2

Main Definitions and Notations

We now formally describe hidden Markov models, setting the notations that
will be used throughout the book. We start by reviewing the basic definitions
and concepts pertaining to Markov chains.

2.1 Markov Chains

2.1.1 Transition Kernels

Definition 2.1.1 (Transition Kernel). Let (X, X) and (Y,)) be two mea-
surable spaces. An unnormalized transition kernel from (X, X) to (Y,)) is a
function Q : X x Y — [0, 00] that satisfies

(i) for all x € X, Q(x,-) is a positive measure on (Y,));
(i) for all A € Y, the function x — Q(x, A) is measurable.

If Q(z,Y) =1 for all x € X, then Q is called a transition kernel, or simply a
kernel. If X =Y and Q(z,X) = 1 for all x € X, then Q will also be referred
to as a Markov transition kernel on (X, X).

An (unnormalized) transition kernel Q is said to admit a density with
respect to the positive measure p on Y if there exists a non-negative function
q: XxY = [0, 00], measurable with respect to the product o-field X @ Y, such
that

Q(m,A)ZAg(w7y)u(dy), Ae).

The function q is then referred to as an (unnormalized) transition density
function.

When X and Y are countable sets it is customary to write Q(x,y) as a
shorthand notation for Q(x,{y}), and Q is generally referred to as a transition
matrix (whether or not X and Y are finite sets).

We summarize below some key properties of transition kernels, introducing
important pieces of notation that are used in the following.
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Let @ and R be unnormalized transition kernels from (X, X) to (Y,)) and
from (Y,)) to (Z, Z), respectively. The product QR, defined by

QR(z,A) & /Q(% dy)R(y,A), zeX AcZ,

is then an unnormalized transition kernel from (X, X) to (Z, Z). If @ and
R are transition kernels, then so is QR, that is, QR(x,Z) = 1 for all z € X.
If @ is an (unnormalized) Markov transition kernel on (X, X), its iterates
are defined inductively by

Q%x,-) =0, for x € X and Q¥ = QQ* ! for k> 1.

These iterates satisfy the Chapman-Kolmogorov equation: Q"™ = Q"Q™
for all n,m > 0. That is, for all z € X and A € X,

QUM (e, A) = / Q" (e, dy) Q" (. A) . (2.1)

If @ admits a density ¢ with respect to the measure p on (X, X), then for
all n > 2 the kernel Q™ is also absolutely continuous with respect to pu.
The corresponding transition density is

i) = [ aem) @) pldn) ) . (22

Positive measures operate on (unnormalized) transition kernels in two dif-
ferent ways. If p is a positive measure on (X, X), the positive measure @
on (Y,)) is defined by

HQ(A) % / W(de) Q(w, A), A€y,

Moreover, the measure p®@Q on the product space (XxY,X®Y) is defined
by

no0) ™ [[ wan Q.. cexsy.

If 1 is a probability measure and @) is a transition kernel, then p@ and
1 ® @ are probability measures.

(Unnormalized) transition kernels operate on functions. Let f be a real
measurable function on Y. The real measurable function @ f on X is defined
by

Qf(x) < / Qa.dy) f(y), weX,

provided the integral is well-defined. It will sometimes be more convenient
to use the alternative notation Q(z, f) instead of Qf(x). In particular,
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for x € Xand A € Y, Q(z,A), §:Q(A), Qla(zx), and Q(x,14), where
1,4 denotes the indicator function of the set A, are four equivalent ways
of denoting the same quantity. In general, we prefer using the Q(z,14)
and Q(z, A) variants, which are less prone to confusion in complicated
expressions.

e For any positive measure p on (X, X) and any real measurable function f

on (Y,)),

(1Q) (f) = 1 (Qf) = / / u(de) Q(a, dy) £(y)

provided the integrals are well-defined. We may thus use the simplified
notation vQf instead of (vQ)(f) or v(Qf).

Definition 2.1.2 (Reverse Kernel). Let Q be a transition kernel from
(X, X) to (Y,)) and let v be a probability measure on (X,X). The reverse

kernel Q, associated to v and @Q is a transition kernel from (Y,)) to (X, X)
such that for all bounded measurable functions f defined on X x Y,

/ F(,y) v(dz)Q(z, dy) = / Fy) vQUdy) T, (. dr) . (2.3)
XxY XxY

The reverse lgrnel doe(s_ not necessarily exist and is not uniq(liely defined.
Nevertheless, if @,1 and @, 2 satisfy (2.3), then forall A € X, Q,1(y, 4) =

<_

Qu2(y, A) for v@Q-almost every y in Y. The reverse kernel does exist if X and
Y are Polish spaces endowed with their Borel o-fields (see Appendix A.1 for
details). If @ admits a density ¢ with respect to a measure p on (Y,)), then

51, can be defined for all y such that [y q(z,y) v(dz) # 0 by

4wy vldn)
Jx a(z,y)v(dz)

<_
The values of @, on the set {y € Y : [\ q(z,y)v(dz) = 0} are irrelevant
because this set is vQ-negligible. In particular, if X is discrete and p is counting
measure, then for all (z,y) € X x Y such that vQ(y) # 0,

v(2)Q(z,y)
vQy)

Q. (y, dx) (2.4)

oF

2.1.2 Homogeneous Markov Chains

Let (£2,F,P) be a probability space and let (X, X') be a measurable space.
An X-valued (discrete index) stochastic process {X,}n>0 is a collection of X-
valued random variables. A filtration of (£2,F) is a non-decreasing sequence
{Fn}n>o0 of sub-o-fields of F. A filtered space is a triple (£2, F,F), where F is
a filtration; (2, F,F, P) is called a filtered probability space. For any filtration
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F = {F,}n>0, we denote by Foo = VoL F, the o-field generated by F or, in
other words, the minimal o-field containing F. A stochastic process {X,, },>0
is adapted to F = {F, }n>0, or simply F-adapted, if X,, is F,-measurable for
all n > 0 The natural filtration of a process {X,},>0, denoted by FX =
{FX},>o0, is the smallest filtration with respect to which {X,,} is adapted.

Definition 2.1.3 (Markov Chain). Let (2, F,F,P) be a filtered probability
space and let Q be a Markov transition kernel on a measurable space (X, X).
An X-valued stochastic process { X} x>0 is said to be a Markov chain under P,

with respect to the filtration F and with transition kernel Q, if it is F-adapted
and for all k >0 and A € X,

P(Xk;Jrl S A|.7:}<;) = Q(Xk,A) . (26)

The distribution of Xy is called the initial distribution of the chain, and X is
called the state space.

If {X}}i>o is F-adapted, then for all £ > 0 it holds that ]-',5( C Fp; hence
a Markov chain with respect to a filtration F is also a Markov chain with
respect to its natural filtration. Hereafter, a Markov chain with respect to its
natural filtration will simply be referred to as a Markov chain. When there is
no risk of confusion, we will not mention the underlying probability measure
P.

A fundamental property of a Markov chain is that its finite-dimensional
distributions, and hence the distribution of the process { X}y }r>0, are entirely
determined by the initial distribution and the transition kernel.

Proposition 2.1.4. Let {Xy}r>0 be a Markov chain with initial distribu-
tion v and transition kernel Q. For any k > 0 and any bounded X OF+D)
measurable function f on X*+1),

E[f(Xo,,Xk)] = /f(xo,...,xk)u(dxo) Q(Z‘o,dl‘l)"'Q(l‘k_l,d.rk) .

In the following, we will use the generic notation f € F, (Z) to denote the
fact that f is a measurable bounded function on (Z, Z). In the case of Propo-
sition 2.1.4 for instance, one considers functions f that are in F, (X("H‘l)).
More generally, we will usually describe measures and transition kernels on
(Z, Z) by specifying the way they operate on the functions of F, (Z).

2.1.2.1 Canonical Version

Let (X, X) be a measurable space. The canonical space associated to (X, X))
is the infinite-dimensional product space (XN, X®N). The coordinate process
is the X-valued stochastic process { X} } >0 defined on the canonical space by
Xn(w) = w(n). The canonical space will always be endowed with the natural
filtration FX of the coordinate process.



2.1 Markov Chains 39

Let (2, F) = (XN, X®N) be the canonical space associated to the measur-
able space (X, X). The shift operator 0 : 2 — (2 is defined by

Ow)(n) =w(n+1), n>0.

The iterates of the shift operator are defined inductively by #° = Id (the
identity), ! = 6 and 6% = 0 0 0¥~ for k > 1. If {Xj}x>0 is the coordinate
process with associated natural filtration FX, then for all k,n > 0, X 0 6" =
Xktn, and more generally for any .7-',5( -measurable random variable Y, Y 0 0™
is fiik—measurable.

The following theorem, which is a particular case of the Kolmogorov con-
sistency theorem, states that it is always possible to define a Markov chain
on the canonical space.

Theorem 2.1.5. Let (X, X) be a measurable set, v a probability measure on
(X, X), and @ a transition kernel on (X,X). Then there exists an unique
probability measure on (XN, X®N) denoted by P,, such that the coordinate
process { Xy >0 is a Markov chain (with respect to its natural filtration) with
initial distribution v and transition kernel ).

For x € X, let P, be an alternative simplified notation for Ps, . Then for
all A € X®N the mapping x — P,(A) = Q(x, A) is X-measurable, and for
any probability measure v on (X, X),

P,(A) = / v(dz) Py(A) . (2.7)

The Markov chain defined in Theorem 2.1.5 is referred to as the canonical
version of the Markov chain. The probability P, defined on (XN, X®N) de-
pends on v and on the transition kernel . Nevertheless, the dependence with
respect to @ is traditionally omitted in the notation. The relation (2.7) implies
that @ — P, is a regular version of the conditional probability P, (| Xy = )
in the sense that one can rewrite (2.6) as

P, (Xps1 €EA|FY) =P, (X100 € A|FY) =Px (X1 €A)  P,-as.

2.1.2.2 Markov Properties

More generally, an induction argument easily yields the Markov property: for
any FX-measurable random variable Y,

E [Y 0 0% | F¥] =Ex,[Y] P,-as. (2.8)

The Markov property can be extended to a specific class of random times
known as stopping times. Let N = NU {+00} denote the extended integer set
and let (2, F,F) be a filtered space. Then, a mapping 7 : £2 — N is said to
be an F-stopping time if {7 = n} € F, for all n > 0. Intuitively, this means
that at any time n one should be able to tell, based on the information F,
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available at that time, if the stopping time occurs at this time n (or before
then) or not. The class F, defined by

Fr={B € Fx: BN{r=n}eF, foralln >0},
is a o-field, referred to as the o-field of the events occurring before 7.

Theorem 2.1.6 (Strong Markov Property). Let {X}}r>0 be the canon-
ical version of a Markov chain and let T be an FX-stopping time. Then for
any bounded FX -measurable function W,

Ev[l{rco}¥ 007 | FX] = 1 (<00} Ex, [¥] P, -a.s. (2.9)

We note that an F2 -measurable function, or random variable, ¥, is typically
a function of potentially the whole trajectory of the Markov chain, although
it may of course be a rather simple function like X; or X5 + X2.

2.1.3 Non-homogeneous Markov Chains

Definition 2.1.7 (Non-homogeneous Markov Chain). Let (£2,F,F,P)
be a filtered probability space and let {Qx}r>0 be a family of transition kernels
on a measurable space (X, X). An X-valued stochastic process { Xy }r>o s said
to be a non-homogeneous Markov chain under P, with respect to the filtration
F and with transition kernels {Qy}, if it is F-adapted and for all k > 0 and
Aec X,

P(Xk+1 €A | fk) = Qk(Xk,A) .

For i < j we define
Qij=QiQit1---Qj .
With this notation, if v denotes the distribution of Xy (which we refer to as
the initial distribution as in the homogeneous case), the distribution of X, is
v Qon—1. An important example of a non-homogeneous Markov chain is the
so-called reverse chain. The construction of the reverse chain is based on the
observation that if {X}}x>0 is a Markov chain, then for any index n > 1 the
time-reversed (or, index-reversed) process {X,_i}}_, is a Markov chain too.
The definition below provides its transition kernels.

Definition 2.1.8 (Reverse Chain). Let Q be a Markov kernel on some
space X, let v be a probability measure on this space, and let n > 1 be an
index. The reverse chain is the non-homogeneous Markov chain with initial
distribution vQ™, (time) index set k =0,1,...,n and transition kernels

P
Qr = Qugn-r-1, k=0,....n—1,

assuming that the reverse kernels are indeed well-defined.
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If the transition kernel @) admits a transition density function g with re-
spect to a measure p on (X, X), then @ also admits a density with respect
to the same measure p, namely

o fqn—k:—l(zvm)Q(xay) l/(dZ)
hly,2) = = T e ds)

Here, ¢ is the transition density function of Q' with respect to p as defined
n (2.2). If the state space is countable, then

Q@ @)Q(a, )
O ="y

An interesting question is in what cases the kernels @ do not depend
on the index k and are in fact all equal to the forward kernel . A Markov
chain with this property is said to be reversible. The following result gives a
necessary and sufficient condition for reversibility.

(2.10)

(2.11)

Theorem 2.1.9. Let X be a Polish space. A Markov kernel QQ on X is re-
versible with respect to a probability measure v if and only if for all bounded
measurable functions f on X x X,

// f(x, 2" v(dz) Q(z,dx") = //f(x,ac’) v(dx") Q(z',dx) . (2.12)

The relation (2.12) is referred to as the local balance equations (or detailed
balance equations). If the state space is countable, these equations hold if for
all z,2' € X,

v(2)Q(z, ') = v(z)Q(a',x) . (2.13)

Upon choosing a function f that only depends on the second variable in
(2.12), it is easily seen that vQ(f) = v(f) for all functions f € F, (X). We can
also write this as v = v@Q. This equation is referred to as the global balance
equations. By induction, we find that v@Q™ = v for all n > 0. The left-hand side
of this equation is the distribution of X,,, which thus does not depend on n
when global balance holds. This is a form of stationarity, obviously implied by
local balance. We shall tie this form of stationarity to the following customary
definition.

Definition 2.1.10 (Stationary Process). A stochastic process {Xy} is
said to be stationary (under P ) if its finite-dimensional distributions are trans-
lation invariant, that is, if for all k,m > 1 and all ny,...,nk, the distribution
of the random vector (Xp,4n,- - Xny+n) does not depend on n.

A stochastic process with index set N, stationary but otherwise general, can
always be extended to a process with index set Z, having the same finite-
dimensional distributions (and hence being stationary). This is a consequence
of Kolmogorov’s existence theorem for stochastic processes.
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For a Markov chain, any multi-dimensional distribution can be expressed
in terms of the initial distribution and the transition kernel-—this is Propo-
sition 2.1.4—and hence the characterization of stationarity becomes much
simpler than above. Indeed, a Markov chain is stationary if and only if its
initial distribution v and transition kernel @ satisfy v@Q) = v, that is, sat-
isfy global balance. Much more will be said about stationary distributions of
Markov chains in Chapter 14.

2.2 Hidden Markov Models

A hidden Markov model is a doubly stochastic process with an underlying
stochastic process that is not directly observable (it is “hidden”) but can be
observed only through another stochastic process that produces the sequence
of observations. As shown in the introduction, the scope of HMMs is large and
covers a variety of situations. To accommodate these conceptually different
models, we now define formally a hidden Markov model.

2.2.1 Definitions and Notations

In simple cases such as fully discrete models, it is common to define hidden
Markov models by using the concept of conditional independence. Indeed, this
was the view taken in Chapter 1, where an HMM was defined as a bivariate
process {(Xx, Yr)} x>0 such that

o {X}}k>0is a Markov chain with transition kernel () and initial distribution
v;
¢ Conditionally on the state process { X }r>0, the observations {Yj }r>o are
independent, and for each n the conditional distribution of Y,, depends on

X, only.

It turns out that conditional independence is mathematically more difficult to
define in general settings (in particular, when the state space X of the Markov
chain is not countable), and we will adopt a different route to define general
hidden Markov models. The HMM is defined as a bivariate Markov chain,
only partially observed though, whose transition kernel has a special struc-
ture. Indeed, its transition kernel should be such that both the joint process
{Xk,Yi}k>0 and the marginal unobservable (or hidden) chain {X}}xr>o are
Markovian. From this definition, the usual conditional independence proper-
ties of HMMs will then follow (see Corollary 2.2.5 below).

Definition 2.2.1 (Hidden Markov Model). Let (X, X) and (Y,)) be two
measurable spaces and let QQ and G denote, respectively, a Markov transition
kernel on (X, X) and a transition kernel from (X, X) to (Y,)). Consider the
Markov transition kernel defined on the product space (X X Y, X ®@ Y) by
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T((@,y),C] = //Q(a:,da:’) G dy), (my) EXXY,CEXay.
C

(2.14)
The Markov chain {X, Yy} k>0 with Markov transition kernel T and initial
distribution v @ G, where v is a probability measure on (X, X), is called a
hidden Markov model.

Although the definition above concerns the joint process { Xy, Yy }r>o, the
term hidden is only justified in cases where { X} }1>0 is not observable. In this
respect, {X%}r>0 can also be seen as a fictitious intermediate process that
is useful only in defining the distribution of the observed process {Y%}r>o.
We shall denote by P, and E, the probability measure and corresponding
expectation associated with the process { Xy, Yy }k>0 on the canonical space
(X x Y)N, (X @ ¥)®N). Notice that this constitutes a slight departure from
the Markov notations introduced previously, as v is a probability measure on
X only and not on the state space X x Y of the joint process. This slight abuse
of notation is justified by the special structure of the model considered here.
Equation (2.14) shows that whatever the distribution of the initial joint state
(X0, Y0), even if it were not of the form v x G, the law of {X}, Yy }x>1 only
depends on the marginal distribution of X;. Hence it makes sense to index
probabilities and expectations by this marginal initial distribution only.

If both X and Y are countable, the hidden Markov model is said to be
discrete, which is the case originally considered by Baum and Petrie (1966).
Many of the examples given in the introduction (those of Section 1.3.2 for
instance) correspond to cases where Y is uncountable and is a subset of R?
for some d. In such cases, we shall generally assume that the following holds
true.

Definition 2.2.2 (Partially Dominated Hidden Markov Model). The
model of Definition 2.2.1 is said to be partially dominated if there exists a
probability measure p on (Y,Y) such that for all x € X, G(x,-) is absolutely
continuous with respect to pu, G(x,-) < u(-), with transition density function
g(x,-). Then, for Ae Y, G(x,A) = [, g(x,y) u(dy) and the joint transition
kernel T can be written as

T((x,).C) = / / Qla,dr')g(z',y') uldy) C € X @Y . (2.15)
C

In the third part of the book (Chapter 10 and following) where we consider
statistical estimation for HMMs with unknown parameters, we will require
even stronger conditions and assume that the model is fully dominated in the
following sense.

Definition 2.2.3 (Fully Dominated Hidden Markov Model). If, in ad-
dition to the requirements of Definition 2.2.2, there exists a probability mea-
sure A on (X, X) such that v < X\ and, for all z € X, Q(x,-) < A(+) with tran-
sition density function q(x,-). Then, for A € X, Q(z,A) = [, q(z,z’) \(dz")
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and the model is said to be fully dominated. The joint Markov transition ker-
nel T is then dominated by the product measure AQu and admits the transition

density function
d

£

tl(a,y), (9] = alz,2")g(z',y) - (2.16)

Note that for such models, we will generally re-use the notation v to denote

the probability density function of the initial state X (with respect to \)
rather than the distribution itself.

2.2.2 Conditional Independence in Hidden Markov Models

In this section, we will show that the “intuitive” way of thinking about an
HMM, in terms of conditional independence, is justified by Definition 2.2.1.
Readers unfamiliar with conditioning in general settings may want to read
more on this topic in Appendix A.4 before reading the rest of this section.

Proposition 2.2.4. Let {Xy,Yy}i>0 be a Markov chain over the product
space X X Y with transition kernel T given by (2.14). Then, for any in-
teger p, any ordered set {ky < --- < ky} of indices and all functions

f17"'7fp€]:b(Y);

E, lH fi(Yi,)
i=1

Proof. For any h € F, (XP), it holds that

Xkl,...,ka] :Zl:[l/Yfi(y) G(Xp,,dy) . (2.17)

E,

[150v)n(Xs,, ... ,ka)]

i=1

kP
:/.../V(dxo)a(zo,dyo) HQ(xi_l,dxi)G(ZEi,dyi)

h(xkl, . 7£Ckp)

x [Hfz(yk)

i=1

kp

:/.../y(d,{]}o)HQ(,ZEi_l,dxi)h(xkl,-..7-Tkp)

[ H

i@{k,....kp

Gland)| | T [ o) Glanan)
} }

ie{k1,....kp

Because [ G(z;,dy;) =1,
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Ey | M(Xpes- Xk, ] /fi(yz')G(Xi’dyz’)
}

i€{ky,....kp
O
Corollary 2.2.5.
(i) For any integer p and any ordered set {k1 < --- < kp} of indices,
the random variables Yy, , ..., Yy, are P, -conditionally independent given

(Xprs Xnyr > Xk ).

(i1) For any integers k and p and any ordered set {ki < --- < k,} of indices
such that k & {ky,...,kp}, the random variables Yy, and (Xy,,..., Xx,)
are P, -conditionally independent given Xj,.

Proof. Part (i) is an immediate consequence of Proposition 2.2.4. To prove
(ii), note that for any f € Fy, (Y) and h € F, (XP),

Ey [f(Ye)h(Xkys oo Xi,) | X
=By [Eo[f (Vi) | Xnys ooy Xy o X)W Xy, o, X, ) | X
=B, [f(Yi) | Xe] Ev[M(Xpys oo Xi,) | Xi]
O

As a direct application of Propositions A.4.2 and A.4.3, the conditional in-
dependence of the observations given the underlying sequence of states implies
that for any integers p and p’, any indices k1 < -+ < kp and £ < --- <k,
such that {ki,...,k,} N {k},... Kk, } =0 and any function f € 7, (YP),

El,[f(YkN...,Ykp) | Xy ’X’fp’X’fi""’Xk;’Yki’ . ..Yk;]
=E,[f (Vs n Vi, ) [ Xy oo, X ] (2.18)

Indeed, in terms of conditional independence of the variables,
(Yoo oy Vi) AL (kal,...,Yk;,) | (Xklv--kaka'la---an;,) P,]

and

P

(Yoo oy Vg, ) AL (Xk’l,---an;,) | (Xkysoooy Xi,) [Po]
Hence, by the contraction property of Proposition A.4.3,

(Virseees Vi) L (Xag o X Vi, Yig ) | (X, X)) [P

P

which implies (2.18).
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2.2.3 Hierarchical Hidden Markov Models

In examples such as 1.3.16 and 1.3.15, we met hidden Markov models whose
state variable naturally decomposes into two distinct sub-components. To ac-
commodate such structures, we define a specific sub-class of HMMs for which
the state X consists of two components, X = (Ck, Wy). This additional
structure will be used to introduce a level of hierarchy in the state variables.
We call this class hierarchical hidden Markov models. In general, the hierar-
chical structure will be as follows.

o {Ci}r>0 is a Markov chain on a state space (C,C) with transition kernel
Q¢ and initial distribution v¢. Thus, for any f € F, (C) and any k > 1,

E[f(Ck)|Cok-1] = Qc(Cr-1,f) and E, [f(Co)] =vc(f) .

e Conditionally on {Ck}r>0, {Wk}r>0 is a Markov chain on (W, W). More
precisely, there exists a transition kernel Qu : (X x C) x W — [0, 1] such
that for any k > 1 and any function f € F, (W),

E [f(Wk) | Wok—1 7COZI€] = QW [(Wk—h Ck)a f] .

In addition, there exists a transition kernel vy : C x W — [0, 1] such that
for any f € Fy, (W),

E[f(Wo)[Co] = vw (Co, f) -

We denote by X, = (C, W) the composite state variable. Then, { X} } >0 is
a Markov chain on X = C x W with transition kernel

Q[(c,w), A x B] = / / Qc(c,dd) Qw [(w, ), dw'], AeC, BeW,
AJB
and initial distribution
v(Ax B) = / ve(de) vy (¢, B) .
A

As before, we assume that {Yj}r>0 is conditionally independent of { X} }r>o
and such that the conditional distribution of Y;, depends on X, only, meaning
that (2.17) holds.

The distinctive feature of hierarchical HMMs is that it is often advanta-
geous to consider that the state variables are {C}} x>0 rather than { X4 }r>o.
Of course, the model is then no longer an HMM because the observation Y}
depends on all partial states C; for [ < k due to the marginalization of the
intermediate component W; (for I = 0,..., k). Nonetheless, this point of view
is often preferable, particularly in cases where the structure of {Cy}r>0 is
very simple, such as when C is finite. The most common example of hierarchi-
cal HMM is the conditionally Gaussian linear state-space model (CGLSSM),
which we already met in Examples 1.3.9, 1.3.11, and 1.3.16. We now formally
define this model.
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Definition 2.2.6 (Conditionally Gaussian Linear State-Space Model).
A CGLSSM is a model of the form

Wit = A(Ck+1)Wk + R(Ck+1)Uk , Wy~ N(Mua Eu) s (2-19)
Y. = B(Ck)Wk + S(Ck)Vk ,

subject to the following conditions.

e The indicator process {Cy}tr>o is a Markov chain with transition kernel
Qc and initial distribution ve. Usually, C is finite and then identified with
the set {1,...,r}.

o The state (or process) noise {Uy }i>0 and the measurement noise {Vi } x>0
are independent multivariate Gaussian white noises with zero mean and
identity covariance matrices. In addition, the indicator process {Cy}r>0 is
independent of both the state noise and of the measurement noise.

e A B, R, and S are known matriz-valued functions of appropriate dimen-
sions.
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