
Chapter 2

NUMBER-THEORETICAL TOOLS

In this chapter we focus specifically on those fundamental tools and associated
computational algorithms that apply to prime number and factorization
studies. Enhanced integer algorithms, including various modern refinements
of the classical ones of the present chapter, are detailed in Chapter 8.8. The
reader may wish to refer to that chapter from time to time, especially when
issues of computational complexity and optimization are paramount.

2.1 Modular arithmetic

Throughout prime-number and factorization studies the notion of modular
arithmetic is a constant reminder that one of the great inventions of mathe-
matics is to consider numbers modulo N , in so doing effectively contracting
the infinitude of integers into a finite set of residues. Many theorems on prime
numbers involve reductions modulo p, and most factorization efforts will use
residues modulo N , where N is the number to be factored.

A word is in order on nomenclature. Here and elsewhere in the book,
we denote by x mod N the least nonnegative residue x (mod N). The mod
notation without parentheses is convenient when thought of as an algorithm
step or a machine operation (more on this operator notion is said in Section
9.1.3). So, the notation xy mod N means the y-th power of x, reduced to the
interval [0, N−1] inclusive; and we allow negative values for exponents y when
x is coprime to N , so that an operation x−1 mod N yields a reduced inverse,
and so on.

2.1.1 Greatest common divisor and inverse

In this section we exhibit algorithms for one of the very oldest operations in
computational number theory, the evaluation of the greatest common divisor
function gcd (x, y). Closely related is the problem of inversion, the evaluation
of x−1 mod N , which operation yields (when it exists) the unique integer
y ∈ [1, N − 1] with xy ≡ 1 (mod N). The connection between the gcd
and inversion operations is especially evident on the basis of the following
fundamental result.

Theorem 2.1.1 (Linear relation for gcd). If x, y are integers not both 0,
then there are integers a, b with

ax+ by = gcd(x, y). (2.1)

84 Chapter 2 NUMBER-THEORETICAL TOOLS

Proof. Let g be the least positive integer in the form ax+ yb, where a, b are
integers. (There is at least one positive integer in this form, to wit, x2 + y2.)
We claim that g = gcd(x, y). Clearly, any common divisor of x and y divides
g = ax + by. So gcd(x, y) divides g. Suppose g does not divide x. Then
x = tg + r, for some integer r with 0 < r < g. We then observe that
r = (1 − ta)x − tby, contradicting the definition of g. Thus, g divides x,
and similarly, g divides y. We conclude that g = gcd(x, y). �

The connection of (2.1) to inversion is immediate: If x, y are positive integers
and gcd(x, y) = 1, then we can solve ax+ by = 1, whence

b mod x, a mod y

are the inverses y−1 mod x and x−1 mod y, respectively.
However, what is clearly lacking from the proof of Theorem 2.1.1 from a

computational perspective is any clue on how one might find a solution a, b to
(2.1). We investigate here the fundamental, classical methods, beginning with
the celebrated centerpiece of the classical approach: the Euclid algorithm. It
is arguably one of the very oldest computational schemes, dating back to 300
b.c., if not the oldest of all. In this algorithm and those following, we indicate
the updating of two variables x, y by

(x, y) = (f(x, y), g(x, y)),

which means that the pair (x, y) is to be replaced by the pair of evaluations
(f, g) but with the evaluations using the original (x, y) pair. In similar fashion,
longer vector relations (a, b, c, . . .) = · · · update all components on the left,
each using the original values on the right side of the equation. (This rule for
updating of vector components is discussed in the Appendix.)

Algorithm 2.1.2 (Euclid algorithm for greatest common divisor). For in-
tegers x, y with x ≥ y ≥ 0 and x > 0, this algorithm returns gcd(x, y).
1. [Euclid loop]

while(y > 0) (x, y) = (y, x mod y);
return x;

It is intriguing that this algorithm, which is as simple and elegant as can be,
is not so easy to analyze in complexity terms. Though there are still some
interesting open questions as to detailed behavior of the algorithm, the basic
complexity is given by the following theorem:

Theorem 2.1.3 (Lamé, Dixon, Heilbronn). Let x > y be integers from the
interval [1, N]. Then the number of steps in the loop of the Euclid Algorithm
2.1.2 does not exceed⌈

ln
(
N

√
5
)
/ ln

((
1 +

√
5
)
/2

)⌉
− 2,

and the average number of loop steps (over all choices x, y) is asymptotic to

12 ln 2
π2 lnN.

2.1 Modular arithmetic 85

The first part of this theorem stems from an interesting connection
between Euclid’s algorithm and the theory of simple continued fractions (see
Exercise 2.4). The second part involves the measure theory of continued
fractions.

If x, y are each of order of magnitude N , and we employ the Euclid
algorithm together with, say, a classical mod operation, it can be shown that
the overall complexity of the gcd operation will then be

O
(
ln2N

)
bit operations, essentially the square of the number of digits in an operand
(see Exercise 2.6). This complexity can be genuinely bested via modern
approaches, and not merely by using a faster mod operation, as we discuss in
our final book chapter.

The Euclid algorithm can be extended to the problem of inversion. In fact,
the appropriate extension of the Euclid algorithm will provide a complete
solution to the relation (2.1):

Algorithm 2.1.4 (Euclid’s algorithm extended, for gcd and inverse). For
integers x, y with x ≥ y ≥ 0 and x > 0, this algorithm returns an integer
triple (a, b, g) such that ax+ by = g = gcd(x, y). (Thus when g = 1 and y > 0,
the residues b (mod x), a (mod y) are the inverses of y (mod x), x (mod y),
respectively.)

1. [Initialize]
(a, b, g, u, v, w) = (1, 0, x, 0, 1, y);

2. [Extended Euclid loop]
while(w > 0) {

q = �g/w�;
(a, b, g, u, v, w) = (u, v, w, a− qu, b− qv, g − qw);

}
return (a, b, g);

Because the algorithm simultaneously returns the relevant gcd and both
inverses (when the input integers are coprime and positive), it is widely
used as an integral part of practical computational packages. Interesting
computational details of this and related algorithms are given in [Cohen
2000], [Knuth 1981]. Modern enhancements are covered in Chapter 8.8
including asymptotically faster gcd algorithms, faster inverse, inverses for
special moduli, and so on. Finally, note that in Section 2.1.2 we give an “easy
inverse” method (relation (2.3)) that might be considered as a candidate in
computer implementations.

2.1.2 Powers

It is a celebrated theorem of Euler that

aϕ(m) ≡ 1 (mod m) (2.2)

86 Chapter 2 NUMBER-THEORETICAL TOOLS

holds for any positive integer m as long as a,m are coprime. In particular, for
prime p we have

ap−1 ≡ 1 (mod p),

which is used frequently as a straightforward initial (though not absolute)
primality criterion. The point is that powering is an important operation
in prime number studies, and we are especially interested in powering with
modular reduction. Among the many applications of powering is this one: A
straightforward method for finding inverses is to note that when a−1 (mod m)
exists, we always have the equality

a−1 mod m = aϕ(m)−1 mod m, (2.3)

and this inversion method might be compared with Algorithm 2.1.4 when
machine implementation is contemplated.

It is a primary computational observation that one usually does not need
to take an n-th power of some x by literally multiplying together n symbols as
x∗x∗· · ·∗x. We next give a radically more efficient (for large powers) recursive
powering algorithm that is easily written out and also easy to understand. The
objects that we raise to powers might be integers, members of a finite field,
polynomials, or something else. We specify in the algorithm that the element
x comes only from a semigroup, namely, a setting in which x ∗ x ∗ · · · ∗ x is
defined.

Algorithm 2.1.5 (Recursive powering algorithm). Given an element x in a
semigroup and a positive integer n, the goal is to compute xn.

1. [Recursive function pow]
pow(x, n) {

if(n == 1) return x;
if(n even) return pow(x, n/2)2; // Even branch.
return x ∗ pow(x, (n− 1)/2)2; // Odd branch.

}

This algorithm is recursive and compact, but for actual implementation one
should consider the ladder methods of Section 9.3.1, which are essentially
equivalent to the present one but are more appropriate for large, array-
stored arguments. To exemplify the recursion in Algorithm 2.1.5, consider
313 (mod 15). Since n = 13, we can see that the order of operations will be

3 ∗ pow(3, 6)2 = 3 ∗
(
pow(3, 3)2

)2

= 3 ∗
((

3 ∗ pow(3, 1)2
)2
)2
.

If one desires xn mod m, then the required modular reductions are to occur
for each branch (even, odd) of the algorithm. If the modulus is m = 15,
say, casual inspection of the final power chain above shows that the answer
is 313 mod 15 = 3 ·

(
(−3)2

)2 mod 15 = 3 · 6 mod 15 = 3. The important
observation, though, is that there are three squarings and two multiplications,

2.1 Modular arithmetic 87

and such operation counts depend on the binary expansion of the exponent n,
with typical operation counts being dramatically less than the value of n itself.
In fact, if x, n are integers the size of m, and we are to compute xn mod m
via naive multiply/add arithmetic and Algorithm 2.1.5, then O(ln3m) bit
operations suffice for the powering (see Exercise 2.17 and Section 9.3.1).

2.1.3 Chinese remainder theorem

The Chinese remainder theorem (CRT) is a clever, and very old, idea from
which one may infer an integer value on the basis of its residues modulo
an appropriate system of smaller moduli. The CRT was known to Sun-Zi in
the first century a.d. [Hardy and Wright 1979], [Ding et al. 1996]; in fact a
legendary ancient application is that of counting a troop of soldiers. If there
are n soldiers, and one has them line up in justified rows of 7 soldiers each,
one inspects the last row and infers n mod 7, while lining them up in rows of
11 will give n mod 11, and so on. If one does “enough” such small-modulus
operations, one can infer the exact value of n. In fact, one does not need the
small moduli to be primes; it is sufficient that the moduli be pairwise coprime.

Theorem 2.1.6 (Chinese remainder theorem (CRT)). Let m0, . . . ,mr−1
be positive, pairwise coprime moduli with product M = Πr−1

i=0mi. Let r re-
spective residues ni also be given. Then the system comprising the r relations
and inequality

n ≡ ni (mod mi), 0 ≤ n < M

has a unique solution. Furthermore, this solution is given explicitly by the least
nonnegative residue modulo M of

r−1∑
i=0

niviMi,

where Mi = M/mi, and the vi are inverses defined by viMi ≡ 1 (mod mi).

A simple example should serve to help clarify the notation. Let m0 =
3, m1 = 5, m2 = 7, for which the overall product is M = 105, and let
n0 = 2, n1 = 2, n2 = 6. We seek a solution n < 105 to

n ≡ 2 (mod 3), n ≡ 2 (mod 5), n ≡ 6 (mod 7).

We first establish the Mi, as

M0 = 35, M1 = 21, M2 = 15.

Then we compute the inverses

v0 = 2 = 35−1 mod 3, v1 = 1 = 21−1 mod 5, v2 = 1 = 15−1 mod 7.

Then we compute

n = (n0v0M0 + n1v1M1 + n2v2M2) mod M
= (140 + 42 + 90) mod 105
= 62.

88 Chapter 2 NUMBER-THEORETICAL TOOLS

Indeed, 62 modulo 3, 5, 7, respectively, gives the required residues 2, 2, 6.
Though ancient, the CRT algorithm still finds many applications. Some

of these are discussed in Chapter 8.8 and its exercises. For the moment,
we observe that the CRT affords a certain “parallelism.” A set of separate
machines can perform arithmetic, each machine doing this with respect to
a small modulus mi, whence some final value may be reconstructed. For
example, if each of x, y has fewer than 100 digits, then a set of prime moduli
{mi} whose product is M > 10200 can be used for multiplication: The i-th
machine would find ((x mod mi) ∗ (y mod mi)) mod mi, and the final value
x ∗ y would be found via the CRT. Likewise, on one computer chip, separate
multipliers can perform the small-modulus arithmetic.

All of this means that the reconstruction problem is paramount; indeed,
the reconstruction of n tends to be the difficult phase of CRT computations.
Note, however, that if the small moduli are fixed over many computations, a
certain amount of one-time precomputation is called for. In Theorem 2.1.6,
one may compute the Mi and the inverses vi just once, expecting many future
computations with different residue sets {ni}. In fact, one may precompute
the products viMi. A computer with r parallel nodes can then reconstruct∑
niviMi in O(ln r) steps.
There are other ways to organize the CRT data, such as building up one

partial modulus at a time. One such method is the Garner algorithm [Menezes
et al. 1997], which can also be done with preconditioning.

Algorithm 2.1.7 (CRT reconstruction with preconditioning (Garner)).
Using the nomenclature of Theorem 2.1.6, we assume r ≥ 2 fixed, pairwise
coprime moduli m0, . . . ,mr−1 whose product is M , and a set of given residues
{ni (mod mi)}. This algorithm returns the unique n ∈ [0,M − 1] with the given
residues. After the precomputation step, the algorithm may be reentered for future
evaluations of such n (with the {mi} remaining fixed).

1. [Precomputation]
for(1 ≤ i < r) {

µi =
∏i−1

j=0mj ;
ci = µ−1

i mod mi;
}
M = µr−1mr−1;

2. [Reentry point for given input residues {ni}]
n = n0;
for(1 ≤ i < r) {

u = ((ni − n)ci) mod mi;
n = n+ uµi; // Now n ≡ nj (mod mj) for 0 ≤ j ≤ i;

}
n = n mod M ;
return n;

This algorithm can be shown to be more efficient than a naive application
of Theorem 2.1.6 (see Exercise 2.8). Moreover, in case a fixed modulus M

2.2 Polynomial arithmetic 89

is used for repeated CRT calculations, one can perform [Precomputation] for
Algorithm 2.1.7 just once, store an appropriate set of r−1 integers, and allow
efficient reentry.

In Section 9.5.9 we describe a CRT reconstruction algorithm that not only
takes advantage of preconditioning, but of fast methods to multiply integers.

2.2 Polynomial arithmetic

Many of the algorithms for modular arithmetic have almost perfect analogues
in the polynomial arena.

2.2.1 Greatest common divisor for polynomials

We next give algorithms for polynomials analogous to the Euclid forms in
Section 2.1.1 for integer gcd and inverse. When we talk about polynomials,
the first issue is where the coefficients come from. We may be dealing with
Q[x], the polynomials with rational coefficients, or Zp[x], polynomials with
coefficients in the finite field Zp. Or from some other field. We may also be
dealing with polynomials with coefficients drawn from a ring that is not a
field, as we do when we consider Z[x] or Zn[x] with n not a prime.

Because of the ambiguity of the arena in which we are to work, perhaps
it is better to go back to first principles and begin with the more primitive
concept of divide with remainder. If we are dealing with polynomials in F [x],
where F is a field, there is a division theorem completely analogous to the
situation with ordinary integers. Namely, if f(x), g(x) are in F [x] with f not
the zero polynomial, then there are (unique) polynomials q(x), r(x) in F [x]
with

g(x) = q(x)f(x) + r(x) and either r(x) = 0 or deg r(x) < deg f(x). (2.4)

Moreover, we can use the “grammar-school” method of building up the
quotient q(x) term by term to find q(x) and r(x). Thinking about this
method, one sees that the only special property of fields that is used that
is not enjoyed by a general commutative ring is that the leading coefficient
of the divisor polynomial f(x) is invertible. So if we are in the more general
case of polynomials in R[x] where R is a commutative ring with identity, we
can perform a divide with remainder if the leading coefficient of the divisor
polynomial is a unit, that is, it has a multiplicative inverse in the ring.

For example, say we wish to divide 3x+ 2 into x2 in the polynomial ring
Z10[x]. The inverse of 3 in Z10 (which can be found by Algorithm 2.1.4) is 7.
We get the quotient 7x+ 2 and remainder 6.

In sum, if f(x), g(x) are in R[x], where R is a commutative ring with
identity and the leading coefficient of f is a unit in R, then there are unique
polynomials q(x), r(x) in R[x] such that (2.4) holds. We use the notation
r(x) = g(x) mod f(x). For much more on polynomial remaindering, see
Section 9.6.2.

90 Chapter 2 NUMBER-THEORETICAL TOOLS

Though it is possible sometimes to define the gcd of two polynomials in
the more general case of R[x], in what follows we shall restrict the discussion
to the much easier case of F [x], where F is a field. In this setting the
algorithms and theory are almost entirely the same as for integers. (For a
discussion of gcd in the case where R is not necessarily a field, see Section
4.3.) We define the polynomial gcd of two polynomials, not both 0, as a
polynomial of greatest degree that divides both polynomials. Any polynomial
satisfying this definition of gcd, when multiplied by a nonzero element of the
field F , again satisfies the definition. To standardize things, we take among
all these polynomials the monic one, that is the polynomial with leading
coefficient 1, and it is this particular polynomial that is indicated when we use
the notation gcd(f(x), g(x)). Thus, gcd(f(x), g(x)) is the monic polynomial
common divisor of f(x) and g(x) of greatest degree. To render any nonzero
polynomial monic, one simply multiplies through by the inverse of the leading
coefficient.

Algorithm 2.2.1 (gcd for polynomials). For given polynomials f(x), g(x) in
F [x], not both zero, this algorithm returns d(x) = gcd(f(x), g(x)).
1. [Initialize]

Let u(x), v(x) be f(x), g(x) in some order so that either deg u(x) ≥
deg v(x) or v(x) is 0;

2. [Euclid loop]
while(v(x)
= 0) (u(x), v(x)) = (v(x), u(x) mod v(x));

3. [Make monic]
Set c as the leading coefficient of u(x);
d(x) = c−1u(x);
return d(x);

Thus, for example, if we take

f(x) = 7x11 + x9 + 7x2 + 1,
g(x) = −7x7 − x5 + 7x2 + 1,

in Q[x], then the sequence in the Euclid loop is

(7x11 + x9 + 7x2 + 1, −7x7 − x5 + 7x2 + 1)
→ (−7x7 − x5 + 7x2 + 1, 7x6 + x4 + 7x2 + 1)
→ (7x6 + x4 + 7x2 + 1, 7x3 + 7x2 + x+ 1)
→ (7x3 + 7x2 + x+ 1, 14x2 + 2)
→ (14x2 + 2, 0),

so the final value of u(x) is 14x2+2, and the gcd d(x) is x2+ 1
7 . It is, of course,

understood that all calculations in the algorithm are to be performed in the
polynomial ring F [x]. So in the above example, if F = Z13, then d(x) = x2+2,
if F = Z7, then d(x) = 1; and if F = Z2, then the loop stops one step earlier
and d(x) = x3 + x2 + x+ 1.

2.2 Polynomial arithmetic 91

Along with the polynomial gcd we shall need a polynomial inverse. In
keeping with the notion of integer inverse, we shall generate a solution to

s(x)f(x) + t(x)g(x) = d(x),

for given f, g, where d(x) = gcd(f(x), g(x)).

Algorithm 2.2.2 (Extended gcd for polynomials). Let F be a field. For
given polynomials f(x), g(x) in F [x], not both zero, with either deg f(x) ≥
deg g(x) or g(x) = 0, this algorithm returns (s(x), t(x), d(x)) in F [x] such that
d = gcd(f, g) and sg+th = d. (For ease of notation we shall drop the x argument
in what follows.)

1. [Initialize]
(s, t, d, u, v, w) = (1, 0, f, 0, 1, g);

2. [Extended Euclid loop]
while(w
= 0) {

q = (d− (d mod w))/w; // q is the quotient of d÷ w.
(s, t, d, u, v, w) = (u, v, w, s− qu, t− qv, d− qw);

}
3. [Make monic]

Set c as the leading coefficient of d;
(s, t, d) = (c−1s, c−1t, c−1d);
return (s, t, d);

If d(x) = 1 and neither of f(x), g(x) is 0, then s(x) is the inverse of f(x)
(mod g(x)) and t(x) is the inverse of g(x) (mod f(x)). It is clear that if naive
polynomial remaindering is used, as described above, then the complexity of
the algorithm is O(D2) field operations, where D is the larger of the degrees
of the input polynomials; see [Menezes et al. 1997].

2.2.2 Finite fields

Examples of infinite fields are the rational numbers Q, the real numbers
R, and the complex numbers C. In this book, however, we are primarily
concerned with finite fields. A common example: If p is prime, the field

Fp = Zp

consists of all residues 0, 1, . . . , p − 1 with arithmetic proceeding under the
usual modular rules.

Given a field F and a polynomial f(x) in F [x] of positive degree, we
may consider the quotient ring F [x]/(f(x)). The elements of F [x]/(f(x)) are
subsets of F [x] of the form {g(x) + f(x)h(x) : h(x) ∈ F [x]}; we denote
this subset by g(x) + (f(x)). It is a coset of the ideal (f(x)) with coset
representative g(x). (Actually, any polynomial in a coset can stand in as a
representative for the coset, so that g(x) + (f(x)) = G(x) + (f(x)) if and
only if G(x) ∈ g(x) + (f(x)) if and only if G(x) − g(x) = f(x)h(x) for some

92 Chapter 2 NUMBER-THEORETICAL TOOLS

h(x) ∈ F [x] if and only if G(x) ≡ g(x) (mod f(x)). Thus, working with cosets
can be thought of as a fancy way of working with congruences.) Each coset
has a canonical representative, that is, a unique and natural choice, which is
either 0 or has degree smaller than deg f(x).

We can add and multiply cosets by doing the same with their representa-
tives:(

g1(x) + (f(x))
)

+
(
g2(x) + (f(x))

)
= g1(x) + g2(x) + (f(x)),(

g1(x) + (f(x))
)

·
(
g2(x) + (f(x))

)
= g1(x)g2(x) + (f(x)).

With these rules for addition and multiplication, F [x]/(f(x)) is a ring that
contains an isomorphic copy of the field F : An element a ∈ F is identified
with the coset a+ (f(x)).

Theorem 2.2.3. If F is a field and f(x) ∈ F [x] has positive degree, then
F [x]/(f(x)) is a field if and only if f(x) is irreducible in F [x].

Via this theorem we can create new fields out of old fields. For example,
starting with Q, the field of rational numbers, consider the irreducible
polynomial x2 − 2 in Q[x]. Let us denote the coset a + bx + (f(x)), where
a, b ∈ Q, more simply by a + bx. We have the addition and multiplication
rules

(a1 + b1x) + (a2 + b2x) = (a1 + a2) + (b1 + b2)x,
(a1 + b1x) · (a2 + b2x) = (a1a2 + 2b1b2) + (a1b2 + a2b1)x.

That is, one performs ordinary addition and multiplication of polynomials,
except that the relation x2 = 2 is used for reduction. We have “created” the
field

Q
[√

2
]

=
{
a+ b

√
2 : a, b ∈ Q

}
.

Let us try this idea starting from the finite field F7. Say we take f(x) =
x2 +1. A degree-2 polynomial is irreducible over a field F if and only if it has
no roots in F . A quick check shows that x2 + 1 has no roots in F7, so it is
irreducible over this field. Thus, by Theorem 2.2.3, F7[x]/(x2 + 1) is a field.
We can abbreviate elements by a+ bi, where a, b ∈ F7 and i2 = −1. Our new
field has 49 elements.

More generally, if p is prime and f(x) ∈ Fp[x] is irreducible and has
degree d ≥ 1, then Fp[x]/(f(x)) is again a finite field, and it has pd elements.
Interestingly, all finite fields up to isomorphism can be constructed in this
manner.

An important difference between finite fields and fields such as Q and C
is that repeatedly adding 1 to itself in a finite field, you will eventually get 0.
In fact, the number of times must be a prime, for otherwise, one can get the
product of two nonzero elements being 0.

Definition 2.2.4. The characteristic of a field is the additive order of 1,
unless said order is infinite, in which case the characteristic is 0.

2.2 Polynomial arithmetic 93

As indicated above, the characteristic of a field, if it is positive, must be
a prime number. Fields of characteristic 2 play a special role in applications,
mainly because of the simplicity of doing arithmetic in such fields.

We collect some relevant classical results on finite fields as follows:

Theorem 2.2.5 (Basic results on finite fields).
(1) A finite field F has nonzero characteristic, which must be a prime.
(2) For a, b in a finite field F of characteristic p, (a+ b)p = ap + bp.
(3) Every finite field has pk elements for some positive integer k, where p is

the characteristic.
(4) For given prime p and exponent k, there is exactly one field with pk

elements (up to isomorphism), which field we denote by Fpk .
(5) Fpk contains as subfields unique copies of Fpj for each j|k, and no other

subfields.
(6) The multiplicative group F∗

pk of nonzero elements in Fpk is cyclic; that
is, there is a single element whose powers constitute the whole group.

The multiplicative group F∗
pk is an important concept in studies of powers,

roots, and cryptography.

Definition 2.2.6. A primitive root of a field Fpk is an element whose powers
constitute all of F∗

pk . That is, the root is a generator of the cyclic group F∗
pk .

For example, in the example above where we created a field with 49 elements,
namely F72 , the element 3 + i is a primitive root.

A cyclic group with n elements has ϕ(n) generators in total, where ϕ is
the Euler totient function. Thus, a finite field Fpk has ϕ(pk − 1) primitive
roots.

One way to detect primitive roots is to use the following result.

Theorem 2.2.7 (Test for primitive root). An element g in F∗
pk is a prim-

itive root if and only if
g(pk−1)/q
= 1

for every prime q dividing pk − 1.

As long as pk − 1 can be factored, this test provides an efficient means of
establishing a primitive root. A simple algorithm, then, for finding a primitive
root is this: Choose random g ∈ F∗

pk , compute powers g(pk−1)/q mod p for
successive prime factors q of pk −1, and if any one of these powers is 1, choose
another g. If g survives the chain of powers, it is a primitive root by Theorem
2.2.7.

Much of this book is concerned with arithmetic in Fp, but at times we
shall have occasion to consider higher prime-power fields. Though general
Fpk arithmetic can be complicated, it is intriguing that some algorithms can
actually enjoy improved performance when we invoke such higher fields. As

94 Chapter 2 NUMBER-THEORETICAL TOOLS

we saw above, we can “create” the finite field Fpk by coming up with an
irreducible polynomial f(x) in Fp[x] of degree k. We thus say a little about
how one might do this.

Every element a in Fpk has the property that apk

= a, that is, a is a root
of xpk − x. In fact this polynomial splits into linear factors over Fpk with no
repeated factors. We can use this idea to see that xpk − x is the product of
all monic irreducible polynomials in Fp[x] of degrees dividing k. From this we
get a formula for the number Nk(p) of monic irreducible polynomials in Fp[x]
of exact degree k: One begins with the identity∑

d|k
dNd(p) = pk,

on which we can use Möbius inversion to get

Nk(p) =
1
k

∑
d|k

pdµ(k/d). (2.5)

Here, µ is the Möbius function discussed in Section 1.4.1. It is easy to see that
the last sum is dominated by the term d = k, so that Nk(p) is approximately
pk/k. That is, about 1 out of every k monic polynomials of degree k in Fp[x]
is irreducible. Thus a random search for one of these should be successful in
O(k) trials. But how can we recognize an irreducible polynomial? An answer
is afforded by the following result.

Theorem 2.2.8. Suppose that f(x) is a polynomial in Fp[x] of positive
degree k. The following statements are equivalent:
(1) f(x) is irreducible;

(2) gcd(f(x), xpj − x) = 1 for each j = 1, 2, . . . , �k/2�;
(3) xpk ≡ x (mod f(x)) and gcd(f(x), xpk/q − x) = 1 for each prime q|k.

This theorem, whose proof is left as Exercise 2.15, is then what is behind the
following two irreducibility tests.

Algorithm 2.2.9 (Irreducibility test 1). Given prime p and a polynomial
f(x) ∈ Fp[x] of degree k ≥ 2, this algorithm determines whether f(x) is
irreducible over Fp.

1. [Initialize]
g(x) = x;

2. [Testing loop]
for(1 ≤ i ≤ �k/2�) {

g(x) = g(x)p mod f(x); // Powering by Algorithm 2.1.5.
d(x) = gcd(f(x), g(x) − x); // Polynomial gcd by Algorithm 2.2.1.
if(d(x)
= 1) return NO;

}
return YES; // f is irreducible.

2.2 Polynomial arithmetic 95

Algorithm 2.2.10 (Irreducibility test 2). Given a prime p, a polynomial
f(x) ∈ Fp[x] of degree k ≥ 2, and the distinct primes q1 > q2 > . . . > ql
which divide k, this algorithm determines whether f(x) is irreducible over Fp.

1. [Initialize]
ql+1 = 1;
g(x) = xpk/q1 mod f(x); // Powering by Algorithm 2.1.5.

2. [Testing loop]
for(1 ≤ i ≤ l) {

d(x) = gcd(f(x), g(x) − x); // Polynomial gcd by Algorithm 2.2.1.
if(d(x)
= 1) return NO;
g(x) = g(x)pk/qi+1−pk/qi mod f(x); // Powering by Algorithm 2.1.5.

}
3. [Final congruence]

if(g(x)
= x) return NO;
return YES; // f is irreducible.

Using the naive arithmetic subroutines of this chapter, Algorithm 2.2.9
is slower than Algorithm 2.2.10 for large values of k, given the much larger
number of gcd’s which must be computed in the former algorithm. However,
using a more sophisticated method for polynomial gcd’s, (see [von zur Gathen
and Gerhard 1999, Sec. 11.1]), the two methods are roughly comparable in
time.

Let us now recapitulate the manner of field computations. Armed with
a suitable irreducible polynomial f of degree k over Fp, one represents any
element a ∈ Fpk as

a = a0 + a1x+ a2x
2 + · · · + ak−1x

k−1,

with each ai ∈ {0, . . . , p− 1}. That is, we represent a as a vector in F k
p . Note

that there are clearly pk such vectors. Addition is ordinary vector addition,
but of course the arithmetic in each coordinate is modulo p. Multiplication
is more complicated: We view it merely as multiplication of polynomials, but
not only is the coordinate arithmetic modulo p, but we also reduce high-
degree polynomials modulo f(x). That is to say, to multiply a ∗ b in Fpk , we
simply form a polynomial product a(x)b(x), doing a mod p reduction when a
coefficient during this process exceeds p−1, then taking this product mod f(x)
via polynomial mod, again reducing mod p whenever appropriate during that
process. In principle, one could just form the unrestricted product a(x)b(x),
do a mod f reduction, then take a final mod p reduction, in which case the
final result would be the same but the interior integer multiplies might run
out of control, especially if there were many polynomials being multiplied. It
is best to take a reduction modulo p at every meaningful juncture.

Here is an example for explicit construction of a field of characteristic 2,
namely F16. According to our formula (2.5), there are exactly 3 irreducible
degree-4 polynomials in F2[x], and a quick check shows that they are x4+x+1,
x4 + x3 + 1, and x4 + x3 + x2 + x + 1. Though each of these can be used to

96 Chapter 2 NUMBER-THEORETICAL TOOLS

create F16, the first has the pleasant property that reduction of high powers
of x to lower powers is particularly simple: The mod f(x) reduction is realized
through the simple rule x4 = x + 1 (recall that we are in characteristic 2, so
that 1 = −1). We may abbreviate typical field elements a0+a1x+a2x

2+a3x
3,

where each ai ∈ {0, 1} by the binary string (a0a1a2a3). We add componentwise
modulo 2, which amounts to an “exclusive-or” operation, for example

(0111) + (1011) = (1100).

To multiply a ∗ b = (0111) ∗ (1011) we can simulate the polynomial
multiplication by doing a convolution on the coordinates, first getting
(0110001), a string of length 7. (Calling this (c0c1c2c3c4c5c6) we have cj =∑

i1+i2=j ai1bi2 , where the sum is over pairs i1, i2 of integers in {0, 1, 2, 3} with
sum j.) To get the final answer, we take any 1 in places 6, 5, 4, in this order,
and replace them via the modulo f(x) relation. In our case, the 1 in place 6
gets replaced with 1’s in places 2 and 3, and doing the exclusive-or, we get
(0101000). There are no more high-order 1’s to replace, and our product is
(0101); that is, we have

(0111) ∗ (1011) = (0101).

Though this is only a small example, all the basic notions of general field
arithmetic via polynomials are present.

2.3 Squares and roots

2.3.1 Quadratic residues

We start with some definitions.

Definition 2.3.1. For coprime integers m, a with m positive, we say that
a is a quadratic residue (mod m) if and only if the congruence

x2 ≡ a (mod m)

is solvable for integer x. If the congruence is not so solvable, a is said to be a
quadratic nonresidue (mod m).

Note that quadratic residues and nonresidues are defined only when
gcd(a,m) = 1. So, for example, 0 (mod m) is always a square but is neither
a quadratic residue nor a nonresidue. Another example is 3 (mod 9). This
residue is not a square, but it is not considered a quadratic nonresidue since
3 and 9 are not coprime. When the modulus is prime the only non-coprime
case is the 0 residue, which is one of the choices in the next definition.

Definition 2.3.2. For odd prime p, the Legendre symbol
(
a
p

)
is defined as

(
a

p

)
=




0, if a ≡ 0 (mod p),
1, if a is a quadratic residue (mod p),

−1, if a is a quadratic nonresidue (mod p).

2.3 Squares and roots 97

Thus, the Legendre symbol signifies whether or not a
≡ 0 (mod p) is a square
(mod p). Closely related, but differing in some important ways, is the Jacobi
symbol:

Definition 2.3.3. For odd natural number m (whether prime or not), and
for any integer a, the Jacobi symbol

(
a
m

)
is defined in terms of the (unique)

prime factorization
m =

∏
pti

i

as (
a

m

)
=

∏(
a

pi

)ti

,

where
(

a
pi

)
are Legendre symbols, with

(
a
1

)
= 1 understood.

Note, then, that the function χ(a) =
(

a
m

)
, defined for all integers a, is a

character modulo m; see Section 1.4.3. It is important to note right off that
for composite, oddm, a Jacobi symbol

(
a
m

)
can sometimes be +1 when x2 ≡ a

(mod m) is unsolvable. An example is(
2
15

)
=

(
2
3

)(
2
5

)
= (−1)(−1) = 1,

even though 2 is not, in fact, a square modulo 15. However, if
(

a
m

)
= −1, then

a is coprime to m and the congruence x2 ≡ a (mod m) is not solvable. And(
a
m

)
= 0 if and only if gcd(a,m) > 1.
It is clear that in principle the symbol

(
a
m

)
is computable: One factors

m into primes, and then computes each underlying Legendre symbol by
exhausting all possibilities to see whether the congruence x2 ≡ a (mod p) is
solvable. What makes Legendre and Jacobi symbols so very useful, though, is
that they are indeed very easy to compute, with no factorization or primality
test necessary, and with no exhaustive search. The following theorem gives
some of the beautiful properties of Legendre and Jacobi symbols, properties
that make their evaluation a simple task, about as hard as taking a gcd.

Theorem 2.3.4 (Relations for Legendre and Jacobi symbols). Let p de-
note an odd prime, let m,n denote arbitrary positive odd integers (including
possibly primes), and let a, b denote integers. Then we have the Euler test for
quadratic residues modulo primes, namely(

a

p

)
≡ a(p−1)/2 (mod p). (2.6)

We have the multiplicative relations(
ab

m

)
=

(
a

m

)(
b

m

)
, (2.7)

(
a

mn

)
=

(
a

m

)(
a

n

)
(2.8)

98 Chapter 2 NUMBER-THEORETICAL TOOLS

and special relations (
−1
m

)
= (−1)(m−1)/2, (2.9)

(
2
m

)
= (−1)(m

2−1)/8. (2.10)

Furthermore, we have the law of quadratic reciprocity for coprime m,n:

(
m

n

)(
n

m

)
= (−1)(m−1)(n−1)/4. (2.11)

Already (2.6) shows that when |a| < p, the Legendre symbol
(
a
p

)
can be

computed in O
(
ln3 p

)
bit operations using naive arithmetic and Algorithm

2.1.5; see Exercise 2.17. But we can do better, and we do not even need to
recognize primes.

Algorithm 2.3.5 (Calculation of Legendre/Jacobi symbol). Given positive
odd integer m, and integer a, this algorithm returns the Jacobi symbol

(
a
m

)
, which

for m an odd prime is also the Legendre symbol.

1. [Reduction loops]
a = a mod m;
t = 1;
while(a
= 0) {

while(a even) {
a = a/2;
if(m mod 8 ∈ {3, 5}) t = −t;

}
(a,m) = (m, a); // Swap variables.
if(a ≡ m ≡ 3 (mod 4)) t = −t;
a = a mod m;

}
2. [Termination]

if(m == 1) return t;
return 0;

It is clear that this algorithm does not take materially longer than using
Algorithm 2.1.2 to find gcd(a,m), and so runs in O

(
ln2m

)
bit operations

when |a| < m.
In various other sections of this book we make use of a celebrated

connection between the Legendre symbol and exponential sums. The study of
this connection runs deep; for the moment we state one central, useful result,
starting with the following definition:

2.3 Squares and roots 99

Definition 2.3.6. The quadratic Gauss sum G(a;m) is defined for integers
a,N , with N positive, as

G(a;N) =
N−1∑
j=0

e2πiaj2/N .

This sum is—up to conjugation perhaps—a discrete Fourier transform (DFT)
as used in various guises in Chapter 8.8. A more general form—a character
sum—is used in primality proving (Section 4.4). The central result we wish
to cite makes an important connection with the Legendre symbol:

Theorem 2.3.7 (Gauss). For odd prime p and integer a
≡ 0 (mod p),

G(a; p) =
(
a

p

)
G(1; p),

and generally, for positive integer m,

G(1;m) =
1
2
√
m(1 + i)(1 + (−i)m).

The first assertion is really very easy, the reader might consider proving it
without looking up references. The two assertions of the theorem together
allow for Fourier inversion of the sum, so that one can actually express the
Legendre symbol for a
≡ 0 (mod p) by

(
a

p

)
=

c
√
p

p−1∑
j=0

e2πiaj2/p =
c

√
p

p−1∑
j=0

(
j

p

)
e2πiaj/p, (2.12)

where c = 1,−i as p ≡ 1, 3 (mod 4), respectively. This shows that the
Legendre symbol is, essentially, its own discrete Fourier transform (DFT).
For practice in manipulating Gauss sums, see Exercises 1.66, 2.27, 2.28, and
9.41.

2.3.2 Square roots

Armed now with algorithms for gcd, inverse (actually the −1 power), and
positive integer powers, we turn to the issue of square roots modulo a prime.
As we shall see, the technique actually calls for raising residues to high integral
powers, and so the task is not at all like taking square roots in the real
numbers.

We have seen that for odd prime p, the solvability of a congruence

x2 ≡ a
≡ 0 (mod p)

is signified by the value of the Legendre symbol
(
a
p

)
. When

(
a
p

)
= 1, an

important problem is to find a “square root” x, of which there will be two,
one the other’s negative (mod p). We shall give two algorithms for extracting

100 Chapter 2 NUMBER-THEORETICAL TOOLS

such square roots, both computationally efficient but raising different issues
of implementation.

The first algorithm starts from Euler’s test (2.6). If the prime p is 3 (mod 4)
and

(
a
p

)
= 1, then Euler’s test says that at ≡ 1 (mod p), where t = (p− 1)/2.

Then at+1 ≡ a (mod p), and as t + 1 is even in this case, we may take for
our square root x ≡ a(t+1)/2 (mod p). Surely, this delightfully simple solution
to the square root problem can be generalized! Yes, but it is not so easy. In
general, we may write p − 1 = 2st, with t odd. Euler’s test (2.6) guarantees
us that a2s−1t ≡ 1 (mod p), but it does not appear to say anything about
A = at (mod p).

Well, it does say something; it says that the multiplicative order of A
modulo p is a divisor of 2s−1. Suppose that d is a quadratic nonresidue modulo
p, and let D = dt mod p. Then Euler’s test (2.6) says that the multiplicative
order of D modulo p is exactly 2s, since D2s−1 ≡ −1 (mod p). The same
is true about D−1 (mod p), namely, its multiplicative order is 2s. Since the
multiplicative group Z∗

p is cyclic, it follows that A is in the cyclic subgroup
generated by D−1, and in fact, A is an even power of D−1, that is, A ≡ D−2µ

(mod p) for some integer µ with 0 ≤ µ < 2s−1. Substituting for A we have
atD2µ ≡ 1 (mod p). Then after multiplying this congruence by a, the left side
has all even exponents, and we can extract the square root of a modulo p as
a(t+1)/2Dµ (mod p).

To make this idea into an algorithm, there are two problems that must be
solved:
(1) Find a quadratic nonresidue d (mod p).
(2) Find an integer µ with A ≡ D−2µ (mod p).
It might seem that problem (1) is simple and that problem (2) is difficult, since
there are many quadratic nonresidues modulo p and we only need one of them,
any one, while for problem (2) there is a specific integer µ that we are searching
for. In some sense, these thoughts are correct. However, we know no rigorous,
deterministic way to find a quadratic nonresidue quickly. We will get around
this impasse by using a random algorithm. And though problem (2) is an
instance of the notoriously difficult discrete logarithm problem (see Chapter
5), the particular instance we have in hand here is simple. The following
algorithm is due to A. Tonelli in 1891, based on earlier work of Gauss.

Algorithm 2.3.8 (Square roots (mod p)). Given an odd prime p and an
integer a with

(
a
p

)
= 1, this algorithm returns a solution x to x2 ≡ a (mod p).

1. [Check simplest cases: p ≡ 3, 5, 7 (mod 8)]
a = a mod p;
if(p ≡ 3, 7 (mod 8)) {

x = a(p+1)/4 mod p;
return x;

}
if(p ≡ 5 (mod 8)) {

2.3 Squares and roots 101

x = a(p+3)/8 mod p;
c = x2 mod p; // Then c ≡ ±a (mod p).
if(c
= a mod p) x = x2(p−1)/4 mod p;
return x;

}
2. [Case p ≡ 1 (mod 8)]

Find a random integer d ∈ [2, p− 1] with
(
d
p

)
= −1;

// Compute Jacobi symbols via Algorithm 2.3.5.
Represent p− 1 = 2st, with t odd;
A = at mod p;
D = dt mod p;
m = 0; // m will be 2µ of text discussion.
for(0 ≤ i < s){ // One may start at i = 1; see text.

if((ADm)2
s−1−i ≡ −1 (mod p)) m = m+ 2i;

} // Now we have ADm ≡ 1 (mod p).
x = a(t+1)/2Dm/2 mod p;
return x;

Note the following interesting features of this algorithm. First, it turns out
that the p ≡ 1 (mod 8) branch—the hardest case—will actually handle all
the cases. (We have essentially used in the p ≡ 5 (mod 8) case that we may
choose d = 2. And in the p ≡ 3 (mod 4) cases, the exponent m is 0, so we
do not need a value of d.) Second, notice that built into the algorithm is the
check that A2s−1 ≡ 1 (mod p), which is what ensures that m is even. If this
fails, then we do not have

(
a
p

)
= 1, and so the algorithm may be amended to

leave out this requirement, with a break called for if the case i = 0 in the loop
produces the residue −1. If one is taking many square roots of residues a for
which it is unknown whether a is a quadratic residue or nonresidue, then one
may be tempted to just let Algorithm 2.3.8 decide the issue for us. However,
if nonresidues occur a positive fraction of the time, it will be faster on average
to first run Algorithm 2.3.5 to check the quadratic character of a, and thus
avoid running the more expensive Algorithm 2.3.8 on the nonresidues.

As we have mentioned, there is no known deterministic, polynomial time
algorithm for finding a quadratic nonresidue d for the prime p. However, if one
assumes the ERH, it can be shown there is a quadratic nonresidue d < 2 ln2 p;
see Theorem 1.4.5, and so an exhaustive search to this limit succeeds in finding
a quadratic nonresidue in polynomial time. Thus, on the ERH, one can find
square roots for quadratic residues modulo the prime p in deterministic,
polynomial time. It is interesting, from a theoretical standpoint, that for
a fixed, R. Schoof has a rigorously proved, deterministic, polynomial time
algorithm for square root extraction; see [Schoof 1985]. (The bit complexity
is polynomial in the length of p, but exponential in the length of a, so that
for a fixed it is correct to say that the algorithm is polynomial time.) Still,
in spite of this fascinating theoretical state of affairs, the fact that half of all
nonzero residues d (mod p) satisfy

(
d
p

)
= −1 leads to the expectation of only

102 Chapter 2 NUMBER-THEORETICAL TOOLS

a few random attempts to find a suitable d. In fact, the expected number of
random attempts is 2.

The complexity of Algorithm 2.3.8 is dominated by the various exponen-
tiations called for, and so is O(s2 + ln t) modular operations. Assuming naive
arithmetic subroutines, this comes out to, in the worst case (when s is large),
O

(
ln4 p

)
bit operations. However, if one is applying Algorithm 2.3.8 to many

prime moduli p, it is perhaps better to consider its average case, which is just
O

(
ln3 p

)
bit operations. This is because there are very few primes p with p−1

divisible by a large power of 2.
The following algorithm is asymptotically faster than the worst case of

Algorithm 2.3.8. A beautiful application of arithmetic in the finite field Fp2 ,
the method is a 1907 discovery of M. Cipolla.

Algorithm 2.3.9 (Square roots (mod p) via Fp2 arithmetic). Given an
odd prime p and a quadratic residue a modulo p, this algorithm returns a so-
lution x to x2 ≡ a (mod p).
1. [Find a certain quadratic nonresidue]

Find a random integer t ∈ [0, p− 1] such that
(
t2−a

p

)
= −1;

// Compute Jacobi symbols via Algorithm 2.3.5.

2. [Find a square root in Fp2 = Fp(
√
t2 − a)]

x = (t+
√
t2 − a)(p+1)/2; // Use Fp2 arithmetic.

return x;

The probability that a random value of t will be successful in Step [Find a
certain quadratic nonresidue] is (p − 1)/2p. It is not hard to show that the
element x ∈ Fp2 is actually an element of the subfield Fp of Fp2 , and that
x2 ≡ a (mod p). (In fact, the second assertion forces x to be in Fp, since a
has the same square roots in Fp as it has in the larger field Fp2 .)

A word is in order on the field arithmetic, which for this case of Fp2 is
especially simple, as might be expected on the basis of Section 2.2.2. Let
ω =

√
t2 − a. Representing this field by

Fp2 = {x+ ωy : x, y ∈ Fp} = {(x, y)},

all arithmetic may proceed using the rule

(x, y) ∗ (u, v) = (x+ yω)(u+ vω)
= xu+ yvω2 + (xv + yu)ω
= (xu+ yv(t2 − a), xv + yu),

noting that ω2 = t2 − a is in Fp. Of course, we view x, y, u, v, t, a as residues
modulo p and the above expressions are always reduced to this modulus. Any
of the binary ladder powering algorithms in this book may be used for the
computation of x in step [Find a square root . . .]. An equivalent algorithm for
square roots is given in [Menezes et al. 1997], in which one finds a quadratic
nonresidue b2 − 4a, defines the polynomial f(x) = x2 − bx + a in Fp[x], and

2.3 Squares and roots 103

simply computes the desired root r = x(p+1)/2 mod f (using polynomial-mod
operations). Note finally that the special cases p ≡ 3, 5, 7 (mod 8) can also
be ferreted out of any of these algorithms, as was done in Algorithm 2.3.8, to
improve average performance.

The complexity of Algorithm 2.3.9 is O(ln3 p) bit operations (assuming
naive arithmetic), which is asymptotically better than the worst case of
Algorithm 2.3.8. However, if one is loath to implement the modified powering
ladder for the Fp2 arithmetic, the asymptotically slower algorithm will usually
serve. Incidentally, there is yet another, equivalent, approach for square
rooting by way of Lucas sequences (see Exercise 2.31).

It is very interesting to note at this juncture that there is no known fast
method of computing square roots of quadratic residues for general composite
moduli. In fact, as we shall see later, doing so is essentially equivalent to
factoring the modulus (see Exercise 6.5).

2.3.3 Finding polynomial roots

Having discussed issues of existence and calculation of square roots, we now
consider the calculation of roots of a polynomial of arbitrary degree over
a finite field. We specify the finite field as Fp, but much of what we say
generalizes to an arbitrary finite field.

Let g ∈ Fp[x] be a polynomial; that is, it is a polynomial with integer
coefficients reduced (mod p). We are looking for the roots of g in Fp, and so
we might begin by replacing g(x) with the gcd of g(x) and xp − x, since as
we have seen, the latter polynomial is the product of x − a as a runs over
all elements of Fp. If p > deg g, one should first compute xp mod g(x) via
Algorithm 2.1.5. If the gcd has degree not exceeding 2, the prior methods we
have learned settle the matter. If it has degree greater than 2, then we take a
further gcd with (x+ a)(p−1)/2 − 1 for a random a ∈ Fp. Any particular b
= 0
in Fp is a root of (x + a)(p−1)/2 − 1 with probability 1/2, so that we have a
positive probability of splitting g(x) into two polynomials of smaller degree.
This suggests a recursive algorithm, which is what we describe below.

Algorithm 2.3.10 (Roots of a polynomial over Fp).
Given a nonzero polynomial g ∈ Fp[x], with p an odd prime, this algorithm returns
the set r of the roots (without multiplicity) in Fp of g. The set r is assumed global,
augmented as necessary during all recursive calls.

1. [Initial adjustments]
r = { }; // Root list starts empty.
g(x) = gcd(xp − x, g(x)); // Using Algorithm 2.2.1.
if(g(0) == 0) { // Check for 0 root.

r = r ∪ {0};
g(x) = g(x)/x;

}
2. [Call recursive procedure and return]

104 Chapter 2 NUMBER-THEORETICAL TOOLS

r = r ∪ roots(g);
return r;

3. [Recursive function roots()]
roots(g) {

If deg(g) ≤ 2, use quadratic (or lower) formula, via Algorithm 2.3.8, or
2.3.9, to append to r all roots of g, and return;

while(h == 1 or h == g) { // Random splitting.
Choose random a ∈ [0, p− 1];
h(x) = gcd((x+ a)(p−1)/2 − 1, g(x));

}
r = r ∪ roots(h) ∪ roots(g/h);
return;

}

The computation of h(x) in the random-splitting loop can be made easier
by using Algorithm 2.1.5 to first compute (x + a)(p−1)/2 mod g(x) (and of
course, the coefficients are always reduced (mod p)). It can be shown that the
probability that a random a will succeed in splitting g(x) (where deg(g) ≥ 3)
is at least about 3/4 if p is large, and is always bounded above 0. Note that
we can use the random splitting idea on degree-2 polynomials as well, and
thus we have a third square root algorithm! (If g(x) has degree 2, then the
probability that a random choice for a in Step [Recursive . . .] will split g is
at least (p − 1)/(2p).) Various implementation details of this algorithm are
discussed in [Cohen 2000]. Note that the algorithm is not actually factoring
the polynomial; for example, a polynomial f might be the product of two
irreducible polynomials, each of which is devoid of roots in Fp. For actual
polynomial factoring, there is the Berlekamp algorithm [Menezes et al. 1997],
[Cohen 2000], but many important algorithms require only the root finding
we have exhibited.

We now discuss the problem of finding roots of a polynomial to a composite
modulus. Suppose the modulus is n = ab, where a, b are coprime. If we have an
integer r with f(r) ≡ 0 (mod a) and an integer s with f(s) ≡ 0 (mod b), we
can find a root to f(x) ≡ 0 (mod ab) that “corresponds” to r and s. Namely,
if the integer t simultaneously satisfies t ≡ r (mod a) and t ≡ s (mod b),
then f(t) ≡ 0 (mod ab). And such an integer t may be found by the Chinese
remainder theorem; see Theorem 2.1.6. Thus, if the modulus n can be factored
into primes, and we can solve the case for prime power moduli, then we can
solve the general case.

To this end, we now turn our attention to solving polynomial congruences
modulo prime powers. Note that for any polynomial f(x) ∈ Z[x] and any
integer r, there is a polynomial gr(x) ∈ Z[x] with

f(x+ r) = f(r) + xf ′(r) + x2gr(x). (2.13)

2.3 Squares and roots 105

This can be seen either through the Taylor expansion for f(x+ r) or through
the binomial theorem in the form

(x+ r)d = rd + drd−1x+ x2
d∑

j=2

(
d

j

)
rd−jxj−2.

We can use Algorithm 2.3.10 to find solutions to f(x) ≡ 0 (mod p), if there are
any. The question is how we might be able to “lift” a solution to one modulo
pk for various exponents k. Suppose we have been successful in finding a root
modulo pi, say f(r) ≡ 0 (mod pi), and we wish to find a solution to f(t) ≡ 0
(mod pi+1) with t ≡ r (mod pi). We write t as r + piy, and so we wish to
solve for y. We let x = piy in (2.13). Thus

f(t) = f(r + piy) ≡ f(r) + piyf ′(r) (mod p2i).

If the integer f ′(r) is not divisible by p, then we can use the methods of
Section 2.1.1 to solve the congruence

f(r) + piyf ′(r) ≡ 0 (mod p2i),

namely by dividing through by pi (recall that f(r) is divisible by pi), finding an
inverse z for f ′(r) (mod pi), and letting y = −zf(r)p−i mod pi. Thus, we have
done more than we asked for, having instantly gone from the modulus pi to the
modulus p2i. But there was a requirement that the integer r satisfy f ′(r)
≡ 0
(mod p). In general, if f(r) ≡ f ′(r) ≡ 0 (mod p), then there may be no integer
t ≡ r (mod p) with f(t) ≡ 0 (mod p2). For example, take f(x) = x2 + 3 and
consider the prime p = 3. We have the root x = 0; that is, f(0) ≡ 0 (mod 3).
But the congruence f(x) ≡ 0 (mod 9) has no solution. For more on criteria for
when a polynomial solution lifts to higher powers of the modulus, see Section
3.5.3 in [Cohen 2000].

The method described above is known as Hensel lifting, after the German
mathematician K. Hensel. The argument essentially gives a criterion for there
to be a solution of f(x) = 0 in the “p-adic” numbers: There is a solution if
there is an integer r with f(r) ≡ 0 (mod p) and f ′(r)
≡ 0 (mod p). What
is more important for us, though, is using this idea as an algorithm to solve
polynomial congruences modulo high powers of a prime. We summarize the
above discussion in the following.

Algorithm 2.3.11 (Hensel lifting). We are given a polynomial f(x) ∈ Z[x],
a prime p, and an integer r that satisfies f(r) ≡ 0 (mod p) (perhaps supplied
by Algorithm 2.3.10) and f ′(r)
≡ 0 (mod p). This algorithm describes how one
constructs a sequence of integers r0, r1, . . . such that for each i < j, ri ≡ rj
(mod p2j

) and f(ri) ≡ 0 (mod p2i

). The description is iterative, that is, we give
r0 and show how to find ri+1 as a function of an already known ri.

1. [Initial term]
r0 = r;

106 Chapter 2 NUMBER-THEORETICAL TOOLS

2. [Function newr() that gives ri+1 from ri]
newr(ri) {

x = f(ri)p−2i

;
z = (f ′(r))−1 mod p2i

; // Via Algorithm 2.1.4.
y = −xz mod p2i

;
ri+1 = ri + yp2i

;
return ri+1;

}

Note that for j ≥ i we have rj ≡ ri
(
mod p2i)

, so that the sequence (ri)
converges in the p-adic numbers to a root of f(x). In fact, Hensel lifting may
be regarded as a p-adic version of the Newton methods discussed in Section
9.2.2.

2.3.4 Representation by quadratic forms

We next turn to a problem important to such applications as elliptic curves
and primality testing. This is the problem of finding quadratic Diophantine
representations, for positive integer d and odd prime p, in the form

x2 + dy2 = p,

or, in studies of complex quadratic orders of discriminant D < 0, D ≡ 0, 1
(mod 4), the form [Cohen 2000]

x2 + |D|y2 = 4p.

There is a beautiful approach for these Diophantine problems. The next
two algorithms are not only elegant, they are very efficient. Incidentally, the
following algorithm was attributed usually to Cornacchia until recently, when
it became known that H. Smith had discovered it earlier, in 1885 in fact.

Algorithm 2.3.12 (Represent p as x2 + dy2: Cornacchia–Smith method).
Given an odd prime p and a positive integer d not divisible by p, this algorithm
either reports that p = x2 + dy2 has no integral solution, or returns a solution.

1. [Test for solvability]
if(
(−d

p

)
== −1) return { }; // Return empty: no solution.

2. [Initial square root]
x0 =

√
−d mod p; // Via Algorithm 2.3.8 or 2.3.9.

if(2x0 < p) x0 = p− x0; // Justify the root.

3. [Initialize Euclid chain]
(a, b) = (p, x0);
c = �√p�; // Via Algorithm 9.2.11.

4. [Euclid chain]
while(b > c) (a, b) = (b, a mod b);

5. [Final report]

2.3 Squares and roots 107

t = p− b2;
if(t
≡ 0 (mod d)) return { }; // Return empty.
if(t/d not a square) return { }; // Return empty.
return (±b,±

√
t/d); // Solution(s) found.

This completely solves the computational Diophantine problem at hand. Note
that an integer square-root finding routine (Algorithm 9.2.11) is invoked at
two junctures. The second invocation—the determination as to whether t/d is
a perfect square—can be done along the lines discussed in the text following
the Algorithm 9.2.11 description. Incidentally, the proof that Algorithm 2.3.12
works is, in words from [Cohen 2000], “a little painful.” There is an elegant
argument, due to H. Lenstra, in [Schoof 1995], and a clear explanation from
an algorist’s point of view (for d = 1) in [Bressoud and Wagon 2000, p. 283].

The second case, namely for the Diophantine equation x2 + |D|y2 = 4p,
for D < 0, can be handled in the following way [Cohen 2000]. First we observe
that if D ≡ 0 (mod 4), then x is even, whence the problem comes down to
solving (x/2)2+(|D|/4)y2 = p, which we have already done. IfD ≡ 1 (mod 8),
we have x2 − y2 ≡ 4 (mod 8), and so x, y are both even, and again we defer
to the previous method. Given the above argument, one could use the next
algorithm only for D ≡ 5 (mod 8), but in fact, the following will work for
what turn out to be convenient cases D ≡ 0, 1 (mod 4):

Algorithm 2.3.13. (Represent 4p as x2 + |D|y2 (modified Cornacchia–
Smith)) Given a prime p and −4p < D < 0 withD ≡ 0, 1 (mod 4), this algorithm
either reports that no solution exists, or returns a solution (x, y).
1. [Case p = 2]

if(p == 2) {
if(D + 8 is a square) return (

√
D + 8, 1);

return { }; // Return empty: no solution.
}

2. [Test for solvability]
if(
(
D
p

)
< 1) return { }; // Return empty.

3. [Initial square root]
x0 =

√
D mod p; // Via Algorithm 2.3.8 or 2.3.9.

if(x0
≡ D (mod 2)) x0 = p− x0; // Ensure x2
0 ≡ D (mod 4p).

4. [Initialize Euclid chain]
(a, b) = (2p, x0);
c = �2√

p�; // Via Algorithm 9.2.11.

5. [Euclid chain]
while(b > c) (a, b) = (b, a mod b);

6. [Final report]
t = 4p− b2;
if(t
≡ 0 (mod |D|)) return { }; // Return empty.
if(t/|D| not a square) return { }; // Return empty.
return (±b,±

√
t/|D|); // Found solution(s).

108 Chapter 2 NUMBER-THEORETICAL TOOLS

Again, the algorithm either says that there is no solution, or reports the
essentially unique solution to x2 + |D|y2 = 4p.

2.4 Exercises

2.1. Prove that 16 is, modulo any odd number, an eighth power.

2.2. Show that the least common multiple lcm (a, b) satisfies

lcm (a, b) =
ab

gcd(a, b)
,

and generalize this formula for more than two arguments. Then, using the
prime number theorem (PNT), find a reasonable estimate for the lcm of all
the integers from 1 through (a large) n.

2.3. Recall that ω(n) denotes the number of distinct prime factors of n.
Prove that for any positive squarefree integer n,

#{(x, y) : x, y positive integers, lcm (x, y) = n} = 3ω(n).

2.4. Study the relation between the Euclid algorithm and simple continued
fractions, with a view to proving the Lamé theorem (the first part of Theorem
2.1.3).

2.5. Fibonacci numbers are defined u0 = 0, u1 = 1, and un+1 = un + un−1
for n ≥ 1. Prove the remarkable relation

gcd(ua, ub) = ugcd(a,b),

which shows, among many other things, that un, un+1 are coprime for n > 1,
and that if un is prime, then n is prime. Find a counterexample to the
converse (find a prime p such that up is composite). By analyzing numerically
several Fibonacci numbers, guess—then prove—a simple, general formula for
the inverse of un (mod un+1).

Fibonacci numbers appear elsewhere in this book, e.g., in Sections 1.3.3,
3.6.1 and Exercises 3.25, 3.41, 9.50.

2.6. Show that for x ≈ y ≈ N , and assuming classical divide with remainder,
the bit-complexity of the classical Euclid algorithm is O

(
ln2N

)
. It is helpful

to observe that to find the quotient–remainder pair q, r with x = qy+r requires
O((1 + ln q) lnx) bit operations, and that the quotients are constrained in a
certain way during the Euclid loop.

2.7. Prove that Algorithm 2.1.4 works; that is, the correct gcd and inverse
pair are returned. Answer the following question: When, if ever, do the
returned a, b have to be reduced further, to a mod y and b mod x, to yield
legitimate, unique inverses?

2.8. Argue that for a naive application of Theorem 2.1.6 the mod operations
involved consume at least O

(
ln2M

)
bit operations if arithmetic be done in

2.4 Exercises 109

grammar-school fashion, but only O
(
r ln2m

)
via Algorithm 2.1.7, where m

denotes the maximum of the mi.

2.9. Write a program to effect the asymptotically fast, preconditioned CRT
Algorithm 9.5.26, and use this to multiply two numbers each of, say, 100
decimal digits, using sufficiently many small prime moduli.

2.10. Following Exercise 1.48 one can use, for CRT moduli, Mersenne
numbers having pairwise coprime exponents (the Mersenne numbers need
not themselves be prime). What computational advantages might there be
in choosing such a moduli set (see Section 9.2.3)? Is there an easy way to find
inverses (2a − 1)−1 (mod 2b − 1)?

2.11. Give the computational complexity of the “straightforward inverse”
algorithm implied by relation (2.3). Is there ever a situation when one should
use this, or use instead Algorithm 2.1.4 to obtain a−1 mod m?

2.12. Let Nk(p) be the number of monic irreducible polynomials in Fp[x]
of degree k. Using formula (2.5), show that pk/k ≥ Nk(p) > pk/k − 2pk/2/k
for every prime p and every positive integer k. Show too that we always have
Nk(p) > 0.

2.13. Does formula (2.5) generalize to give the number of irreducible
polynomials of degree k in Fpn [x]?

2.14. Show how Algorithm 2.2.2 plays a role in finite field arithmetic, namely
in the process of finding a multiplicative inverse of an element in Fpn .

2.15. Prove Theorem 2.2.8.

2.16. Show how Algorithms 2.3.8 and 2.3.9 may be appropriately generalized
to find square roots of squares in the finite field Fpn .

2.17. By considering the binary expansion of the exponent n, show that
the computational complexity of Algorithm 2.1.5 is O(lnn) operations. Argue
that if x, n are each of size m and we are to compute xn mod m, and classical
multiply-mod is used, that the overall bit complexity of this powering grows
as the cube of the number of bits in m.

2.18. Say we wish to compute a power xy mod N , with N = pq, the product
of two distinct primes. Describe an algorithm that combines a binary ladder
and Chinese remainder theorem (CRT) ideas, and that yields the desired
power more rapidly than does a standard, (mod N)-based ladder.

2.19. The “repunit” number r1031 = (101031 − 1)/9, composed of 1031
decimal ones, is known to be prime. Determine, via reciprocity, which of
7,−7 is a quadratic residue of this repunit. Then give an explicit square root
(mod r1031) of the quadratic residue.

110 Chapter 2 NUMBER-THEORETICAL TOOLS

2.20. Using appropriate results of Theorem 2.3.4, prove that for prime p > 3,(
−3
p

)
= (−1)

(p−1) mod 6
4 .

Find a similar closed form for
(5
p

)
when p
= 2, 5.

2.21. Show that for prime p ≡ 1 (mod 4), the sum of the quadratic residues
in [1, p− 1] is p(p− 1)/4.

2.22. Show that if a is a nonsquare integer, then
(
a
p

)
= −1 for infinitely many

primes p. (Hint: First assume that a is positive and odd. Show that there is
an integer b such that

(
b
a

)
= −1 and b ≡ 1 (mod 4). Then any positive integer

n ≡ b (mod 4a) satisfies
(

a
n

)
= −1, and so is divisible by a prime p with(

a
p

)
= −1. Show that infinitely many primes p arise in this way. Then deal

with the cases when a is even or negative.)

2.23. Use Exercise 2.22 to show that if f(x) is an irreducible quadratic
polynomial in Z[x], then there are infinitely many primes p such that
f(x) mod p is irreducible in Zp[x]. Show that x4 + 1 is irreducible in Z[x],
but is reducible in each Zp[x]. What about cubic polynomials?

2.24. Develop an algorithm for computing the Jacobi symbol
(

a
m

)
along the

lines of the binary gcd method of Algorithm 9.4.2.

2.25. Prove: For prime p with p ≡ 3 (mod 4), given any pair of square roots
of a given x
≡ 0 (mod p), one root is itself a quadratic residue and the other
is not. (The root that is the quadratic residue is known as the principal square
root.) See Exercises 2.26 and 2.42 for applications of the principal root.

2.26. We denote by Z∗
n the multiplicative group of the elements in Zn that

are coprime to n.
(1) Suppose n is odd and has exactly k distinct prime factors. Let J denote

the set of elements x ∈ Z∗
n with the Jacobi symbol

(
x
n

)
= 1 and let S

denote the set of squares in Z∗
n. Show that J is a subgroup of Z∗

n of
ϕ(n)/2 elements, and that S is a subgroup of J .

(2) Show that squares in Z∗
n have exactly 2k square roots in Z∗

n and conclude
that #S = ϕ(n)/2k.

(3) Now suppose n is a Blum integer; that is, n = pq is a product of two
different primes p, q ≡ 3 (mod 4). (Blum integers have importance in
cryptography (see [Menezes et al. 1997] and our Section 8.2).) From parts
(1) and (2), #S = 1

2#J , so that half of J ’s elements are squares, and half
are not. From part (2), an element of S has exactly 4 square roots. Show
that exactly one of these square roots is itself in S.

(4) For a Blum integer n = pq, show that the squaring function s(x) =
x2 mod n is a permutation on the set S, and that its inverse function is

s−1(y) = y((p−1)(q−1)+4)/8 mod n.

2.4 Exercises 111

2.27. Using Theorem 2.3.7 prove the two equalities in relations (2.12).

2.28. Here we prove the celebrated quadratic reciprocity relation (2.11) for
two distinct odd primes p, q. Starting with Definition 2.3.6, show that G is
multiplicative; that is, if gcd(m,n) = 1, then

G(m;n)G(n;m) = G(1;mn).

(Hint: mj2/n+ nk2/m is similar—in a specific sense—to (mj + nk)2/(mn).)
Infer from this and Theorem 2.3.7 the relation (now for primes p, q)(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

These are examples par excellence of the potential power of exponential
sums; in fact, this approach is one of the more efficient ways to arrive at
reciprocity. Extend the result to obtain the formula of Theorem 2.3.4 for

(2
p

)
.

Can this approach be extended to the more general reciprocity statement (i.e.,
for coprime m,n) in Theorem 2.3.4? Incidentally, Gauss sums for nonprime
arguments m,n can be evaluated in closed form, using the techniques of
Exercise 1.66 or the methods summarized in references such as [Graham and
Kolesnik 1991].

2.29. This exercise is designed for honing one’s skills in manipulating Gauss
sums. The task is to count, among quadratic residues modulo a prime p, the
exact number of arithmetic progressions of given length. The formal count of
length-3 progressions is taken to be

A(p) = #
{

(r, s, t) :
(

r
p

)
=

(
s
p

)
=

(
t
p

)
= 1; r
= s; s− r ≡ t− s (mod p)

}
.

Note we are taking 0 ≤ r, s, t ≤ p − 1, we are ignoring trivial progressions
(r, r, r), and that 0 is not a quadratic residue. So the prime p = 11, for which
the quadratic residues are {1, 3, 4, 5, 9}, enjoys a total of A(11) = 10 arithmetic
progressions of length three. (One of these is 4, 9, 3; i.e., we allow wraparound
(mod 11); and also, descenders such as 5, 4, 3 are allowed.)

First, prove that

A(p) = −p− 1
2

+
1
p

p−1∑
k=0

∑
r,s,t

e2πik(r−2s+t)/p,

where each of r, s, t runs through the quadratic residues. Then, use relations
(2.12) to prove that

A(p) =
p− 1

8

(
p− 6 − 2

(
2
p

)
−

(
−1
p

))
.

Finally, derive for the exact progression count the attractive expression

A(p) = (p− 1)
⌊
p− 2

8

⌋
.

112 Chapter 2 NUMBER-THEORETICAL TOOLS

An interesting extension to this exercise is to analyze progressions of longer
length. Another direction: How many progressions of a given length would be
expected to exist amongst a random half of all residues {1, 2, 3, . . . , p− 1}
(see Exercise 2.41)?

2.30. Prove that square-root Algorithms 2.3.8 and 2.3.9 work.

2.31. Prove that the following algorithm (certainly reminiscent of the text
Algorithm 2.3.9) works for square roots (mod p), for p an odd prime. Let x
be the quadratic residue for which we desire a square root. Define a particular
Lucas sequence (Vk) by V0 = 2, V1 = h, and for k > 1

Vk = hVk−1 − xVk−2,

where h is such that
(
h2−4x

p

)
= −1. Then compute a square root of x as

y =
1
2
V(p+1)/2 (mod p).

Note that the Lucas numbers can be computed via a binary Lucas chain; see
Algorithm 3.6.7.

2.32. Implement Algorithm 2.3.8 or 2.3.9 or some other variant to solve each
of

x2 ≡ 3615 (mod 216 + 1),

x2 ≡ 552512556430486016984082237 (mod 289 − 1).

2.33. Show how to enhance Algorithm 2.3.8 by avoiding some of the
powerings called for, perhaps by a precomputation.

2.34. Prove that a primitive root of an odd prime p is a quadratic
nonresidue.

2.35. Prove that Algorithm 2.3.12 (alternatively 2.3.13) works. As intimated
in the text, the proof is not entirely easy. It may help to first prove a special-
case algorithm, namely for finding representations p = a2 + b2 when p ≡ 1
(mod 4). Such a representation always exists and is unique.

2.36. Since we have algorithms that extract square roots modulo primes,
give an algorithm for extracting square roots (mod n), where n = pq is
the product of two explicitly given primes. (The Chinese remainder theorem
(CRT) will be useful here.) How can one extract square roots of a prime power
n = pk? How can one extract square roots modulo n if the complete prime
factorization of n is known?

Note that in ignorance of the factorization of n, square root extraction is
extremely hard—essentially equivalent to factoring itself; see Exercise 6.5.

2.37. Prove that for odd prime p, the number of roots of ax2 + bx+ c ≡ 0
(mod p), where a
≡ 0 (mod p), is given by 1+

(
D
p

)
, where D = b2 − 4ac is the

2.5 Research problems 113

discriminant. For the case 1 +
(
D
p

)
> 0, give an algorithm for calculation of

all the roots.

2.38. Find a prime p such that the least primitive root of p exceeds the
number of binary bits in p. Find an example of such a prime p that is also
a Mersenne prime (i.e., some p = Mq = 2q − 1 whose least primitive root
exceeds q). These findings show that the least primitive root can exceed lg p.
For more exploration along these lines see Exercise 2.39.

2.5 Research problems

2.39. Implement a primitive root-finding algorithm, and study the statistical
occurrence of least primitive roots.

The study of least primitive roots is highly interesting. It is known on
the GRH that 2 is a primitive root of infinitely many primes, in fact for a
positive proportion α =

∏
(1 − 1/p(p− 1)) ≈ 0.3739558, the product running

over all primes (see Exercise 1.90). Again on the GRH, a positive proportion
whose least primitive root is not 2, has 3 as a primitive root and so on;
see [Hooley 1976]. It is conjectured that the least primitive root for prime
p is O((ln p)(ln ln p)); see [Bach 1997a]. It is known, on the GRH, that the
least primitive root for prime p is O

(
ln6 p

)
; see [Shoup 1992]. It is known

unconditionally that the least primitive root for prime p is O(p1/4+ε) for
every ε > 0, and for infinitely many primes p it exceeds c ln p ln ln ln p for
some positive constant c, the latter a result of S. Graham and C. Ringrosee.
The study of the least primitive root is not unlike the study of the least
quadratic nonresidue—in this regard see Exercise 2.41.

2.40. Investigate the use of CRT in the seemingly remote domains of integer
convolution, or fast Fourier transforms, or public-key cryptography. A good
reference is [Ding et al. 1996].

2.41. Here we explore what might be called “statistical” features of the
Legendre symbol. For odd prime p, denote by N(a, b) the number of residues
whose successive quadratic characters are (a, b); that is, we wish to count
those integers x ∈ [1, p− 2] such that((

x

p

)
,

(
x+ 1
p

))
= (a, b),

with each of a, b attaining possible values ±1. Prove that

4N(a, b) =
p−2∑
x=1

(
1 + a

(
x

p

))(
1 + b

(
x+ 1
p

))

and therefore that

N(a, b) =
1
4

(
p− 2 − b− ab− a

(
−1
p

))
.

114 Chapter 2 NUMBER-THEORETICAL TOOLS

Establish the corollary that the number of pairs of consecutive quadratic
residues is (p − 5)/4, (p − 3)/4, respectively, as p ≡ 1, 3 (mod 4). Using the
formula for N(a, b), prove that for every prime p the congruence

x2 + y2 ≡ −1 (mod p)

is solvable.
One satisfying aspect of the N(a, b) formula is the statistical notion that

sure enough, if the Legendre symbol is thought of as generated by a “random
coin flip,” there ought to be about p/4 occurrences of a given pair (±1,±1).

All of this makes sense: The Legendre symbol is in some sense random.
But in another sense, it is not quite so random. Let us estimate a sum:

sA,B =
∑

A≤x<B

(
x

p

)
,

which can be thought of, in some heuristic sense we suppose, as a random
walk with N = B−A steps. On the basis of remarks following Theorem 2.3.7,
show that

|sA,B | ≤ 1
√
p

p−1∑
b=0

∣∣∣∣ sin(πNb/p)
sin(πb/p)

∣∣∣∣ ≤ 1
√
p

p−1∑
b=0

1
| sin(πb/p)| .

Finally, arrive at the Pólya–Vinogradov inequality:

|sA,B | < √
p ln p.

Actually, the inequality is often expressed more generally, where instead of
the Legendre symbol as character, any nonprincipal character applies. This
attractive inequality says that indeed, the “statistical fluctuation” of the
quadratic residue/nonresidue count, starting from any initial x = A, is always
bounded by a “variance factor”

√
p (times a log term). One can prove more

than this; for example, using an inequality in [Cochrane 1987] one can obtain

|sA,B | < 4
π2

√
p ln p+ 0.41

√
p+ 0.61,

and it is known that on the GRH, sA,B = O
(√
p ln ln p

)
; see [Davenport

1980]. In any case, we deduce that out of any N consecutive integers,
N/2 +O(p1/2 ln p) are quadratic residues (mod p). We also conclude that the
least quadratic nonresidue (mod p) is bounded above by, at worst,

√
p ln p.

Further results on this interesting inequality are discussed in [Hildebrand
1988a, 1988b].

The Pólya–Vinogradov inequality thus restricted to quadratic characters
tells us that not just any coin-flip sequence can be a Legendre-symbol
sequence. The inequality says that we cannot, for large p say, have a Legendre-
symbol sequence such as (1, 1, 1, . . . ,−1 − 1 − 1) (i.e., first half are 1’s second

2.5 Research problems 115

half −1’s). We cannot even build up more than an O
(√
p ln p

)
excess of one

symbol over the other. But in a truly random coin-flip game, any pattern of
1’s and −1’s is allowed; and even if you constrain such a game to have equal
numbers of 1’s and −1’s as does the Legendre-symbol game, there are still
vast numbers of possible coin-flip sequences that cannot be symbol sequences.
In some sense, however, the Pólya–Vinogradov inequality puts the Legendre
symbol sequence smack in the middle of the distribution of possible sequences:
It is what we might expect for a random sequence of coin flips. Incidentally,
in view of the coin-flip analogy, what would be the expected value of the least
quadratic nonresidue (mod p)? In this regard see Exercise 2.39. For a different
kind of constraint on presumably random quadratic residues, see the remarks
at the end of Exercise 2.29.

2.42. Here is a fascinating line of research: Using the age-old and glorious
theory of the arithmetic–geometric mean (AGM), investigate the notion of
what we might call a “discrete arithmetic–geometric mean (DAGM).” It was
a tour de force of analysis, due to Gauss, Legendre, Jacobi, to conceive of the
analytic AGM, which is the asymptotic fixed point of the elegant iteration

(a, b) �→
(
a+ b

2
,
√
ab

)
,

that is, one replaces the pair (a, b) of real numbers with the new pair of
arithmetic and geometric means, respectively. The classical AGM, then, is the
real number c to which the two numbers converge; sure enough, (c, c) �→ (c, c)
so the process tends to stabilize for appropriate initial choices of a and b. This
scheme is connected with the theory of elliptic integrals, the calculation of π
to (literally) billions of decimal places, and so on [Borwein and Borwein 1987].

But consider doing this procedure not on real numbers but on residues
modulo a prime p ≡ 3 (mod 4), in which case an x (mod p) that has a square
root always has a so-called principal root (and so an unambiguous choice
of square root can be taken; see Exercise 2.25). Work out a theory of the
DAGM modulo p. Perhaps you would want to cast

√
ab as a principal root if

said root exists, but something like a different principal root, say
√
gab, for

some fixed nonresidue g when ab is a nonresidue. Interesting theoretical issues
are these: Does the DAGM have an interesting cycle structure? Is there any
relation between your DAGM and the classical, analytic AGM? If there were
any fortuitous connection between the discrete and analytic means, one might
have a new way to evaluate with high efficiency certain finite hypergeometric
series, as appear in Exercise 7.26.

http://www.springer.com/978-0-387-25282-7

