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A Mathematical Approach for Optimizing
Dendritic Cell-Based Immunotherapy

Gennady Bocharov, Neville J. Ford, and Burkhard Ludewig

Summary
Adoptive dendritic cell (DC)-based immunotherapy represents a promising approach to

overcome peripheral tolerance against autologous tumor antigens and to maintain protective
antitumor immunity. The translation of successful preclinical studies, however, appears to be
hampered by new complexities associated with the clinical situation. Mathematical modeling
provides the means for qualitative and quantitative analysis, predictions for complex dynamic
systems in immunology, and for the design and improvement of therapeutic approaches. We
present here a workable computational methodology for developing meaningful data- and hypo-
thesis-driven mathematical models for DC-based immunotherapy with a particular focus on
numerical parameter estimation and sensitivity analysis.

Key Words: Mathematical model; immune response; computer simulation; data fitting;
parameter estimation; sensitivity analysis; predator–prey dynamics; dendritic cell; cytotoxic
T-lymphocyte; numerical software.

1. Introduction
Immunotherapeutic approaches based on adoptive transfer of dendritic cells (DC)

expressing relevant antigens may be used for active mobilization of cellular immune
responses (cytotoxic T-lymphocytes [CTL], T-helper cells, and natural killer [NK]
cells) against tumors (1,2). The efficacy of this active immunization depends on the
complex biology of the DC life cycle and their interaction with T-cells. The kinetics of
this interaction and its sensitivity to relevant parameters are still incompletely under-
stood. These parameters include antigen loading, DC maturation stage, frequency and
route of DC injection, frequency and activation status of T-cells, and the homing rate
of DC to and their persistence within lymphoid tissues. Mathematics provides the
means for an integrative description of simplified models of various immunological
phenomena, including those arising in the context of adoptive immunotherapy. Its
primary role is to assist in parameter estimation (e.g., the cellular interaction kinetic
rates, life spans, delays, activation thresholds) and analysis (the “numbers game”),
and to make testable predictions in advance of experiments and clinical applications.
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Mathematical modeling involves a number of distinct steps. In order to establish a
mathematical model, many simplifying assumptions have to be specified and deci-
sions must be made, either explicitly or implicitly (3–5) (Table 1). The translation
process, starting from a particular (immunological) phenomenon and ending in a math-
ematical formalism (i.e., a set of equations), is the hardest part of applying mathemat-
ics, because it involves the conversion of imprecise assumptions into formulas. We
describe here one possible approach to modeling the interaction of DC with CTL. In
the presented model, the DC–CTL interaction is described by adapting different theo-
retical frameworks, such as predator–prey models from population biology (6) and
Monod-type kinetics with saturation which are applied in biochemistry (7). We are
considering these deterministic models at the macroscopic level of the whole immune
system, and neglect details such as spatial structures of lymphoid organs or cytokine
networks. The overall aim of this approach is to produce a scientifically meaningful
mathematical model that is both descriptive and predictive.

Table 1
Decision Making Before and During the Modeling Process a

Modeling objectives

Determine the focus of the investigation.
• General understanding of the rules underlying the observed behavior (e.g., causality

inferences and/or critical parameters of system dynamics)
• Reliable calculations of system dynamics
• Specific predictions about new observations—experimental design
• Characterize and analyze the data

Modeling approaches

Decide on the approach to develop the model.
• Building block (models are formulated by applying the governing physical laws/con-

straints and constitute relations to the subsystems)
• Black box (models are formulated on the basis of the input-output characteristics of

the system, no consideration of its internal functioning)

Model types

Decide on the types of equations that provide the appropriate compromise between simplicity
and tractability on the one hand, and accuracy on the other.

• Continuous in time
• Discrete in time
• Deterministic
• Stochastic

Types of building block models

• Microscopic (spatially distributed)
• Macroscopic (lumped)

a Summarized from refs. 3–5
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In the “Methods” section we explain the use of the computational techniques for in
silico simulations, using the models, parameter estimation, information-theoretical
assessment of the mathematical model given the data, and sensitivity analysis. These
represent the major aspects of the general problem of valid inference (8). Although
our main interest has been the mathematical modeling of the population dynamics of
DC–CTL interaction in mice, the computational methodology has widespread appli-
cability. To describe the kinetics of the population densities of immune cells, we uti-
lize either ordinary or delay differential (in the case of memory effects) equations,
which describe the rate of change of cell population densities as a function of time t.

2. Materials
2.1. Experimental Data

Reliable input from experimental or clinical research in terms of precise and com-
prehensive datasets is a core part of an interdisciplinary modeling approach. The data
set presented in Table 2 was generated using established protocols (9,10). Briefly,
major histocompatibility complex (MHC) class I tetramers complexed with the
immunodominant CTL epitope (gp33) derived from the glycoprotein of the lympho-
cytic choriomeningitis virus (LCMV-GP) (11) were used to follow activation of gp33-
specific CTL after immunization with DC. DC derived from transgenic mice
ubiquitously expressing the first 60 aa of LCMV-GP including gp33 (H8-DC) (12)
were injected intravenously (i.v.) into naïve C57BL/6 recipient mice. At the indicated
time points following immunization, the densities of the following cell populations as
a function of time t were determined:

• “Activated” CD8+62L- T-cells staining with the gp33-tetramer (tet+) in spleen that have
downregulated the CD62L molecule, Ea(t)

• “Quiescent” CD8+CD62L+tet+ cells in spleen Em(t).

Furthermore, to assess the availability of adoptively transferred DC for productive
interaction with T-cells within secondary lymphoid organs, 51Cr-labeled H8-DC were
injected i.v. into naïve recipient mice, and the accumulated radioactivity was deter-
mined in spleen at different time points using established protocols (13). The data set
for homing of adoptively transferred DC from blood to spleen has been published
elsewhere (14).

2.2. Simulation Software
The practical way to study mathematical models is based on using numerical tech-

niques to approximate the solutions. To understand the DC–CTL interaction dynam-
ics, model equations were evaluated under different parameter settings—a “direct”
approach. Differential equations of the model were programmed using the universal
computer language FORTRAN. Efficient and reliable software packages such as
MATLAB (Website: http://www.mathworks.com) or Berkeley Madonna (Website:
http://www.berkeleymadonna.com) represent more convenient alternatives to the
“classical” programming approach, because they automate a number of steps (e.g.,
programming of equations, selection of the numerical method) of the process of solv-
ing initial value problems for ordinary or delay differential equations.
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3. Methods
3.1. Generation of a Conceptual Scheme (Model) of the System

The first task in a data- and hypothesis-driven modeling approach is to choose/
specify the functional form of the model to represent the data of the system under analy-
sis (3). Although many variables and parameters might seem necessary to describe the
effect of DC on CTL, one must a priori restrict the model to the most important interac-
tions. We quote from Burnham and Anderson (8): “Development of the a priori set of
candidate models often should include a global model: a model that has many param-
eters, includes all potentially relevant effects, and reflects causal mechanisms thought
likely, based on the science of situation.” This type of a global model for a systemic
dynamics of DC–CTL interaction has recently been developed by Ludewig et al. (14).
Our conceptual model is based on the spatio-temporal view of the organization and
predator–prey type regulation of CD8+ T-cell responses by DC in vivo. Antigen-
expressing DC migrate irreversibly from blood to the spleen, where they induce clonal
expansion of naïve antigen-specific CTL. Activated CTL eliminate the DC and recircu-
late among spleen, blood, and peripheral tissues. The key element of the model is the
predator–prey-type interaction of DC with antigen-specific CTL (Fig. 1). We present
here our modeling methodology for the splenic compartment of the immune system.

3.2. Specifying Assumptions and Selecting Quantities
To formulate equations for DC–CTL interaction following i.v. injection, we make

the following simplifying biological assumptions. Such a list is also helpful for the
evaluation of the modeling results from the viewpoint of the underlying biology.

Fig. 1. Conceptual model for the predator–prey type induction/regulation of CD8+ T-cell
responses by dendritic cells (DC). Antigen-expressing DC migrate from blood to spleen, where
they induce clonal expansion of naïve antigen-specific cytotoxic T-lymphocytes (CTL),
whereas activated CTL eliminate DC. Arrows indicate the modeled processes.
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1. DC do not re-circulate from lymphoid organs into the blood after intravenous injection
(15).

2. Adoptively transferred DC are in mature state (10).
3. DC-mediated induction of antigen-specific CTL is due to their interaction in the spleen

(14).
4. DC do not divide in secondary lymphoid organs (16).
5. DC decay due to a short life span (17) and their killing by activated CTL (9,18).
6. The population of antigen-specific CTL in spleen is split into quiescent (naïve or central

memory-like) and activated CTL (effector or effector memory-like) (19).
7. CTL re-circulate among spleen, blood, and peripheral organs (e.g., liver).

The required quantities for the specific model depend on the conceptual scheme
and the assumptions. The quantities include here time as an independent variable,
time-dependent variables (population densities of cells), and the parameters that char-
acterize the kinetics of the specified processes. The biological meaning and units of
the parameters considered in the presented model of DC–CTL interaction are listed in
Table 3.

3.3. Derivation of Model Equations

The cell population dynamics can be represented by the following prototype mass
balance equation (see Note 1):

    Change rate of number of cells of j-th type at time t =

    ± transfer between compartments + cell division – cell death ± transition between states (1)

We model the localized population dynamics of DC–CTL interaction, i.e., in the
spleen, and ignore the DC re-circulation between spleen and blood.

The rate of change in the density of DC in the spleen is modeled as:

d

dt
D t

Q

Q
D t D tBS

Blood

Spleen
Blood D( ) = ⋅ ⋅ ( ) ⋅ ( )µ α– –– b E t D tDE a⋅ ( ) ⋅ ( ) (2)

The first term represents the trafficking of DC from blood to spleen (QBlood and
QSpleen being the volumes of the blood and spleen compartments, respectively), and
the other two take into account the natural death of the cells and their elimination by
activated CTL. We substitute the formulae identified in (14) for the kinetics of DC in
the blood DBlood(t).

The dynamics of activated CTL is modeled by the following equation:

d

dt
E t E E t b

D t E
a E

naive
a p

d a
a

( ) = ⋅ ( )  + ⋅
( ) ⋅

α
τ

–
– tt

D t
r E t b D t E td

D d
am a a m

–

–
–

τ

θ τ

( )
+ ( )

⋅ ( ) + ⋅ ( ) ⋅ ( ) (3)

The first term considers the homeostasis of naïve CTL in the spleen, the second
term represents the DC-induced division of CTL proceeding at the rate that saturates
at a high number of DC. The time lag between the cognate interaction of CTL with DC
represents the duration of “preprogramming” of CTL for division and differentiation
(20). The last two terms take into account the silencing of activated CTL into quies-
cent “memory” cells (third term) and the activation of the memory cells by DC.
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The equation for the dynamics of quiescent “memory” CTL is:

d

dt
E t r E t b D t E tm am a E a mm

( ) = ⋅ ( ) + ⋅ ( )  ⋅ ( )– α (4)

which considers the transition of the activated CTL into the quiescent “memory” state,
the death of memory CTL at some slow rate, and the activation of memory CTL de-
pending on the availability of DC.

3.4. Computer Simulation of the System Dynamics
A typical computer simulation includes the following steps:

1. Program the set of differential equations of the model, either following protocols speci-
fied in specialized simulation packages (see Methods) or using universal computer lan-
guages such as FORTRAN or C++.

2. Set initial values for the time-dependent population densities of DC and CTL.
3. Set the values for the model parameters (see Note 2 for an example of how to derive the

initial guess for CTL proliferation parameters bp, θD).
4. Set run-time parameters—the start and finish times as well as the report times for the

solution and the error-per-step tolerance in the solver.

There are several difficulties in obtaining efficiently a numerical approximation to
the solution of the model equations (see Note 3). It follows that the computer simula-
tions require specification of values for the model parameters. The parameter values
can be obtained from experimental data sets either directly, or using special numerical
procedures for the “inverse” modeling approach.

3.5. Estimation of Parameters and Confidence Intervals Via Data-Fitting
Estimation of adjustable parameters of a mathematical model with specified archi-

tecture is another central task of data-driven modeling (3). The purpose of data-fitting
is to calculate values of the model parameters that optimize some objective function
which is a measure of the fit (agreement) between the simulated values (predictions of
the model) and the data (see Note 4). Figure 2 shows the experimental data and the
corresponding best-fit solution of the mathematical model.

3.5.1. Least-Squares Fitting Functions
Let the set of observation times t j j

N{ } =1  and observations y j
i

j

N{ }
=1

 for M (1 � i �
M) of the model variables be specified. An example of the experimental data set repre-
senting the kinetics of tet+ CD8 T-cells expansion after i.v. injection of 2 × 105 H8-DC
used in parameter estimation is given in Table 2. Simulation of the system with the
model suggests prediction (a regression function) for the observed variable yi(tj,p),
which depends on the adjustable parameters p, i.e., the model parameter vector with L
components. The common ordinary least-squares (LSQ) error measure of the match
between the model and data is given by the objective function determined by the square
of the absolute deviation between the model and data:

Φ p p( ) = ( )





==
∑∑
i

M

j

N

j
i i

jy y t
11

2
– , (5)
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The weighted LSQ objective function

Φ p p( ) = − ( )





==
∑∑       w y y tj

i

i

M

j

N

j
i i

j
11

2
, (6)

can be used when different weights have to be given to particular observations. A
natural choice for the weights could be the inverse variances w j

i
j
i= ( )−σ  2

 of the obser-
vations. The LSQ approach proves to be efficient when the variation in scale of the
data set over the observation time interval is within one order of magnitude. This is
exactly the case with the data for the initial biodistribution kinetics of DC after intra-
venous injection (see ref. 14 and Note 5).

3.5.2. Minimization of the Least-Squares Function

The numerical technique for finding the best-fit parameter estimates for a given
data set, mathematical model, and objective function requires (1) providing an initial
guess for the model parameters; (2) solving the model equations to compute Φ(p);
and (3) adjusting the parameter values by some minimization routine available, for
example, in the MATLAB library (– fmins). Because the parameters of the model are
constrained to be nonnegative, we used a log10-transformation for the parameters, so
that the resulting sequence of reduced order data-fitting problems were treated as an
unconstrained minimization (see Note 6).

Fig. 2. Data vs model description for the population dynamics of dendritic cells (DC) and
cytotoxic T-lymphocytes (CTL) in spleen induced by intravenous injection of 2 × 105 gp33-
presenting H8-DC. The symbols represent averages of 3 mice ± standard deviation. The smooth
lines predict the population dynamics of the total tet+, activated tet+, and quiescent memory tet+

CTLs and H8-DCs for the best-fit estimates of the model parameters. DC elimination follows a
biphasic kinetics; the first, slower phase reflects their life span and the accelerated decay phase
results from the killing effect by activated CTLs.
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There are software packages such as Berkeley Madonna that can automatically find
the values of a number of parameters in a model that minimize the deviation between
the model’s output and a data set. In principle, these facilities greatly enhance the
capability of treating the parameter estimation problem. However, data-fitting with
non-linear differential equations-based models is a type of expertise that can be learned
only in actual practice (see refs. 21–23 for extensive discussion of various aspects of
statistical techniques and computational methods).

3.5.3. Computation of Confidence Intervals
To characterize the precision or reliability of best-fit parameter estimates (p*) a

number of approaches exist, of which we consider (1) the variance-covariance matrix
for estimated parameters (23); and (2) the profile-likelihood-based method (24) (see
Note 7). Alternatively, a bootstrap approach may be used (21,25). The confidence
interval analysis is a computation-intensive procedure. The simplest approach is to
approximate the 95% confidence intervals using estimates of the standard errors
pl

l* .±1 96σ , where σ l llv= , 1 � l � L stand for the diagonal elements of the vari-
ance-covariance matrix. In turn, the matrix elements are determined via the residual
sum of LSQ function, the number of degrees of freedom, and the Hessian matrix
(22,23), according to the formula

v c c c

c v c c

c c v c

L

L

L

11 12 13 1

21 22 23 2

31 32 33 3
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� � � � ��
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
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





=
( )Φ p*

– LL

p p p p p

∂

∂
( ) ∂

∂ ∂
( ) ∂

∂ ∂
( ) ∂

∂

2

1
2

2

1 2

2

1 3

2

Φ Φ Φp p p* * * �

pp p

p p p p p

L1

2

2 1

2

2
2

2

2 3

∂
( )

∂
∂ ∂

( ) ∂

∂
( ) ∂

∂ ∂

Φ

Φ Φ

p

p p

*

* * ΦΦ Φ

Φ Φ

p p

p p

* *

*

( ) ∂
∂ ∂

( )

∂
∂ ∂

( ) ∂
∂ ∂

�

2

2

2

3 1

2

3 2

p p

p p p p

L

** * *( ) ∂

∂
( ) ∂

∂ ∂
( )

∂
∂ ∂

2

3
2

2

3

2

1

p p p

p p

L

L

Φ Φ

Φ

p p�

� � � � �

pp p p p* * * *( ) ∂
∂ ∂

( ) ∂
∂ ∂

( ) ∂

∂
( )

2

2

2

3

2

2p p p p pL L L

Φ Φ Φ�







































–1

(7)

where Nobs and L stand for the total number of scalar observations and the number of
model parameters, respectively. The Hessian matrix can be approximated using the
complete information matrix or via numerical differentiation provided in MATLAB.

The estimates of the parameters for DC–CTL interaction in spleen and their confi-
dence intervals are shown in Table 3 (see Note 7).

3.5.4. Evaluation of the Model Parsimony and Accuracy
In general, the biological model architectures are not comprehensively justified on

the basis of proven mechanisms, but reflect a parsimonious characterization of the
system under study (26). The mathematical model presented here is not the only plau-
sible model for studying the dynamics of DC–CTL interaction in vivo. Other formu-
lations may be preferable given a different context (e.g., data) or a different set of
goals. It is important, therefore, not only to rank plausible models with respect to
their consistency with the data (as measured by the best-fit objective function), but
also to consider their distance to an unknown “true model” underlying the data set.



Mathematical Approach to DC Immunotherapy 29

The information-theoretic framework provides a basis for such assessment of infor-
mation complexity of the model (the model parsimony) and the selection of the best
ones with respect to the information in the data (8). Using the maximized-likelihood
function, one can compute the value of the corrected Akaike’s information criterion
(AIC) (appropriate for data sets smaller than 40 units):

µ σcAIC
obs

L
L

N L
= ( )  + +( ) +

+
− +( )

– ln ,*2 2 1 1
2

2
�� p 







 (8)

with �(p*,σ) being the maximized likelihood function, or the revised relative indicator
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2

2



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in which extraneous terms are discarded and the relationship between the maximum-
likelihood estimation and the LSQ estimation (either ordinary- or Log-LSQ) is used.
The best model is considered to be that which yields the lowest value of the indicators.
The indicators can be regarded as taking parsimony into account.

3.6. Sensitivity Analysis
The major advantage of a mathematical model is that the model parameters can be

easily altered and the effect on system dynamics can be examined via sensitivity analy-
sis (see Note 8). We present an example in which the initial numbers of injected DC
and naïve CTL were changed to predict the effect on the peak expansion of CTL. In
this process, the model equations were run using various combinations of the numeri-
cal values of the initial numbers of DC and CTL; other parameter values are shown in
Table 3. The computer experiments summarized in Fig. 3 suggest that the peak CTL
expansion is a conserved feature of the DC–CTL interaction dynamics once the initial
numbers of DC and CTL have reached a saturation level. Furthermore, this simulation
indicates that increasing the initial number of CTL above a certain threshold does not
lead to further expansion because of the accelerated elimination of the antigen-pre-
senting DC.

4. Notes

1. Various functional forms can be suggested for process terms in the above equation, as
illustrated for the DC-induced proliferation rate of T-cells in Table 4. To model dose-
response curves, there is a broad set of phenomenological equations available that allow
one to get the desired shape, including one-site saturation, sigmoidal with variable slope,
four-parameter logistic equation, and so on. It has to be determined which of these forms
is most consistent with the system under consideration, and this can be judged either by
using a priori biological arguments, or by confronting against experimental data as pre-
sented, for example in (27), or using the information-theoretic model selection criteria
(see Subheading 3.5.4.).

2. Experimental data on CTL priming with DC (10) indicate that 100–1000 DC have to
reach the spleen to achieve protective levels of CTL activation. These numbers directly
suggest the range for the initial estimates of the threshold parameter of half-maximal
CTL activation, i.e., 100 � θD � 1000 (cells). The doubling time of CTL during the
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expansion phase ranges from 6 to 24 h. This suggests a plausible range for the CTL
amplification per day parameter 1 � bp � 24 = 16 (d–1). Data-fitting procedures are
required to further refine these initial estimates (see Subheading 3.5.).

3. Voit (7) presents a useful practical guide to doing simulations with mathematical models
formulated using systems of ordinary differential equations. They offer a basic, easy to
install and start software for Power Law Analysis and Simulation (PLAS). Some differ-
ential equations model processes with widely separated decay times (called stiff) require
special stiff solvers (based upon either implicit Runge-Kutta or Gear’s methods) to pro-
duce simulations. These are available, for example, in the software package Berkeley
Madonna. In the case of models formulated with delay (rather than ordinary) differential
equations, software development is still an active area of research. Some interesting guide-
lines and recipes on how to conduct in silico experiments on the model system are dis-
cussed in (7) for biochemical models.

Table 4
Some Functional Forms for DC-Induced CTL Growth
and the Associated Qualitative Implications

Process

DC-induced per capita T cell division rate

Form1 Dose/Effect Form2 Dose/Effect Form3 Dose/Effect

~DC ~
DC

DCθ+
~

DC

DCθ+ ( )2

Fig. 3. Sensitivity analysis of CTL expansion to parameters variation. The maximal expan-
sion of gp33-specific CTL as a function of the initial number of intravenously injected H8-DC
and the initial number of the specific CTL.
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4. We have available observations as input data, which typically arise from a multiple series
of observations, in which case the individual data have to be summarized in some way
(e.g., as means and standard errors). Since the basis of the data-fitting usually includes
assumptions about distributions (e.g., normal or Log-normal) of the errors in observations,
it is important to ensure that those assumptions are realistic. A general statistical frame-
work is the Bayesian approach, which under some natural assumptions reduces to Maxi-
mum A Posteriori Estimation and, further down, to Maximum Likelihood (ML) Estimation
(3,23). The choice depends on the knowledge of the statistical features of the data, expec-
tations in advance about the model parameter values, and the selected set of models. If one
uses a single model and assumes a uniform prior on the parameter values, then the ML
approach would be the natural choice (3,23). The LSQ parameter estimation is equivalent
to the ML estimation under the set of assumptions (often made implicitly) that (1) the
observational errors are normally distributed, (2) equivalent positive and negative devia-
tions from expected values differ by equal amounts; and (3) the errors between samples are
independent and identically distributed. Other powers of the deviation between the model
and the data can be used depending on the error distribution—for example, the first power
would correspond to an exponential distribution of the errors (3).

5. Immunological characteristics may vary over several orders of magnitude. In such cases
logarithmic scaling should be applied in order to make the data-fitting problem equally
sensitive to differences between the model and data in the lower end of the observed
values. Statistically, this implies an assumption of geometric normality of observational
errors, in which equivalent deviations differ by equal proportions. Minimizing the Log-
LSQ function is equivalent to maximizing the likelihood function under the assumption
that the observational errors are independent and Log-normally distributed. The param-
eter estimation problem corresponds to a choice of Log-LSQ (relative deviation) objective
function

ΦLogLS j
i i

j
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j

y y tp p( ) = ( )− ( )
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
{ }

=
∑ ln ln ,

2

1==
∑

1

N

(10)

The DC-induced population dynamics of tet+ CD8+ T-cells is exactly such a case. To
estimate the model parameters characterizing the DC–CTL interaction, we minimized the
Log-LSQ function in an iterative way over sequentially expanding time intervals domi-
nated by different sets of parameters.

6. In terms of efficiency, it may be advantageous to try a number (or a combination) of
minimization methods. Whereas the initial estimates of model parameters can first be
improved by a computationally simple, slowly converging method (e.g., derivative-free
Simplex method), the resulting better guess can further be improved using a computa-
tionally extensive but rapidly converging procedure (e.g., quasi-Newton method). Good
starting values for parameter estimates can sometimes be obtained by a sequential pro-
cess of refining the estimates via fitting the subsets of the data, which are obtained by
subdividing the observation interval. As the size of the subinterval increases, the best-fit
parameter values can be improved in a step-by-step manner. The limited accuracy of the
numerical solution of the mathematical model and, therefore, the correct number of digits
in the value of the LSQ function must be accounted for in the minimization process,
especially if it uses finite-difference approximations to the derivatives of the objective
functions.

7. For complex mathematical models the variance-covariance matrix approach to assess the
precision of parameter estimates is more difficult to implement because of the complexity
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(this is the case for the mathematical model of systemic DC–CTL interaction). We used a
different approach: approximate (e.g., 99%) confidence regions for every best-fit param-
eter estimate (α*) of the whole parameter vector p p* *

–
*,≡  

( )L 1 α  were obtained using
the profile-likelihood-based method (24), by searching for those values of α that satisfied
the following inequality

Φ

Φ
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The value of χ1 0 99
2
, . , which stands for the 0.99th quantile of the χ2-distribution on one

degree of freedom is 6.635 (see standard statistical textbooks), Nobs stands for the number
of observations. Therefore, numerically one needs to find the two extreme values of α
(the endpoints of the confidence range) that enable

Φ ΦLogLS
L N

LogLS
Le obsp p*

.

*, ,−[ ] −[ ]( ) = ⋅1

6 635

1α αα*( ) (12)

8. Sensitivity analysis in modeling of biochemical and bioengineering systems has been dis-
cussed elsewhere (7,28). To summarize, the sensitivity analysis has multiple functions: it
can indicate the controllability of the system dynamics, the parameter redundancy in the
model, the effect of errors in the data on parameter estimates, and the predictability of the
system, as well as assisting in ranking the importance of the modeled processes. In addi-
tion to the simplest form of sensitivity analysis—i.e., how a permanent perturbation in
parameter(s) around the best-fit value affects the solution (transient or steady-state)—one
may study the effect of time-varying perturbation(s), or the sensitivity of more complex
system features, like the clonal burst size, the transition time to a particular state, and so
on. The practical details of sensitivity analysis with PLAS software created by Ferreira
are discussed in detail by Voit (7). The simplest sensitivity computations require that the
parameter of interest be independent of the remaining parameters in the model; otherwise
one has to take into account all functional dependences upon other parameters.
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