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Abstract

In this chapter we consider four specific data-analytic and infer-
ential problems that can be addressed using graphs. We demonstrate
the use of the software and methods described in Chapters 20 and 21
on real problems in computational biology. We will show how one can
investigate relationships between gene expression and protein-protein
interaction data, how GO annotations can be used to analyze gene
sets, how literature citations can be related to experimental data,
and how gene expression data can be mapped on pathways.

22.1 Introduction

In our first example, we demonstrate how graphs can be used to per-
form an analysis that relates gene expression data to protein complex
co-membership data. The question of interest was whether genes in a pro-
tein complex are more likely to have a similar pattern of gene expression
than genes in different complexes. More details are reported by Balasub-
ramanian et al. (2004), which in turn was based on the work of Ge et al.
(2001). Balasubramanian et al. (2004) used two graphs defined on a com-
mon set of nodes: the genes present in yeast. The relationship represented
by the edges in the first graph is co-membership in a cluster of correlated
expression, while the edges in the second graph represent co-membership
in a protein complex.

In our second example, we consider sets of genes and use the Hypergeo-
metric distribution to identify GO terms that have an over-representation
of the selected genes. Other categorizations, such as pathways, or
chromosomal location (e.g., cytochrome band), can be analyzed similarly.
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In the third example, data from the National Library of Medicine (NLM)
are used to provide links between genes and scientific articles. We note that
these relationships can be phrased in terms of a bipartite graph and use
that observation together with standard techniques from social networks
analysis to identify interesting relationships between genes and papers.

In the fourth example, we explore pathway data and demonstrate one
way of relating gene expression data to pathway information. The analysis
is mainly exploratory and demonstrates some of the benefits that accrue
from linking R and Graphviz.

22.2 Comparing the transcriptome and the
interactome

Our title for this section is largely the same as that of Ge et al. (2001); and
we will demonstrate how to carry out the bulk of the analysis that they
report, using tools in the packages graph, Rgraphviz, and RBGL. We will
make use experimental data from the yeastExpData package.

The methods that we will consider can be implemented in many other
ways but the advantage to using a graph-based approach is the abstraction
that it provides. The models are similar to those discussed by Balasub-
ramanian et al. (2004) and we refer the interested reader to the GraphAT
package which can be used to reproduce their results.

Ge et al. (2001) assembled gene expression data from a yeast cell-cycle
experiment (Cho et al., 1998), literature protein-protein interaction (PPI)
data, and yeast two-hybrid data. We have curated the data slightly to make
it simpler to carry out the analyses. In particular, we reduced the data to
the 2885 genes that were common to all experiments.

The relevant data sets are ccyclered, which is a dataframe with 11
columns and 2885 rows describing the set of common genes, and litG,
which is a graph representing the curated set of literature predicted protein-
protein interactions. We note that this data set is not up to date, but retain
it because it provides answers that coincide with those of Ge et al. (2001).

The information about which cluster a gene is in can be obtained from
ccyclered. We use that to create a cluster graph (see Section 21.2). In the
cluster graph, edges are between all genes that are in the same cluster, and
no edges connect genes from different clusters. The graph ccClust has 30
complete subgraphs.

> library("yeastExpData")

> data(ccyclered)

> clusts <- split(ccyclered[["Y.name"]], ccyclered[["Cluster"]])

> cg1 <- new("clusterGraph", clusters = clusts)

> ccClust <- connectedComp(cg1)
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We next turn our attention to a brief exploration of the literature based
collection of protein-protein interactions. We make use of the data in litG

and examine the connected components found therein.

> data(litG)

> ccLit <- connectedComp(litG)

> cclens <- listLen(ccLit)

> table(cclens)

cclens

1 2 3 4 5 6 7 8 12 13 36 88

2587 29 10 7 1 1 2 1 1 1 1 1

We see that most of the proteins, 2587, do not have edges to others, and
that there are a few, rather large sets of connected proteins. The largest
one contains 88, the next largest 36. We plot these in Figures 22.1 and 22.2.

> ord <- order(cclens, decreasing = TRUE)

> sG1 <- subGraph(ccLit[[ord[1]]], litG)

> sG2 <- subGraph(ccLit[[ord[2]]], litG)

22.2.1 Testing associations

It is now easy to determine how many pairs of genes have both a protein-
protein interaction and are found in the same expression cluster. To
compute this, we simply find the intersection of the cluster-graph and the
literature graph.

> commonG <- intersection(cg1, litG)

A graph with undirected edges

Number of Nodes = 2885

Number of Edges = 42

We see there are 42 edges in common. This might seem like a small number,
but in fact it is significantly larger than what would be expected by chance.
There are several ways to test this. One way is to generate an appropriate
null distribution and to compare the observed value, 42, to the values from
this distribution. To generate the null distribution, there are some reasons
to consider random edge graphs (Erdös and Rényi, 1959), and this is what
Ge et al. (2001) did. However, if one examines the random graphs gen-
erated using the random edge model, they seldom resemble the structure
in the graph based on the observed data. We propose generating the null
distribution by permuting the node labels on the observed data graph.

In the next code chunk, we show a small function that performs the
node label permutation test. Notice, from Figure 22.3, that the maximum
number of edges in the intersection of the permuted graphs is much smaller
than that observed in our data, 42. This justifies our assertion that there
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Figure 22.1. The largest PPI connected component.

is a significant relationship between gene expression pattern and protein
complex co-membership, consistent with the findings of Ge et al. (2001).

> nodePerm <- function(g1, g2, B = 1000) {

+ n1 <- nodes(g1)

+ sapply(1:B, function(i) {

+ nodes(g1) <- sample(n1)

+ numEdges(intersection(g1, g2))

+ })

+ }

> set.seed(123)

> nPdist <- nodePerm(litG, cg1)
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Figure 22.2. Another large PPI connected component.

22.2.2 Data analysis

Now that we have satisfied our testing curiosity, we might want to carry
out a little exploratory data analysis. There are clearly some questions that
are of interest including:

• Which of the expression clusters have intersections and with which
of the literature clusters?

• Are there expression clusters that have a number of literature cluster
edges going between them (and hence suggesting that the expression
clustering was too fine or that the genes involved in the literature
cluster are not cell-cycle regulated).

• Are there known cell-cycle regulated protein complexes, and do the
genes involved tend to cluster together in both graphs?
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Figure 22.3. A histogram of the number of common edges as computed by a node
label permutation model.

• Is the expression behavior of genes that are involved in multiple pro-
tein complexes different from that of genes that are involved in only
one complex?

Many of these questions require access to more information. For example,
we need to know more about the pattern of expression related to each of
the gene expression clusters so that we can try to interpret them better. We
need to have more information about the likely protein complexes from the
literature data so that we can better identify reasonably complete protein
complexes and given them, then identify those genes that are involved in
more than one complex. But, the most important fact to notice is that all
of the substantial calculations and computations (given the meta-data) can
be phrased in terms of operations on graphs. This makes it both simple to
think about what to do as well as to carry out the operations.

22.3 Using GO

In this section, we consider some of the ways in which data from GO can
be used. A fairly extensive description of GO is given in Chapter 7 and we
will presume that the reader is familiar with that material. Other more de-
tailed examples involving GO and the analysis of genomic data are available
through the vignettes in the GOstats package and in reference (Gentleman,
2004).

We make use of the ALL data (Chiaretti et al., 2004) to provide exam-
ples of how to make use of GO data in different data analytic situations.
We select the B-cell leukemia cases, and from these, we will compare those
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with BCR/ABL to those with no observed cytogenetic abnormalities (la-
beled NEG). To reduce the set of genes for consideration, we applied two
different sets of filters. Gene filtering is considered in more detail in Chap-
ter 14 and by von Heydebreck et al. (2004). A non-specific filter was used
to remove genes that showed little or no change in expression level across
experiments. The resulting data set had 2391 probes remaining. To select
genes whose expression values were associated with the phenotypes of inter-
est (BCR/ABL and NEG), we used the mt.maxT function from the multtest
package, which computes a permutation based t-test for comparing two
groups.

After adjustment for multiple testing, there were only 19 probes (which
correspond to 16 genes) with an adjusted p-value below 0.05. Using those
genes, we obtain the set of most-specific GO terms in the MF ontology that
they are annotated at. We then use these terms, together with the parent-
child relationships, to find the GO graph that contains all less specific terms
and we refer to that graph as the induced GO graph. This graph is rendered
in Figure 22.4. Nodes are labeled by the most specific four digits in their
GO label, that is GO:0005125 is labeled as 5125. The most specific terms
are at the top of the graph and arrows go from more specific nodes to less
specific ones. The node in the bottom center is the MF node. Clearly some
sort of interactivity would be beneficial and you might consider using the
imageMap function from the Rgraphviz package.

22.3.1 Finding interesting GO terms

In our example, we have selected a set of genes that are thought to be
expressed differently in two subgroups of interest but these same methods
apply equally to sets of genes that have been obtained in other ways, say
by some form of clustering. Then questions that arise are: whether genes
that comprise a cluster have a common function; are involved in common
processes; or perhaps, are co-located in some compartment of the cell.

The test is quite straightforward. Given a set of genes and a categoriza-
tion of those genes, say using one of the three ontologies, we find the set of
all unique GO terms within the ontology that are associated with one or
more of the genes of interest (i.e., the induced GO graph). Next, for each
term, we count the interesting genes annotated at that node and obtain
the number of genes assayed that are annotated at the node. Basically, we
form the two-way table that identifies a gene as interesting, or not, and as
being annotated at the node, or not. The unique LocusLink identifiers, and
not the manufacturers identifiers, should be used because there are often
multiple probes for a single LocusLink identifier on each chip.

We can ask if there are more interesting genes at the node than one
might expect by chance. If that is true, then that term can be thought
of as being overrepresented in the data. This question can be answered
using a Hypergeometric distribution. The function GOHyperG, available in
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Figure 22.4. The induced GO graph for the selected genes; truncated GO
identifiers are used as labels.

the GOstats package, takes as input a set of LocusLink identifiers, finds the
induced GO graph and performs the Hypergeometric test at each node.

There are some issues that arise in the interpretation of the resultant p-
values. First, we note that often very many hypotheses will have been tested
and that some form of p-value correction will be needed. However, there
is no simple or straightforward way to do that. The different hypotheses
are not independent by virtue of the way that GO is structured and even
with this difficulty addressed, we are most likely interested in patterns of p-
values that correspond to structure in GO rather than single p-values that
exceed some threshold. For these reasons, we prefer to report unadjusted
p-values and leave corrections to the discretion of the user. These and other
issues were considered in more detail by Gentleman (2004), however, much
more research in this area is needed.

A second issue that arises is the fact that nodes of the induced GO graph
with few genes annotated at them will typically have small p-values. This
phenomenon occurs due to the way that we selected nodes for evaluation
and the structure of GO. Recall that a gene annotated any node is also
annotated at all less specific nodes in the GO hierarchy. Many genes are
annotated out quite far into the leaves of the GO graph and hence at
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GO ID Term p n
1 GO:0005131 growth hormone receptor b... 0.002 1
2 GO:0005148 prolactin receptor bindin... 0.004 2
3 GO:0005159 insulin−like growth facto... 0.011 6
4 GO:0003924 GTPase activity 0.014 101
5 GO:0008270 zinc ion binding 0.014 557
6 GO:0030693 caspase activity 0.021 12
7 GO:0004715 non−membrane spanning pro... 0.021 12
8 GO:0046914 transition metal ion bind... 0.026 663
9 GO:0043169 cation binding 0.029 1034

10 GO:0005488 binding 0.04 4825
11 GO:0005525 GTP binding 0.041 181
12 GO:0019001 guanyl nucleotide binding 0.043 187
13 GO:0004713 protein−tyrosine kinase a... 0.043 187
14 GO:0043167 ion binding 0.048 1185
15 GO:0046872 metal ion binding 0.048 1185
16 GO:0005126 hematopoietin/interferon−... 0.065 37
17 GO:0017076 purine nucleotide binding 0.087 976
18 GO:0000166 nucleotide binding 0.091 990

Table 22.1. GO terms, p-values, and numbers of genes for a selection of GO
categories.

nodes that have relatively few other genes annotated there. Calculation of
the Hypergeometric p-values for these nodes results in very small p-values.
Others have dealt with this issue by defining the concept of depth in the
GO graph (the number of edges to the root node) and then only using
nodes that are neither too deep nor too shallow.

In the next code chunk, we show how to take an induced GO graph,
gGO, and a set of interesting genes, gNsLL, and find the Hypergeometric
p-values. This is done using GOHyperG. Because the data come from a HG-
U95Av2 chip, we use the set of genes on that chip as the set of all genes
in the Hypergeometric test. We then make use of the resultant p-values to
provide colors for the nodes.

> gNsLL <- unique(unlist(mget(names(gde), env = hgu95av2LOCUSID,

+ ifnotfound = NA)))

> gGhyp <- GOHyperG(gNsLL)

In Figure 22.5, we reproduce the plot from Figure 22.4 except that we
have now colored the nodes according to the p-value obtained from the
Hypergeometric test described above. The nodes in Figure 22.5 are colored
either dark red or light blue depending on whether the unadjusted Hyper-
geometric p-value was less than 0.1 or not. The GO terms for the nodes
colored red are printed below. The relevant biology suggests that these are
quite reasonable.
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Figure 22.5. The induced GO graph colored according to unadjusted
Hypergeometric p-values, whose values are given in the nodes.

We see in Table 22.1 that the nodes with the smallest p-values do tend
to be the nodes with few genes annotated at them. However, there are also
some nodes with quite small p-values and large counts, such as GO:0008270
and GO:0003924, and these would surely be of some interest in subsequent
explorations.

It is interesting to note that we can also ask, and answer, the question
about underrepresented GO terms. That is, we can find nodes in the GO
graph that, given their size, should have contained one or more interesting
genes, under the null hypothesis.

22.4 Literature co-citation

In this section, we consider the graph structure of literature co-citation data
and explore some of the ways it can be used to help add meaning to a data
analysis. The basic statistical models and paradigm will be presented first,
and subsequently we apply them to co-citation via PubMed; see Chapter 7
for more details on PubMed. There are many different problems that can
be addressed using these data, but we will consider only a few of them.
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One of the problems in providing concrete recommendations is the lack
of a gold standard against which to measure the performance of the vari-
ous tools. We have used a number of examples where we believe one can
make a reasonable statement about whether two genes are related and
then contrast the different measures and adjustments with respect to their
agreement with this point of view. Of course, your opinion might be dif-
ferent, and in that case you would naturally select a test statistic to use
accordingly. More details on the approach and more extensive examples
were given by Ding and Gentleman (2004).

One can consider citation in terms of a bipartite graph. The genes rep-
resent one type of node and the scientific papers represent the other type
of node. An edge exists between a gene and a paper if the gene is cited in
the paper. In this graph, there are no edges between papers and no edges
between genes. The relationships between genes are mediated by the papers
and the relationships between papers are mediated by the genes. From this
bipartite graph, we can generate two one mode graphs. One is the graph
whose nodes are genes and an edge exists between two genes if they are
co-cited in one or more papers. Edge weights can be used in this graph to
count the number of co-citations. The second type of one mode graph that
is of some interest is the graph whose nodes represent papers, and an edge
exists between two papers if they co-cite at least one gene. Edge weights
can be used to represent the number of genes that have been co-cited.

In the context of a co-citation graph (see Section 20.2.1 for more details),
the actor size is the number of papers that cite the gene of interest, while
the event size is the number of genes that are cited by a specific paper. We
note that some adjustment for either actor or event size can improve the
inference and should be considered; we discuss this in Section 22.4.2. For
example co-citation in a paper such as that by Strausberg et al. (2002),
which cites more than 15,000 genes, has very little information and one
would not generally treat co-citation in this paper as indicating any re-
lationship between genes. On the other hand, co-citation in a paper that
discusses only two or three genes is a much stronger indication of an intrin-
sic biological relationship. Interested readers are referred to Section 22.4.1
below, Chapter 8 of the book by Wasserman and Faust (1994), and the
article of Ding and Gentleman (2004) for further considerations.

The concepts of adjacency, reachability, and connectedness can all be
applied to bipartite graphs, and hence to affiliation networks. Of these, the
strongest and most interpretable property will be adjacency. If we consider
the co-citation network, the notion of a relationship based on reachability
seems very vague and would be difficult to interpret. Similarly, it will be
difficult to place much meaning on the path length between two genes,
or two papers. We also note that that notions reachability, diameter, and
connectedness in the one mode networks are likely to be of little biological
interest. In a co-citation graph, only the direct co-citations are likely to be
important. Two genes that are co-cited will share an edge, and it is not clear
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gene2

gene1 n11 n12 n1.

n21 n22 n2.

n.1 n.2 n

Table 22.2. Notational conventions for a two-way table.

that the existence of a path, say through some third gene, is any evidence
of a relationship. One might be willing to argue that the existence of many,
very short paths between two genes of interest constitutes evidence of a
relationship, but that requires a different approach.

22.4.1 Statistical development

For many of the two-way tables that arise in bioinformatics, one of the
entries in the table is much much larger than the other ones. For example,
with co-citation comparisons, or when comparing annotation at a particular
GO term with some other property, we find that most genes have neither
property and so one entry in the two-way table is very large compared to
the other three. To facilitate discussion, we will use the convention that
the n22 entry in the two-way table is the one with the very large number.
To further ease the exposition, we will base some of the discussion on the
notion that we want to compare two genes, gene1 and gene2, on the basis
of their co-citations in the medical literature.

When one entry in the table (Table 22.2) is much larger than the others,
the actual distribution of the test statistics may be quite far from the
asymptotic distributions that are commonly used to assess significance. It
may be prudent to rely on test statistics that either do not use n22 or
which do not depend heavily on it. Some of these were studied by Ding and
Gentleman (2004) and we discuss their findings here. Ding and Gentleman
(2004) considered a wide range of statistics and recommended the three
following statistics as performing well, under different situations.

• Concordance measure

n11

• Jaccard Index (Jaccard, 1912)
n11

n11 + n12 + n21

• Hubert’s Γ (Hubert, 1987; Good, 1994)
n11n22 − n12n21√

(n11 + n12)(n21 + n22)(n11 + n21)(n12 + n22)

The range of the Jaccard Index is [0,1] and for Hubert’s Γ the range is
[-1,1]. Hubert’s Γ is equivalent to the fourfold correlation coefficient.
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Ding and Gentleman (2004) carried out an empirical study of the per-
formance of the different test statistics together with adjustments for both
event size and actor size. Although there is no gold standard by which
to compare these different test statistics, it is nonetheless important to at-
tempt to understand the properties of the different test statistics. Notions of
power and size are therefore approximate, and based on comparisons where
a biological association between genes could be determined, and other cases
using genes where it was very unlikely that any true biological association
exists. That is, Ding and Gentleman (2004) considered genes that are likely
to have a biologically meaningful relationship, as well as those that, despite
frequent co-citation, are not likely to have a biologically meaningful rela-
tionship. They found that the χ2 and odds ratio based statistics do not, in
general, perform as well as the Concordance, Jaccard Index and Hubert’s
Γ based statistics. They also found that actor size adjustment tends to
make tests too conservative, whereas event-size adjusted Concordance and
Jaccard Index tend to be too anti-conservative. The necessary software for
carrying out these tests is provided in the CoCiteStats package.

Let N denote the set of actors, with cardinality n, and let M denote
the set of events, with cardinality m. We denote the affiliation matrix as
A, where Ai,j is 1 if actor i was present at event j. The corresponding one
mode networks can be then be found as as XN = AA′ and XM = A′A.
Note that in XM the i, j entry is the number of events that both actor i and
actor j attended. In some cases we will be interested in Boolean versions of
these matrices, that is versions of XM and XN that have entries that are
zero or one, which indicate whether actors i and j attended one or more
events together.

We return to the subject of actor and event size adjustments. We note
that a very large event (a paper that cites very many genes) is likely to co-
cite two genes, but the information about their relationship is weaker than
if they were co-cited in a paper that cited only a small number of genes.
Considering, instead, actors we see that an actor (or gene) that attends
many events is much more likely to be affiliated with other actors than an
actor that attends few events. In the context of co-citation, this says that
a well studied gene is more likely to be associated with other genes than a
recently discovered, or recently studied, gene.

One argument that is often made in social network theory is that the
measure of association between actors should be logically independent of
the event size. When the data are presented in the form of a two-way table,
the odds ratio is one measure of association that is logically independent
of group size. An alternative discussed in Wasserman and Faust (1994) is
to normalize either of XM or XN so that all row and column totals are
equal; this idea will not be explored here.

The use of XN intrinsically assumes equal weighting of papers. The size
of the papers, however, may also play a key role in deciding significance of
association between genes and some adjustment may be needed. There are
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various ways of doing this, but in principle one should down-weight large
papers as their information content is less. We consider a weight equal to
the inverse of the number of genes cited for each paper, i.e., paper size.

22.4.2 Comparisons of interest

Now we revise the gene-gene contingency table, Table 22.2, for the case
where the comparison of interest is between two genes, gene1 and gene2,
on the basis of co-citation. We let n′

ij =
∑

l∈Pubij
1/Nl, i, j = 1, 2 where Nl

is the size of paper l, i.e., the number of genes cited by PubMed l, Pub11 is
the set of papers citing both genes; Pub12 citing gene1 but not gene2, Pub21

citing gene2 but not gene1, and Pub22 are those citing neither genes. Hence
n′

ij is a weighted version of nij where the weight depends on the number
of genes cited by each paper. We can then use the three statistics proposed
in Section 22.4.1, Concordance, Jaccard’s index, and Hubert’s Γ, with nij

replaced by n′
ij .

22.4.3 Examples

We begin with a small example to clarify some of the relevant issues. TRO
and BYSL form a complex mediating cell adhesion. Suzuki et al. (1999)
studied expression of these two genes in human placenta. These two genes
are the only two human gene products referred to in this paper (PMID:
10026108). Conversely, they were also co-cited in Strausberg et al. (2002)
(PMID: 12477932) where ESTs were generated from libraries enriched for
full-length cDNAs; there is no direct association between the genes they
have cited other than the fact that their cDNA sequences can be obtained.
So we can see that the paper by Suzuki et al. (1999) is very informa-
tive about these two genes, and their potential relationship, while that by
Strausberg et al. (2002) is not.

We consider the Concordance measure, Hubert’s Γ, and the Jaccard
Index. For all three we also consider gene size adjustments, paper size
adjustments and both gene and paper size adjustments, thus yielding four
statistics for each of these.

Example 1

We first look at the association between two genes, BYSL with LocusLink
ID 705 and TRO with LocusLink ID 7216. As noted above, they have been
co-cited twice (PMID: 12477932,10026108) where the second paper cited
only these two genes and the first one cited 14596 genes. Even though one
of the papers citing both is general (PMID: 12477932), the other (PMID:
10026108) is a very specific paper discussing the two genes. Moreover, the
two genes were cited in only 4 and 8 papers respectively, hence we believe
that there is an association between them and we would like to use a test
statistic that is capable of detecting that relationship.
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7216
705 2 2 4

6 74666 74672
8 74668 74676

Concordance Jaccard Hubert
None 2.0000 0.2000 0.3535

(0.0000) (0.0600) (0.0800)
GS 0.9911 0.9824 0.9822

(0.1000) (0.1000) (0.1000)
PS 0.5001 0.0832 0.1579

(0.0000) (0.0000) (0.0000)
BOTH 0.9855 0.9715 0.9710

(0.0800) (0.0800) (0.0800)

Table 22.3. PubMed co-citation: Locuslink ID 705 and 7216.

Using a Hypergeometric distribution the exact p-value for testing the
null hypothesis that gene 705 and 7216 are not related is 0.377 when no
edge weights are considered, indicating no significant association between
them. Failure to account for the edge weights may offer an explanation.

Table 22.3 reports the results for the three statistics from Section 22.4.1.
For each statistic, we also considered four versions: no adjustment (None),
gene size adjustment (GS), paper size adjustment (PS) and both gene and
paper size adjustment (Both). The numbers listed in each entry are the
score and p-value (in parentheses).

Results from Concordance, Jaccard Index, and Hubert’s Γ are quite
consistent, the original Concordance statistic and paper size adjusted Con-
cordance, Jaccard Index, and Hubert’s Γ are significant at 0.05 level. This
suggests that paper size adjustment is useful especially as one of the papers
under investigation is extremely large in size. The adjustments for gene size
all lead to non-significant results.

An analysis using GO by Ding and Gentleman (2004) indicated that the
two genes are highly significantly related in their biological processes.

Example 2

The previous example suggests that both the number of co-citations and the
paper size are important in determining the level of significance. To see this
more clearly, we consider genes 10038 (ADPRTL2) and 10039 (ADPRTL3)
which are co-cited four times. The sizes of the papers citing 10038 and
10039 are 3,2,2,2, all relatively small compared with previous examples.
Moreover, the genes were cited 7 and 8 times respectively.
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10039
10038 4 3 7

4 74665 74669
8 74668 74676

Concordance Jaccard Hubert
None 4.0000 0.3636 0.5345

(0.0000) (0.0000) (0.0000)
GS 0.9937 0.9875 0.9874

(0.0000) (0.0000) (0.0000)
PS 1.8333 0.3771 0.5476

(0.0000) (0.0000) (0.0000)
BOTH 0.9956 0.9913 0.9913

(0.0000) (0.0000) (0.0000)

Table 22.4. PubMed co-citation: Locuslink ID 10038 and 10039.

All results reported in Table 22.4 are significant. This suggests that if
paper size is small then there is no obvious need for paper size adjustment;
almost all the statistics, with or without adjustment, yield similar results.

Application to gene lists. Here we use the test statistics, suggested
above, but aggregate them over the set of genes in the gene list or over the
boundary of the gene list.

Given a list of genes, D, one can find the boundary of that list, with
respect to the one mode co-citation graph XN . This boundary is simply
the set of genes that were co-cited one or more times with the genes in D.
Because there are many papers that cite thousands of genes, the boundary
itself will not be very interesting, and we will typically restrict our attention
to those genes where the sum of the edge weights exceeds some threshold.
This cut-off can be determined empirically.

Once the boundary has been determined, we might want to find those
genes that have a particularly strong association with the genes in D. While
parametric tests are not generally available, a resampling test can be used
to assess significance. Alternatively, we can compute pairwise relationships
between the members of D itself. These distances, could then be analyzed,
using multidimensional scaling or they could form the basis for yet another
graph.

We return to the ALL example begun in Section 22.3. In that exam-
ple, we selected genes whose expression values were associated with the
phenotypes of interest (BCR/ABL and NEG) using a permutation-based
t-test to compare the two groups. We found 19 probes, corresponding to 16
genes, that had adjusted p-values below 0.05. Suppose that we wanted to
find out whether there are subsets of these genes that are closely related,
according to co-citation. We can also ask if there are other genes that are
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closely related to the selected genes that we did not find. We first obtain
the unique LocusLink identifiers and then map these to the set of papers
that cite the genes. We begin with the data object intLLc that contains
the LocusLink identifiers for the selected genes. For each of these we first
obtain the number of citations for each gene.

> papersByLL <- mget(intLLc, humanLLMappingsLL2PMID,

+ ifnotfound = NA)

> ncit <- sapply(papersByLL, length)

> ncit

25 687 195 2534 23145 7277 841 4599 2273 87

68 5 7 28 3 10 94 24 10 6

6935 9697 9900 3937 1396 8835

10 5 4 11 4 12

We see that the number of citations ranges from 94 to 3. Next, we can
construct a simple co-citation graph, on these genes and here we need only
concern ourselves with this rather small set of papers. The paper sizes were
also computed and they range from 14596 to 1.

> num <- length(papersByLL)

> grels <- vector("list", length = num)

> names(grels) <- names(papersByLL)

> for (i in 1:num) {

+ curr <- papersByLL[[i]]

+ grels[[i]] <- lapply(papersByLL, function(x) {

+ mt <- match(x, curr, 0)

+ if (any(mt > 0))

+ curr[mt]

+ else NULL

+ })

+ }

> for (i in 1:num) grels[[i]] <- grels[[i]][-i]

We have now computed the edges that are present in our graph. Next we
want to see which papers co-cite genes from among our list.

> gr2 <- lapply(grels, function(x) {

+ slen <- sapply(x, length)

+ x[slen > 0]

+ })

> table(unlist(gr2))

12477932 14702039

132 30

We notice that all of the co-citations between the genes we have selected
are due to two papers, one by Strausberg et al. (2002) and a similar one by
Ota et al., and hence there is no information about relationships between
these genes to be gleaned from the currently available medical literature.
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We can take a more exploratory approach. For instance, starting with the
same set of genes, the boundary of their co-citation graph can be examined.
That is, we are looking for all genes that have a co-citation with one or
more of the genes in our list. We will need to discount the very large papers,
and hence we will make use of edge weights in constructing our graph and
subsequently will trim those elements of the boundary with edge weights
that are small.

Finding the boundary is relatively straightforward. Given our list of
genes, we first find their citations, and using those citations we find the
information on genes cited in those papers. In the next code chunk, a sim-
ple function, LL2wts, that carries out this computation is provided. Given a
set of LocusLink IDs it finds all papers that cite these genes. Then, taking
those papers, it finds all genes they cite and creates a weight vector, where
the weights are 1 over the papers sizes. Finally, a list of the named weight
vectors is output.

> LL2wts <- function(inList) {

+ pBLL <- mget(inList, humanLLMappingsLL2PMID,

+ ifnotfound = NA)

+ numL <- length(inList)

+ ans <- NULL

+ for (i in 1:numL) {

+ lls <- mget(as.character(pBLL[[i]]),

+ humanLLMappingsPMID2LL,

+ ifnotfound = NA)

+ lens <- sapply(lls, length)

+ names(lens) <- NULL

+ wts <- rep(1/lens, lens)

+ wtsbyg <- split(wts, unlist(lls, use.names = FALSE))

+ ans[[i]] <- sapply(wtsbyg, sum)

+ }

+ ans

+ }

> vv <- LL2wts(intLLc)

Given vv, we can answer a number of questions. For example, we can
find which of the elements of vv have the largest weights, we can see which
genes are connected to more than one gene in our list of interesting genes,
and of those, which have relatively high weights.

> allLL <- unique(unlist(sapply(vv, names)))

> bdrywts <- rep(0, length(allLL))

> names(bdrywts) <- allLL

> for (wvec in vv) bdrywts[names(wvec)] <- bdrywts[names(wvec)] +

+ wvec

> wts <- bdrywts[!(allLL %in% intLLc)]

> sum(wts > 1)

[1] 20
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> range(wts[wts > 1])

[1] 1.08 9.00

We can see that there are 20 genes that have weights that are larger than
1 and hence might warrant further study. We can find those that are on the
HG-U95Av2 chip by using the chip-specific annotation pacakge, hgu95av2.

> LL95 <- unlist(as.list(hgu95av2LOCUSID))

> bdryLL <- names(wts[wts > 1])

> onC <- match(bdryLL, LL95, 0)

> unlist(mget(names(LL95[onC]), hgu95av2SYMBOL))

517_at 1084_at 2043_s_at 1441_s_at 2024_s_at

"SHFM3P1" "ABL2" "BCR" "FAS" "LYN"

879_at 32725_at 38350_f_at 40567_at 34448_s_at

"MX2" "BID" "TUBA2" "TUBA3" "CASP2"

36143_at 38281_at 486_at 1765_at 38755_at

"CASP3" "CASP7" "CASP9" "CASP10" "FADD"

1867_at 40969_at 35681_r_at

"CFLAR" "SOCS3" "ZFHX1B"

22.5 Pathways

In this section, we consider some uses of pathway information in the analysis
of gene expression data. Although the concept of a pathway does not have
a rigorous definition, the general concept is widely used. For example, the
biological process ontology from GO describes itself as being less than a
pathway.

Associating gene expression data with pathways has been considered by
many others, including Doniger et al. (2003). In some applications, one
might render a pathway and color the nodes (genes) according to changes
in expression across experimental conditions. Although this approach has
some appeal, there are other uses for pathway data. Pathways can be used
to perform subgroup analysis where interest is restricted to a set of genes
that are associated with a particular pathway. However, there are many
situations where one would not expect the expression levels to change.
For example, many signal transduction pathways are known to end in the
activation of a transcription factor. Thus, to know if the pathway is active,
it seems more reasonable to study the targets of the transcription factor
than the constituent elements of the pathway.

In our first example, we consider the network structure of the pathways
themselves. We make use of the bipartite graph that relates genes and
pathways and study the one mode network on pathways that results from
it. In our second example, we take a single pathway, the integrin-mediated
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cell-adhesion pathway, and render it in different ways, using gene expression
data to modify the outputs.

22.5.1 The graph structure of pathways

Consider the bipartite graph where one set of nodes are genes and the
other set of nodes are pathways. We are interested in understanding the
relationships between pathways due to shared genes, or shared sets of
genes. We represent the bipartite graph in terms of an incidence matrix;
see Section 20.2.1 for more details.

We construct the graph based on the data available from the HG-U95Av2
GeneChip array from Affymetrix. It might be of more interest to consider
the construction of this graph based on all mappings for a given organism
rather than restricting our attention to a particular chip, but this restriction
makes the computations manageable. The construction is considered in
some detail as readers are likely to find it useful for creating their own
bipartite graphs. There are two relevant mappings, those from probes to
pathways, and the converse, from pathways to probes. For the HG-U95Av2
chips these are available as hgu95av2PATH, which holds the mappings from
probesets to the pathways, and hgu95av2PATH2PROBE, which contains the
mappings from pathways to probesets. We first load the necessary libraries
and then look to see how many pathways different genes are annotated at.

> library("hgu95av2")

> library("annotate")

> genel <- unlist(eapply(hgu95av2PATH, length))

> table(genel)

genel

1 2 3 4 5 6 7 8 10 11

11264 635 363 208 71 33 6 10 7 10

12 13 15

7 3 8

We see that some genes are annotated at many pathways, while most are
annotated at only one. Since genes are annotated at pathways using Lo-
cusLink identifiers we next reduce the data by removing any duplicate
probes.

> pathLL <- eapply(hgu95av2PATH2PROBE, function(x) {

+ LLs <- getLL(x, "hgu95av2")

+ unique(LLs)

+ })

> pLens <- sapply(pathLL, length)

> range(pLens)

[1] 1 219

> uniqLL <- unique(unlist(pathLL, use.names = FALSE))
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We see that pathway sizes are between 1 and 219 for LocusLink identifiers
from this chip. We note that these sizes are with respect to the set of
genes that we have information on. The actual size (number of genes) in
a pathway could be quite different, and for some calculations we will want
the actual set of genes, but for others we will need to focus on those genes
for which we have data.

Now that we have computed pathLL, that is really all that is needed. We
can find out how many pathways there are (136), and how many unique Lo-
cusLink identifiers there are (2297). In the incidence matrix representation
of our bipartite graph, we let LocusLink identifiers denote the rows and
pathways denote the columns. The data in pathLL are easily transformed
to an adjacency matrix where the pathways are the columns, and the genes
are the rows.

> Amat <- sapply(pathLL, function(x) {

+ mtch <- match(x, uniqLL)

+ zeros <- rep(0, length(uniqLL))

+ zeros[mtch] <- 1

+ zeros

+ })

Now that we have an incidence matrix for the pathways, we can construct
the one mode graphs for genes and for pathways. We leave the gene graph
for the reader to explore and instead consider the pathway graph. The
diagonal entries of pwGmat will be the counts of the number of genes in
each pathway. We set these to zero so that they do not get interpreted as
self-loops.

> pwGmat <- t(Amat) %*% Amat

> diag(pwGmat) <- 0

> pwG <- as(pwGmat, "graphNEL")

Although we could use Rgraphviz to lay out the graph, it has too many
nodes and edges to provide a meaningful visualization using standard layout
methodologies. Further research is needed to develop good layout strategies
for this graph. However, we can examine some of the basic characteristics
of the graph.

We can find the connected components.

> ccpwG <- connectedComp(pwG)

> sapply(ccpwG, length)

1 2 3 4 5

132 1 1 1 1

We see that there are four singletons, and otherwise all the pathways are
connected by the genes that are assayed on the HG-U95Av2 chip. In the
next code chunk we find and print the names of the singletons.
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Figure 22.6. The degree distribution of the pathway graph.

> library("KEGG")

> for (i in ccpwG) {

+ if (length(i) == 1)

+ cat(get(i, KEGGPATHID2NAME), "\n")

+ }

Basal transcription factors

Retinol metabolism

Proteasome

Chondroitin / Heparan sulfate biosynthesis

These pathways might be connected to each other, or to other pathways,
through genes that were not assayed.

We computed the degree distribution of the pathway graph and plotted
a histogram in Figure 22.6. Pathways are the nodes in this graph, and so
we see that some pathways have many edges to other pathways, and hence
are quite central. It might be useful to use edge weights to indicate the
number of shared genes, and this could then be used in coloring the edges
or perhaps in thresholding them.

Other analyses might focus on finding shared components, for example
finding out whether one pathway is wholly contained within another. We
will need good layout algorithms for single pathways. We will also need
layout mechanisms for joining together different pathways.

22.5.2 Relating expression data to pathways

We now consider a method for relating gene expression data to pathways.
Other approaches have been considered, in particular by the GenMAPP
project (Doniger et al., 2003), and some of our own work has been reported
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in R News (Gentry et al., 2004). We consider the integrin-mediated cell-
adhesion pathway, as represented at KEGG . The KEGG pathway label
is hsa04510 and the graphical representation from KEGG was shown in
Figure 19.1. Users can either access the KEGG Web site directly, or they
can use the KEGGSOAP package to obtain more information about this
pathway. For any microarray experiment, Bioconductor meta-data packages
can be used to find associations between probes and the genes involved in
different KEGG pathways.

To obtain the pathway graph, you have several different options. You
can construct one yourself, based on the available data and potentially
expert biological advice, or you can make use of the information from the
cMAP project, which is available in the cMAP package. For this particular
pathway, we have already taken the information available in KEGG and
used that to construct a graph representation of the pathway. The relevant
data structures are constructed from two objects in the graph package.
The object IMCAGraph is an instance of the graphNEL class, representing the
pathway as a mathematical graph with named nodes and directed edges.
The object IMCAAttrs is a list of plotting attributes for each node in the
graph, such as the color.

We return to the ALL data and ask whether or not there are differences
between the two groups (BCR/ABL and NEG) with respect to expression
levels of genes in this pathway. We use the subset of the ALL data computed
in Section 22.3. However, we do not carry out any gene selection, instead
we consider the expression levels of the different genes in this pathway, and
how those levels depend on phenotype (whether the samples are BCR/ABL
or NEG).

Next, we obtain the mapping between the probes on the Affymetrix array
and the genes in the pathway.

> hsa04510 <- hgu95av2PATH2PROBE$"04510"

> hsaLLs <- getLL(hsa04510, "hgu95av2")

There are 52 nodes in this pathway, and of these 45 represent genes. We
find that there are 114 probesets for these genes on the HG-U95Av2 chip.
There are many different ways to deal with the duplicate probesets, and
here we take the simplistic approach of just selecting the first match. We
note that an appropriate investigation of these data would involve a more
detailed consideration of how to deal with multiple probes per gene.

In the next code chunk, we extract the LocusLink identifiers associated
with each node in the graph and then for each of these take the first probeset
that maps to it. We also check to see which of the genes in the pathway have
no probes associated with them; these will have a value of NA in whProbe.

> LLs <- unlist(sapply(IMCAAttrs$LocusLink, function(x) x[1]))

> whProbe <- match(LLs, hsaLLs)

> probeNames <- names(hsaLLs)[whProbe]
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Figure 22.7. The integrin-mediated cell-adhesion network.

> names(probeNames) <- names(LLs)

> pN <- probeNames[!is.na(probeNames)]

We lay out the graph using agopen, as we want to render the same graph
several times.

> IMCg <- agopen(IMCAGraph, "", attrs = IMCAAttrs$defAttrs,

+ nodeAttrs = IMCAAttrs$nodeAttrs, subGList = IMCAAttrs$subGList)

> plot(IMCg)

In Figure 22.7 we see the pathway laid out, with nodes that represent
genes colored green. Now that we have found a set of probes that map
to each gene in the pathway, we split the data into those with BCR/ABL
and those that have no abnormalities and render the pathway, once for
each group. For each group, we will plot a pie chart for each node. The pie
chart will reflect a split, across the gene, of the samples for that gene. We
will use splits of (0, 6], for low, (6, 8.5] for moderate and (8.5,∞] for high,
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levels of expression. This visualization is different from one that colors
nodes according to whether the genes are more highly expressed in one
group than the other. It allows the reader to compare the distribution of
expression, for each gene, between the two phenotypes.

Now that we have found the expression levels and computed the counts
for each of the probes, we are ready to layout the graph and then render it,
once for each phenotype we are interested in. The resulting plots are shown
in Figure 22.8. Using pie charts for the nodes in the graph is easily done, and
the procedure is documented in the Rgraphviz package. We note that due to
the modular nature of the graph drawing procedures in Rgraphviz, virtually
any R plot can be used for the nodes in a graph; see also Section 21.4.4. It
is also easy to simply color the nodes according to which group has higher
levels of expression, as is done by many others.

The graphs themselves are quite interesting. The similarity in distribu-
tion of expression levels, especially for those genes on the right half of the
graph is remarkable. On the left side, we draw your attention to FYN,
which has about 3/4 of the samples in the high range for BCR/ABL while
for the NEG samples about 3/4 of the samples are moderate.

22.6 Concluding remarks

In this chapter, we have presented four case studies that made use of
the tools that were introduced in the earlier chapters of this section. Our
purpose was not to promulgate the examples themselves, but rather to
demonstrate the flexibility of the software tools that are available and to
emphasize that virtually any analysis can be undertaken, with a small
amount of additional programming. You should only be limited by your
ideas and the available data.

There are still many questions to answer, and much software needs to
be written. We will need specialized graph algorithms to deal with the fact
that many biological relationships are measured with error, and hence usual
constructs and algorithms may fail or be unusable when false negative and
false positive relationships exist. Visualizing graphs, as opposed to layout, is
a difficult problem and one that is starting to get some attention. We hope
that the tool kit of graph algorithms and methods described here, linked to
the R statistical computing framework, will foster many new developments.
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a) pie chart graph for BCR/ABL
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Figure 22.8. Pie chart graphs representing gene expression data for a) BCR/ABL
samples, b) NEG samples.
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