
Chapter 2 

AOC at a Glance 

2.1. Introduction 
AOC approaches share a basic form with many possible variants. As men- 

tioned in the preceding chapter, the basic form draws on the core notion of 
autonomy, with such characteristics as multi-entity formulation, local interac- 
tion, nonlinear aggregation, and self-organized computation. Tn order to get'a 
better idea on how these characteristics are reflected in handling some familiar 
computational or engineering problems, let us now take a look at three illus- 
trative examples: constraint satisfaction, image feature extraction, and robot 
spatial learning (or world modeling). In our illustrations, we will outline the 
basic autonomy models implemented and highlight the AOC systems perfor- 
mance. 

2.2. Autonomy Oriented Problem Solving 
Our first illustrated example deals with distributed problem solving. Liu et 

al. have developed an AOC-based method for solving CSPs [Liu and Han, 
2001, Liu et al., 20021. This method is intended to provide an alternative, 
multi-entity formulation that can be used to handle general CSPs and to find 
approximate solutions without too much computational cost. 

2.2.1 Autonomy Oriented Modeling 

In the AOC-based method, distributed entities represent variables and a two- 
dimensional lattice-like environment in which entities inhabit corresponds to 
the domains of variables. Thus, the positions of entities in such an environment 
constitute a possible solution to the corresponding CSP. The distributed multi- 
entity system self-organizes itself, as each entity follows its behavioral rules, 
and gradually evolves towards a global solution state. 
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Based on two general principles of 'survival of the fittest' - poor performers 
will be washed out, and 'law of the jungle' - weak performers will be elim- 
inated by stronger ones, the AOC-by-fabrication approach is applied to solve 
a benchmark constraint satisfaction problem [Han et al., 1999, Liu and Han, 
200 11. 

2.2.2 N-Queen Problem 

The n-queen problem aims to allocate n queens on an n x n chessboard 
such that no two queens are placed within the same row, column, and diagonal. 
Based on the constraints of the problem, a model is formulated in the following 
manner. Each queen is modeled as an autonomous entity in an AOC system 
and multiple queens are assigned to each row on the chessboard. This is to 
allow competition among the queens in the same row such that the queen with 
the best strategy survives. The system calculates the number of violated con- 
straints (i.e., violations) for each position on the chessboard. This represents 
the environmental information to all queens in making movement decisions, 
which are restricted to positions in the same row. Queens are allowed for three 
types of movement. A 'randomized-move' allows a queen to randomly select 
a new position. A 'least-move' selects a position with the least number of 
violations. A 'coop-move' promotes cooperation between queens by exclud- 
ing positions that will attack those queens with which one wants to cooperate. 
These types of movement are selected probabilistically. 

An initial energy is given to each queen. A queen will 'die' if its energy 
falls below a predefined threshold. Energy will change in two ways. When a 
queen moves to a new position that violates the set constraint with m queens, 
it loses m units of energy. This will also cause those queens that attack this 
new position to lose one unit of energy. The intention is to encourage a queen 
to find a position with the least number of violations. The 'law of the jungle' 
principle is implemented by having two or more queens occupying the same 
position to compete for the occupancy. The queen with the highest energy will 
win and eliminate the loser(s) by absorbing all the energy of the loser(s). 

The above model is able to efficiently solve n-queen problems with up to 
7,000 queens using a moderate hardware configuration. Experimental results 
show that the 'survival of the fittest' principle helps find an optimal solution 
much more quickly due to the introduction of competition. The randomized- 
move is indispensable as it helps an AOC system come out of local minima, al- 
though giving a high chance of making a randomized-move will lead to chaotic 
behavior. The probabilities of selecting 'least-move' and 'coop-move' should 
be comparable and increased with the size of a problem. 
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2.3. Autonomy Oriented Search 

In our next example, let us consider the following search problem: An envi- 
ronment contains a homogeneous region with the same physical feature. This 
region is referred to as a goal region. The feature of the goal can be evalu- 
ated based on some measurements. Here, the term 'measurement' is taken as a 
generic notion. The specific quantity that it refers to depends on the nature of 
applications. For instance, it may refer to the grey level intensity of an image, 
in the case of image processing. The task of autonomous entities is to search 
the feature locations of the goal region. Entities can recognize and distinguish 
feature locations, if encountered, and then decide and execute their reactive 
behavior. 

2.3.1 Autonomy Oriented Modeling 

In the AOC-based method, an entity checks its neighboring environment, 
i.e., small circles as in Figure 2.l(a), and selects its behavior according to the 
concentration of elements in the neighboring region. If the concentration is 
within a certain range, the current location satisfies a triggering condition. This 
activates the reproduction mechanism of the entity. 

Taking a border tracing entity for example (see Figure 2.l(a)), if an entity 
of the border sensitive class reaches a border position, this entity will inhabit 
at the border and proceed to reproduce both within its immediate neighboring 
region and inside a large region, as illustrated in Figures 2.l(b) and (c). 

2.3.2 Image Segmentation Problem 

Image segmentation requires to identify homogeneous regions within an im- 
age. However, homogeneity can be at varying degrees at different parts of the 
image. This presents problems to conventional methods, such as split-and- 
merge that segments an image by iteratively partitioning heterogeneous regions 
and simultaneously merging homogeneous ones [Pavlidis, 1992, Pitas, 19931. 
An autonomy oriented method has been developed to tackle the same task [Liu 
et al., 19971. Autonomous entities are deployed to the two-dimensional rep- 
resentation of an image, which is considered as the search space of entities. 
Each entity is equipped with an ability to assess the homogeneity of a region 
within a predefined locality. Specifically, homogeneity is defined by the rel- 
ative contrast, regional mean, and region standard deviation of the grey level 
intensity. When an autonomous entity locates a homogeneous region within 
the range of the pixel at which it presently resides, it breeds a certain number 
of offspring entities and delivers them to its local region in different directions. 
On the other hand, when a heterogeneous region is found, an entity will diffuse 
to another pixel in a certain direction within its local region. 
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Figure 2.1. An illustration of the behavior of autonomous entities. (a) As an entity, which is 
marked as a solid circle, moves to a new location, it senses its neighboring locations, marked 
by dotted circles in this example. Specifically, it counts the number of locations at which the 
grey level intensity is close to that of the entity's current location. (b) When the count reaches 
a certain value, it is said that a triggering condition has been satisfied. This is in fact the case 
in our illustrative example, as the location of the entity is right next to the border of a shaded 
region. Thus, the entity will asexually self-reproduce some offspring entities within its local 
region. (c) At the following steps, the offspring will diffuse to new locations. By doing so, 
some of them will encounter new border feature locations as well and thereafter self-reproduce 
more entities. On the other hand, the entities that cannot find any border feature locations after 
a given number of diffusion steps will be automatically turned off [Liu, 20011. 
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Through breeding behavior, an entity distributes its newly created offspring 
into the region that is found to be homogeneous, so that the offspring entities 
are more likely to find extensions to the current homogeneous region. Apart 
from breeding, an entity will also label an pixel that is found to be in a homo- 
geneous region. If an autonomous entity fails to find a homogeneous region 
during its lifespan (a predefined number of steps) or wanders off the search 
space during diffusion, it will be marked as an inactive entity. 

In summary, the stimulus from pixels will direct autonomous entities to two 
different behavioral tracts: breeding and pixel labeling, or diffusion and de- 
cay. The directions of breeding and diffusion are determined according to their 
respective behavioral vectors, which contain weights (between 0 and 1) of all 
possible directions. The weights are updated by considering the number of 
successful siblings in the respective directions. An entity is considered to be 
successful if it has found one or more pixels that are within a homogeneous 
region. This method of direction selection is somewhat similar to herding be- 
havior that only considers local information. A similar technique has been ap- 
plied to feature extraction tasks, such as border tracing and edge detection [Liu 
and Tang, 19991. A more difficult task where an image contains different ho- 
mogeneous regions has been successfully handled by deploying autonomous 
entities with different homogeneity criteria. 

2.3.3 An Illustrative Example 

In order to examine the above autonomy oriented method in the simultane- 
ous detection of significant image segments, Liu et al. [Liu, 2001, Liu et al., 
1997, Liu and Tang, 19991 have conducted several experiments in which var- 
ious classes of entities are defined and employed to extract different homoge- 
neous regions from an image, such as the example given in Figure 2.2 (t = 0). 
For this image segmentation task, 1,500 entities, evenly divided into three 
classes, are randomly distributed over the given image. Figure 2.2 presents 
a series of intermediate steps during the collective image segmentation. Fig- 
ure 2.2 (t = 50) gives the resultant markers as produced by the different classes 
of entities. 

2.3.4 Computational Steps 

In the AOC-based image segmentation, the computational steps required 
can be estimated by counting how many active entities are being used over 
time (i.e., the entities whose ages do not exceed a given life span). For the 
above mentioned collective image segmentation task, we have calculated the 
number of active entities in each class that have been involved over a period of 
50 steps, as given in Table 2.1. It can readily be noted that the total number of 
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(a) t = 0 @ ) t =  1 

(c) t = 2 (d) t = 5 

(e) t = 10 (f) t = 50 

Figure 2.2. Segmenting a landscape image that contains three complex-shaped homogeneous 
regions [Liu, 20011. 

active entities (i.e., computational steps) involved in extracting a homogeneous 
region is less than the size of the given image, 526 x 197 = 103,622. 

Table 2.1. The number of active entities involved in extracting the homogeneous regions of a 
landscape image. 

Class # of active entities used 
(time step = 1 50) 

Class- 1 
Class-2 
Class-3 
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2.4. Autonomy Oriented Learning 
Our final example demonstrates how AOC can be embodied in a group of 

distributed autonomous robots to perform a task of collective spatial learning 
(or world modeling). 

Ant colonies are able to collect objects, such as food or dead ants, and 
place them in particular places. Collective behavior in a complex system of- 
fers the possibilities of enhanced task performance, increased task reliability, 
and decreased computational cost over traditional complex systems. Much 
work to date in collective robotics focuses on limited cases, such as flocking 
and foraging. Typical entities in those studies either use manually built (non- 
learning) controllers [Balch and Arkin, 19951, or perform a learning task in 
simulated [Balch, 19971 or relatively simple physical environments [Mataric, 
19941. One way to generate robust collective behavior is to apply biologically 
inspired adaptive algorithms at a team level. In such a case, the environment 
plays a central role in triggering a certain basic behavior at any given time. 
It draws on the idea of providing robots with a range of primitive behaviors 
and letting the environment determine which behavior is more suitable as a 
response to a certain stimulus. The integration of learning methods can sig- 
nificantly contribute to the performance of a team of self-programming robots 
for some predefined tasks. These individual robots can automatically program 
their task-handling behavior to adapt to dynamical changes in their task envi- 
ronment in a collective manner. 

2.4.1 World Modeling 
Liu and Wu have developed an AOC-based method for collective world 

modeling with a group of mobile robots in an unknown, less structured en- 
vironment [Liu and Wu, 20011. The goal is to enable mobile robots to coop- 
eratively perform a map building task with fewer sensory measurement steps, 
that is, to construct a potential field map as efficiently as possible. The follow- 
ing issues are addressed in developing the proposed world modeling method: 

w How to formally define and represent the reactive behavior of mobile robots 
and the underlying adaptation mechanisms to enable the dynamical acqui- 
sition of collective behavior? 

w How to solve the problem of collective world modeling (i.e., potential field 
map building) in an unknown robot environment based on self-organization 
principles? 

The artificial potential field (APF) theory states that for any goal directed 
robot in an environment that contains stationary or dynamically moving ob- 
stacles, an APF can be formulated and computed by taking into account an 
attractive pole at the goal position of the robot and repulsive surfaces of the 
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obstacles. Using APF, any dynamical changes in the environment can be mod- 
eled by updating the original artificial potential field. With APF, a robot can 
reach a stable configuration in its environment by following the negative gra- 
dient of its potential field. 

An important challenge in the practical applications of the APF methodol- 
ogy is that evolving a stable APF is a time consuming learning process, which 
requires a large amount of input data coming from the robot-environment inter- 
action. The distributed self-organization method for collective APF modeling 
with a group of mobile robots begins with the modeling of local interactions 
between the robots and their environment, and then applies a global optimiza- 
tion method for selecting the reactive motion behavior of individual robots in 
an attempt to maximize the overall effectiveness of collectively accomplishing 
a task. 

The main idea behind self-organization based collective task handling is that 
multiple robots are equipped with a repository of behavioral responses in such 
a way as to create some desirable global order, e.g., the fulfillment of a given 
task. For instance, mobile robots may independently interact with their local 
environment. Based on their performance (e.g., distributed proximity sensory 
measurements), some global world models of an unknown environment (i.e., 
global order) can be dynamically and incrementally self-organized. 

2.4.2 Self-organization 

In the case of collective world modeling, self-organization is carried out as 
follows: Suppose that a robot moves to position po and measures its distances 
to the surrounding obstacles of its environment in several directions (n). These 
measurements are recorded in a sensing vector, So = [dy , d! , . . . , dy , - . , d:] , 
with respect to position po where dy denotes the distance between position 
po and an obstacle sensed in the ith direction. The robot will then associate 
this information to its adjacent positions in the environment by estimating the 
proximity values in the neighboring positions. The estimated proximity of 
any position pj inside the neighboring region of po to a sensed obstacle will 

A .  

be calculated as follows: d i  = d; - pj . cosP (i = 1 ,2 ,  . . - , n), where 

,8 = a t )  - a,. a t )  and aj denote the polar angle of the sensing direction 
and that of position pj ,  respectively. 2; is an estimate for pj based on the 
ith direction sensing value. d! is the current measurement taken from po in 
the ith direction. Thus, the estimated proximity values for position pj can be 

[ ̂ '  A '  
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written as: $ = d;, d i ,  . . . , d i ,  . . , &I. Figure 2.3 illustrates the distance 
association scheme. 

Next, we define a confidence weight for each element of s ~ ,  that is, a func- 
tion of the distance between a robot and position pj ,  or specifically, w j  = 



AOC at a Glance 

iensed 
t 

Edge of a s 
Imaginary edge +..- \ objeci 

Figure 2.3. An illustration of the distance association scheme [Liu, 20011. 

e?~:, where 1) is a positive constant; pj is the distance between the robot and 
position pj . 

The potential field estimate at position pj is then computed as follows: 

where X is a positive constant. Thus, at time t ,  a set of potential field estimates, 
0 = { , u , . . - , Uti 3 , . . . , , jk},  can be derived by k robots with respect 
to position p j ,  that is, 

4 t ni-, U e, (2.2) 

where R:-, denotes a set of potential field estimates for position pj at time 
t - 1, and Q = uik, where subscript k indicates that the potential value is 

estimated based on the measurement of the kth robot. 9: is associated with a 
t confidence weight set: ~i = {wjl , wp , . . . , w? , - . . , wt }. 

Hence at time t ,  an acceptable potential field value can readily be calculated 
as follows: 
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where ti$ denotes a normalized weight component of w!, i.e., 

2.4.3 Adaptation 
In order to optimize the efficiency of the above self-organization based col- 

lective world modeling, we need an adaptation mechanism for distributed au- 
tonomous robots to dynamically generate and modify their group cooperative 
behavior based on some group performance criteria. The selected (i.e., high 
fitness) cooperative behavior is used to control autonomous robots in their in- 
teractions with the environment. 

In order to evaluate the group fitness, we identify two situations involved in 
the evolution: One is spatial diffusion when the inter-distance between robots i 
and j ,  aij, is less than or equal to a threshold, 7, and the other is area coverage 
when aij > 7. In either situation, we can use a unified direction representation 
of robot proximity, denoted by Bi to indicate a significant proximity direction 
of all proximity stimuli to robot i. Having identified these two situations in 
group robots, we can reduce the problem of behavior evolution into that of 
acquiring two types of individual reactive motion behavior: One for spatial 
diffusion and the other for area coverage, respectively. Both types of reactive 
behavior respond to proximity stimuli as defined in terms of a unified signifi- 
cant proximity direction. 

The fitness function will consist of two terms: One is called general fitness, 
denoted by fg, and the other is called special fitness, denoted by f,. The gen- 
eral fitness term encourages group robots to explore the potential field in new, 
less confident regions, and at the same time, avoid repeating the work of other 
robots. It is defined as follows: 

where m a ~ { w ~ ~ }  denotes the maximal confidence weight corresponding to the 
position of robot i. m denotes the number of robots that are grouped together 
during one evolutionary movement step (of several generations). me denotes 
the number of robots that do not belong to m and have just selected and ex- 
ecuted their next behavior. aij denotes the distance between robots i and j, 
which is greater than a predefined distance threshold, 6. 
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Two special fitness terms will be defined corresponding to the performance 
of spatial diffusion and area coverage: 

md-l  r n d  

spatialdiffusion: f S l  = n ,/-, 

and 
dAV 

area-coverage: f S z  = - n z  .li ' 
where md denotes the number of spatially diffusing robots whose inter-distances 
aij have become greater than the distance threshold, 7. AV denotes the total 
number of positions visited by a group of m, area-covering robots based on 
their selected motion directions. Ci denotes a significant proximity distance 
between robot i and other robots in the environment. 

2.5. Summary 
So far, we have provided three illustrative examples: constraint problem 

solving, distributed search, and spatial learning. We have stated the basic 
problem requirements and showed the ideas behind the AOC solutions, rang- 
ing from their formulations to the emergence of collective solutions through 
self-organization. 

From the illustrations, we can note that using an AOC-based method to 
solve a problem is essentially to build an autonomous system, which usually 
involves a group of autonomous entities residing in an environment. Entities 
are equipped with some simple behaviors, such as move, diffuse, breed, and 
decay, and one or more goals (e.g., to locate a pixel in a homogeneous region). 
In order to achieve their goals, entities either directly interact with each other 
or indirectly interact via their environment. Through interactions, entities ac- 
cumulate their behavioral outcomes and some collective behaviors or patterns 
emerge. Ideally, these collective behaviors or patterns are what we are expect- 
ing, i.e., solutions to our problems at hand. 
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Exercises 
2.1 Provide a conceptual blueprint for a potential AOC programming language 

that can support the applications as mentioned in this chapter. What will 
be its constructs? What will be the key characteristics and requirements 
of its operations? 

2.2 In order to evaluate computing languages or environments for AOC, what 
will be your suggested criteria? What will be your suggested benchmark 
problems? 

2.3 AOC offers a new way of tackling complexity, whether in problem solving 
or in complex systems modeling, by utilizing localized, autonomous and 
yet low-cost (computationally and physically speaking), and self-organized 
entities. Based on the illustrative examples given in this chapter, try to 
suggest and develop some other alternative models of AOC, as inspired by 
nature, for solving the same or different problems. 

2.4 Identify from the above solved problems the real benefits of taking this 
route to complexity. 

2.5 The example on world modeling in this chapter utilizes self-organized col- 
lective behavior in a multi-robot system to model an unknown environ- 
ment. Think and propose a similar solution to the problem of multi-robot 
navigation. 

2.6 Can you summarize the similarity in computational ideas between the 
image segmentation example and the world modeling example? (for in- 
stance, both have been treated as distributed problem solving). 

2.7 The chapter illustrates a search (optimization based) strategy for image 
segmentation and feature detection. From a computer vision point of view, 
compare this strategy with some traditional search based segmentation al- 
gorithms, and evaluate their performances with other computer vision seg- 
mentation benchmarks. 



http://www.springer.com/978-1-4020-8121-7




