudo-plasmodium. Loomis proposed the hypothesis that this third 
intercellidar adhesion system allowed the separation of two cell types: the future spore cells and 
the future stem cells. Thus, very early during evolution, intercellular adhesion, morphogenesis 
and cell differentiation are closely related. 

The major second step that occurred during evolution was the formation of multicellular 
organisms, the Metazoans. A supracellular and organized architecture, the epithelium, had 
appeared (see Chapter 5, Sarras). It is only from after this step was made that the term "em­
bryo" can be used to describe the first developmental stages of an animal. By definition, an 
embryo is a multicellular assembly in which distinct cell types become individualized (cell 
differentiation). 

The third accepted criterion appearing during evolution, used for classification, is the ap­
pearance of bilateral symmetry. This is associated with the appearance of a third basic layer, the 
mesoderm, initially a loose tissue. This evolutionary step corresponds to the acquisition of a 
particular supracellular organization in the embryo, and the appearance of the mesenchyme. 
Thus, there was a transition from the epithelial architecture to the mesenchymal architecture, 
called the Epithelial-Mesenchymal Transition (or E M T ) . The presence of the mesoderm and 
bilateral symmetry distinguishes triblastics from diblastics. Triblastics can be classified into two 
groups (coelomates and pseudo-coelomates) according to the presence of a cavity within the 
embryo and specific interactions of the mesoderm layer with the two other basic epithelial 
layers (ectoderm and endoderm). The coelomates are defined by the presence of a cavity called 
the coelom l imited by epithelial cells. These epithelial cells are mesoderm cell derivatives. 
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corresponding to a Mesenchymal-Epithelial Transition or MET. Coelom development is in­
duced by ectoderm and endoderm cells. The pseudo-coelomates have no such cavity in the 
mesoderm, which forms a solid mass of cells in contact with ectoderm and endoderm. 

Thus, the phylogenetic classification of animals is based on morphogenetic events that are 
closely linked to the apparition and interconversion of two types of cell architectures: epithe­
lium, a tight aggregation of polarized cells, and the mesenchyme, a loose association of poorly 
polarized cells. Here, we apply a strict dichotomy between epithelium and mesenchyme. Al­
though this is as arbitrary as any binary representation of complex events, it is legitimized by 
the general outline of evolution, presented above, and is widely accepted. We will first define 
epithelium and mesenchyme, and then describe MET and EMT as occurs during early mam­
malian development. We will consider trophectoderm formation and gastrulation at all levels 
from the organism to molecular, using the mouse as a reference animal model. Finally, regula­
tory processes for EMT in embryos will be compared to those in adults. 

Supracellular Architecture: The Dichotomy between Epithelium 
and Mesenchyme 

Epithelial Organization: A Cohesive Assembly ofCeUs 
The word "epithelium" has for etymology "̂ pi** (on) and *thd^" (nipple). Consequendy, 

"epithelium" designated, at the origin, the aggregation of cell recovering the surface of the 
nipple. The epithelial organization was invented in the animal reign with the diblastics and 
allowed the production of tissues and organs. Epithelial organization has two fiindamental 
features: (i) separating two distinct biological compartments, the "interior" and the "exterior" 
and (ii) conferring to an assembly of cells a transportation function vector. The vectorial char­
acter results from the structural and functional polarity of the epithelial cells (Fig. 2). 

Epithelial characteristics at the cellular level can be defined by the five following criteria in 
various in vivo or in vitro study systems: (i) the cohesive interaction between cells allowing the 
formation of continuous cell layers, (ii) the existence of three types of membrane domains: 
apical, lateral and basal, (iii) the existence of tight junctions between apical and lateral do­
mains, (iv) the polarized distribution of the different organelles and components of the cytosk-
eleton and, (v) the quasi immobility of the group of epithelial cells relative to the local environ­
ment. 

These structural features allow three important types of function: (a) the formation of vast 
surfaces for exchange (for example, microvilli) and also of cavities by the overall folding of 
epithelial layers (for example, intestinal tube or nervous tube), (b) the formation of biological 
compartments of different ionic compositions (low ionic strength and serous), due to selective 
permeability of the cells, (c) the absorption, the transcytosis and the vectorial secretion of 
macromolecules. 

The ontogeny, the maintenance and the dynamics of epithelial structure require appropri­
ate functioning of the cells individually and the epithelial tissue as a whole. Thus, the function­
ing of the epithelial cells, and the implementation of their genetic programs, has to be coherent 
and coordinated both in time and space. 

The adhesive systems of the epithelial cells can be classified into cell-cell adhesion involving 
mainly the lateral sides of the cells, and cell-matrix adhesion involving mainly the basal surfaces 
of the cells. Cell-cell adhesion confers the cohesiveness of the epithelium, and is a characteristic 
of epithelia, whereas cell-matrix adhesion is also found for mesenchymal cells. There are several 
epithelial cell-cell adhesion systems including gap junction, adherens junctions, desmosomes, 
and tight junctions. Different families of proteins are involved in these different systems. 

Mesenchymal Organization 
The term "mesenchyme" originates from the Greek words M^sos (environment), In (in) 

and Chymos (juice). A supracellular mesenchymal architecture can be defined by contrast to a 



Epithelium-Mesenchyme Transitions 15 

apical 
-J 

r 

{^ 

J 

n "̂  n 

lateral 

basal 

tight 
junction 

adherens 
junction 

desmosome 

gap 
junction 

focal 
contact 

hemidesmosome 

Figure 2. This scheme presents the main characteristics of an epithehal cell: the intercelltilar adhesion 
mediated by different types of junctions (tight, adherens, desmosomal, gap), the definition of distinct 
membrane regions (apical, lateral, basal) and the polarised distribution of organelles. It should be noted that 
cell-matrix adhesion complexes are located exclusively on the basal region and involves different types of 
junctions (focal contacts and hemi-desmosomes). In addition, an epithelial assembly is characterised by its 
immobility and its exchanges of molecules between compartments of different composition. 

supracellular epithelial organization as: (i) loose or no interaction between the cells, such that a 
continuous cell layer is not formed, (ii) The absence of clear apical and lateral membranes, (iii) 
The nonpolarized distribution of the different organelles and components of the cytoskeleton. 
(iv) The motility and even invasiveness of the cells. 

During development and cancer progression, mesenchymes may be temporary intermedi­
ates in the formation of an epithelial structure from another epithelial structure. How^ever, the 
mesenchymal architecture can be a lasting organization. Mesenchymal functions include sup­
port and nutrient supply. 

In summary, the epithelial organization is mainly dependent on the tightness of the cell-cell 
junctions. Cell-cell adhesion is dependent on transmembrane glycoproteins, including the epi­
thelial marker E-cadherin. The mesenchymal status can be considered to be the only, and 
default, alternative of the epithelial status. 

During the genesis of epithelium from individualized cells, four phases can be distinguished 
(i) an intercellidar a^regat ion step, (ii) a polarization cell step, (iii) a cell differentiation step, 
and (iv) an integration of the differentiated cells into a functional organization. Thus, a parallel 
can be drawn between embryonic development and evolution. This general scheme applies to 
embryonic development as well as to physiological and pathological processes in adult; the gain 
or loss of the epithelial organization associated with the loss or gain of the mesenchymal status. 

Embryonic Morphogenesis: A Harmonious Series of Transitions 
from One Cellular Architectural Type to Another 

Here, we will describe the interconversions between epithelium and mesenchyme during 
early mouse embryonic development, until gastrulation. In mammals, the first M E T occurs 
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Figure 3. At the early 8 cell stage, blastomeres are charaaerised by a intercellular adhesion mediated by 
E-cadherin. At the compacted 8 cell stage, in addition to the formation of additional adherens junctions, 
some tight junctions appear on the apical side. At the 32 cell stage, gap junaions appear in addition to the 
existing adherens and tight junctions. 

during the preimpiantation period with the formation of the trophectoderm and the first EMT 
during the gastrulation period with the formation of the mesoderm. 

The First MET in Embryonic Epithelium Leads to the Formation 
of the Trophectoderm 

The first stages of Metazoans embryonic development involve a series of rapid cell divisions, 
called the segmentation phase. The cells at this stage are called blastomeres. The morphoge-
netic characteristics of these first stages are limited, although the cell fates are already deter­
mined after the first cell divisions in organisms such as the Tunicates, Caenorhabditis elegans or 
sea urchin (see Chapter 6, Wessel). For Mammals, the determination seems to occur at a later 
stage during development. However, the first real morphogenetic event is the formation of the 
trophectoderm. 

After segmentation, the embryo looks like a small blackberry, mora in Latin; thus, the 8-cell 
stage is termed the "morula". The shape and morphology of these 8 cells, the blastomeres are 
highly similar. The morula then becomes a compacted morula with 16 cells; the blastomeres at 
the periphery flatten progressively, become polarized and all types of junctions appear. These 
cells become the first embryonic epithelium, the trophectoderm. The cells inside the com­
pacted morula become the inner cell mass (ICM), and are totipotent. The trophectoderm is an 
active epithelium and gives rise to the blastocoele.^' There are three axes of symmetry: 
antero-posterior, dorso-ventral and left-right axis. The dorso-ventral axis is defined at the time 
of the blastocyst. The future dorsal part of the embryo, contained in the ICM, is located at the 
contact of the blastocoele. A series of cellular and molecular modifications during early devel­
opment lead to the formation of the trophectoderm and the ICM. 

Modulation of Cell-Cell Adhesion 
E-cadherin (or Cdhl) is a cell adhesion molecule important during compaction and the 

formation of the trophectoderm. E-cadherin is present in the zygote as a maternal protein. At 
the end of the two-cell stage, zygotic E-cadherin production starts. In noncompacted morulas 
(Fig. 3B), the blastomeres are linked. The maternal and zygotic E-cadherin is progressively 
redistributed and concentrated on the future baso-lateral side of the blastomeres at the periph­
ery of the future compacted morula.^' 
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By the 16-cell stage (Fig. 3C), the amount of E-cadherin on the baso-lateral side of the 
blastomere is greater, and cell-cell adhesion tighter. Noncompacted morulas incubated with 
anti-E-cadherin antibodies are not able to compact or to form a blastocyst. ̂ '̂ '̂  E-cadherin 
knockout mice, Cdhl -/-, have been produced. These embryos cannot form a functional epi­
thelium and die at the peri-implantation stage. Interestingly, the compaction of Cdhl-/- em­
bryos is not perturbed, indicating that the maternal E-cadherin is sufficient. The zygotic 
E-cadherin is however required to allow the embryo to form a blastocyst. 

Cell Polarization 
Scanning electron microscopy analysis of compacted and uncompacted embryos shows that 

compaction is associated with morphological modifications, such as formation of microvilli 
scattered in a polarized manner. It appears that the cells polarize after cell-cell contact. When 
compaction is artificially reproduced by pairing two noncompacted embryo blastomeres, the 
membranes have two distinct fates. The free membranes form microvilli and the cell-cell inter­
acting membranes stay smooth. The main proteins involved in adhesion at 2-cell stage are the 
proteins of the cadherin-catenin complex. At the noncompacted, 8-cell stage (Fig. 3B), the 
membranes of the blastomeres are associated by fimctional gap junctions, allowing the ex­
change of ions and small molecules between the cells of the forming epithelial layer. These gap 
junctions are formed by connexin octamers. In parallel, E-cadherin and ZO-1 are recruited at 
the cell-cell contact site leading to adherens and tight junctions on the baso-lateral sides of the 
future trophectoderm epithelial cells. Maternal E-cadherin is redistributed at the cell surface 
and zygotic E-cadherin and ZO-1 are addressed to the future adherens and tight junctions. On 
the fixture apical membrane, endosomes accumulate. Reorganization of cortical and cytoplas­
mic actin and of microtubules is observed at microvilli. 

Cingulin is recruited at the tight junctions at the 16-cell stage (Fig. 3C), before the junc­
tions are functional. Functional adhesive junctions are scattered along the baso-lateral sides, 
reinforcing regional cell-cell adhesion. Large amounts of protein migrate in the plasma mem­
brane; the apical proteins, such as the Na^/glucose carrier, and the baso-lateral proteins, such as 
EGFR (epidermal growth factor receptor) relocate. ̂ "̂ '̂ ^ The polarized distribution of the or­
ganelles is continues within the cells; the mitochondria and lipid vesicles concentrate on the 
baso-lateral side, and the lysosomes, the Golgi apparatus and the nucleus at the central basal 
part of the cells. 

Function Acquisition by the Active Epithelium 
The tight junctions established in the earliest stages become functional at the 32-cell stage 

(Fig. 3D). Numerous desmosomes form on the baso-lateral sides by desmogleins and 
desmoplakins which are synthesized during the morula stage. ̂  The size of the blastocoele, and 
therefore the blastocyst, increases continuously due to the activity of the trophectoderm cells. 
The resulting pressure on the zona pellucida is responsible, at least in part, for hatching. The 
hatched embryo then interacts with and implants into the uterus. 

The formation of the first embryonic epithelium is associated with the development of 
both complex cell-cell adhesion machinery and also cellular and the sub-cellular polarization. 
This first epithelial supracellular architecture subsequendy leads to the first mesenchymal su-
pracellular architecture: the mesoderm. 

During post-implantation, the trophectoderm regionalizes into distinct epithelia with vari­
ous morphologies and different rates of proliferation.^^ The parietal trophectoderm is the part 
of the trophectoderm that is not in contact with the ICM. This cell population stops dividing, 
although the D N A continues to replicate. The chromosomes of these cells become polytenic, 
and the cells themselves become giant cells. The visceral trophectoderm is in contact with the 
ICM. This population of cells contributes to the formation of the extraembryonic ectoderm 
during gastrulation. 



18 Rise and Fall of Epithelial Phenotype: Concepts ofEpithelial-Mesenchymal Transition 

B D E 

phecioclcrm 

PrimSrve 
endodcmi 

mural 
()|jeclodcnti t

j j b f c ^ ccU)pt«cen{ 

^ ^ ^ K ^ extra-

Pariemi ^ ^ ^ f ^ ' ' " " " " 

ejidodcrni ^ | H P L _ _ viscera! 

_ , ,, . cndodcim 
iropnoblasJ 
giant celis 

Left ^ 

Figure 4. Like in all coelomates, gastrulation in the mouse is characterised by cellular movements occurring 
between embryonic days E4.5 and E7.5 which enable the reorganisation of the embryonic cells and the 
formation of the definitive plan of the animal. A to E: the major steps of this reorganisation between E4.5 
and E7.0 are shown on schematic sections along the dorso-ventral axis (D-V). In particular, the migration 
of mesoderm progenitor cells (in red) fi-om the posterior to the anterior side of the embryo between the 
eaoderm (in blue) and endoderm (in yellow) is presented on seaions D and E. Reprinted with permission 
fi-om Hogan B, Beddington R, Costantini F et al. Manipulating the mouse embryo: a laboratory manual, 
2nd ed. 1994:58. ©1994 Cold Spring Harbor Laboratory Press. 

Formation of the First Embryonic Mesenchyme: The Mesoderm Layer 
Following the formation of trophectoderm, at E4.0, a second epithelial layer is formed at 

the interface between the cells of the ICM and of the blastocoele. This second epithelium is 
called the primitive endoderm and contributes to the formation of the visceral endoderm (which 
remains associated with the epiblast) and of the parietal endoderm, which covers the surface of 
the blastocoele and the parietal trophectoderm. The parietal endoderm and the visceral endo­
derm do not contribute to the embryonic endoderm. ̂ '̂  The blastocyst implants into the uter­
ine wall between E4.5 and E5.5 (Fig. 4). Spatial constraints and the attachment of the blasto­
cyst to the uterine wall cause the cells of the ICM and of the trophectoderm to grow towards 
the interior of the blastocoele cavity. The cells of the ICM then form a third epithelium: the 
epiblast. This is accompanied by the formation of a central cavity called the amniotic pro-cavitv. 
This cavity is not the result of the formation of epithelium, but rather of localized cell death. ^ 
At this stage the embryo, called the "egg cylinder", has the shape of a cup made of two layers: 
the epiblast, surrounded by the visceral endoderm. The embryonic and extraembryonic re­
gions are clearly distinct, and the dorso-ventral and proximo-distal axes are apparent. 

Mouse gastrulation displays highly coordinated epithelium to mesenchyme conversions, 
cell migration, cell proliferation and differentiation. The general organization of the embryo 
emerges, with the formation of a new layer, the mesoderm, between the ectoderm and the 
endoderm. During gastrulation cell populations which were previously separated come to­
gether to form tissues and organs, and cells are transiently or permanently changed to allow 
permissive or instructive induction. The formation of the mesoderm layer involves a transition 
from the epithelial organization of the epiblast (tight and polarized) to the mesenchymal orga­
nization of the mesoderm (loose and apolar). 

The mesoderm cells are recruited from the cells of the epiblast, into a structure called the 
primitive streak. The location of the primitive streak defining the posterior pole and this is the 
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first assignment of an antero-posterior axis to the embryo. The cells recruited into the primitive 
streak undergo an epithelium-mesenchyme transition, then ingress between the primitive ecto­
derm and the endoderm form the mesoderm and of part of the endoderm.'^^The newly formed 
mesoderm cells form a new tissue, which spreads between the endoderm and the ectoderm, 
symmetrically from the primitive streak like "wings". 

Triggering of Gastrulation 
Gastrulation does not start before the epiblast contains a certain number of cells. ' The 

triggering of gastrulation also depends upon a chronological checkpoint. ' Cell proliferation 
is the main driving force leading to the development of the primary layers.^^'^ Additional 
morphogenetic forces are involved in the formation of the mesoderm layer, for example ingres-
sion of epiblast cells into the primitive streak and their subsequent tendency to move away 
from it. 

Formation of the Primitive Streak 
The formation of the primitive streak occurs in the posterior and ventral epiblast, at the 

junction with the extraembryonic ectoderm. The streak progresses to the extremity of the 
cylinder. Initiation of the formation of the primitive streak is poorly understood. The streak 
may lengthen due to division, recruitment and intercalation of cells of the epiblast between the 
extremities of the developing primitive streak. Thus, the cells at the distal end of the streak are 
of posterior origin, having been the first recruited when the streak formed (Lawson et al, 1991). 

Epithelium to Mesenchyme Transition 
There is little available data about EMT in the mouse. Nevertheless, findings for rabbit and 

rat appear to apply to the mouse. An epithelium-mesenchyme transition occurs in epiblast cells 
before they penetrate the primitive streak. In the mouse, the epiblast is a pseudo-stratified 
epithelium constituted of high and columnar cells.̂ '̂̂ '̂̂ ^ The epiblast presents various charac­
teristics of epithelia, including polarization, specialization of the apical surface with short and 
separated microvilli.^ '̂ ^ junctions (principally adhesive junctions, but also tight junctions, 
communicating junctions and desmosomes) in the apical portion of the lateral faces and a basal 
lamina.i^'3^ 

Loss of Polarization 
When EMT begins, organelles in certain cell populations of the epiblast are relocated to the 

apical face^ '̂̂ ^ This step is called "cytoplasmic hyperpolarization". Concomitandy, an apical 
constriction appears, with an enlargement distorting and destroying the basal lamina at the 
basal pole (Fig. 5). As in amphibians, these cells are named "botde cells". After EMT, cells 
which separated from the epiblast show mesenchymal features: irregular oudines and apolar 
distribution of organelles. The cells that penetrate the primitive streak show a characteristic 
distribution of the Na^-K^ ATPase pump. This enzyme is basal in epiblast cells outside of the 
primitive streak, but is apical in cells in the primitive streak, and is present throughout the 
cytoplasm of mesoderm cells after they have gone through the primitive streak. ̂ ^ 

Modification of the Cytoskeleton 
During EMT the intermediary filaments of the cytokeratin cytoskeleton of the epiblast 

cells are replaced by vimentin.^^ If the gene coding for vimentin or cytokeratin 8, an epithelial 
cytokeratin, is knocked out, the mice do not present any abnormality during gastrulation.^^' ^ 
In cidtures of primitive streak stage mouse embryos in vitro, immunoreactivity for desmoplakins 
and for E-cadherin is lost by epiblast cells going through the primitive streak. Desmoplakins 
are found in mesoderm cells during migration, suggesting that desmosomal junctions contrib­
ute to the cohesion of the migrating mesoderm cell layer. ^ 
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Figure 5. This model for epiblast to mesoderm transition in Mammals was proposed by Viebahn in 1995 
from observations using transmission electron microscopy. In phase I, organelles are relocalised to the 
apical side of the cells and a basal enlargement appears. In phase II, cytoplasmic polarisation is gradually lost 
and apical detachment of the cells undergoing epiblast to mesoderm transition occurs. This second phase 
comprises also a local degradation of the extracellular matrix. 

Modification of CeU-CellAdhesion 
The reorganization of adhesive junctions during the formation of "bottle cells" has been 

studied by electron microscopy.^ The resulting model explains the delamination of mesoderm 
cells from the epithelium and their ingression into the primitive streak. 

The molecular mechanisms of this EMT in vivo are poorly understood because functional 
studies in the embryo in utero are particularly difficult. In the mouse, the transformation of the 
epiblast epithelium into mesoderm mesenchyme involves the loss of E-cadherin immunoreac-
tivity. In the chicken, N-cadherin is first expressed by cells penetrating the primitive streak. 
In the mouse, it is not clear whether there is similar replacement of E-cadherin by another 
cadherin. For example, cadherin-11 is expressed by mesoderm cells only after they start to 
migrate. ' |3-catenin is a protein linking the conventional cadherins to the actin cytoskel-
eton. Its knockout results in embryonic death at E7.0, associated with the absence of meso­
derm formation, y*̂ ^^^^^^ appears to be unable to compensate for P-catenin deficiency at 
this developmental step. However, in y-catenin gene knockout mice, functional compensation 
by P-catenin is possible in certain tissues at El0 .5 . '̂ ^ 

Epiblast explants have been cultured in vitro.^^ Under basal conditions, they form epithelial 
clusters of cells, show characteristic adhesive and migratory behavior and express the character­
istic markers of the epiblast. Antibodies blocking E-cadherin activity at the surface of explants 
of the posterior epiblast destroy the epithelial organization and induce a mesenchymal 
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organization. This involves radical changes in the cell-cell and cell-extracellular matrix adhe­
sive properties, the acquisition of far more developed migratory properties and the correspond­
ing changes in the expression of molecular markers for mesoderm and epiblast cells. This EMT 
is not conventional insofar as it leads to the formation of a "mesenchymal layer", in which 
mesenchyme cells are not individualized. This mesenchymal layer state is preserved during 
migration after ingression into the primitive streak. This state represents a feature of mesoderm 
formation in Vertebrates, not found in Invertebrates. 

Modification of the Rate of Cell Proliferation 
BrdU staining and a stathmokinetic analysis demonstrated that the mean length of the cell 

cycle in the rat primitive streak is 3 hours, whereas that of an epiblast cell before penetrating 
into the primitive streak is 7.5 hours. The difference is due to shortened Gl and G2 phases. 

Modification of the Extracellular Matrix 
Initially, there is a thin layer of extracellular matrix in the form of a basal lamina between 

the epiblast and the primitive endoderm. It is constituted of hyaluronic acid, fibronectin, laminin, 
type IV collagen and thrombospondin.^^'^^ The basal lamina is discontinuous, even absent, 
under bottle cells which go on to form the mesoderm, whereas it is intact at the more posterior 
part of the epiblast (Fig. 5).̂ '̂̂ 5,42 

Aggregation experiments with mutant ES cells with wild-type blastocyst cells demonstrated 
that the knock-out of the genes coding for the components of the extracellular matrix or for 
their receptors at the cell membrane such as fibronectin and a5 or bl integrins does not perturb 
the behavior of the mutant cells during gastrulation.^ 

Modification of Gene Expression 
Molecules of the signaling pathways for growth factors such as TGFp (transforming growth 

factor (3) or FGF (fibroblast growth factor) are involved in mesoderm formation in mouse.^^ T 
(or brachyury) gene expression is induced and E-cadherin gene expression decreases during 
mesoderm formation. Knockout mutant mice for T, msd, eed, snail show defects in mesoderm 
formation and, consequendy, defective conversion of the epithelial epiblast into mesenchymal 
mesoderm see also Chapter 11, Berx and Van Roy. The brachyury mutant is particularly 
interesting because T expression appears to require FGF-2 activity for mesoderm formation, as 
in amphibians. In mouse, anterior epiblast explants treated with 10 to 50 ng/ml of FGF-2 
behaved in the same way as anterior epiblast explants treated with anti-E-cadherin-blocking 
antibodies. Functional compensation by other growth factors of the FGF family or of fami­
lies resulting in a functionally identical signaling could explain why the fgfZ knockout does not 
impair mesoderm formation. ' Mouse mutants for the major gastrulation FGF-2 receptor, 
fgfrl, show defects in mesoderm formation, due to defective mesoderm cell migration afi:er 
ingression. Conversely, defects in epithelium to mesenchyme transition could not be demon­
strated directly. 

Model for the EMT from Epiblast to Mesoderm 
The generally accepted model distinguishes two phases (Fig. 5). First, cytoplasmic hyperpo-

larization and junction remodeling (apical constrictions and basal enlargement) occur. Sec­
ondly, there is apical detachment and local destruction of the basal lamina. Two types of mol­
ecule directly controlling the EMT leading to mesoderm cell formation have been identified: a 
growth factor (FGF-2) and a cell-cell adhesion molecule (E-cadherin). 

Ingression into the Primitive Streak 
Once the primitive streak has been established, cells in contact with it ingress. The first cells 

to go through the primitive streak are those that will form the extraembryonic mesoderm. As 
the streak elongates towards the anterior pole of the epiblast, the cells forming the embryonic 
mesoderm and endoderm migrate through it; the further from the primitive streak and closer 
to the anterior pole of the epiblast they are, the later they start. '̂̂ ^ 
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Cell fate determination at gastrulation has been extensively studied in invertebrates such as 
sea urchin (see Chapter 6, Wessel) or drosophila (see Chapter 7, Ganguly), and vertebrates 
including amphibians, fish and birds. In mammals and in particular in the mouse, in vivo 
studies are complicated because embryonic development is internal. Cell fate maps have been 
established in the mouse by the technique of orthotopic transplantation of stained epiblast 
cells. Like "organizers" in other Vertebrates, the "node" at the posterior end of the primitive 
streak announces the organization properties of the embryo. Heterotopic transplantation of a 
node removed from a primitive streak stage gastrula into a gastrula at the same stage induces 
the formation of a second axis containing neural and somitic structures originating from the 
host, but induced by the transplant.^^ In contrast to amphibians, fish and birds, the induced 
axis in the mouse does not contain any anterior structures. This suggests that there is a struc­
ture in the mouse, in addition to the node, able to induce and to organize the anterior struc­
tures.^^ The mouse node structure only appears during gastrulation, whereas the equivalent 
structures in other Vertebrates are present before gastrulation. 

Regionalization of mesoderm populations induced during the course of the gastrulation in 
the mouse has been correlated with sites of ingression into the primitive streak.^ '̂ ^ The 
dorso-ventral axis of the embryo is the antero-posterior axis of the primitive streak: the axial 
mesoderm originates from cells crossing the streak primitive in the vicinity of the node region, 
the paraxial mesoderm originates from cells crossing the primitive streak in the perinodal re­
gion, i.e., anterior region of the streak, the lateral mesoderm originates from cells crossing the 
primitive streak in its middle part, and the extraembryonic mesoderm originates from cells 
crossing the streak in its distal, and therefore posterior end. 

Niunerous transcription factors, membrane receptors and growth factors act as mesoderm 
inducers and regionalizers in lower Vertebrates. However, the molecular mechanisms of the 
steps between induction of these various mesoderm lineages to their ingression into the streak 
are mostly unknown.^^'^^ In vivo gene knockouts and in vitro assays indicate that growth 
factors control epiblast cell migration through the primitive streak and the consequent cell 
determination. Growth factors and receptors of the FGF, TGF P and Wnt families have been 
implicated in certain cell population allocation defects at the time of ingression. FGF-2 elicits 
the conversion of epiblast explants into cells displaying cellular and molecular features similar 
to those of mesoderm cells in vivo. Knocking-out the gene encoding the main FGF receptor 
at this stage, fgfrl, results in cells having completed ingression being retained in the neighbor­
hood of the primitive streak, leading to a defect in paraxial mesoderm formation. This has been 
interpreted as a mesoderm dorsalizing defect. '̂ '̂ ^ Cell migration abnormalities after ingres­
sion have also been described in embryos carrying T mutations; T is a transcription factor the 
expression of which in other vertebrates is specific to developing mesoderm cells and is modu­
lated by FGFs.^ '̂̂ ^ 

Likewise, homozygote mutants for wnt3a show a paraxial mesoderm formation defect in 
the trunk: epiblast cells can cross the primitive streak, but cannot migrate laterally or differen­
tiate into neural tissue. '̂ ^ Conversely, homozygote mutants for bmp4 (bone morphogenetic 
protein 4) show a defect in the formation of ventral mesoderm. 

Mesoderm induction and regionalization involve restriction of differentiation potential, 
corresponding to phases of cell differentiation. Epiblast cells are multipotent. ' ' '̂ Epiblast 
cells of any location grafted heterotopically differentiate with the cells at the site of the graft. 
Epiblast cell multipotency is such as they can form either somatic tissues, or germ line cells. 
These are the cells that are used to establish embryonic stem cell lines (ES cells). 

Epiblast cells corresponding to the embryonic cells at the late primitive streak stage can 
differentiate into any mesoderm lineage.^^ Nevertheless, cells from the most anterior region of 
the primitive streak contribute only to neural tissues. Therefore, the transformation of the 
epiblast into primitive ectoderm during gastrulation is associated with a restriction of the de­
velopment potential of the cells. Anterior primitive ectoderm cells cannot differentiate into 
hematopoietic lineage cells in vitro.^^ Conversely, ES cells treated with activin or BMP-4, 
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regain the potential to differentiate in vitro into hematopoietic lineage cells. ' the loss of 
differentiation potential can also be interpreted as an indicator of the availability of an instruc­
tive or permissive inducer in the environment of a cell population. 

The cell differentiation potential is restricted when epiblast cells ingress into the primitive 
streak. Mesoderm cells grafted back into the epiblast recover some of the potential of epiblast 
cells, including both that to ingress, again, into the primitive streak and that to form mesoderm 
populations. Nevertheless, they cannot colonize lateral mesoderm.^^ Epiblast cells grafted into 
the mesoderm contribute to all mesoderm populations and also to lineages to which mesoderm 
cells at the grafting site cannot contribute. This supports Beddingtons suggestion that ingres-
sion of epiblast cells into the primitive streak results in a loss of differentiation potential. 
Furthermore, the differentiation of epiblast cells into a given type of tissue is not dependent on 
the initial location of these cells, but on the route they follow and the molecular and cellular 
environments they meet during gastrulation. 

Migration Associated with Gastrulation 
Epiblast cells migrate as a cluster towards the primitive streak, during gastrulation and after 

ingression. Clonal analysis shows that cells derived from the same parental cells are very rarely 
close to one another during this migration: the migration of the primitive ectoderm cells is not 
clonal.^^ At gastrulation, epiblast cells that will contribute to the ftiture neurectoderm migrate 
from the distal and anterior part of the epiblast towards the proximal and posterior part of the 
embryo. These cells migrate as a cluster of cells and they strictly follow a very precise route. ̂ ^ 
Once ingressed into the primitive streak, the cells contributing to the embryonic mesoderm 
and endoderm, and those contributing to the extraembryonic mesoderm migrate together in 
the opposite direction to the presumptive ectoderm cells, i.e., from the postero-distal to the 
antero-proximal part of the embryo. 

After ingression, the migration of the precursors of the cranial and cardiac mesoderm pushes 
back the precursors of extraembryonic mesoderm towards the extraembryonic region. These 
are among the first ingressed cells to cross the primitive streak and are localized at the 
antero-proximal pole during the early phases of gastrulation. Under the pressure of cardiac and 
cranial mesoderm precursors, this population of cells is pushed back to the extraembryonic 
region. ^ The same type of migratory movements by propulsion have been observed for precur­
sor cells of the embryonic endoderm, which move preexisting visceral endoderm cells towards 
the antero-proximal pole, in the yolk sac.'̂ '̂̂ '̂̂  The physical basis of this propulsion has not 
been clearly elucidated. It is currently believed, in the case of the propulsion of the visceral 
endoderm towards the yolk sac, that the intercalation of newly ingressed endoderm cells into 
the posterior and distal region of the embryo pushes the preexisting visceral endoderm in the 
antero-proximal direction; in addition the expansion of the yolk sac in this same direction 
creates a traction on the visceral endoderm. All mouse mutants presenting a phenotypic defect 
in the formation of the endoderm, extraembryonic cavity or constrictions at the interface of 
the embryonic and extra-embryonic regions also present defects in the formation of the primi-
tivelayers.^7-i«° 

Little is known about the molecular mechanisms involved in these cell migrations. Cell-cell 
adhesion molecules and matrix-cell adhesion molecules may well be involved in this pro­
cess. '̂ O'̂ oi During the EMT associated with ingression in the primitive streak, the range of 
cell adhesion molecules expressed at the surface of the cells is modified, and in particular 
E-cadherin disappears. After ingression, cohesion between the mesodermal cells is reestab­
lished via N-cadherin and cadherin-11. '̂ However, N-cadherin and cadherin-11 knockouts 
do not present any obvious phenotype at gastrulation.̂ ^" '̂̂ ^^ E-cadherin knockout embryos, in 
contrast die at the time of perimplantation, and this early lethality prevents analysis of the 
effect during gastrulation.^^ Nevertheless, Cdhl-/- ES cells strongly express T, a mesodermal 
marker.^ Finally, in the absence of FAK, a protein kinase involved in matrix-cell adhesion, 
mesodermal cells present clear migratory defects. 
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Table 1. EMT examples during embryonic development 

Example 

Gastrulation 
Prevalvular mesenchyme 
(Heart formation) 
Neural crest cells 

Somitogenesis and 
sclerotome differentiation 
Palate formation 

Mullerian tract regression 

Stage 
(Mouse) 

E6.5 
E8 

E8 

E9 

E13.5 

El 5 

Transition 

Epiblast -> Mesoderm 
Endothelium -> 
Atrial and ventricular septum 
Neural plate -> 
Numerous derivatives 
Somite walls -> Sclerotome 

Oral epithelium -> 
Mesenchymal and 
epithelial cells + apoptosis 
Mullerian tract -> 
Mesenchymal cells 
combined with apoptosis 

Specific Related Factors 

TGFp/BMP, FGF, Wnt 
TGFP, Slug 

Notch/delta, shh, BMP 
Slug 
Notch/delta, shh, slug? 

TGFP 

TGFP, 
antl-Mullerian hormone. 
P eaten in 

In conclusion, the formation of the first embryonic mesenchyme is associated with the 
conversion of some epithelial cells of the primitive ectoderm. One of the main features of this 
conversion is the loss of the (mosdy E-cadherin-dependent) cell-cell adhesion. The neo mesen­
chymal cells then lose subcellular polarization and their gene expression is modified. The cells 
present novel properties including higher rates of proliferation and motility. This EMT results 
in the genesis of novel cell types, and tissues and a new general organization in the embryo. 
Some of the cells derived from the epiblast do not undergo EMT, and will form the ectoderm. 
This developmental step is therefore associated with a restriction of multipotentiality. 

EMT Later during Embryonic Development and Adult Stages 
Several epithelium-to-mesenchyme conversions occur later during embryonic development 

(Table 1). Examples are the formation of neural crest cells from the neural tube on embryonic 
day 8 (= E8) (see Chapter 3, Newgreen and McKeown), of the atrial and ventricular septum 
from the endothelium during the formation of the heart on E8 (see Chapter 4, Runyan et al), 
of the sclerotome from the somite on E9, of mesenchymal cells of the palate from oral epithe­
lium at El3.5 (see Chapter 1, Hay), and of mesenchymal cells during the regression of the 
Mullerian tract on El 5. The main molecular events associated with these transitions are similar 
but the regulation is different. These EMT will not be described here. 

Regulation of EMT 
Soluble factors were thought to be important in EMT for many years, but they are not the 

only factors involved. Indeed, morphogen gradients are not the sole molecular mechanism of 
EMT induction. Transmembrane proteins such Notch/Delta or cadherin/catenin are essential 
in the induction and control of EMT (see Chapter 11, Berx and Van Roy). 

During embryonic development, EMT are regulated by the combination of (i) the execu­
tion of a genetic program within cells that are undergoing EMT, and (ii) the signals emanating 
from the environment, such as growth factors, and physical constraints. 

Regulation of gastrulation-related EMT arises from the migration of mesenchymal cells to 
environments in which EMT triggering factors are not produced. In addition, execution of 
genetic programs is responsible for producing pro-epithelial molecules. EMT is a normal pro­
cess in the maintenance and repair of tissues (for example maintenance of the intestinal epithe­
lium, and wound healing heightened on Chapter 8, Arnoux et al) in the adult. The regulation 
of adult EMT is similar to that for gastrulation-related EMT. Some abnormal processes in the 
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adult, such as primary tumor or metastasis formation, are also associated with EMT. These 
EMT are not regulated because: (i) EMT triggering signals are produced continuously after 
mutations in their genes; (ii) cells undergoing EMT have become insensitive to their environ­
ment and therefore, the process never stops. 

Conclusion 
In conclusion, it appears that the embryonic development involves a series of conversions of 

epithelial architecture to mesenchymal architecture and of mesenchymal architecture to epi­
thelial architecture. These successive MET <-> EMT interconversions can affect the same original 
cell. Consequently, the acquisition of the epithelial or mesenchymal status by a cell is not final. 
In other words, there is a single mechanism which is defined as MET or EMT according to the 
direction in which it works. 
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