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Geometrical Constructions

Let no one enter who does not know geometry.
Plato (427-347 BC)

Written above the door of Plato’s Academy in Athens.

6.1 Ruler and Compasses

Euclid circa 300 BC gave a systematic account of the geometry known at
the time, beginning with certain basic concepts, known as axioms. These
axioms are to be thought of as initial assumptions on which the geometry
of Euclid depend. His axioms are as follows:

1. A straight line may be drawn from any point to any other point.

2. A finite straight line may be extended continuously in a straight line.
3. A circle may be drawn with any center and any radius.

4. All right angles are equal to one another.

5. If a straight line meets any two other straight lines so as to make
the two interior angles on one side of it together less than two right
angles, the other straight lines, if extended indefinitely, will meet on
that side on which the angles are less than two right angles.
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At the heart of ancient Greek geometry are the “ruler and compass”
constructions Two implements were used, a ruler for drawing straight lines
and a pair of compasses for drawing circles. The ruler is simply a straight
edge with no markings on it. It is used only for drawing straight lines, and
not for measuring lengths. The compasses consist of two arms connected
by a movable joint. At the end of one arm there is a sharp point that is
placed at the center of the circle to be drawn. There is a a pencil at the end
of the other arm, which can be moved to change the radius of the circle.
Set against their many successes in this area of geometry, there were a few
constructions by ruler and compass that the Greeks kept vainly struggling
to achieve. After more than two millennia of experience of ruler and com-
pass constructions, mathematicians at last attained a fuller understanding
of the limitations of these methods and were able to prove that these long-
standing unsolved classical problems were truly unsolvable. However, it is
not difficult, after a little experimenting, to rediscover for ourselves some
of the more obvious constructions that can be carried out by ruler and
compasses.

Construction 1 Draw a line that is perpendicular to a given line at a
given point A.

We use the compasses to mark two points B and C' on the given line,
equally spaced on either side of A. See Figure 6.1. We then draw equal
arcs centered at B and C' and label their point of intersection D . Then
AD meets BC' at right angles. To see this, note that in the triangles ADB
and ADC, |AB| = |AC|, |DB| = |DC|, and DA is common to both trian-
gles. (We write |AB| to denote the length of the line segment AB.) Thus
the two triangles are congruent. Finally, the angles DAB and DAC must
both be right angles, since they are equal and their sum is equal to two
right angles. |

B A c

4 4
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FIGURE 6.1. Draw a line that is perpendicular to the horizontal line at A.

Construction 2 Draw a line through a given point A that is perpendic-
ular to a given line that does not pass through A.

With center A we use the compasses to mark off two points, B and C,
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on the line. (Draw a diagram.) Then we draw equal arcs centered at B and
C to meet at a point D that is on the other side of the given line from A.

Let AD and BC intersect at the point E. We deduce that the triangles
ABD and ACD are congruent, and that triangles ABE and ACE are
congruent. Thus the angles AEB and AEC are equal and so must both be
right angles. |

Construction 3 Find the midpoint of a given line segment BC.

This construction is similar to Construction 2. With any radius greater
than half the distance BC we draw arcs of the same length, centered at B
and C, to intersect at a point A on one side of BC and at a point D on the
other side of BC. Then we can verify that F, the point where AD and BC
intersect, is the midpoint of BC', and that AF is the perpendicular bisector
of BC. |

Construction 4 Draw a line through a given point A that is parallel to
a given line.

We begin by using Construction 2 to obtain points B and C' on the given
line and the midpoint D of BC. Then AD is perpendicular to BC. Next,
using the ruler, we extend the line DA and use the compasses to find a
point E on the extended line DA such that A is the midpoint of DE.
Finally we construct the perpendicular bisector of the line DFE. This line
passes through A and, being perpendicular to DE, must be parallel to the
original line BC. |

Construction 5 Given two lengths a and b, with a > b, construct the
lengths a +b and a — 0.

These constructions are very simple. We use the compasses to mark off
the lengths |OA| = a and |AB| = b, as shown in the diagram on the left of
Figure 6.2. Then the length |OB| equals a + b. The construction of a — b is
shown in the diagram on the right of Figure 6.2. W

L a 1 J L a 1 J
0 A B 0 B A
- a+b > ~—a—b—»

FIGURE 6.2. Construction of a + b and a — b.

Construction 6 Given two lengths a and b and a unit length, construct
the lengths ab and a/b.
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|OB| = ab |OD| =a/b

FIGURE 6.3. Construction of ab and a/b.

In Figure 6.3 the two diagrams are identical, apart from the assignment
of the segments that have lengths a, b, and 1. The lines AB and C'D are
parallel, and thus the triangles OAB and OCD are similar. (The angle
between OA and OB is chosen arbitrarily.) It follows from the similarity
of triangles OAB and OCD that

|OD|  |OB|
lOC| — |OA]

In the diagram on the left of Figure 6.3, |OA| = a, |OD| = b, and |OC| = 1,
and it then follows from (6.1) that

(6.1)

b |OB|

1 a ’

and hence |OB| = ab. In the diagram on the right of Figure 6.3, |OB| = a,
|OA| = b, and |OC| = 1, and it then follows from (6.1) that

OD| _a

1 b’
so that |OD|=a/b. N
Remark 6.1.1 Through the repeated use of Constructions 5 and 6, we
can construct any length that can be obtained by beginning with a finite

number of given lengths and carrying out a finite number of applications
of addition, subtraction, multiplication, and division. |

Construction 7 Divide a given line segment into n equal parts.

Figure 6.4 illustrates the case n = 3. We begin with the line AB, and
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FIGURE 6.4. Divide the line segment AB into three equal parts.

draw a second line through A, making any angle with AB. Beginning at A
we mark off n equal segments on the second line, ACy, C;C5, and so on,
ending with the segment C,,_1,C,. We join C),, to B. Then, using Con-
struction 4, through each point Cy, Cs, and so on, up to C,,_1, we draw
a line parallel to the line C,, B. We see that the triangles AC1 D1, AC5 D,
and so on, are all similar. Thus in Figure 6.4 we have

|ADy|  |AG,|

_AGy AB| Ay
[AD,| ~ JAC|

|ADy| — ACH|

and =3.
We can obviously extend this argument if n > 3. This justifies the con-
struction. |

Construction 8 Bisect a given angle.

Let the given angle be denoted by angle BAC, where |BA| = |AC|. We use
the compasses to construct a point D such that |[BD| = |CD]|. (See Figure
6.5.) Then the line AD bisects the angle BAC.

We observe that the triangles DAB and DAC have three corresponding
sides equal. Thus they are congruent, and so the angles DAB and DAC
are equal. |

B D

A C
FIGURE 6.5. The line DA bisects the angle BAC.

Construction 9 Inscribe a circle inside a given triangle.



156 6. Geometrical Constructions

FIGURE 6.6. The incircle for the triangle ABC.

Using Construction 8, draw the lines that bisect angles ABC and ACB,
and denote their point of intersection by O. (See Figure 6.6.) From O, draw
perpendiculars to each side of the triangle, and let them meet BC, C'A,
and AB at D, E, and F, respectively. Then O is the center of the inscribed
circle and its radius is |OD|, which is equal to |OE| and |OF|.

The inscribed circle is called the incircle of triangle ABC, and O is called
the incenter. Let us compare the triangles OF B and ODB. The angles
OBF and OBD are equal, and the angles OF B and ODB are also equal,
both being right angles. Since also the triangles OF B and ODB have the
common side OB, the two triangles are congruent, and thus |OF| = |OD|.
Similarly, we can show that the triangles ODC and OFEC are congruent,
and deduce that |OD| = |OE|. Thus we can draw a circle with center O,
and radius |OD| = |OE| = |OF|. The sides of the triangle, BC, C'A, and
AB meet the radii OD, OF, and OF, respectively, at right angles. We
say that the sides of the triangle are tangents to the circle. Finally, let
us compare the triangles OFA and OF A. They are right-angled triangles
with two corresponding sides equal, since the side OA is common to both
triangles and |OFE| = |OF|. Hence, by Pythagoras’s theorem (see Section
1.2), we have

|AE|> = |OA|” — |OE|* = |OA|” — |OF|* = |AF|?.

Since |AE| = |AF]|, the triangles OFE A and OF A are congruent, and so OA
bisects the angle BAC'. Thus the bisectors of the three angles of a triangle
are concurrent, that is, they meet in a common point. |

Construction 10 Draw a circle that passes through three points that do
not lie in a straight line.

Let the three points be denoted by A, B, and C. Using Construction 3, we
draw the perpendicular bisectors of AB and BC. These two perpendicular
bisectors must intersect at some point, say O. Since |OA| = |OB| = |0C]|,
the points A, B, and C' lie on a circle whose center is O. Since O is equidis-
tant from C and A, it lies on the perpendicular bisector of C A, and thus
the three perpendicular bisectors are concurrent at O. |
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It is clear from Construction 10 that three points A, B, and C' not on a
straight line determine a unique circle that passes through all three points.
This is called the circumcircle of the triangle ABC, and its center is called
the circumcenter. In general, a given fourth point, D, will not lie on the
circle that passes through A, B, and C. A quadrilateral ABC D for which,
unusually, all four points lie on a circle, is called a cyclic quadrilateral.

Construction 11 Given a line segment of length 1, construct a line seg-
ment whose length is the golden ratio, a = (/5 +1).

Let |AB| = 1. We use Construction 1 to create the square ABCD, as
depicted in Figure 6.7, and use Construction 3 to bisect the line CD at E.
Then, by Pythagoras’s theorem (see Section 1.2) we have

1 )
BB = |BCP +|CEP =1+ =7,

and hence |EB| = %\/5 We now use the compasses, centered on F, to
draw a circle of radius |EB]| to cut the extended line DC at F. Then

11
DF| = |DE| + |EF| = |DE| + |EB| = 5 + 3V5=a. ®

D E C F

A B

FIGURE 6.7. Construction of the golden ratio |DF|/|DC.

Of all the regular polygons, the equilateral triangle and the regular
hexagon are the easiest to construct.

Construction 12 Construct a regular hexagon in a circle of radius 1.

We choose a point A; on the circumference of the circle, and use the com-
passes with radius 1 and center A; to draw an arc that cuts the circle at
a point As. See Figure 6.8, where O marks the center of the circle. We
next center the compasses on As and, with the same radius, draw an arc
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As As

FIGURE 6.8. Construction of the regular hexagon.

that cuts the circumference at a point As, as shown in Figure 6.8. We re-
peat this process three more times to complete the construction. We note
that the figure contains six congruent equilateral triangles, namely O A; Ao,
OAs A3, and four others. If we pick out every second point of the hexagon
Ay Ay A3 Ay A5 Ag, we obtain an equilateral triangle. |

Construction 13 Construct a regular decagon in a circle of radius 1.

Let O be the center of a circle of radius 1, let |OA| = |OB| = 1 and
let AB be a chord of a regular decagon, the regular polygon with ten sides.

s

Thus the angle AOB is ¥. See Figure 6.9. The two remaining angles in
triangle OAB are equal, and must both be 2?77, since the sum of the an-
gles in a triangle is equal to 27. The point C' is chosen on OA so that
|BA| = |BC|. Therefore, the two angles BCA and BAC are both 2%, and

consequently angle CBA is ¢. This means that angle CBO is also £, and

so |CB| = |CO]|. Thus the triangles AOB and ABC' are both similar to the
triangle FAG in Figure 3.7, which depicts the pentagram. On comparing
the two similar triangles in Figure 6.9, we have

|AB\_9U T _|OA|_1

|AC| —y 1—z |AB| (62)

@) x c y A
FIGURE 6.9. Construction of the regular decagon.
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As we found in Section 3.3 (see (3.39)),

le} _a271
a+1l a+1

We can obtain the golden ratio « by ruler and compasses using Construc-
tion 11, and thus we can construct x = a — 1, the length of the side of
a regular decagon in a circle of radius 1. The construction of the decagon
is then easily completed. We can obtain the regular pentagon by connect-
ing every second point of the decagon, and can also construct the star of
Pythagoras, which we discussed in Section 3.3. |

Given two positive numbers a and b, the number
1
Ala,b) = i(a +b) (6.3)
is called their arithmetic mean. If 0 < b < a, we have

2b<a+0b<2a.

Thus )
b < 5(@ +b) <a, (6.4)

so that A(a,b) lies between a and b. We define the geometric mean of a
and b as

G(a,b) = Vab. (6.5)

If 0 < b < a we can show that 0 < b2 < ab < a2, and thus
0<b<+Vab<a, (6.6)

so that G(a,b) lies between a and b. If we compute the arithmetic and
geometric means of several pairs of positive numbers a and b, we always
find that A(a,b) > G(a,b). To verify this, consider

ath) Vab= 1 (a-2vabir) =1 (va-vB) 20, (67)

Let 2 = vab, so that ab = 22. On dividing throughout by bz, we obtain

a T
= 6.8
T b’ (6.8)
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and we say that the geometric mean x is the mean proportional of a and b.
I will mention only one more mean, although the list of means is endless.
This is the harmonic mean of a and b, defined by

2ab

H(a,b) = m

(6.9)

The arithmetic, geometric, and harmonic means have been studied since
at least the time of Pythagoras, in the sixth century BC. If we divide both
the numerator and the denominator of the fraction on the right of (6.9) by

ab, we obtain
1 1
H(a,b)=2/-+-]).
(a.b) /(a+b)

Thus the harmonic mean is the reciprocal of the arithmetic mean of 1/a
and 1/b, that is
11
H(a,b)=1/A|-,-]. 6.10
@t =1/a(5.;) (6.10)
It is also not hard to verify that

H(a,b) G(a,b)
G(a,b)  Ala,b)’

(6.11)

Thus
1/2
G(a,b) = (A(a,b)H(a,b)) ",
so that the geometric mean of a and b is itself the geometric mean of the
arithmetic and harmonic means of a and b.

Construction 14 Construct the arithmetic and geometric means of two
line segments AB and BC.

In Book IIT of his Mathematical Collection, Pappus of Alexandria (third
century AD) gives the construction that is shown in Figure 6.10. This de-
picts the case |[AB| > |BC|. The arithmetic mean is easily found by using
Construction 3 to find O, the midpoint of AC. Then both |AO| and |OC|
give the required arithmetic mean of |AB| and | BC|. Next, using Construc-
tion 1, we draw a perpendicular to AC, passing through B, to meet the
semicircle with diameter AC' at the point D. Then |BD] is the geometric
mean of |[AB| and |BC|. The proof relies on similar right-angled triangles,
and we first show that the angle ADC is a right angle. We argue that in
triangle OAD, |OA| = |OD]|, both being radii of the semicircle that passes
through A, D, and C. Thus the angles OAD and ODA are equal, and we
will denote them by «. Similarly, in triangle OC'D, since OC and OD are
radii of the semicircle, the angles OC'D and ODC' are equal, and we will
denote them by (. Since the sum of the angles of triangle ADC, which
equals two right angles, is also equal to 2« + 24, it follows that o + (§ is a
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right angle. Thus angle ADC is a right angle. It follows that the triangles
ADC, ABD, and DBC, having corresponding angles equal, are similar
right-angled triangles. We deduce from the similarity of the two smaller
triangles that

|AB|  |BD]

|BD|  |BC|’
so that |BD|, being the mean proportional of |AB| and |BC|, is their
geometric mean. |

(6.12)

o g
A O B C

FIGURE 6.10. |OD]| is the arithmetic mean of |AB| and |BC/|, and |BD| is their
geometric mean.

Construction 15 Construct the harmonic mean of two line segments AB
and BC.

This construction is also given by Pappus in Book IIT of his Mathematical
Collection. We amend Figure 6.10 by drawing a line from B, perpendicu-
lar to OD, meeting OD at the point E, as in Figure 6.11. Then |ED] is
the harmonic mean of |AB| and |BC|. To justify this, we observe that the
triangles DEB and DBO are similar, and thus

|ED|  |DB

|DB|  |OD|’
This shows that |DB|, which is the geometric mean of |AB| and |BC|, is
a mean proportional to |[ED| and |OD|, and since |OD] is the arithmetic

mean of |AB| and |BC/, it follows from (6.11) that |ED| is the harmonic
mean of |AB| and |BC|. N

We observe from Figure 6.11 that
|OD| > |BD| > |ED|,

showing an ordering of the arithmetic, geometric, and harmonic means.
This may be justified algebraically (see Problem 6.1.7).
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o E I}
A O B C

FIGURE 6.11. |ED]| is the harmonic mean of |AB| and |BC/|.

Problem 6.1.1 To construct a regular octagon, draw a circle with center
O, and inscribe a square ABCD in it, giving four vertices of the octagon.
(One way is to draw two diameters of the circle that are mutually per-
pendicular.) Use Construction 3 to find E, the midpoint of AB, and show
that the point where OF cuts the circle gives a fifth vertex of the octagon.
Finally, construct the three remaining vertices of the octagon.

Problem 6.1.2 Construct an equilateral triangle and a regular pentagon
that have one vertex in common within a circle of radius 1. (See Construc-
tions 12 and 13.) Hence construct a regular polygon with 15 sides.

Problem 6.1.3 If 0 < b < a, verify that 0 < b®> < ab < a? and hence

show that
b < Vab < a.
Problem 6.1.4 Show that for the arithmetic mean,
A(Xa, Ab) = AA(a, b),

where A, a, and b are any positive numbers. Any mean satisfying this prop-
erty is called homogeneous. Show that the geometric and harmonic means
are also homogeneous.

Problem 6.1.5 In Figure 6.11, in which we have |AB| > |BC/, prove that
|ED| > |BC|.

Problem 6.1.6 Deduce from (6.9) that if 0 < b < a, then
b< H(a,b) < a.
Problem 6.1.7 Verify that if 0 < b < a,
b< H(a,b) < G(a,b) < A(a,b) < a,

where A, G, and H denote the arithmetic, geometric, and harmonic means.
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6.2 Unsolvable Problems

In Section 6.1 we saw how to construct regular n-sided polygons for n = 3,
4, 5, 6, 8, and 10, that is, the equilateral triangle, the square, and the
regular pentagon, hexagon, octagon, and decagon. However, neither the
regular heptagon, which has seven sides, nor the regular nonagon, which
has nine sides, can be constructed using ruler and compasses. Heron of
Alexandria found an approximate construction for the heptagon, and the
famous painter, engraver, and mathematician Albrecht Diirer (1471-1528)
found an approximate construction for the nonagon. (See Eves [9].) It may
seem surprising that the regular nonagon cannot be constructed by ruler
and compasses. We can begin by constructing an equilateral triangle, say
ABC, in a circle with center O. Then we could complete the construction
by trisecting the angles AOB, BOC, and COA. Alas, we cannot do that!
For apart from some special cases, including a right angle, we cannot trisect
an angle using ruler and compasses. The trisection of an angle is one of the
three famous unsolved problems of Greek mathematics.

In Book IV of his Elements, Euclid described the construction of regular
polygons of 3, 4, 5, 6, and 15 sides. We can extend these constructions by
carrying out repeated bisections, using the same device as we employed in
Problem 6.1.1 to construct the regular octagon from the square. Thus we
can construct regular polygons with 2™ sides for any n > 2, or m x 2"
sides, where m = 3, 5, or 15, and n is any nonnegative integer. Since the
time of Euclid, the only substantial addition to our knowledge of the ruler
and compass construction of regular polygons was made by C.F. Gauss,
who had the last word on this topic. Gauss showed that the construction
of a regular polygon with a prime number of sides p is possible if and only
if p is a prime number of the form f,, = 22" 4 1, for n > 0. These are the
Fermat numbers, defined in (4.22), and we obtain the prime values 3, 5,
17, 257, and 65,537, corresponding ton =0, 1, 2, 3, and 4. As was stated
in Section 4.3, no other Fermat primes are known. (A star-like figure based
on the regular polygon with 17 sides is inscribed on the plinth of Gauss’s
statue in Braunschweig, the city of his birth.)

The second of the three famous unsolved problems of Greek mathematics
is the duplication of the cube. It is easy to construct a square whose area
is twice that of a given square. For if we have a square of side a, its area
is a?, and we see from Pythagoras’s theorem that its diagonal is of length
v/2a. Using ruler and compasses, we can construct a square on this diagonal
whose area is 2a?. Analogously, given a cube of side a, can we construct
a number b such that b = 2a3? Hippocrates of Chios showed in the fifth
century BC that this is equivalent to finding numbers b and ¢ such that

2-c- b (6.13)
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For on multiplying the first equality in (6.13) by bc, and the second equality
by ab, we find that (6.13) is equivalent to

2ab=c* and ac=0b> (6.14)
The second equation in (6.14) is equivalent to
a’c® = bt (6.15)

On multiplying the first equation in (6.14) by a?, and using (6.15), we
obtain
2a%b = b,

which indeed reduces to
b =243, (6.16)

The numbers b and ¢ sought by Hippocrates, as in (6.13), are said to be
mean proportionals to the numbers a and 2a. Although the construction of
one mean proportional to two numbers (their geometric mean) is easy, the
construction of two mean proportionals defied the considerable ingenuity
of generations of Greek mathematicians, and surely this included some of
the cleverest people who have ever existed.

The last of the three classical unsolved problems of ancient Greek math-
ematics is called the squaring of the circle. By their construction of the
geometric mean, the Greeks had shown how to construct a square whose
area is equal to the area of a given rectangle. They also tried, in vain, to
construct a square whose area is the same as that of a given circle. You
may think that this seems too ambitious, since unlike the perimeter of a
rectangle, the perimeter of a circle is a curve, and so its area is much more
difficult to reconcile with that of a square. However, the greatest of the
Greek mathematicians, Archimedes of Syracuse (287-212 BC), showed that
the area of a segment of a parabola can be expressed as a rational multiple
of the area of a certain triangle. Since the the circle appears to be a simpler
object than the parabola, it is understandable if this encouraged the belief
that the squaring of the circle was achievable.

Let us now give a brief account of conic sections. We begin with a straight
line ¢ that intersects a given vertical line at a point O. (See Figure 6.12.) A
right circular cone is the three-dimensional figure that is created by rotating
£ around the vertical line. Both £ and the vertical line are infinite in length,
and thus the cone extends to infinity both above and below the central
point O, which is called the verter of the cone. In everyday language, the
word “cone” is commonly used to denote just one half of the figure we have
just described. The vertical line in Figure 6.12 is called the axis of the cone.
Every line that passes through O and lies on the surface of the cone, like
the line £, is called a generator. The cone is determined uniquely by the
angle that ¢ makes with the axis. This angle, which we will take to be less
than a right angle, is denoted by « in Figure 6.12.
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FIGURE 6.12. A right circular cone is generated by rotating the straight line ¢
around the vertical line.

Conic sections, as the name suggests, are the curves that are obtained
from sections of the cone by planes. Consider a plane that cuts the axis
of the cone at an angle 3 < 7. The simplest and not so interesting case
is that of the plane cutting through the vertex. In this case, if 3 < «, the
plane cuts the cone in a pair of generators, and if 3 = «, the plane cuts
the cone in a single generator. If 3 > «, the plane obviously cuts the cone
only at O. Now let us consider the curves that are obtained when a plane
forming an angle 8 with the axis does not pass through the vertex O. If
8 < a, the plane cuts both halves of the cone and we obtain a hyperbola,
which thus has two branches. If § = «, the plane is parallel to a generator
of the cone. It cuts only one half of the cone and the resulting curve of
intersection is the parabola. If § > «, the plane cuts the cone through one
half only, and we obtain an ellipse. In particular, if 3 = § we obtain the
circle as a special case of an ellipse.

Archimedes used a most ingenious construction to prove that the area of
a segment of a parabola is equal to % times the area of a triangle whose base
is the same as the length of the parabolic segment and that has the same
height. Figure 6.13 shows the parabolic segment and the triangle ABC that
has the same base and height as the segment. Archimedes constructed two
further triangles, shown as triangles ADB and BEC in Figure 6.13. The
point D is chosen so that the triangle ADB has the same height as the
parabolic segment with base AB. Similarly, triangle BEC, with base BC,
has the same height as the parabolic segment with base BC'. Archimedes
proved that the sum of the areas of triangles ADB and BEC is one quarter
of the area of triangle ABC, and a fine account of this proof is given in
Edwards [7]. Archimedes continued this process, constructing four triangles
with bases AD, DB, BE, and EC, whose combined area is one-quarter of
the combined areas of triangles ADB and BEC, and so is % of the area
of triangle ABC'. Archimedes thought of this construction being continued
indefinitely, and proved that the area of the original parabolic segment
that is not covered by one of his triangles tends to zero. He deduced that
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A C

FIGURE 6.13. The area of the parabolic segment is % times the area of the
triangle ABC.

the area of the parabolic segment ABC' is S times the area of the triangle

ABC, where
1

1 1
S—1+4+42+43+'~. (6.17)
This is an infinite geometric series, and we see from (4.19) that S = %, thus
verifying this wonderful result of Archimedes.

By the nineteenth century, some areas of mathematics had been devel-
oped that were not known to the ancient Greek mathematicians. It was one
of these, the theory of equations, that led to proofs that the three famous
long-standing problems of Greek mathematics are insoluble. Consider the
polynomial equation

apz" +a12" "+ an_1z+an =0, (6.18)

where the coefficients ag, ai,...,a, are all real and ag is nonzero. This
equation is easily solved if n = 1, when it is called a linear equation. When
n = 2 we have a quadratic equation, whose complete solution is discussed
in Section 1.5. Some quadratic equations were solved by Babylonian math-
ematicians as early as the second millennium BC. When n = 3, 4, and 5 we
have a cubic, quartic, and quintic equation, respectively. It was not until
the sixteenth century AD that the general cubic and quartic equations were
solved. When I say “solved,” I mean that solutions of the equation can be
obtained by carrying out a finite number of arithmetical operations, specif-
ically additions, subtractions, multiplications, divisions, and the extraction
of square roots, cube roots, and so on, beginning with the coefficients ay,
ai,...,a,. By the early eighteenth century, P. Ruffini (1765-1822) and
N. H. Abel (1802-1829) independently proved that the general quintic can-
not be solved, in the sense defined above. Although it may seem rather
negative to show that something cannot be done, this was a very impor-
tant achievement in the history of mathematics.
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Recall from Definition 2.5.2 that a complex number that is a solution of
an equation of the form (6.18) where the coefficients are all integers is called
algebraic, and a complex number that is not a solution of such an equation
is called transcendental. The breakthrough in the long quest to settle the
three most famous unsolved ruler and compass problems came with the
establishing of the following two key results in the theory of equations,
which are stated in Eves [9].

Theorem 6.2.1 Beginning with a line segment of unit length, the length
of any line segment constructed by any sequence of operations using ruler
and compasses is an algebraic number. |

Theorem 6.2.2 Beginning with a line segment of unit length, it is impos-
sible to construct by any sequence of operations using ruler and compasses
a line segment whose length is a solution of a cubic equation that has
integer coefficients but has no rational solution. |

As we will see, Theorem 6.2.2 settles the question of the duplication of
the cube in the negative. In (6.16) let us write @ = 1 and b = . Then we
need to construct a number z such that 23 —2 = 0. If there were a rational
solution of this equation, we could write it as

3
x = 27 where p—S =2,
q q
where p and ¢ are positive integers, and we can assume that p and g have
no common factor greater than 1. Thus

P =24¢°, (6.19)

and so p must be even. Let us write p = 2p; in (6.19), so that

and thus
4pt = ¢°,

showing that ¢ must be even. Notice that, beginning with the assumption
that the equation 23 —2 = 0 has a solution of the form z = p/q, where p and
¢ have no common factor greater than 1, we have shown that p and ¢ have
the common factor 2. This shows that our assumption is untenable, and
that this cubic equation with integer coefficients does not have a rational
solution. It follows from Theorem 6.2.2 that the duplication of the cube
cannot be achieved by a ruler and compass construction.

Theorem 6.2.2 can also be used to show that not every angle can be
trisected by using a ruler and compass construction. One needs only a
little knowledge of trigonometry to follow a proof of this. See Eves [9].
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The area of a circle of radius r is 7r2. Thus the area of a circle of unit
radius is 7. To “square the circle,” we need to construct a square with
side of length /7. In 1882, C.L.F. Lindemann (1852-1939) proved that 7
is transcendental, following up the work of C. Hermite (1822-1901), who
showed in 1873 that e is transcendental. Thus, by Theorem 6.2.1, m can-
not be constructed by a ruler and compass construction. Now if /7 were
constructible by ruler and compasses, we could redraw Figure 6.10, begin-
ning with |BD| = /7 and |BC| = 1. Then, since |BD| is the geometric
mean of |AB| and |BC|, it follows that |AB| = m. Thus if /7 could be
constructed by ruler and compasses, so could 7, which is not constructible.
This shows the impossibility of squaring the circle by using a ruler and
compass construction.

Problem 6.2.1 Verify from (4.19) that

1 1.1 1
=+ =+

3-aTeEtET

and hence show how we can get as close as we wish to trisecting an angle
using ruler and compasses by using repeated bisections of an angle. Note
that this does not show that we can trisect an angle using a finite number
of ruler and compass operations.

6.3 Properties of the Triangle

Consider three line segments whose lengths are a, b, and ¢, where a > b > c.
It is obvious that these three segments can be fitted together to form a
triangle if and only if b 4+ ¢ > a, and if a triangle can be formed, it must
be unique. Thus if we have two triangles whose sides are a, b, and ¢, they
must be congruent. Suppose we have two triangles that both have sides
b and ¢, and have the same angle between these sides. We say that the
two triangles have two sides and the included angle equal. Then we can fit
one triangle on top of the other, and it is clear that the third sides must
be equal. Therefore, having two sides and the included angle equal is a
second condition that gives congruent triangles. There is a third congruence
condition, two triangles being congruent if they have the same angles and
have one corresponding side equal. For again we can verify that they are
congruent by fitting one triangle on top of the other. In practice, we need
only verify that two pairs of angles are equal, since equality of the third
angles follows from the result we discuss in the next paragraph.

One of the most basic properties of a triangle is that the sum of its three
angles is 27, which is equal to two right angles. A proof of this is given in
Problem 1.2.1. Another proof, which is equivalent to this, can be realized by
cutting out a paper copy of the triangle and folding it, as shown in Figure
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p oa\yB
A c’ B c’

FIGURE 6.14. The sum of the angles in a triangle equals 2.

6.14. We fold the triangle along a line that bisects two of the sides (see the
dotted line DE in the left-hand diagram in Figure 6.14), so that the vertex
denoted by C meets the side AB at C’. The line DE is parallel to AB,
since the triangles CDE and C AB are similar, and hence the angles CDE
and C AB are equal. In the middle diagram we see that the triangle DAC’
is isosceles, since |[DA| = |DC’|, and so the angles DAC’ and DC’'A are
equal. Similarly, the angles FC’'B and EBC’ are equal. We next fold the
triangle along the two vertical dotted lines shown in the middle diagram in
Figure 6.14, so that the vertices A and B both coincide with C’. Then we
see in the right-hand diagram in Figure 6.14 that the three angles of the
original triangle ABC add up to 2, or two right angles.

We proved in Construction 10 that the perpendicular bisectors of the
three sides of a triangle are concurrent. The point of concurrence, which
we will denote by A, is called the circumcenter. It is the center of a circle,
the circumcircle, that passes through the vertices of the triangle.

In Construction 9 we showed that the bisectors of the three angles of a
triangle are concurrent. This point of concurrence, which we will denote
by O, is called the incenter. It is the center of a circle, the incircle, that is
inscribed in the triangle, touching all three sides.

There are two other very well known points of concurrence in a triangle,
which I will justify in the next section. One is the orthocenter, which we
will denote by B, where the three perpendiculars from the vertices of the
triangle to the opposite sides meet. (These perpendiculars are also called
the altitudes of the triangle.) The other is the centroid, which we will denote
by C', where the three medians of the triangle intersect. A median is a line
joining a vertex of the triangle to the midpoint of the opposite side. The
points A, B, and C are displayed in Figure 6.15. In this figure, Ay, Ao,
and Az denote the vertices of the triangle, By, Bs, and Bs denote the
points where the perpendiculars from the vertices of the triangle meet the
opposite sides, and C7, C3, and C3 denote the midpoints of the sides of the
triangle. The figure displays the three lines that are concurrent at B, and
those that are concurrent at C' are shown as dotted lines. The three lines
that are concurrent at A are omitted from the figure for the sake of clarity,
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A Cy B As

FIGURE 6.15. The circumcenter A, the orthocenter B, and the centroid C' all lie
on the Euler line.

and especially to help us see that the three points A, B, and C' all lie on

the same line. The line that contains A, B, and C' is called the Euler line,

after Leonhard Euler. The centroid trisects each median, meaning that
|ICCy|  |CCy|  |CCs] 1

|A1C1|  |A2Cs|  |A3Cs| 3

Amazingly, the centroid also trisects AB, for we have

AC| 1

|AB| 3’
We will verify both of these trisection properties of the centroid in the next
section.

In Construction 9 we saw how given a triangle ABC' we can draw the
incircle, which touches BC, C A, and AB on the inside of the triangle.
By making a simple modification of this process, we can construct three
excircles that touch the line segments BC', C'A, and AB, or their extensions,
outside the triangle. Figure 6.16 shows one of these excircles. We bisect the
angles DAC and EC' A, and let the bisectors intersect at the point O. Then,
using the same argument as we used in Construction 9, we see that O is
equidistant from the lines BD, BE, and AC. Thus OB is the bisector of
the angle DBE.

As we have already seen, there are many interesting and surprising prop-
erties possessed by all triangles, and some are more difficult to justify than
others. It is not surprising that many of these properties have been known
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D

o)

B C

FIGURE 6.16. One of the three excircles of triangle ABC.

since the early part of the millennium of ancient Greek mathematics, and
it is easy to imagine how they would have been discovered and rediscov-
ered many times in an age when ruler and compasses were everyday tools
of mathematicians. If we draw several arbitrarily chosen triangles and find
every time that, for example, the perpendiculars from the vertices of the
triangle to the opposite sides are concurrent, it is natural to believe that
the result must hold for every triangle. Then we cannot rest until we find
a proof!

One most unusual property of the triangle is named after Napoleon Bona-
parte (1769-1821). Since Napoleon was a keen amateur geometer, some
historians of mathematics believe that he did indeed discover the result,
although at least some of its ingredients were known long before his time.
We begin with any triangle ABC and draw an equilateral triangle on each
of its sides, on the outside of the triangle, as in Figure 6.17. Then the
following statements all hold.

1. The centroids of the three equilateral triangles are themselves the
vertices of an equilateral triangle.

2. The three lines AA;, BB;, and CC} are collinear, meeting at a point
P, called the isogonic center of the triangle ABC.

3. The three line segments AA,, BB1, and CC; are of equal length, and

|AA;| = |BB:1| = |CC4| = |PA| + |PB| + | PC|. (6.20)

4. The angles B PCy, C1PA;, and A PB; are all equal, and thus each
has the value %’T

5. The circumcircles of the three equilateral triangles all pass through
the isogonic center P.

In response to a challenge by Pierre de Fermat, E. Torricelli (1608—-1647)
found the isogonic center as the solution to the problem of finding a point
in the plane of a triangle that minimizes the sum of its distances from the
three vertices. Obviously Torricelli’s result was obtained several generations
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Ay

o B

B,

FIGURE 6.17. Napoleon’s theorem.

before Napoleon’s time. Eves [9] states that the isogonic center was the first
notable point of the triangle to be discovered since the era of ancient Greek
mathematics. Figure 6.17 gives a ruler and compasses construction of the
isogonic center.

In the early nineteenth century, a further set of properties of the triangle
was obtained by Karl Feuerbach (1800-1834). This is embodied in the nine-
point circle theorem, which P.J. Davis [5] says goes back, in part, to J. V.
Poncelet (1788-1867) in 1820. I now state this theorem and will omit the
proof.

Theorem 6.3.1 The following nine points, related to the triangle with
vertices Ay, Ao, and As, all lie on the same circle, and are shown in Figure
6.18:

1. The points By, Bs, and Bz where the three altitudes from the vertices
of the triangle meet the opposite sides.

2. The midpoints of the three sides of the triangle, C, Cs, and Cj.

3. The points Dy, Dy, and D3, the midpoints along the altitudes from
the vertices of the triangle to the orthocenter B. |

There are other notable points that are on this circle. For example, the
nine-point circle touches the incircle of the triangle A;AsAs, say at Ey,
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FIGURE 6.18. The nine-point circle.

and all three excircles of the triangle, say at Fy, Fs, and E3, and thus the
four points Ey, F1, Fs, and E3 also lie on the nine-point circle.

Let O denote the midpoint of the line joining A, the circumcenter of the
triangle, and B, the orthocenter of the triangle. Then, in Figure 6.18, the
triangles OBD; and ABA; are similar, since they have the common angle
ABA; and

|OB| |DiB| 1

|AB|  |A1B] 2

It follows from the similarity of the triangles that

D0 1
= —. 21
A4~ 2 (6:21)

Since |A1A| = |A24| = |A3A|, we see that |D10] = |D20| = |D30|,
showing that O is the center of the circle that passes through Dy, Dy, and
Ds. This defines the nine-point circle, and it follows from (6.21) that its
radius is half that of the circumcircle of triangle A; A A3. Note that O, the
center of the nine-point circle, lies on the Euler line.

Problem 6.3.1 Draw Figure 6.17 for the special case in which the triangle
ABC is itself an equilateral triangle.

Problem 6.3.2 In Figure 6.17 the equilateral triangles are drawn on the
sides of triangle ABC, on the outside of the triangle. Investigate what
happens if you draw the same three triangles on the other sides of BC,
CA, and AB.
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Problem 6.3.3 Draw any quadrilateral, and draw a square on each of
its sides, on the outside of the quadrilateral. Finally, draw the two line
segments obtained by joining the centers of the squares on opposite sides
of the quadrilateral. What can you observe about these two line segments?

Problem 6.3.4 Consider Problem 6.3.3 again, for the special case in which
the quadrilateral is a parallelogram.

6.4 Coordinate Geometry

In the seventeenth century geometry was reborn, with the introduction
of the new and powerful methods of coordinate geometry. These methods
are credited to René Descartes (1596-1650) and his contemporary Pierre
de Fermat, although the underlying ideas have earlier origins. Descartes
realized that every point in the plane can be uniquely defined by its distance
plus direction from each of two axes set at right angles. Figure 6.19 shows
the horizontal x-axis and the vertical y-axis, marked off at integer points.
Each point in the plane of the diagram has an ordered pair of x and y
coordinates. These are called Cartesian coordinates, named after Descartes,
to distinguish them from other coordinate systems.

FIGURE 6.19. Cartesian coordinates.

In Figure 6.19, A has coordinates (—4,2), B has coordinates (2,4), and
the points C' and D have coordinates (—2,—4) and (4, —3), respectively.
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In triangle ABFE, the lines AE and BE are parallel to the z- and y-axes,
respectively. Thus F is the point (2,2). Let P be the point on the straight
line AB with coordinates (z,y). The point @ is vertically below P, and is on
the line AE. Therefore, @) has coordinates (x,2). There must be a relation
between the two coordinates of the point P, and we will now determine
what it is. Since the triangles APQ and ABE are similar, we have

PQ| _ |BE|
[AQl  |AE|’
which gives
y—2 4-2 2 1

r—(—4) 2—(-4) 6 3

On multiplying the latter equation throughout by 3(x + 4), we obtain
3(y—2)=x+4,

which we can write in the form
z—3y+10=0. (6.22)

Thus the coordinates (z,y) of all points that lie on the line AB satisfy
(6.22), which is called the equation of the line AB. We can verify that
the coordinates of A and B, namely (—4,2) and (2,4), both satisfy (6.22).
This gives a reassuring check on our calculations. Every straight line has
an equation of the form

ax +by +c=0. (6.23)

In particular, the z-axis has the equation y = 0, and the y-axis has the
equation z = 0. Lines of the form by + ¢ = 0 are parallel to the z-axis,
and lines of the form ax + ¢ = 0 are parallel to the y-axis. Apart from lines
that are parallel to the y-axis, where b = 0 in (6.23), we can divide by b to
recast (6.23) in the form

y =mx +d, (6.24)

where m = —a/b and d = —¢/b. In (6.24) the constant m is called the
gradient or slope of the straight line. It corresponds to the ratio |BE|/|AE|
for the line AB . If in Figure 6.19 we let A = (z1,11) and B = (z2,¥2), we
find that the gradient of AB is

_ Y2 — 1

m .
T2 — T1

(6.25)

Note that the value of m is unchanged if we interchange (z1,y;) and
(z2,y2), as we should expect. If the gradient is positive, the line slopes
upwards from left to right, and if the gradient is negative, the line slopes
downwards from left to right. The greater the magnitude of the gradient,
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the steeper the slope. The number d in (6.24) is called the intercept. It
marks the point on the y-axis where it is cut by the straight line.

In Figure 6.10 the lines AD and DC meet at right angles. The gradient
of the line AD is the positive number |DB|/|AB|, and the gradient of DC
is the negative number —|DB|/|BC|. Thus the product of these gradients
is equal to —1, since we saw from the similar triangles ABD and DBC
(see (6.12)) that |DBJ? is equal to the product of |[AB| and |BC|. We
deduce that, excluding lines that are parallel to the axes, the product of
the gradients of any two lines that are perpendicular is equal to —1. For
example, as we see from (6.25), the line AC in Figure 6.19 has gradient —3
and is therefore perpendicular to the line AB, which has gradient 1/3.

Example 6.4.1 Let P and @ have coordinates (z1,y1) and (z2,y2), and
let R have coordinates (z2,y;). With this choice of the points P, @, and
R, we see that the angle PRQ is a right angle. (Draw a diagram.) It then
follows from Pythagoras’s theorem that |PQ|* = |PR|? + |QR|?, and thus

[PQI* = (21— 22)* + (11 — 12)°. (6.26)

On taking the square root we obtain a simple expression for the distance
|PQ)| in terms of the Cartesian coordinates of P and Q. M

Example 6.4.2 Let ax 4 by + ¢ = 0 denote the straight line that joins
the points P; and P, with coordinates (z1,y1) and (z2,ys2), respectively.
By this we mean not just the finite line segment that lies between P; and
P5, but the line that connects the points and extends indefinitely in both
directions. Then we have

ar1+by1 +¢c=0 (6.27)

and
azy + bys + ¢ = 0. (6.28)

If we multiply (6.27) by A, (6.28) by 1 — A, and add the two resulting
equations, we obtain

a(Azy 4+ (1 = Nz2) + b(Ay1 + (1 — N)yz2) + ¢ = 0.
This last equation shows that every point (z,y), where
x=Ax1 + (1 — N)xo, y=Ay1 + (1 = Nyo,
lies on the straight line ax + by + ¢ = 0. The values of A between 0 and 1

give the points that lie between P; and Ps. In particular, the value A = %
gives the midpoint of P; P,. Can you prove this? |
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Example 6.4.3 Let us find the distance between two parallel lines [; and
l> whose equations are

ar+by+c1 =0 and ax+by+cy =0, (6.29)

where ¢; # co. One way of solving this problem is to begin by choosing
any point, say, P;, on the line [;. Next, we construct the line [3 that passes
through P; and is perpendicular to I;. Let the lines I3 and [, intersect at
the point Q1. Then |P; Q1] is the distance between {1 and .

If a # 0, we can put y = 0 in the equation for I in (6.29), and thus
choose

P = (—51,0) . (6.30)
a
Then the line I3 has gradient b/a, contains P, and has equation

—br + ay — % =0. (6.31)

On solving equation (6.31) and the second equation in (6.29) simultane-
ously, we find that @1, the point of intersection of I3 and [5, is given by

2 2
—coa® — c1b* b(cy — ¢2)
= . . 2
Q1 (a(a2+b2) S (6.32)

Finally, we use (6.26) to obtain from (6.30) and (6.32) that the distance
between the lines [; and [5 is

lcr — caf

|P1Q] :m~

(6.33)

It is easily verified that (6.33) also holds when a = 0.

We can derive (6.33) in a more interesting way. First, let us assume
that I; and ly are not parallel to the z-axis or the y-axis. In Figure 6.20
the parallel lines l; and ls cut the x-axis at the two points P; and P,
respectively. Let |PyPy| = X, and let us write d = |P1Q1], the distance
between the lines [; and l5. It then follows from triangle Q1 P; P> that

|PQi|  d

=2 —sing 6.34
Ppy  x oo (6.34)

where 6 is the angle that each line [; and I, makes with the z-axis. We can
see that each line [; and /3 makes an angle 7 — 6 with the y-axis. Then if Y’
denotes the distance between the two points where the lines /1 and [5 cut
the y-axis, we similarly obtain

é = sin (g — 0) = cos . (6.35)
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I
Q1

P2 P1 x

FIGURE 6.20. P1@Q1 = d is the distance between the parallel lines [, and l».

Since cos? 6 + sin® § = 1, we deduce from (6.34) and (6.35) that

d? d?
x Ty =h
which we can write in the form
1 1 1
e-x2 Ty
so that v
d=——__ (6.36)

(X2 + Y2)1/2'

Now let I; and [y be represented by the equations in (6.29). If a # 0, the
lines I and ls cut the z-axis where x = —¢y/a and & = —cy/a, respectively.
If b # 0, I; and Iy cut the y-axis where y = —¢q/b and y = —ca/b. Thus
when a # 0 and b # 0 we obtain

C1 —C2 C1 —C2

X =
b

and Y =

)

a
and if we substitute these values into (6.36), we obtain (6.33). W

Let the point A; have coordinates (z;,y;), for j = 1,2, and 3. Then
the point Cy with coordinates (%(z2 + 23), 2 (y2 + y3)) is the midpoint of
Az As. (See Example 6.4.2.) If we take A times the coordinates of A; plus
1 — X times the coordinates of C7, we get a point on the median A;C;. In
particular, the choice of A = % gives the point

C = (§(x1 +z2+23), 5 (51 + 2+ v3)) - (6.37)
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We can show in the same way that C' lies also on the other two medians,
AyCy and A3C5. Thus coordinate geometry has given us a simple proof
that the medians of a triangle are concurrent at the centroid C, and that
C trisects each of the medians.

P (x,y)

O (1,91) Q (7, 1)
FIGURE 6.21. Derivation of the equation of a circle.

To obtain the equation of a circle, consider the triangle OPQ in Figure
6.21, where O is the fixed point with coordinates (z1,y1), P is any point
(z,y) whose distance from O is r, and @ is the point where the vertical
line through P intersects the horizontal line through O. Although Figure
6.21 shows P as lying above and to the right of O, it can lie anywhere
on the circle with center at O and with radius r. Then, since the triangle
OPQ has a right angle at @, it follows from Pythagoras’s theorem that
|0Q” +|PQ|* = [OP[?. Since [OQ|* = (z — 21)*, |[PQI* = (y — y1)*, and
|OP|? = r?, we obtain

(z—21)° 4 (y —w)* =r”. (6.38)

The circle with center at (z1,y1) and radius r is the set of all points (z,y)
whose coordinates satisfy (6.38). Thus the coordinate geometry of Descartes
allows us to turn geometrical problems into algebraic problems.

Let us find the coordinates of the circumcenter A of the triangle A; As As,
where A; has coordinates (z;,y;), for j = 1,2, and 3. We can assume that
Y1, Y2, and y3 are all different. For if two of these three numbers were equal,
we could rotate the triangle so that the new y coordinates were all different.
Since the line Ay A3 has gradient (y2 —y3)/(xz2 —x3), any line perpendicular
to Az Az has gradient —(z2 — x3)/(y2 — y3). The equation of the line that
passes through C1, the midpoint of As A3, and is perpendicular to As Az is

y—%(yg+y3) _ (3?2—203)

x— §(z2 + x3) Y2 — Y3

(6.39)

Similarly, the equation of the line that passes through C5, the midpoint of
AsAq, and is perpendicular to AzA; is

(s +y) (333—331)

1
2 6.40
Lz + 1) Ys —y1 (6.40)

y—
T —
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Notice that we can change (6.39) into (6.40) by changing the suffixes 1, 2,
and 3 in cyclic order, so that 1 becomes 2, 2 becomes 3, and 3 becomes 1.
If we express the line in (6.39) in the form

y=myx +dy, (6.41)

we find that

(22 + 23) (22 — 23)

2(y2 — y3) (6.42)

Ty — X 1
m1:—<2 3), di = =(y2+y3) +
Y2 — Y3 2

By permuting the suffixes in (6.41) and (6.42) cyclically, we can recast the
equation of the straight line in (6.40) in the form

y = maox + dg, (6.43)
where

(z3 + z1) (23 — 71)
2(ys — y1) '

- 1
m2—<x3 xl) , d2:§(y3+y1)+ (6.44)

Ys — Y1

Let (z4,ya) denote the coordinates of the point where the lines defined by
(6.41) and (6.43) intersect. We see that

miza + di = moza + do,

oa=- (). (6.45)

mi —m2

so that

We now wish to express x4 directly in terms of the coordinates of the
vertices of the triangle A; A3 A3. For the denominator of the fraction on the
right of (6.45), we obtain from (6.42) and (6.44) that

—-A

myp —mg = Y , 6.46
! ? (y2*y3)(y3*y1) ( )

where
Agy = 21(y2 — y3) +22(ys — y1) + x3(y1 — y2). (6.47)

Note that A, must be nonzero, since the gradients m, and m are different.
For the numerator on the right of (6.45), a little work shows that

Ay —{xi(y2 —ys) + 23 (ys —y1) + 23(y1 — y2)}

do —di =
2o 2(y2 — y3)(ys — y1)

. (648)

where
Ay = (Y2 — y3)(ys — y1)(y1 — ¥2)- (6.49)
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Then, on combining our results in (6.45), (6.46), and (6.48), we find that
the x coordinate x 4 of the circumcenter A of the triangle A; A5 Az is

_ {ol(z —ys) + 23 (ys —y1) + 23 (v —w2)} — A,

T (6.50)

TA

The y coordinate, y4, obtained by interchanging z and y in (6.50), is

Ayl (@ —m3) +yi(es — x1) +y3(x1 —22)} — A,
B 2A '

ya (6.51)

yx
Notice that the coordinates x4 and y4, which we derived by finding the
point of intersection of the perpendicular bisectors of A A3 and AzAq, are
symmetric in x1, 2, and x3, and also in y;, y2, and y3. Thus we would
obtain the same point (x4,y4) as the point of intersection of the perpen-
dicular bisectors of A3A; and A;A,. This confirms algebraically what we
found (much more easily) in Construction 10, that the perpendicular bi-
sectors of the sides of a triangle are concurrent.

Using the same approach, we can similarly find the point of intersection
of the perpendiculars from A; to AsA3 and As to A3zA;. Let this point
have coordinates (zp,yp). We find that

Ay —A{xow3(y2 — y3) + x3x1(ys — y1) + z122(y1 — y2)}

= .52

B AMI 5 (6 5 )
and ypg, obtained by interchanging x and y in (6.52), is

U = Ay — {yoys(@2 — x3) + yaya(z3 — 1) + y1ye(r1 — 332)} (6.53)

Aye

We observe that the coordinates (zp,yg), like (x4,y4), are symmetric in
r1, Tz, and x3, and also in yi, y2, and ys. This proves that the three
perpendiculars from the vertices of a triangle to the opposite sides are
concurrent, and the equations (6.52) and (6.53) give the coordinates of the
point of concurrence B, the orthocenter of the triangle Ay A;As.

A comparison of (6.50) and (6.52) prompts the observation that we can
eliminate A, by adding twice z4 to zp. On carrying out this calculation,
we obtain

Xi1(y2 —y3) + Xa(ys —y1) + Xa(y1 — y2)
A )

zy

204+ =

(6.54)

where
X _ 2 X _ 2 X _ 2
1 =] — T2T3, 2 = Tp — 31, 3= T3 — T1T2.
We can express

X =a(x1 + 290+ x3) — (x2w3 + 2321 + T 122), for 1< 5 <3,
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and we note that

(wox3 + w321 + 2122){(y2 — y3) + (y3 —y1) + (y1 —¥2)} = 0,

since the second factor on the left of the latter equation is zero. Thus the
numerator on the right of (6.54) can be recast in the form

(21 + 20 +23) {21 (Y2 — Y3) + T2(y3 — Y1) + 23(y1 — ¥2)}-

Since
r1(y2 — y3) +22(ys — y1) +x3(y1 — y2) = Auy,
(6.54) greatly simplifies to give

204 +xp = 1 + T2 + T3.

We can treat the y coordinates similarly, and so obtain

2 1 2 1

374 + 3B =TC, YA + 3YB = Yo, (6.55)
say, where ro = %(ml +xo+x3) and yo = %(yl +y2+ys3) are the coordinates
of the centroid of the triangle. We have shown that the circumcenter A, the
orthocenter B, and the centroid C' all lie on the same straight line, called
the Euler line, and that C divides the line segment AB in the ratio 1 : 2;
that is, C is one-third of the way from A to B. Although these properties
of the points A, B, and C were not proved until the eighteenth century, it
is difficult to believe that they were not known empirically to at least some
individuals among the many practitioners of the art of ruler and compass
constructions two thousand years earlier.

Our verification of the above facts concerning the Euler line illustrates a
general point about coordinate geometry. Although it can be aesthetically
pleasing to use, it sometimes leaves us none the wiser about the underlying
mathematics. It can seem as mechanical in its operation as a ruler and
compass construction. Yet, and this shows its importance, it can provide
us with proofs of geometrical results.

Fermat showed (see Edwards [7]) that if an equation of the form

az? +bxy+ ey’ +dr +ey+ f =0, (6.56)

is satisfied by any point with Cartesian coordinates (z,y), then it is the
equation of an ellipse, hyperbola, parabola, or pair of straight lines. Thus,
just as these curves are unified geometrically in that they are all sections
of a cone, they are also unified algebraically by (6.56).

Problem 6.4.1 Consider a triangle ABC. Let D denote the midpoint of
BC, and let D, A, B, and C have coordinates (0,0), (z1,¥1), (—22,0), and
(z2,0), respectively. Hence show that |AB|? + |AC|? = 2(|AD|* + |BD|?),
which we obtained using other methods in Problem 1.2.5.
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Problem 6.4.2 Verify that A,, = —A,,, where A, is defined in (6.47),
and A, is obtained by interchanging = and y in (6.47).

Problem 6.4.3 Verify that the equation of the straight line that is parallel
to the line | with equation ax + by + ¢ = 0 and passes through the point
P = (z1,y1) is ax + by — azy — by; = 0. Deduce from (6.33) that the
distance d from the point P to the line [ is given by

de lazy + by1 + ¢
o (a2+b2)1/2

Problem 6.4.4 Consider the equation

with @ > b > 0. Write = au/b, and y = v, and verify that the above
equation becomes
w? 4 0? = b2,

the equation of a circle with center u = 0, v = 0, and radius b. Thus the
first equation defines a curve in the coordinates x and y that is a circle
“stretched” in the = direction. This is an ellipse.

6.5 Regular Polyhedra

In Section 6.1 we discussed regular polygons. The analogue of a polygon in
three dimensions is a polyhedron. Just as a polygon is constructed by fix-
ing line segments together, a polyhedron is constructed by fixing polygons
together. A polyhedron that is constructed by fixing together a number
of copies of the same regular polygon in a fully symmetric way is called a
reqular polyhedron. The plural of polyhedron is polyhedra, and the regular
polyhedra are also called the Platonic solids. These are discussed in Eu-
clid’s Elements, and the best known regular polyhedron is the cube, which
has six square faces, twelve edges, and eight vertices. Figure 6.22 displays
a cube on the left and its net, the cross-shaped diagram in the middle of
Figure 6.22, constructed from six squares. We can cut out this shape from
a piece of cardboard and fold it to make a cube. (It is useful to augment
the net by adding some extra pieces to help hold the cube together. We
can coat the extra pieces with glue and fold them, out of sight, behind
faces of the cube.) Coxeter [4] states that Leonardo da Vinci (1452-1519)
made skeletal models of polyhedra, using strips of wood for their edges and
leaving their faces to be imagined. When a model of this kind is viewed
from just outside the center of one face, this face is seen as a large polygon
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FIGURE 6.22. The cube, its net, and its Schlegel diagram.

with all the other faces filling its interior. Such a view of the cube is shown
on the right of Figure 6.22. It is called a Schlegel diagram.

We will use the notation {n,m} to denote a regular polyhedron that is
constructed from polygons with n sides, with m such polygons meeting
around each vertex. Note that we must have n > 3 and m > 3. In this
notation the cube is denoted by {4,3}. As we saw in (3.34), each angle of a
regular polygon with n sides is (1 —2/n)x. This angle increases with n and
has the value 27/3 when n = 6. Thus three regular hexagons fit together
precisely, lying flat on the plane, as shown in Figure 6.23.

FIGURE 6.23. The plane can be covered with hexagons.

It follows that there is no regular polyhedron constructed from polygons
with six or more sides. Incidentally, Figure 6.23 shows that the whole plane
can be covered by regular hexagons of the same size. We can express such
a covering of the plane by the notation {6, 3}. It is easy to verify that there
are only two other regular polygons that can be used to cover the plane,
namely the equilateral triangle and the square, and we will denote these
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coverings by {3,6} and {4,4}, respectively. Coverings of the plane, such as
{6,3}, {3,6}, and {4,4}, are also called plane tessellations or tilings.

The above analysis shows that the only possible regular polyhedra are
those that are constructed from equilateral triangles, squares, and regular
pentagons. First, let us consider regular polyhedra that are constructed
from equilateral triangles, whose angles are all /3. The only possible reg-
ular polyhedra {3, m} are those for which

m%<2w, with m >3,

which gives m = 3,4 or 5. Second, when n = 4, we need to consider regular
polyhedra that are constructed from squares, whose angles are all 7/2. The
only possible regular polyhedra {4, m} are those for which

m-g<27r, with m > 3.

The only solution is m = 3, giving the cube, which we have already studied
in Figure 6.22. The only other possible regular polyhedra are those of the
form {5, m}, involving regular pentagons, whose angles (see (3.34)) are all
37 /5. In this case we require that
3
m-g <om, with m>3,

and the only solution is m = 3. Thus there are only five possible regular
polyhedra, namely

{3,3}, {3,4}, {3,5}, {4,3} {5,3}. (6.57)

We know that the {4, 3} case does indeed give a regular polyhedron (the
cube), and we will now follow up the other four possibilities defined in
(6.57). As we will see, all five of the above configurations {n,m} yield
regular polyhedra.

FIGURE 6.24. The regular tetrahedron, its net, and its Schlegel diagram.

Let us call a regular polygon with n vertices an n-gon. Consider any of
the cases {n,m} defined in (6.57). We begin by fixing together m n-gons
so that they meet at a vertex. This creates further vertices. If possible, we
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FIGURE 6.25. The regular octahedron, its net, and its Schlegel diagram.

add more n-gons, so that there are m at each new vertex. We continue
this process to see whether, ultimately, we do obtain a regular polyhedron
{n,m}. The reader may find it helpful to apply this constructive method
to obtain the cube, since it is already familiar to us.

For the case {3, 3}, we begin by fixing together three equilateral triangles
around a point P. There are now three other vertices, say A, B, and C. The
three edges BC', C A, and AB are all equal, and we can fix a fourth equilat-
eral triangle to ABC' to complete a regular polyhedron. This is called the
reqular tetrahedron which, together with its net and its Schlegel diagram,
is depicted in Figure 6.24. The regular tetrahedron can also be described,
with less precision, as a pyramid on a triangular base.

Let us pursue the second case in (6.57), namely {3,4}. We begin by
joining together four equilateral triangles around a point P. There are now
four other vertices, say A, B, C, and D. By symmetry, the vertices A, B,
C, and D must lie in the same plane in a square. Thus the configuration
PABCD is a pyramid on a square base. Following the procedure described
above, we can complete the polyhedron that is displayed in Figure 6.25,
together with its net and Schlegel diagram. This is the octahedron, whose
name means that it has eight faces. An octahedron can also be constructed
by gluing together two copies of the pyramid PABCD.

Let us consider the cube again, and join the center of each face to the
centers of all four neighboring faces. This construction gives an octahedron
whose vertices are the centers of the six faces of the cube. Conversely,
if we join the center of each face of an octahedron to the centers of all
three neighboring faces, we obtain a cube. The vertices of the cube are the
centers of the faces of the octagon. Thus there is a correspondence between
the faces of a cube and the vertices of an octahedron, and a correspondence
between the vertices of a cube and the faces of an octahedron. We say that
each of these two polyhedra is the dual of the other. On applying the same
process to the tetrahedron, joining the center of each face to the centers of
all neighboring faces (that is, to all faces), we obtain another tetrahedron.
We say that the tetrahedron is its own dual.
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FIGURE 6.26. The regular dodecahedron, its net, and its Schlegel diagram.

The two remaining configurations defined in (6.57) are the most glorious.
The polyhedron {5, 3}, involving the regular pentagon, is depicted in Figure
6.26, together with its net and its Schlegel diagram. It is called the regular
dodecahedron, meaning twelve faces. The polyhedron {3, 5}, with five equi-
lateral triangles around each vertex, is shown in Figure 6.27, together with
its net and its Schlegel diagram. This is the regular icosahedron, meaning
twenty faces. Note that the dodecahedron and icosahedron are duals. The
net in Figure 6.27 illustrates the fact that {3,6} provides a tessellation of
the plane, to which we referred above. Indeed, the whole net itself in Figure
6.27 provides a tessellation of the plane.

The basic data about the regular polyhedra are summarized in Table
6.1, where F', E, and V denote the number of faces, edges, and vertices,
respectively. Note that the value of F for a given regular polyhedron is
the same as the value of V for its dual, and the dual of {n,m} is {m,n}.
Using the appropriate ruler and compass constructions in Section 6.1, we
can construct the nets for the regular polyhedra. The reader will find it
instructive and satisfying to make models of all five regular polyhedra.

Name {n,m} | F E V
tetrahedron | {3,3} | 4 6 4
cube {4,3} | 6 12 8
octahedron {3,4} | 8 12 6
dodecahedron | {5,3} | 12 30 20
icosahedron | {3,5} |20 30 12

TABLE 6.1. The five Platonic solids.

From the definition of duality given above, the dual of a given Platonic
solid is found on interchanging the values of F' and V" in Table 6.1. Thus, as
already stated, the tetrahedron is its own dual, the cube and the octahedron
are duals, and the dodecahedron and the icosahedron are duals.
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FIGURE 6.27. The regular icosahedron, its net, and its Schlegel diagram.

In Section 3.3 we considered the star of Pythagoras, or pentagram, which
can be constructed by extending the sides of a regular pentagon. We can
do this for any polygon with five or more sides to obtain star-like figures.
For example, if we begin with a regular hexagon, we obtain the star of
David. Analogously, we can obtain star-like polyhedra if we extend faces of
polyhedra. These are called stellated polyhedra, stella being the Latin word
for star. It is obvious that we cannot stellate the tetrahedron or the cube.
However, we can construct a stellated octahedron. Although this figure was
known much earlier, it was studied by Johannes Kepler (1571-1630). It
consists of a regular octahedron with a tetrahedron glued to each face,
and can be viewed as two intersecting tetrahedra. Of the many known
stellated polyhedra, I will mention only two more, both of which were also
studied by Kepler, and are derived from the regular dodecahedron and
regular icosahedron. To obtain the first of these, we begin with a regular
dodecahedron and extend the edges around each face to give a pentagram.
This gives the figure called the small stellated dodecahedron. To obtain the
other figure we begin with the regular icosahedron, and consider any vertex
P. We then take the pentagon formed from the five neighboring vertices of
P and replace it by a pentagram. If we do this for each of the 12 vertices
P, we obtain the figure that is called the great stellated dodecahedron.

In Book V of his Mathematical Collection, Pappus of Alexandria discusses
a set of polyhedra that, like the regular polyhedra, are constructed from
regular polygons. In this case, the polygons do not all have the same num-
ber of sides. However, there is the same configuration of polygons around
each vertex. These are called the semireqular polyhedra. Pappus attributes
their discovery to Archimedes, and they are also called the Archimedean
solids. We denote a semiregular polyhedron by (n1,na,...,n.y,), where ny,
na, ..., Nm, not all equal, denote the number of sides in the polygons, taken
in cyclic order around each vertex. For example, (3,4,3,4) denotes the
semiregular polyhedron that has four regular polygons, with sides 3, 4, 3,
and 4, around each vertex. This is called the cuboctahedron. It is obtained
by chopping off each of the eight corners of a cube by joining together
the midpoints of adjoining edges. If we chop off the corners of the cube so
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that each of its six faces becomes a regular octagon, we obtain the poly-
hedron (3,8, 8), called the truncated cube. We could also use this notation
to describe the regular polyhedra and tessellations of the plane. For exam-
ple, (4,4, 4) denotes the cube, while (3,3,3,3,3,3), (4,4,4,4), and (6,6,6)
denote the tessellations of the plane described above.

For any Archimedean solid (n1,na,...,n,,), the condition that the sum
of the angles around each vertex must be less than 27 yields the inequality

m
2
E <1 — ) m <27, where m >3 andevery n; >3,
s
i=1 !

and we can deduce that this is equivalent to

11

Z —_ > im —1, where m >3 andevery n;>3. (6.58)
="

The inequality (6.58) also applies to the regular polyhedra, where each
n; = n. In this case we find that (6.58) is equivalent to the identity

e + 1 > 1, where m,n > 3. (6.59)

m n 2
In our discussion of the regular polyhedra, we effectively worked through
the inequality (6.59) for the cases n = 3, n = 4, and n = 5 separately, and
found that every feasible solution of (6.59) yields a regular polyhedron. In
contrast, not all solutions of (6.58) correspond to semiregular polyhedra.
For example, with m = 3, n; = ngo = 3 and n3g = n in (6.58), we find that
although the inequality holds for all values of n, none of the solutions with
n > 3 yields a polyhedron. I state without proof that of all the solutions
of (6.58) where the n; are not all equal, only thirteen solutions yield poly-
hedra. All thirteen Archimedean solids (n1,ne, ..., n,,) are listed in Table
6.2, together with their names and numbers of faces, edges, and vertices.
The number of faces of each of the different constituent polygons is given
in square brackets after the number of faces in column F'. For example, the
truncated cube has 14 faces (8 triangles and 6 octagons). The Archimedean
solid with the smallest number of faces (4 triangles and 4 hexagons) is the
truncated tetrahedron. This is obtained by taking a regular tetrahedron
and removing four small regular tetrahedra, each including a vertex of the
large tetrahedron and whose edges are one-third of the length of the edges
of the large tetrahedron. The design of many soccer balls in current use is
based on the truncated icosahedron, (5,6,6), which has 12 pentagons and
20 hexagons. The Archimedean solid with most faces is the snub dodec-
ahedron, with 80 triangular and 12 pentagonal faces. The great rhombi-
cosidodecahedron is the Archimedean solid with the most edges and the
most vertices, and it also has the longest name! Making models of all the
Archimedean solids would make a worthy class project.
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(n1,n2,...,Ny), name F E %
(3,6,6), truncated tetrahedron 84, 4] 18 12
(3,8,8), truncated cube 14 [8, 6] 36 24
(3,10,10), truncated dodecahedron 32[20,12] 90 60
(4,6,6), truncated octahedron 146, 8] 36 24
(4,6,8), great rhombicuboctahedron 26 [12,8, 6] 48 24
(4,6,10), great rhombicosidodecahedron | 62 [30,20,12] 180 120
(5,6,6), truncated icosahedron 3212, 20 90 60
(3,4,3,4), cuboctahedron 14 [8, 6] 24 12
(3,5,3,5), icosidodecahedron 32[20,12] 60 30
(3,4,4,4), small rhombicuboctahedron 26 [8, 18] 48 24
(3,4,5,4), small rhombicosidodecahedron | 62 [20,30,12] 120 60
(3,3,3,3,4), snub cube 38 [32, 6] 60 24
(3,3,3,3,5), snub dodecahedron 92 [80,12] 150 60

TABLE 6.2. The thirteen Archimedean solids.

We can also look for solutions of (6.58) where the inequality is replaced
by an equality. Some of these solutions, but not all, give tessellations of the
plane. I state without proof that there are eight of these. They are called
Archimedean tessellations and are listed in Table 6.3. The last two both
have 3 triangles and 2 squares around each vertex, but taken in a different
order. Of all eight tessellations, my favorite is (3, 3,4, 3,4).

(3,12,12)  (4,6,12) (4,8,8) (3,6,3,6)
(3347674) (373?3)376) (3737374’ 4) (3’3747374)

TABLE 6.3. The eight Archimedean tessellations.

There is an infinite number of ways of tessellating the plane, and we have
looked only at some of those that involve regular polygons. Let us call any
shape that can be used repeatedly to tessellate the plane a motif. We can
obviously use any parallelogram as a motif, or a cross constructed from five
squares, or a triangle of any shape. The last one is obvious, because we can
put two identical triangles together to make a parallelogram. However, it
is not so obvious that any quadrilateral can be used as a motif. We can
find motifs for the Archimedean tessellations. Motifs for (3,3,4,3,4) and
(3,4,6,4) are given in Figure 6.28.

Let us begin with the tessellation (4,4,4,4). It is obvious that we can
amend every square in the same way so that we still have a tessellation of
the plane. A very simple example is given in Figure 6.29.

A segment has been removed from the left side of the square and added to
the right side. If T had chosen an appropriate triangle as the amending seg-
ment in Figure 6.29, I could have changed the square into a parallelogram.
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FIGURE 6.28. Motifs for the tessellations (3, 3,4, 3,4) and (3,4,6,4).

We can also amend the top and bottom edges of the square. Similarly,
we can create amended versions of other well-known tessellations, such as
(3,3,3,3,3,3). This process is one of the keys to understanding the many
very beautiful and fascinating tessellations of the plane that were created
by the artist and mathematician M. C. Escher (1898-1972).

FIGURE 6.29. An amended square that still tessellates the plane.

Roger Penrose (born 1931) invented tessellations that are constructed
from two particular quadrilaterals, called a kite and a dart, and involve
the golden section. The kite and dart are obtained by dissecting the rhom-
bus ABCD in Figure 6.30. The sides of the rhombus are all of length
1 (V5+1), |AE| = |EC| = |BE| = 1, and the angle ABC is 2 /5.

It can be proved that the kite and dart can be used to cover the plane
in an infinite number of ways that are not periodic. This means that if we
were able to make a transparency of such a tessellation, there is no way
we could move it, without rotating it, so that it matched the tessellation.
More material on tessellations can be found in Wells [17].

If we examine Table 6.2 we observe that for every Archimedean solid, F’
plus V is approximately equal to E. More precisely, we see that

F-E+V =2 (6.60)

and an inspection of Table 6.1 reveals that (6.60) holds also for the five
Platonic solids. Although the identity (6.60) is often named after Euler
and Descartes, it is hard to believe that it was not known to Pappus of
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D C
FIGURE 6.30. The rhombus ABCD dissected into Penrose’s kite and dart.

Alexandria and to Archimedes. If we begin with a sphere, choose n > 1
vertices on its surface, and join them up in any way that creates a map of
polygonal-shaped countries, then the number of faces, edges, and vertices
always satisfies (6.60), and will continue to do so if we stretch or contract
any of the line segments. In this way we obtain any polyhedron that is said
to be simply connected, meaning that it has no holes in it. Beginning with
such a polyhedron, let us stretch it, pull the assemblage of faces, edges, and
vertices off the sphere and flatten it out to give a map of polygons on the
plane that has same number of vertices and edges as before, but has one
face fewer. The resulting map will be equivalent to the Schlegel diagram in
the case of the Platonic solids.

Let us now consider a map of this kind. We will show that its number
of faces, edges, and vertices satisfies the equation FF — F + V = 1. Since
we “lost” a face when we removed the assemblage from the sphere, this is
equivalent to proving that (6.60) holds for any polyhedron. To construct
such a diagram, we will begin with the empty plane and place one vertex
on it. At this stage we have no faces, no edges, and one vertex, and thus
F — E+V = 1. We then build up the required map by adding one edge
at a time. Unless we are completing a polygon, each time we add one edge,
we add one vertex. However, if we complete a polygon by adding an edge,
we add one face. In either case, we do not change the value of F — E+V
with the addition of an edge, and this proves that FF— F+V =1 when we
have completed the construction of the chosen map. We have thus proved
the following theorem.

Theorem 6.5.1 If F', E, and V denote the number of faces, edges, and
vertices of a given simply connected polyhedron, then F—E+V =2. N

For each Platonic solid {n,m} we see that if we cut out every face, we
would have nF edges. However, each edge of the Platonic solid connects
two faces, and so nF = 2F. Similarly, each vertex is on m edges, and each
edge connects two vertices. It follows that mV = 2FE, and thus we have

nF =2E =mV. (6.61)
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Beginning with (6.61) and the identity F — E +V = 2 we can derive
explicit values of F, E, and V for the platonic solids. See Problem 6.5.6.

Problem 6.5.1 Show that an octahedron and four tetrahedra can be fixed
together to form a larger tetrahedron, and that three-dimensional space can
be filled using tetrahedra and octahedra.

Problem 6.5.2 Cut out copies of the appropriate regular polygons and
explore the eight Archimedean tessellations given in Table 6.3.

Problem 6.5.3 Construct a dual of the (3,3,4,3,4) tessellation by join-
ing the centers of adjacent polygons. This is called the Cairo tessellation.
Observe that it has a pentagonal motif that has four sides of one length
and one shorter side.

Problem 6.5.4 Begin with the (3,3,4,3,4) tessellation whose triangles
and squares have sides of length 1, and construct its dual, as in Problem
6.5.3. Show that the pentagon that occurs in the Cairo tessellation has
sides, taken in order, whose lengths are a, a, b, a, and b, where a = % and
b= % Show also that the angle enclosed by the two adjacent sides of

length % is %, and that the four other angles are %

Problem 6.5.5 Show that the dual tessellation of every Archimedean tes-
sellation is composed of repetitions of the same polygon.

Problem 6.5.6 Use (6.61) to express E and V in terms of F and so
deduce from (6.60) that

B 4m
C2m+2n—mn’

Show also that
_ 2mn

T 29m+2n—mn’

and
4n

T 2m+2n—mn’
Note that interchanging m and n in the above expressions corresponds to
interchanging F' and V', and leaves E unchanged, as we should expect from
duality.

Problem 6.5.7 Deduce from the expressions obtained for F', E, and V in
Problem 6.5.6 that 2m + 2n — mn > 0. Show that the latter inequality is
equivalent to (6.59), and is also equivalent to

(m—2)(n—2) < 4.

Show that since we must have m > 3 and n > 3, this last inequality has
only five solutions and that these correspond to the five Platonic solids.
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Problem 6.5.8 For the Platonic solid {n,m}, let § denote the amount by
which the sum of the angles at a vertex falls short of 2. (Thus § = 7 for
the tetrahedron and § = 7/5 for the dodecahedron.) Show that

2
5:27r—m<1—>77,
n

and deduce that 6 = 47/V, where V is the number of vertices in the
Platonic solid.
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