Preface

Hidden Markov models—most often abbreviated to the acronym “HMMs”—
are one of the most successful statistical modelling ideas that have came up in
the last forty years: the use of hidden (or unobservable) states makes the model
generic enough to handle a variety of complex real-world time series, while the
relatively simple prior dependence structure (the “Markov” bit) still allows
for the use of efficient computational procedures. Our goal with this book is to
present a reasonably complete picture of statistical inference for HMMSs, from
the simplest finite-valued models, which were already studied in the 1960’s,
to recent topics like computational aspects of models with continuous state
space, asymptotics of maximum likelihood, Bayesian computation and model
selection, and all this illustrated with relevant running examples. We want
to stress at this point that by using the term hidden Markov model we do
not limit ourselves to models with finite state space (for the hidden Markov
chain), but also include models with continuous state space; such models are
often referred to as state-space models in the literature.

We build on the considerable developments that have taken place dur-
ing the past ten years, both at the foundational level (asymptotics of maxi-
mum likelihood estimates, order estimation, etc.) and at the computational
level (variable dimension simulation, simulation-based optimization, etc.), to
present an up-to-date picture of the field that is self-contained from a theoret-
ical point of view and self-sufficient from a methodological point of view. We
therefore expect that the book will appeal to academic researchers in the field
of HMMs, in particular PhD students working on related topics, by summing
up the results obtained so far and presenting some new ideas. We hope that it
will similarly interest practitioners and researchers from other fields by lead-
ing them through the computational steps required for making inference in
HMMs and/or providing them with the relevant underlying statistical theory.

The book starts with an introductory chapter which explains, in simple
terms, what an HMM is, and it contains many examples of the use of HMMs
in fields ranging from biology to telecommunications and finance. This chap-
ter also describes various extension of HMMs, like models with autoregression
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or hierarchical HMMs. Chapter 2 defines some basic concepts like transi-
tion kernels and Markov chains. The remainder of the book is divided into
three parts: State Inference, Parameter Inference and Background and Com-
plements; there are also three appendices.

Part I of the book covers inference for the unobserved state process. We
start in Chapter 3 by defining smoothing, filtering and predictive distributions
and describe the forward-backward decomposition and the corresponding re-
cursions. We do this in a general framework with no assumption on finiteness
of the hidden state space. The special cases of HMMs with finite state space
and Gaussian linear state-space models are detailed in Chapter 5. Chapter 3
also introduces the idea that the conditional distribution of the hidden Markov
chain, given the observations, is Markov too, although non-homogeneous, for
both ordinary and time-reversed index orderings. As a result, two alternative
algorithms for smoothing are obtained. A major theme of Part I is simulation-
based methods for state inference; Chapter 6 is a brief introduction to Monte
Carlo simulation, and to Markov chain Monte Carlo and its applications to
HMMs in particular, while Chapters 7 and 8 describe, starting from scratch,
so-called sequential Monte Carlo (SMC) methods for approximating filtering
and smoothing distributions in HMMs with continuous state space. Chapter 9
is devoted to asymptotic analysis of SMC algorithms. More specialized top-
ics of Part I include recursive computation of expectations of functions with
respect to smoothed distributions of the hidden chain (Section 4.1), SMC ap-
proximations of such expectations (Section 8.3) and mixing properties of the
conditional distribution of the hidden chain (Section 4.3). Variants of the ba-
sic HMM structure like models with autoregression and hierarchical HMMs
are considered in Sections 4.2, 6.3.2 and 8.2.

Part II of the book deals with inference for model parameters, mostly
from the maximum likelihood and Bayesian points of views. Chapter 10 de-
scribes the expectation-maximization (EM) algorithm in detail, as well as
its implementation for HMMs with finite state space and Gaussian linear
state-space models. This chapter also discusses likelihood maximization us-
ing gradient-based optimization routines. HMMs with continuous state space
do not generally admit exact implementation of EM, but require simulation-
based methods. Chapter 11 covers various Monte Carlo algorithms like Monte
Carlo EM, stochastic gradient algorithms and stochastic approximation EM.
In addition to providing the algorithms and illustrative examples, it also con-
tains an in-depth analysis of their convergence properties. Chapter 12 gives
an overview of the framework for asymptotic analysis of the maximum like-
lihood estimator, with some applications like asymptotics of likelihood-based
tests. Chapter 13 is about Bayesian inference for HMMs, with the focus being
on models with finite state space. It covers so-called reversible jump MCMC
algorithms for choosing between models of different dimensionality, and con-
tains detailed examples illustrating these as well as simpler algorithms. It also
contains a section on multiple imputation algorithms for global maximization
of the posterior density.
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Part III of the book contains a chapter on discrete and general Markov
chains, summarizing some of the most important concepts and results and
applying them to HMMs. The other chapter of this part focuses on order
estimation for HMMs with both finite state space and finite output alphabet;
in particular it describes how concepts from information theory are useful for
elaborating on this subject.

Various parts of the book require different amounts of, and also different
kinds of, prior knowledge from the reader. Generally we assume familiarity
with probability and statistical estimation at the levels of Feller (1971) and
Bickel and Doksum (1977), respectively. Some prior knowledge of Markov
chains (discrete and/or general) is very helpful, although Part IIT does con-
tain a primer on the topic; this chapter should however be considered more
a brush-up than a comprehensive treatise of the subject. A reader with that
knowledge will be able to understand most parts of the book. Chapter 13 on
Bayesian estimation features a brief introduction to the subject in general but,
again, some previous experience with Bayesian statistics will undoubtedly be
of great help. The more theoretical parts of the book (Section 4.3, Chapter 9,
Sections 11.2-11.3, Chapter 12, Sections 14.2-14.3 and Chapter 15) require
knowledge of probability theory at the measure-theoretic level for a full under-
standing, even though most of the results as such can be understood without
it.

There is no need to read the book in linear order, from cover to cover.
Indeed, this is probably the wrong way to read it! Rather we encourage the
reader to first go through the more algorithmic parts of the book, to get an
overall view of the subject, and then, if desired, later return to the theoretical
parts for a fuller understanding. Readers with particular topics in mind may
of course be even more selective. A reader interested in the EM algorithm,
for instance, could start with Chapter 1, have a look at Chapter 2, and then
proceed to Chapter 3 before reading about the EM algorithm in Chapter 10.
Similarly a reader interested in simulation-based techniques could go to Chap-
ter 6 directly, perhaps after reading some of the introductory parts, or even
directly to Section 6.3 if he/she is already familiar with MCMC methods.
Each of the two chapters entitled “Advanced Topics in...” (Chapters 4 and 8)
is really composed of three disconnected complements to Chapters 3 and 7,
respectively. As such, the sections that compose Chapters 4 and 8 may be
read independently of one another. Most chapters end with a section entitled
“Complements” whose reading is not required for understanding other parts
of the book—most often, this section mostly contains bibliographical notes—
although in some chapters (9 and 11 in particular) it also features elements
needed to prove the results stated in the main text.

Even in a book of this size, it is impossible to include all aspects of hidden
Markov models. We have focused on the use of HMMs to model long, po-
tentially stationary, time series; we call such models ergodic HMMs. In other
applications, for instance speech recognition or protein alignment, HMMs are
used to represent short variable-length sequences; such models are often called
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left-to-right HMMs and are hardly mentioned in this book. Having said that
we stress that the computational tools for both classes of HMMs are virtually
the same. There are also a number of generalizations of HMMs which we do
not consider. In Markov random fields, as used in image processing applica-
tions, the Markov chain is replaced by a graph of dependency which may be
represented as a two-dimensional regular lattice. The numerical techniques
that can be used for inference in hidden Markov random fields are similar to
some of the methods studied in this book but the statistical side is very differ-
ent. Bayesian networks are even more general since the dependency structure
is allowed to take any form represented by a (directed or undirected) graph.
We do not consider Bayesian networks in their generality although some of
the concepts developed in the Bayesian networks literature (the graph repre-
sentation, the sum-product algorithm) are used. Continuous-time HMMs may
also be seen as a further generalization of the models considered in this book.
Some of these “continuous-time HMMSs”, and in particular partially observed
diffusion models used in mathematical finance, have recently received consid-
erable attention. We however decided this topic to be outside the range of
the book; furthermore, the stochastic calculus tools needed for studying these
continuous-time models are not appropriate for our purpose.

We acknowledge the help of Stéphane Boucheron, Randal Douc, Gersende
Fort, Elisabeth Gassiat, Christian P. Robert, and Philippe Soulier, who par-
ticipated in the writing of the text and contributed the two chapters that
compose Part IIT (see next page for details of the contributions). We are also
indebted to them for suggesting various forms of improvement in the nota-
tions, layout, etc., as well as helping us track typos and errors. We thank
Francgois Le Gland and Catherine Matias for participating in the early stages
of this book project. We are grateful to Christophe Andrieu, Sgren Asmussen,
Arnaud Doucet, Hans Kiinsch, Steve Levinson, Ya’acov Ritov and Mike Tit-
terington, who provided various helpful inputs and comments. Finally, we
thank John Kimmel of Springer for his support and enduring patience.
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